201
|
Fayzullina S, Martin LJ. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA). PLoS One 2014; 9:e93329. [PMID: 24667816 PMCID: PMC3965546 DOI: 10.1371/journal.pone.0093329] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/03/2014] [Indexed: 12/27/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathological event in SMA, and whether DNA damage and cell death first occur in skeletal muscle or spinal cord of SMA mice. We used a mouse model of severe SMA to ascertain the extent of cell death and DNA damage throughout the body of prenatal and newborn mice. SMA mice at birth (postnatal day 0) exhibited internucleosomal fragmentation in genomic DNA from hindlimb skeletal muscle, but not in genomic DNA from spinal cord. SMA mice at postnatal day 5, compared with littermate controls, exhibited increased apoptotic cell death profiles in skeletal muscle, by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and electron microscopy. SMA mice had no increased cell death, no loss of choline acetyl transferase (ChAT)-positive motor neurons, and no overt pathology in the ventral horn of the spinal cord. At embryonic days 13 and 15.5, SMA mice did not exhibit statistically significant increases in cell death profiles in spinal cord or skeletal muscle. Motor neuron numbers in the ventral horn, as identified by ChAT immunoreactivity, were comparable in SMA mice and control littermates at embryonic day 15.5 and postnatal day 5. These observations demonstrate that in SMA, disease in skeletal muscle emerges before pathology in spinal cord, including loss of motor neurons. Overall, this work identifies DNA damage and cell death in skeletal muscle as therapeutic targets for SMA.
Collapse
Affiliation(s)
- Saniya Fayzullina
- Division of Neuropathology, Department of Pathology, and the Pathobiology Graduate Program, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Lee J. Martin
- Division of Neuropathology, Department of Pathology, and the Pathobiology Graduate Program, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
202
|
SMN is required for the maintenance of embryonic stem cells and neuronal differentiation in mice. Brain Struct Funct 2014; 220:1539-53. [PMID: 24633826 DOI: 10.1007/s00429-014-0743-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/28/2014] [Indexed: 01/02/2023]
Abstract
Survival motor neuron (SMN) is the determining factor in spinal muscular atrophy, the most common genetic cause of childhood mortality. We have previously found that SMN regulates stem cell division, proliferation and differentiation in Drosophila. However, it is unknown whether a similar effect exists in vertebrates. Here, we show that SMN is enriched in highly proliferative embryonic stem cells (ESCs) in mice and reduction of SMN impairs the pluripotency of ESCs. Moreover, we find that SMN reduction activates ERK signaling and affects neuronal differentiation in vitro. Teratomas with reduced SMN grow more slowly and show weaker signals of neuronal differentiation than those with a normal level of SMN. Finally, we show that over-expression of SMN is protective for ESCs from retinoic acid-induced differentiation. Taken together, our results suggest that SMN plays a role in the maintenance of pluripotent ESCs and neuronal differentiation in mice.
Collapse
|
203
|
Tripsianes K, Chu NK, Friberg A, Sattler M, Becker CFW. Studying weak and dynamic interactions of posttranslationally modified proteins using expressed protein ligation. ACS Chem Biol 2014; 9:347-52. [PMID: 24299430 DOI: 10.1021/cb400723j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many cellular processes are regulated by posttranslational modifications that are recognized by specific domains in protein binding partners. These interactions are often weak, thus allowing a highly dynamic and combinatorial regulatory network of protein-protein interactions. We report an efficient strategy that overcomes challenges in structural analysis of such a weak transient interaction between the Tudor domain of the Survival of Motor Neuron (SMN) protein and symmetrically dimethylated arginine (sDMA). The posttranslational modification is chemically introduced and covalently linked to the effector module by a one-pot expressed protein ligation (EPL) procedure also enabling segmental incorporation of NMR-active isotopes for structural analysis. Covalent coupling of the two interacting moieties shifts the equilibrium to the bound state, and stoichiometric interactions are formed even for low affinity interactions. Our approach should enable the structural analysis of weak interactions by NMR or X-ray crystallography to better understand the role of posttranslational modifications in dynamic biological processes.
Collapse
Affiliation(s)
- Konstantinos Tripsianes
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Center for Integrated Protein Science Munich and Chair of Biomolecular NMR, TU München, Lichtenbergstr. 4, 85747 Garching, Germany
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Nam K. Chu
- Institute of Biological
Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria
| | - Anders Friberg
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Center for Integrated Protein Science Munich and Chair of Biomolecular NMR, TU München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Center for Integrated Protein Science Munich and Chair of Biomolecular NMR, TU München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Christian F. W. Becker
- Institute of Biological
Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria
| |
Collapse
|
204
|
Cho S, Moon H, Loh TJ, Oh HK, Cho S, Choy HE, Song WK, Chun JS, Zheng X, Shen H. hnRNP M facilitates exon 7 inclusion of SMN2 pre-mRNA in spinal muscular atrophy by targeting an enhancer on exon 7. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:306-15. [PMID: 24533984 DOI: 10.1016/j.bbagrm.2014.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/24/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease, which causes death of motor neurons in the anterior horn of the spinal cord. Genetic cause of SMA is the deletion or mutation of SMN1 gene, which encodes the SMN protein. Although SMA patients include SMN2 gene, a duplicate of SMN1 gene, predominant production of exon 7 skipped isoform from SMN2 pre-mRNA, fails to rescue SMA patients. Here we show that hnRNP M, a member of hnRNP protein family, when knocked down, promotes exon 7 skipping of both SMN2 and SMN1 pre-mRNA. By contrast, overexpression of hnRNP M promotes exon 7 inclusion of both SMN2 and SMN1 pre-mRNA. Significantly, hnRNP M promotes exon 7 inclusion in SMA patient cells. Thus, we conclude that hnRNP M promotes exon 7 inclusion of both SMN1 and SMN2 pre-mRNA. We also demonstrate that hnRNP M contacts an enhancer on exon 7, which was previously shown to provide binding site for tra2β. We present evidence that hnRNP M and tra2β contact overlapped sequence on exon 7 but with slightly different RNA sequence requirements. In addition, hnRNP M promotes U2AF65 recruitment on the flanking intron of exon 7. We conclude that hnRNP M promotes exon 7 inclusion of SMN1 and SMN2 pre-mRNA through targeting an enhancer on exon 7 through recruiting U2AF65. Our results provide a clue that hnRNP M is a potential therapeutic target for SMA.
Collapse
Affiliation(s)
- Sunghee Cho
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Heegyum Moon
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Tiing Jen Loh
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Huyn Kyung Oh
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Sungchan Cho
- Bio-Therapeutics Research Institute, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Hyon E Choy
- Department of Microbiology, Chonnam National University Medical School, Dong-gu, Gwangju, Republic of Korea
| | - Woo Keun Song
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Jang-Soo Chun
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Xuexiu Zheng
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Haihong Shen
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
205
|
Husedzinovic A, Oppermann F, Draeger-Meurer S, Chari A, Fischer U, Daub H, Gruss OJ. Phosphoregulation of the human SMN complex. Eur J Cell Biol 2014; 93:106-17. [PMID: 24602413 DOI: 10.1016/j.ejcb.2014.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022] Open
Abstract
The survival motor neuron (SMN) complex is a macromolecular machine comprising 9 core proteins: SMN, Gemins2-8 and unrip in vertebrates. It performs tasks in RNA metabolism including the cytoplasmic assembly of spliceosomal small nuclear ribonucleoprotein particles (snRNPs). The SMN complex also localizes to the nucleus, where it accumulates in Cajal Bodies (CB) and may function in transcription and/or pre-mRNA splicing. The SMN complex is subject to extensive phosphorylation. Detailed understanding of SMN complex regulation necessitates a comprehensive analysis of these post-translational modifications. Here, we report on the first comprehensive phosphoproteome analysis of the intact human SMN complex, which identify 48 serine/threonine phosphosites in the complex. We find that 7 out of 9 SMN components of the intact complex are phosphoproteins and confidently place 29 phosphorylation sites, 12 of them in SMN itself. By the generation of multi non-phosphorylatable or phosphomimetic variants of SMN, respectively, we address to which extent phosphorylation regulates SMN complex function and localization. Both phosphomimetic and non-phosphorylatable variants assemble into intact SMN complexes and can compensate the loss of endogenous SMN in snRNP assembly at least to some extent. However, they partially or completely fail to target to nuclear Cajal bodies. Moreover, using a mutant of SMN, which cannot be phosphorylated on previously reported tyrosine residues, we provide first evidence that this PTM regulates SMN localization and nuclear accumulation. Our data suggest complex regulatory cues mediated by phosphorylation of serine/threonine and tyrosine residues, which control the subcellular localization of the SMN complex and its accumulation in nuclear CB.
Collapse
Affiliation(s)
- Alma Husedzinovic
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| | - Felix Oppermann
- Evotec AG, Am Klopferspitz 19a, D-82152 Martinsried, Germany
| | - Stefanie Draeger-Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Ashwin Chari
- Theodor Boveri Institute, Biocenter of the University of Wuerzburg, D-97074 Wuerzburg, Germany
| | - Utz Fischer
- Theodor Boveri Institute, Biocenter of the University of Wuerzburg, D-97074 Wuerzburg, Germany
| | - Henrik Daub
- Evotec AG, Am Klopferspitz 19a, D-82152 Martinsried, Germany
| | - Oliver J Gruss
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| |
Collapse
|
206
|
Workman E, Veith A, Battle DJ. U1A regulates 3' processing of the survival motor neuron mRNA. J Biol Chem 2014; 289:3703-12. [PMID: 24362020 PMCID: PMC3916568 DOI: 10.1074/jbc.m113.538264] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/16/2013] [Indexed: 12/12/2022] Open
Abstract
Insufficient expression of the survival motor neuron (SMN) protein causes spinal muscular atrophy, a neurodegenerative disease characterized by loss of motor neurons. Despite the importance of maintaining adequate SMN levels, little is known about factors that control SMN expression, particularly 3' end processing of the SMN pre-mRNA. In this study, we identify the U1A protein as a key regulator of SMN expression. U1A, a component of the U1 snRNP, is known to inhibit polyadenylation upon direct binding to mRNA. We show that U1A binds directly and with high affinity and specificity to the SMN 3'-UTR adjacent to the polyadenylation site, independent of the U1 snRNP (U1 small nuclear ribonucleoprotein). Binding of U1A inhibits polyadenylation of the SMN pre-mRNA by specifically inhibiting 3' cleavage by the cleavage and polyadenylation specificity factor. Expression of U1A in excess of U1 snRNA causes inhibition of SMN polyadenylation and decreases SMN protein levels. This work reveals a new mechanism for regulating SMN levels and provides new insight into the roles of U1A in 3' processing of mRNAs.
Collapse
Affiliation(s)
- Eileen Workman
- From the Departments of Molecular and Cellular Biochemistry and
| | - Alex Veith
- From the Departments of Molecular and Cellular Biochemistry and
| | - Daniel J. Battle
- From the Departments of Molecular and Cellular Biochemistry and
- Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| |
Collapse
|
207
|
Tapia O, Lafarga V, Bengoechea R, Palanca A, Lafarga M, Berciano MT. The SMN Tudor SIM-like domain is key to SmD1 and coilin interactions and to Cajal body biogenesis. J Cell Sci 2014; 127:939-46. [PMID: 24413165 DOI: 10.1242/jcs.138537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cajal bodies (CBs) are nuclear organelles involved in the maturation of spliceosomal small nuclear ribonucleoproteins (snRNPs). They concentrate coilin, snRNPs and the survival motor neuron protein (SMN). Dysfunction of CB assembly occurs in spinal muscular atrophy (SMA). Here, we demonstrate that SMN is a SUMO1 target that has a small ubiquitin-related modifier (SUMO)-interacting motif (SIM)-like motif in the Tudor domain. The expression of SIM-like mutant constructs abolishes the interaction of SMN with the spliceosomal SmD1 (also known as SNRPD1), severely decreases SMN-coilin interaction and prevents CB assembly. Accordingly, the SMN SIM-like-mediated interactions are important for CB biogenesis and their dysfunction can be involved in SMA pathophysiology.
Collapse
Affiliation(s)
- Olga Tapia
- Department of Anatomy and Cell Biology, University of Cantabria-IFIMAV, Santander E-39008, Spain
| | | | | | | | | | | |
Collapse
|
208
|
Hutten S, Chachami G, Winter U, Melchior F, Lamond AI. A role for the Cajal-body-associated SUMO isopeptidase USPL1 in snRNA transcription mediated by RNA polymerase II. J Cell Sci 2014; 127:1065-78. [PMID: 24413172 PMCID: PMC3937775 DOI: 10.1242/jcs.141788] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cajal bodies are nuclear structures that are involved in biogenesis of snRNPs and snoRNPs, maintenance of telomeres and processing of histone mRNA. Recently, the SUMO isopeptidase USPL1 was identified as a component of Cajal bodies that is essential for cellular growth and Cajal body integrity. However, a cellular function for USPL1 is so far unknown. Here, we use RNAi-mediated knockdown in human cells in combination with biochemical and fluorescence microscopy approaches to investigate the function of USPL1 and its link to Cajal bodies. We demonstrate that levels of snRNAs transcribed by RNA polymerase (RNAP) II are reduced upon knockdown of USPL1 and that downstream processes such as snRNP assembly and pre-mRNA splicing are compromised. Importantly, we find that USPL1 associates directly with U snRNA loci and that it interacts and colocalises with components of the Little Elongation Complex, which is involved in RNAPII-mediated snRNA transcription. Thus, our data indicate that USPL1 plays a key role in RNAPII-mediated snRNA transcription.
Collapse
Affiliation(s)
- Saskia Hutten
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | | | | | | | |
Collapse
|
209
|
Caillet-Boudin ML, Fernandez-Gomez FJ, Tran H, Dhaenens CM, Buee L, Sergeant N. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci 2014; 6:57. [PMID: 24409116 PMCID: PMC3885824 DOI: 10.3389/fnmol.2013.00057] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/20/2013] [Indexed: 01/18/2023] Open
Abstract
Myotonic dystrophy (DM) of type 1 and 2 (DM1 and DM2) are inherited autosomal dominant diseases caused by dynamic and unstable expanded microsatellite sequences (CTG and CCTG, respectively) in the non-coding regions of the genes DMPK and ZNF9, respectively. These mutations result in the intranuclear accumulation of mutated transcripts and the mis-splicing of numerous transcripts. This so-called RNA gain of toxic function is the main feature of an emerging group of pathologies known as RNAopathies. Interestingly, in addition to these RNA inclusions, called foci, the presence of neurofibrillary tangles (NFT) in patient brains also distinguishes DM as a tauopathy. Tauopathies are a group of nearly 30 neurodegenerative diseases that are characterized by intraneuronal protein aggregates of the microtubule-associated protein Tau (MAPT) in patient brains. Furthermore, a number of neurodegenerative diseases involve the dysregulation of splicing regulating factors and have been characterized as spliceopathies. Thus, myotonic dystrophies are pathologies resulting from the interplay among RNAopathy, spliceopathy, and tauopathy. This review will describe how these processes contribute to neurodegeneration. We will first focus on the tauopathy associated with DM1, including clinical symptoms, brain histology, and molecular mechanisms. We will also discuss the features of DM1 that are shared by other tauopathies and, consequently, might participate in the development of a tauopathy. Moreover, we will discuss the determinants common to both RNAopathies and spliceopathies that could interfere with tau-related neurodegeneration.
Collapse
Affiliation(s)
- Marie-Laure Caillet-Boudin
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Francisco-Jose Fernandez-Gomez
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Hélène Tran
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Claire-Marie Dhaenens
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Luc Buee
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Nicolas Sergeant
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| |
Collapse
|
210
|
Boyer JG, Ferrier A, Kothary R. More than a bystander: the contributions of intrinsic skeletal muscle defects in motor neuron diseases. Front Physiol 2013; 4:356. [PMID: 24391590 PMCID: PMC3866803 DOI: 10.3389/fphys.2013.00356] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/20/2013] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and spinal-bulbar muscular atrophy (SBMA) are devastating diseases characterized by the degeneration of motor neurons. Although the molecular causes underlying these diseases differ, recent findings have highlighted the contribution of intrinsic skeletal muscle defects in motor neuron diseases. The use of cell culture and animal models has led to the important finding that muscle defects occur prior to and independently of motor neuron degeneration in motor neuron diseases. In SMA for instance, the muscle specific requirements of the SMA disease-causing gene have been demonstrated by a series of genetic rescue experiments in SMA models. Conditional ALS mouse models expressing a muscle specific mutant SOD1 gene develop atrophy and muscle degeneration in the absence of motor neuron pathology. Treating SBMA mice by over-expressing IGF-1 in a skeletal muscle-specific manner attenuates disease severity and improves motor neuron pathology. In the present review, we provide an in depth description of muscle intrinsic defects, and discuss how they impact muscle function in these diseases. Furthermore, we discuss muscle-specific therapeutic strategies used to treat animal models of SMA, ALS, and SBMA. The study of intrinsic skeletal muscle defects is crucial for the understanding of the pathophysiology of these diseases and will open new therapeutic options for the treatment of motor neuron diseases.
Collapse
Affiliation(s)
- Justin G Boyer
- Ottawa Hospital Research Institute, Regenerative Medicine Program Ottawa ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Andrew Ferrier
- Ottawa Hospital Research Institute, Regenerative Medicine Program Ottawa ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program Ottawa ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; Department of Medicine, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
211
|
Ishikawa H, Nobe Y, Izumikawa K, Yoshikawa H, Miyazawa N, Terukina G, Kurokawa N, Taoka M, Yamauchi Y, Nakayama H, Isobe T, Takahashi N. Identification of truncated forms of U1 snRNA reveals a novel RNA degradation pathway during snRNP biogenesis. Nucleic Acids Res 2013; 42:2708-24. [PMID: 24311566 PMCID: PMC3936765 DOI: 10.1093/nar/gkt1271] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The U1 small nuclear ribonucleoprotein (snRNP) plays pivotal roles in pre-mRNA splicing and in regulating mRNA length and isoform expression; however, the mechanism of U1 snRNA quality control remains undetermined. Here, we describe a novel surveillance pathway for U1 snRNP biogenesis. Mass spectrometry-based RNA analysis showed that a small population of SMN complexes contains truncated forms of U1 snRNA (U1-tfs) lacking the Sm-binding site and stem loop 4 but containing a 7-monomethylguanosine 5′ cap and a methylated first adenosine base. U1-tfs form a unique SMN complex, are shunted to processing bodies and have a turnover rate faster than that of mature U1 snRNA. U1-tfs are formed partly from the transcripts of U1 genes and partly from those lacking the 3′ box elements or having defective SL4 coding regions. We propose that U1 snRNP biogenesis is under strict quality control: U1 transcripts are surveyed at the 3′-terminal region and U1-tfs are diverted from the normal U1 snRNP biogenesis pathway.
Collapse
Affiliation(s)
- Hideaki Ishikawa
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan, Metabolome Division, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan, Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan, Department of Bioengineering, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan and Biomolecular Characterization Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Characterization and in vivo functional analysis of the Schizosaccharomyces pombe ICLN gene. Mol Cell Biol 2013; 34:595-605. [PMID: 24298023 DOI: 10.1128/mcb.01407-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the early steps of snRNP biogenesis, the survival motor neuron (SMN) complex acts together with the methylosome, an entity formed by the pICln protein, WD45, and the PRMT5 methyltransferase. To expand our understanding of the functional relationship between pICln and SMN in vivo, we performed a genetic analysis of an uncharacterized Schizosaccharomyces pombe pICln homolog. Although not essential, the S. pombe ICln (SpICln) protein is important for optimal yeast cell growth. The human ICLN gene complements the Δicln slow-growth phenotype, demonstrating that the identified SpICln sequence is the bona fide human homolog. Consistent with the role of human pICln inferred from in vitro experiments, we found that the SpICln protein is required for optimal production of the spliceosomal snRNPs and for efficient splicing in vivo. Genetic interaction approaches further demonstrate that modulation of ICln activity is unable to compensate for growth defects of SMN-deficient cells. Using a genome-wide approach and reverse transcription (RT)-PCR validation tests, we also show that splicing is differentially altered in Δicln cells. Our data are consistent with the notion that splice site selection and spliceosome kinetics are highly dependent on the concentration of core spliceosomal components.
Collapse
|
213
|
Rothé B, Back R, Quinternet M, Bizarro J, Robert MC, Blaud M, Romier C, Manival X, Charpentier B, Bertrand E, Branlant C. Characterization of the interaction between protein Snu13p/15.5K and the Rsa1p/NUFIP factor and demonstration of its functional importance for snoRNP assembly. Nucleic Acids Res 2013; 42:2015-36. [PMID: 24234454 PMCID: PMC3919607 DOI: 10.1093/nar/gkt1091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The yeast Snu13p protein and its 15.5K human homolog both bind U4 snRNA and box C/D snoRNAs. They also bind the Rsa1p/NUFIP assembly factor, proposed to scaffold immature snoRNPs and to recruit the Hsp90-R2TP chaperone complex. However, the nature of the Snu13p/15.5K–Rsa1p/NUFIP interaction and its exact role in snoRNP assembly remained to be elucidated. By using biophysical, molecular and imaging approaches, here, we identify residues needed for Snu13p/15.5K–Rsa1p/NUFIP interaction. By NMR structure determination and docking approaches, we built a 3D model of the Snup13p–Rsa1p interface, suggesting that residues R249, R246 and K250 in Rsa1p and E72 and D73 in Snu13p form a network of electrostatic interactions shielded from the solvent by hydrophobic residues from both proteins and that residue W253 of Rsa1p is inserted in a hydrophobic cavity of Snu13p. Individual mutations of residues in yeast demonstrate the functional importance of the predicted interactions for both cell growth and snoRNP formation. Using archaeal box C/D sRNP 3D structures as templates, the association of Snu13p with Rsa1p is predicted to be exclusive of interactions in active snoRNPs. Rsa1p and NUFIP may thus prevent premature activity of pre-snoRNPs, and their removal may be a key step for active snoRNP production.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 184, 54505 Vandœuvre-lès-Nancy, France, FR CNRS-3209 (Ingénierie Moléculaire et Thérapeutique), CNRS, Université de Lorraine, Faculté de Médecine, Bâtiment Biopôle, BP 184, 54505 Vandœuvre-lès-Nancy Cedex, France, Equipe labellisée Ligue contre le Cancer, IGMM (Institut de Génétique Moléculaire de Montpellier), Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535, Montpellier Cedex 5, France and IGBMC (Institut de Génétique et Biologie Moléculaire et Cellulaire), Département de Biologie et Génomique Structurales, Université de Strasbourg, CNRS, INSERM, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
See K, Yadav P, Giegerich M, Cheong PS, Graf M, Vyas H, Lee SGP, Mathavan S, Fischer U, Sendtner M, Winkler C. SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy. Hum Mol Genet 2013; 23:1754-70. [PMID: 24218366 DOI: 10.1093/hmg/ddt567] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive neurodegenerative disease affecting lower motor neurons. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene, which result in reduced levels of functional SMN protein. Biochemical studies have linked the ubiquitously expressed SMN protein to the assembly of pre-mRNA processing U snRNPs, raising the possibility that aberrant splicing is a major defect in SMA. Accordingly, several transcripts affected upon SMN deficiency have been reported. A second function for SMN in axonal mRNA transport has also been proposed that may likewise contribute to the SMA phenotype. The underlying etiology of SMA, however, is still not fully understood. Here, we have used a combination of genomics and live Ca(2+) imaging to investigate the consequences of SMN deficiency in a zebrafish model of SMA. In a transcriptome analyses of SMN-deficient zebrafish, we identified neurexin2a (nrxn2a) as strongly down-regulated and displaying changes in alternative splicing patterns. Importantly, the knock-down of two distinct nrxn2a isoforms phenocopies SMN-deficient fish and results in a significant reduction of motor axon excitability. Interestingly, we observed altered expression and splicing of Nrxn2 also in motor neurons from the Smn(-/-);SMN2(+/+) mouse model of SMA, suggesting conservation of nrxn2 regulation by SMN in mammals. We propose that SMN deficiency affects splicing and abundance of nrxn2a. This may explain the pre-synaptic defects at neuromuscular endplates in SMA pathophysiology.
Collapse
Affiliation(s)
- Kelvin See
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad Sci U S A 2013; 110:19348-53. [PMID: 24191055 DOI: 10.1073/pnas.1319280110] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The motor neuron (MN) degenerative disease, spinal muscular atrophy (SMA) is caused by deficiency of SMN (survival motor neuron), a ubiquitous and indispensable protein essential for biogenesis of snRNPs, key components of pre-mRNA processing. However, SMA's hallmark MN pathology, including neuromuscular junction (NMJ) disruption and sensory-motor circuitry impairment, remains unexplained. Toward this end, we used deep RNA sequencing (RNA-seq) to determine if there are any transcriptome changes in MNs and surrounding spinal cord glial cells (white matter, WM) microdissected from SMN-deficient SMA mouse model at presymptomatic postnatal day 1 (P1), before detectable MN pathology (P4-P5). The RNA-seq results, previously unavailable for SMA at any stage, revealed cell-specific selective mRNA dysregulations (~300 of 11,000 expressed genes in each, MN and WM), many of which are known to impair neurons. Remarkably, these dysregulations include complete skipping of agrin's Z exons, critical for NMJ maintenance, strong up-regulation of synapse pruning-promoting complement factor C1q, and down-regulation of Etv1/ER81, a transcription factor required for establishing sensory-motor circuitry. We propose that dysregulation of such specific MN synaptogenesis genes, compounded by many additional transcriptome abnormalities in MNs and WM, link SMN deficiency to SMA's signature pathology.
Collapse
|
216
|
Van Meerbeke JP, Gibbs RM, Plasterer HL, Miao W, Feng Z, Lin MY, Rucki AA, Wee CD, Xia B, Sharma S, Jacques V, Li DK, Pellizzoni L, Rusche JR, Ko CP, Sumner CJ. The DcpS inhibitor RG3039 improves motor function in SMA mice. Hum Mol Genet 2013; 22:4074-83. [PMID: 23727836 PMCID: PMC3781637 DOI: 10.1093/hmg/ddt257] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/07/2013] [Accepted: 05/28/2013] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by mutations of the survival motor neuron 1 (SMN1) gene, retention of the survival motor neuron 2 (SMN2) gene and insufficient expression of full-length survival motor neuron (SMN) protein. Quinazolines increase SMN2 promoter activity and inhibit the ribonucleic acid scavenger enzyme DcpS. The quinazoline derivative RG3039 has advanced to early phase clinical trials. In preparation for efficacy studies in SMA patients, we investigated the effects of RG3039 in severe SMA mice. Here, we show that RG3039 distributed to central nervous system tissues where it robustly inhibited DcpS enzyme activity, but minimally activated SMN expression or the assembly of small nuclear ribonucleoproteins. Nonetheless, treated SMA mice showed a dose-dependent increase in survival, weight and motor function. This was associated with improved motor neuron somal and neuromuscular junction synaptic innervation and function and increased muscle size. RG3039 also enhanced survival of conditional SMA mice in which SMN had been genetically restored to motor neurons. As this systemically delivered drug may have therapeutic benefits that extend beyond motor neurons, it could act additively with SMN-restoring therapies delivered directly to the central nervous system such as antisense oligonucleotides or gene therapy.
Collapse
Affiliation(s)
| | - Rebecca M. Gibbs
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ming-Yi Lin
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | - Bing Xia
- Repligen Corporation, Watham, MA, USA
| | | | | | - Darrick K. Li
- Department of Pathology and Cell Biology and
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Livio Pellizzoni
- Department of Pathology and Cell Biology and
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | | | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Charlotte J. Sumner
- Department of Neurology and
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
217
|
Fallini C, Rouanet JP, Donlin-Asp PG, Guo P, Zhang H, Singer RH, Rossoll W, Bassell GJ. Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons. Dev Neurobiol 2013; 74:319-332. [PMID: 23897586 DOI: 10.1002/dneu.22111] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/24/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) is a lethal neurodegenerative disease specifically affecting spinal motor neurons. SMA is caused by the homozygous deletion or mutation of the survival of motor neuron 1 (SMN1) gene. The SMN protein plays an essential role in the assembly of spliceosomal ribonucleoproteins. However, it is still unclear how low levels of the ubiquitously expressed SMN protein lead to the selective degeneration of motor neurons. An additional role for SMN in the regulation of the axonal transport of mRNA-binding proteins (mRBPs) and their target mRNAs has been proposed. Indeed, several mRBPs have been shown to interact with SMN, and the axonal levels of few mRNAs, such as the β-actin mRNA, are reduced in SMA motor neurons. In this study we have identified the β-actin mRNA-binding protein IMP1/ZBP1 as a novel SMN-interacting protein. Using a combination of biochemical assays and quantitative imaging techniques in primary motor neurons, we show that IMP1 associates with SMN in individual granules that are actively transported in motor neuron axons. Furthermore, we demonstrate that IMP1 axonal localization depends on SMN levels, and that SMN deficiency in SMA motor neurons leads to a dramatic reduction of IMP1 protein levels. In contrast, no difference in IMP1 protein levels was detected in whole brain lysates from SMA mice, further suggesting neuron specific roles of SMN in IMP1 expression and localization. Taken together, our data support a role for SMN in the regulation of mRNA localization and axonal transport through its interaction with mRBPs such as IMP1.
Collapse
Affiliation(s)
- Claudia Fallini
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Neurology, UMASS Medical School, Worcester, MA 01605, USA
| | - Jeremy P Rouanet
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Guo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Honglai Zhang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Neurology and Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
218
|
Sleigh JN, Barreiro-Iglesias A, Oliver PL, Biba A, Becker T, Davies KE, Becker CG, Talbot K. Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy. Hum Mol Genet 2013; 23:855-69. [PMID: 24067532 DOI: 10.1093/hmg/ddt477] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by the selective loss of spinal motor neurons owing to reduced levels of survival motor neuron (Smn) protein. In addition to its well-established role in assembling constituents of the spliceosome, diverse cellular functions have been proposed for Smn, but the reason why low levels of this widely expressed protein result in selective motor neuron pathology is still debated. In longitudinal studies of exon-level changes in SMA mouse model tissues, designed to determine the contribution of splicing dysfunction to the disease, we have previously shown that a generalized defect in splicing is unlikely to play a causative role in SMA. Nevertheless, we identified a small subset of genes that were alternatively spliced in the spinal cord compared with control mice before symptom onset, indicating a possible mechanistic role in disease. Here, we have performed functional studies of one of these genes, chondrolectin (Chodl), known to be highly expressed in motor neurons and important for correct motor axon outgrowth in zebrafish. Using in vitro and in vivo models of SMA, we demonstrate altered expression of Chodl in SMA mouse spinal motor neurons, show that Chodl has distinct effects on cell survival and neurite outgrowth and that increasing the expression of chodl can rescue motor neuron outgrowth defects in Smn-depleted zebrafish. Our findings thus link the dysregulation of Chodl to the pathophysiology of motor neuron degeneration in SMA.
Collapse
Affiliation(s)
- James N Sleigh
- Department of Physiology, Anatomy and Genetics, MRC Functional Genomics Unit, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Hossain M, Sharma S, Korde R, Kanodia S, Chugh M, Rawat K, Malhotra P. Organization of Plasmodium falciparum spliceosomal core complex and role of arginine methylation in its assembly. Malar J 2013; 12:333. [PMID: 24047207 PMCID: PMC3848767 DOI: 10.1186/1475-2875-12-333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Splicing and alternate splicing are the two key biological processes that result in the generation of diverse transcript and protein isoforms in Plasmodium falciparum as well as in other eukaryotic organisms. Not much is known about the organization of splicing machinery and mechanisms in human malaria parasite. Present study reports the organization and assembly of Plasmodium spliceosome Sm core complex. METHODS Presence of all the seven Plasmodium Sm-like proteins in the intra-erythrocytic stages was assessed based on the protein(s) expression analysis using immuno-localization and western blotting. Localization/co-localization studies were performed by immunofluorescence analysis on thin parasite smear using laser scanning confocal microscope. Interaction studies were carried out using yeast two-hybrid analysis and validated by in vitro pull-down assays. PfPRMT5 (arginine methyl transferase) and PfSmD1 interaction analysis was performed by pull-down assays and the interacting proteins were identified by MALDI-TOF spectrometry. RESULTS PfSm proteins are expressed at asexual blood stages of the parasite and show nucleo-cytoplasmic localization. Protein-protein interaction studies showed that PfSm proteins form a heptameric complex, typical of spliceosome core complex as shown in humans. Interaction of PfSMN (survival of motor neuron, tudor domain containing protein) or PfTu-TSN (Tudor domain of Tudor Staphylococcal nuclease) with PfSmD1 proteins was found to be methylation dependent. Co-localization by immunofluorescence and co-immunoprecipitation studies suggested an association between PfPRMT5 and PfSmD1, indicating the role of arginine methylation in assembly of Plasmodium spliceosome complex. CONCLUSIONS Plasmodium Sm-like proteins form a heptameric ring-like structure, although the arrangement of PfSm proteins slightly differs from human splicing machinery. The data shows the interaction of PfSMN with PfSmD1 and this interaction is found to be methylation dependent. PfPRMT5 probably exists as a part of methylosome complex that may function in the cytoplasmic assembly of Sm proteins at asexual blood stages of P. falciparum.
Collapse
Affiliation(s)
- Manzar Hossain
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | | | | | | | | | |
Collapse
|
220
|
den Engelsman J, van de Schootbrugge C, Yong J, Pruijn GJM, Boelens WC. Pseudophosphorylated αB-crystallin is a nuclear chaperone imported into the nucleus with help of the SMN complex. PLoS One 2013; 8:e73489. [PMID: 24023879 PMCID: PMC3762725 DOI: 10.1371/journal.pone.0073489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/22/2013] [Indexed: 11/25/2022] Open
Abstract
The human small heat shock protein αB-crystallin (HspB5) is a molecular chaperone which is mainly localized in the cytoplasm. A small fraction can also be found in nuclear speckles, of which the localization is mediated by successional phosphorylation at Ser-59 and Ser-45. αB-crystallin does not contain a canonical nuclear localization signal sequence and the mechanism by which αB-crystallin is imported into the nucleus is not known. Here we show that after heat shock pseudophosphorylated αB-crystallin mutant αB-STD, in which all three phosphorylatable serine residues (Ser-19, Ser-45 and Ser-59) were replaced by negatively charged aspartate residues, is released from the nuclear speckles. This allows αB-crystallin to chaperone proteins in the nucleoplasm, as shown by the ability of αB-STD to restore nuclear firefly luciferase activity after a heat shock. With the help of a yeast two-hybrid screen we found that αB-crystallin can interact with the C-terminal part of Gemin3 and confirmed this interaction by co-immunoprecipitation. Gemin3 is a component of the SMN complex, which is involved in the assembly and nuclear import of U-snRNPs. Knockdown of Gemin3 in an in situ nuclear import assay strongly reduced the accumulation of αB-STD in nuclear speckles. Furthermore, depletion of SMN inhibited nuclear import of fluorescently labeled recombinant αB-STD in an in vitro nuclear import assay, which could be restored by the addition of purified SMN complex. These results show that the SMN-complex facilitates the accumulation of hyperphosphorylated αB-crystallin in nuclear speckles, thereby creating a chaperone depot enabling a rapid chaperone function in the nucleus in response to stress.
Collapse
Affiliation(s)
- John den Engelsman
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Chantal van de Schootbrugge
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| | - Ger J. M. Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Wilbert C. Boelens
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
221
|
Li DK, Tisdale S, Espinoza-Derout J, Saieva L, Lotti F, Pellizzoni L. A cell system for phenotypic screening of modifiers of SMN2 gene expression and function. PLoS One 2013; 8:e71965. [PMID: 23967270 PMCID: PMC3744461 DOI: 10.1371/journal.pone.0071965] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neurodegenerative disease caused by homozygous inactivation of the SMN1 gene and reduced levels of the survival motor neuron (SMN) protein. Since higher copy numbers of the nearly identical SMN2 gene reduce disease severity, to date most efforts to develop a therapy for SMA have focused on enhancing SMN expression. Identification of alternative therapeutic approaches has partly been hindered by limited knowledge of potential targets and the lack of cell-based screening assays that serve as readouts of SMN function. Here, we established a cell system in which proliferation of cultured mouse fibroblasts is dependent on functional SMN produced from the SMN2 gene. To do so, we introduced the entire human SMN2 gene into NIH3T3 cell lines in which regulated knockdown of endogenous mouse Smn severely decreases cell proliferation. We found that low SMN2 copy number has modest effects on the cell proliferation phenotype induced by Smn depletion, while high SMN2 copy number is strongly protective. Additionally, cell proliferation correlates with the level of SMN activity in small nuclear ribonucleoprotein assembly. Following miniaturization into a high-throughput format, our cell-based phenotypic assay accurately measures the beneficial effects of both pharmacological and genetic treatments leading to SMN upregulation. This cell model provides a novel platform for phenotypic screening of modifiers of SMN2 gene expression and function that act through multiple mechanisms, and a powerful new tool for studies of SMN biology and SMA therapeutic development.
Collapse
Affiliation(s)
- Darrick K. Li
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Sarah Tisdale
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Jorge Espinoza-Derout
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Luciano Saieva
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
222
|
Natalizio AH, Matera AG. Identification and characterization of Drosophila Snurportin reveals a role for the import receptor Moleskin/importin-7 in snRNP biogenesis. Mol Biol Cell 2013; 24:2932-42. [PMID: 23885126 PMCID: PMC3771954 DOI: 10.1091/mbc.e13-03-0118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous work established Importin-β and Snurportin1 as the vertebrate snRNP import receptor and adaptor proteins, respectively. This study identifies Drosophila Snurportin and shows that it uses an alternative import receptor, Importin7/Moleskin. Moleskin is required for the stability of other snRNP biogenesis factors. Nuclear import is an essential step in small nuclear ribonucleoprotein (snRNP) biogenesis. Snurportin1 (SPN1), the import adaptor, binds to trimethylguanosine (TMG) caps on spliceosomal small nuclear RNAs. Previous studies indicated that vertebrate snRNP import requires importin-β, the transport receptor that binds directly to SPN1. We identify CG42303/snup as the Drosophila orthologue of human snurportin1 (SNUPN). Of interest, the importin-β binding (IBB) domain of SPN1, which is essential for TMG cap–mediated snRNP import in humans, is not well conserved in flies. Consistent with its lack of an IBB domain, we find that Drosophila SNUP (dSNUP) does not interact with Ketel/importin-β. Fruit fly snRNPs also fail to bind Ketel; however, the importin-7 orthologue Moleskin (Msk) physically associates with both dSNUP and spliceosomal snRNPs and localizes to nuclear Cajal bodies. Strikingly, we find that msk-null mutants are depleted of the snRNP assembly factor, survival motor neuron, and the Cajal body marker, coilin. Consistent with a loss of snRNP import function, long-lived msk larvae show an accumulation of TMG cap signal in the cytoplasm. These data indicate that Ketel/importin-β does not play a significant role in Drosophila snRNP import and demonstrate a crucial function for Msk in snRNP biogenesis.
Collapse
Affiliation(s)
- Amanda Hicks Natalizio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Departments of Biology, University of North Carolina, Chapel Hill, NC 27599 Departments of Genetics, University of North Carolina, Chapel Hill, NC 27599 Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | | |
Collapse
|
223
|
Feng D, Xie J. Aberrant splicing in neurological diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:631-49. [PMID: 23821330 DOI: 10.1002/wrna.1184] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/12/2022]
Abstract
Splicing of precursor messenger RNA (pre-mRNA) removes the intervening sequences (introns) and joins the expressed regions (exons) in the nucleus, before an intron-containing eukaryotic mRNA transcript can be exported and translated into proteins in the cytoplasm. While some sequences are always included or excluded (constitutive splicing), others can be selectively used (alternative splicing) in this process. Particularly by alternative splicing, up to tens of thousands of variant transcripts can be produced from a single gene, which contributes greatly to the proteomic diversity for such complex cellular functions as 'wiring' neurons in the nervous system. Disruption of this process leads to aberrant splicing, which accounts for the defects of up to 50% of mutations that cause certain human genetic diseases. In this review, we describe the different mechanisms of aberrant splicing that cause or have been associated with neurological diseases.
Collapse
Affiliation(s)
- Dairong Feng
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
224
|
Hörnberg H, Holt C. RNA-binding proteins and translational regulation in axons and growth cones. Front Neurosci 2013; 7:81. [PMID: 23734093 PMCID: PMC3661996 DOI: 10.3389/fnins.2013.00081] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/06/2013] [Indexed: 01/11/2023] Open
Abstract
RNA localization and regulation play an important role in the developing and adult nervous system. In navigating axons, extrinsic cues can elicit rapid local protein synthesis that mediates directional or morphological responses. The mRNA repertoire in axons is large and dynamically changing, yet studies suggest that only a subset of these mRNAs are translated after cue stimulation, suggesting the need for a high level of translational regulation. Here, we review the role of RNA-binding proteins (RBPs) as local regulators of translation in developing axons. We focus on their role in growth, guidance, and synapse formation, and discuss the mechanisms by which they regulate translation in axons.
Collapse
Affiliation(s)
- Hanna Hörnberg
- Department of Physiology Development and Neuroscience, University of Cambridge Cambridge, UK
| | | |
Collapse
|
225
|
Groen EJN, Fumoto K, Blokhuis AM, Engelen-Lee J, Zhou Y, van den Heuvel DMA, Koppers M, van Diggelen F, van Heest J, Demmers JAA, Kirby J, Shaw PJ, Aronica E, Spliet WGM, Veldink JH, van den Berg LH, Pasterkamp RJ. ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN. Hum Mol Genet 2013; 22:3690-704. [PMID: 23681068 DOI: 10.1093/hmg/ddt222] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in the RNA binding protein fused in sarcoma/translated in liposarcoma (FUS/TLS) cause amyotrophic lateral sclerosis (ALS). Although ALS-linked mutations in FUS often lead to a cytosolic mislocalization of the protein, the pathogenic mechanisms underlying these mutations remain poorly understood. To gain insight into these mechanisms, we examined the biochemical, cell biological and functional properties of mutant FUS in neurons. Expression of different FUS mutants (R521C, R521H, P525L) in neurons caused axonal defects. A protein interaction screen performed to explain these phenotypes identified numerous FUS interactors including the spinal muscular atrophy (SMA) causing protein survival motor neuron (SMN). Biochemical experiments showed that FUS and SMN interact directly and endogenously, and that this interaction can be regulated by FUS mutations. Immunostaining revealed co-localization of mutant FUS aggregates and SMN in primary neurons. This redistribution of SMN to cytosolic FUS accumulations led to a decrease in axonal SMN. Finally, cell biological experiments showed that overexpression of SMN rescued the axonal defects induced by mutant FUS, suggesting that FUS mutations cause axonal defects through SMN. This study shows that neuronal aggregates formed by mutant FUS protein may aberrantly sequester SMN and concomitantly cause a reduction of SMN levels in the axon, leading to axonal defects. These data provide a functional link between ALS-linked FUS mutations, SMN and neuronal connectivity and support the idea that different motor neuron disorders such as SMA and ALS may be caused, in part, by defects in shared molecular pathways.
Collapse
Affiliation(s)
- Ewout J N Groen
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Mura C, Randolph PS, Patterson J, Cozen AE. Archaeal and eukaryotic homologs of Hfq: A structural and evolutionary perspective on Sm function. RNA Biol 2013; 10:636-51. [PMID: 23579284 PMCID: PMC3710371 DOI: 10.4161/rna.24538] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hfq and other Sm proteins are central in RNA metabolism, forming an evolutionarily conserved family that plays key roles in RNA processing in organisms ranging from archaea to bacteria to human. Sm-based cellular pathways vary in scope from eukaryotic mRNA splicing to bacterial quorum sensing, with at least one step in each of these pathways being mediated by an RNA-associated molecular assembly built upon Sm proteins. Though the first structures of Sm assemblies were from archaeal systems, the functions of Sm-like archaeal proteins (SmAPs) remain murky. Our ignorance about SmAP biology, particularly vis-à-vis the eukaryotic and bacterial Sm homologs, can be partly reduced by leveraging the homology between these lineages to make phylogenetic inferences about Sm functions in archaea. Nevertheless, whether SmAPs are more eukaryotic (RNP scaffold) or bacterial (RNA chaperone) in character remains unclear. Thus, the archaeal domain of life is a missing link, and an opportunity, in Sm-based RNA biology.
Collapse
Affiliation(s)
- Cameron Mura
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | | | | | | |
Collapse
|
227
|
Decreased stathmin expression ameliorates neuromuscular defects but fails to prolong survival in a mouse model of spinal muscular atrophy. Neurobiol Dis 2013; 52:94-103. [DOI: 10.1016/j.nbd.2012.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/08/2012] [Accepted: 11/22/2012] [Indexed: 02/02/2023] Open
|
228
|
Ruiz R, Tabares L. Neurotransmitter release in motor nerve terminals of a mouse model of mild spinal muscular atrophy. J Anat 2013; 224:74-84. [PMID: 23489475 DOI: 10.1111/joa.12038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy is a genetic disease which severity depends on the amount of SMN protein, the product of the genes SMN1 and SMN2. Symptomatology goes from severe neuromuscular impairment leading to early death in infants to slow progressing motor deficits during adulthood. Much of the knowledge about the pathophysiology of SMA comes from studies using genetically engineered animal models of the disease. Here we investigated one of the milder models, the homozygous A2G SMA mice, in which the level of the protein is restored to almost normal levels by the addition of a mutated transgene to the severe SMN-deficient background. We examined neuromuscular function and found that calcium-dependent neurotransmitter release was significantly decreased. In addition, the amplitude of spontaneous endplate potentials was decreased, the morphology of NMJ altered, and slight changes in short-term synaptic plasticity were found. In spite of these defects, excitation contraction coupling was well preserved, possibly due to the safety factor of this synapse. These data further support that the quasi-normal restoration of SMN levels in severe cases preserves neuromuscular function, even when neurotransmitter release is significantly decreased at motor nerve terminals. Nevertheless, this deficit could represent a greater risk of motor impairment during aging or after injuries.
Collapse
Affiliation(s)
- Rocío Ruiz
- Department of Medical Physiology and Biophysics School of Medicine, University of Seville, Seville, Spain
| | | |
Collapse
|
229
|
Tsuiji H, Iguchi Y, Furuya A, Kataoka A, Hatsuta H, Atsuta N, Tanaka F, Hashizume Y, Akatsu H, Murayama S, Sobue G, Yamanaka K. Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Mol Med 2013; 5:221-34. [PMID: 23255347 PMCID: PMC3569639 DOI: 10.1002/emmm.201202303] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/07/2012] [Accepted: 12/07/2012] [Indexed: 12/13/2022] Open
Abstract
Two motor neuron diseases, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), are caused by distinct genes involved in RNA metabolism, TDP-43 and FUS/TLS, and SMN, respectively. However, whether there is a shared defective mechanism in RNA metabolism common to these two diseases remains unclear. Here, we show that TDP-43 and FUS/TLS localize in nuclear Gems through an association with SMN, and that all three proteins function in spliceosome maintenance. We also show that in ALS, Gems are lost, U snRNA levels are up-regulated and spliceosomal U snRNPs abnormally and extensively accumulate in motor neuron nuclei, but not in the temporal lobe of FTLD with TDP-43 pathology. This aberrant accumulation of U snRNAs in ALS motor neurons is in direct contrast to SMA motor neurons, which show reduced amounts of U snRNAs, while both have defects in the spliceosome. These findings indicate that a profound loss of spliceosome integrity is a critical mechanism common to neurodegeneration in ALS and SMA, and may explain cell-type specific vulnerability of motor neurons.
Collapse
Affiliation(s)
- Hitomi Tsuiji
- Laboratory for Motor Neuron Disease, RIKEN Brain Science Institute, Wako, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Grimm C, Chari A, Pelz JP, Kuper J, Kisker C, Diederichs K, Stark H, Schindelin H, Fischer U. Structural basis of assembly chaperone- mediated snRNP formation. Mol Cell 2013; 49:692-703. [PMID: 23333303 DOI: 10.1016/j.molcel.2012.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 11/06/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022]
Abstract
Small nuclear ribonucleoproteins (snRNPs) represent key constituents of major and minor spliceosomes. snRNPs contain a common core, composed of seven Sm proteins bound to snRNA, which forms in a step-wise and factor-mediated reaction. The assembly chaperone pICln initially mediates the formation of an otherwise unstable pentameric Sm protein unit. This so-called 6S complex docks subsequently onto the SMN complex, which removes pICln and enables the transfer of pre-assembled Sm proteins onto snRNA. X-ray crystallography and electron microscopy was used to investigate the structural basis of snRNP assembly. The 6S complex structure identifies pICln as an Sm protein mimic, which enables the topological organization of the Sm pentamer in a closed ring. A second structure of 6S bound to the SMN complex components SMN and Gemin2 uncovers a plausible mechanism of pICln elimination and Sm protein activation for snRNA binding. Our studies reveal how assembly factors facilitate formation of RNA-protein complexes in vivo.
Collapse
Affiliation(s)
- Clemens Grimm
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Anderton RS, Meloni BP, Mastaglia FL, Boulos S. Spinal muscular atrophy and the antiapoptotic role of survival of motor neuron (SMN) protein. Mol Neurobiol 2013; 47:821-32. [PMID: 23315303 DOI: 10.1007/s12035-013-8399-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/03/2013] [Indexed: 11/26/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating and often fatal neurodegenerative disease that affects spinal motor neurons and leads to progressive muscle wasting and paralysis. The survival of motor neuron (SMN) gene is mutated or deleted in most forms of SMA, which results in a critical reduction in SMN protein. Motor neurons appear particularly vulnerable to reduced SMN protein levels. Therefore, understanding the functional role of SMN in protecting motor neurons from degeneration is an essential prerequisite for the design of effective therapies for SMA. To this end, there is increasing evidence indicating a key regulatory antiapoptotic role for the SMN protein that is important in motor neuron survival. The aim of this review is to highlight key findings that support an antiapoptotic role for SMN in modulating cell survival and raise possibilities for new therapeutic approaches.
Collapse
Affiliation(s)
- Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia and Australian Neuromuscular Research Institute, Nedlands, Western Australia, Australia.
| | | | | | | |
Collapse
|
232
|
Therapeutic strategies for the treatment of spinal muscular atrophy. Future Med Chem 2013; 4:1733-50. [PMID: 22924510 DOI: 10.4155/fmc.12.107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neurodegenerative disease that results in progressive dysfunction of motor neurons of the anterior horn of the spinal cord. SMA is caused by the loss of full-length protein expression from the survival of motor neuron 1 (SMN1) gene. The disease has a unique genetic profile as it is autosomal recessive for the loss of SMN1, but a nearly identical homolog, SMN2, acts as a disease modifier whose expression is inversely correlated to clinical severity. Targeted therapeutic approaches primarily focus on increasing the levels of full-length SMN protein, through either gene replacement or regulation of SMN2 expression. There is currently no US FDA approved treatment for SMA. This is an exciting time as multiple efforts from academic and industrial laboratories are reaching the preclinical and clinical testing stages.
Collapse
|
233
|
Lotti F, Imlach WL, Saieva L, Beck ES, Hao LT, Li DK, Jiao W, Mentis GZ, Beattie CE, McCabe BD, Pellizzoni L. An SMN-dependent U12 splicing event essential for motor circuit function. Cell 2012; 151:440-54. [PMID: 23063131 DOI: 10.1016/j.cell.2012.09.012] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 06/16/2012] [Accepted: 09/10/2012] [Indexed: 01/06/2023]
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease caused by deficiency of the ubiquitous survival motor neuron (SMN) protein. To define the mechanisms of selective neuronal dysfunction in SMA, we investigated the role of SMN-dependent U12 splicing events in the regulation of motor circuit activity. We show that SMN deficiency perturbs splicing and decreases the expression of a subset of U12 intron-containing genes in mammalian cells and Drosophila larvae. Analysis of these SMN target genes identifies Stasimon as a protein required for motor circuit function. Restoration of Stasimon expression in the motor circuit corrects defects in neuromuscular junction transmission and muscle growth in Drosophila SMN mutants and aberrant motor neuron development in SMN-deficient zebrafish. These findings directly link defective splicing of critical neuronal genes induced by SMN deficiency to motor circuit dysfunction, establishing a molecular framework for the selective pathology of SMA.
Collapse
Affiliation(s)
- Francesco Lotti
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Broome HJ, Hebert MD. Coilin displays differential affinity for specific RNAs in vivo and is linked to telomerase RNA biogenesis. J Mol Biol 2012; 425:713-24. [PMID: 23274112 DOI: 10.1016/j.jmb.2012.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/29/2012] [Accepted: 12/18/2012] [Indexed: 12/19/2022]
Abstract
Coilin is widely known as the protein marker of the Cajal body, a subnuclear domain important to the biogenesis of small nuclear ribonucleoproteins and telomerase, complexes that are crucial to pre-messenger RNA splicing and telomere maintenance, respectively. Extensive studies have characterized the interaction between coilin and the various other protein components of CBs and related subnuclear domains; however, only a few have examined interactions between coilin and nucleic acid. We have recently published that coilin is tightly associated with nucleic acid, displays RNase activity in vitro, and is redistributed to the ribosomal RNA (rRNA)-rich nucleoli in cells treated with the DNA-damaging agents cisplatin and etoposide. Here, we report a specific in vivo association between coilin and rRNA, U small nuclear RNA (snRNA), and human telomerase RNA, which is altered upon treatment with DNA-damaging agents. Using chromatin immunoprecipitation, we provide evidence of coilin interaction with specific regions of U snRNA gene loci. We have also utilized bacterially expressed coilin fragments in order to map the region(s) important for RNA binding and RNase activity in vitro. Additionally, we provide evidence of coilin involvement in the processing of human telomerase RNA both in vitro and in vivo.
Collapse
Affiliation(s)
- Hanna J Broome
- Department of Biochemistry, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
235
|
Piazzon N, Schlotter F, Lefebvre S, Dodré M, Méreau A, Soret J, Besse A, Barkats M, Bordonné R, Branlant C, Massenet S. Implication of the SMN complex in the biogenesis and steady state level of the signal recognition particle. Nucleic Acids Res 2012; 41:1255-72. [PMID: 23221635 PMCID: PMC3553995 DOI: 10.1093/nar/gks1224] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy is a severe motor neuron disease caused by reduced levels of the ubiquitous Survival of MotoNeurons (SMN) protein. SMN is part of a complex that is essential for spliceosomal UsnRNP biogenesis. Signal recognition particle (SRP) is a ribonucleoprotein particle crucial for co-translational targeting of secretory and membrane proteins to the endoplasmic reticulum. SRP biogenesis is a nucleo-cytoplasmic multistep process in which the protein components, except SRP54, assemble with 7S RNA in the nucleolus. Then, SRP54 is incorporated after export of the pre-particle into the cytoplasm. The assembly factors necessary for SRP biogenesis remain to be identified. Here, we show that 7S RNA binds to purified SMN complexes in vitro and that SMN complexes associate with SRP in cellular extracts. We identified the RNA determinants required. Moreover, we report a specific reduction of 7S RNA levels in the spinal cord of SMN-deficient mice, and in a Schizosaccharomyces pombe strain carrying a temperature-degron allele of SMN. Additionally, microinjected antibodies directed against SMN or Gemin2 interfere with the association of SRP54 with 7S RNA in Xenopus laevis oocytes. Our data show that reduced levels of the SMN protein lead to defect in SRP steady-state level and describe the SMN complex as the first identified cellular factor required for SRP biogenesis.
Collapse
Affiliation(s)
- Nathalie Piazzon
- Laboratoire ARN-RNP structure-fonction-maturation, Enzymologie Moléculaire et Structurale (AREMS), Nancy Université-CNRS, UMR 7214, FR 3209, Faculté de Médecine de Nancy, BP 184, 9 avenue de la forêt de Haye, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Singh NN, Seo J, Rahn SJ, Singh RN. A multi-exon-skipping detection assay reveals surprising diversity of splice isoforms of spinal muscular atrophy genes. PLoS One 2012. [PMID: 23185376 PMCID: PMC3501452 DOI: 10.1371/journal.pone.0049595] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Humans have two near identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Loss of SMN1 coupled with the predominant skipping of SMN2 exon 7 causes spinal muscular atrophy (SMA), a neurodegenerative disease. SMA patient cells devoid of SMN1 provide a powerful system to examine splicing pattern of various SMN2 exons. Until now, similar system to examine splicing of SMN1 exons was unavailable. We have recently screened several patient cell lines derived from various diseases, including SMA, Alzheimer’s disease, Parkinson’s disease and Batten disease. Here we report a Batten disease cell line that lacks functional SMN2, as an ideal system to examine pre-mRNA splicing of SMN1. We employ a multiple-exon-skipping detection assay (MESDA) to capture simultaneously skipping of multiple exons. Our results show surprising diversity of splice isoforms and reveal novel splicing events that include skipping of exon 4 and co-skipping of three adjacent exons of SMN. Contrary to the general belief, MESDA captured oxidative-stress induced skipping of SMN1 exon 5 in several cell types, including non-neuronal cells. We further demonstrate that the predominant SMN2 exon 7 skipping induced by oxidative stress is modulated by a combinatorial control that includes promoter sequence, endogenous context, and the weak splice sites. We also show that an 8-mer antisense oligonucleotide blocking a recently described GC-rich sequence prevents SMN2 exon 7 skipping under the conditions of oxidative stress. Our findings bring new insight into splicing regulation of an essential housekeeping gene linked to neurodegeneration and infant mortality.
Collapse
Affiliation(s)
- Natalia N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Sarah J. Rahn
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Ravindra N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
237
|
Han KJ, Foster DG, Zhang NY, Kanisha K, Dzieciatkowska M, Sclafani RA, Hansen KC, Peng J, Liu CW. Ubiquitin-specific protease 9x deubiquitinates and stabilizes the spinal muscular atrophy protein-survival motor neuron. J Biol Chem 2012; 287:43741-52. [PMID: 23112048 DOI: 10.1074/jbc.m112.372318] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA), the leading genetic disorder of infant mortality, is caused by low levels of survival motor neuron (SMN) protein. Currently it is not clear how the SMN protein levels are regulated at the post-transcriptional level. In this report, we find that Usp9x, a deubiquitinating enzyme, stably associates with the SMN complex via directly interacting with SMN. Usp9x deubiquitinates SMN that is mostly mono- and di-ubiquitinated. Knockdown of Usp9x promotes SMN degradation and reduces the protein levels of SMN and the SMN complex in cultured mammalian cells. Interestingly, Usp9x does not deubiquitinate nuclear SMNΔ7, the main protein product of the SMN2 gene, which is polyubiquitinated and rapidly degraded by the proteasome. Together, our results indicate that SMN and SMNΔ7 are differently ubiquitinated; Usp9x plays an important role in stabilizing SMN and the SMN complex, likely via antagonizing Ub-dependent SMN degradation.
Collapse
Affiliation(s)
- Ke-Jun Han
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Behavioral and electrophysiological outcomes of tissue-specific Smn knockdown in Drosophila melanogaster. Brain Res 2012; 1489:66-80. [PMID: 23103409 DOI: 10.1016/j.brainres.2012.10.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/17/2012] [Accepted: 10/19/2012] [Indexed: 11/23/2022]
Abstract
Severe reduction in Survival Motor Neuron 1 (SMN1) protein in humans causes Spinal Muscular Atrophy (SMA), a debilitating childhood disease that leads to progressive impairment of the neuro-muscular system. Although previous studies have attempted to identify the tissue(s) in which SMN1 loss most critically leads to disease, tissue-specific functions for this widely expressed protein still remain unclear. Here, we have leveraged RNA interference methods to manipulate SMN function selectively in Drosophila neurons or muscles followed by behavioral and electrophysiological analysis. High resolution measurement of motor performance shows profound alterations in locomotor patterns following pan-neuronal knockdown of SMN. Further, locomotor phenotypes can be elicited by SMN knockdown in motor neurons, supporting previous demonstrations of motor neuron-specific SMN function in mice. Electrophysiologically, SMN modulation in muscles reveals largely normal synaptic transmission, quantal release and trans-synaptic homeostatic compensation at the larval neuro-muscular junction. Neuronal SMN knockdown does not alter baseline synaptic transmission, the dynamics of synaptic depletion or acute homeostatic compensation. However, chronic glutamate receptor-dependent developmental homeostasis at the neuro-muscular junction is strongly attenuated following reduction of SMN in neurons. Together, these results support a distributed model of SMN function with distinct neuron-specific roles that are likely to be compromised following global loss of SMN in patients. While complementary to, and in broad agreement with, recent mouse studies that suggest a strong necessity for SMN in neurons, our results uncover a hitherto under-appreciated role for SMN in homeostatic regulatory mechanisms at motor synapses.
Collapse
|
239
|
The survival motor neuron protein forms soluble glycine zipper oligomers. Structure 2012; 20:1929-39. [PMID: 23022347 DOI: 10.1016/j.str.2012.08.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/22/2012] [Accepted: 08/25/2012] [Indexed: 11/23/2022]
Abstract
The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex that functions in spliceosomal snRNP biogenesis. Loss of function mutations in the SMN gene cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Nearly half of the known SMA patient missense mutations map to the SMN YG-box, a highly conserved oligomerization domain of unknown structure that contains a (YxxG)₃ motif. Here, we report that the SMN YG-box forms helical oligomers similar to the glycine zippers found in transmembrane channel proteins. A network of tyrosine-glycine packing between helices drives formation of soluble YG-box oligomers, providing a structural basis for understanding SMN oligomerization and for relating defects in oligomerization to the mutations found in SMA patients. These results have important implications for advancing our understanding of SMN function and glycine zipper-mediated helix-helix interactions.
Collapse
|
240
|
Wakeling EN, Joussemet B, Costiou P, Fanuel D, Moullier P, Barkats M, Fyfe JC. Failure of lower motor neuron radial outgrowth precedes retrograde degeneration in a feline model of spinal muscular atrophy. J Comp Neurol 2012; 520:1737-50. [PMID: 22120001 DOI: 10.1002/cne.23010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Feline spinal muscular atrophy (SMA) is a fully penetrant, autosomal recessive lower motor neuron disease in domestic cats that clinically resembles human SMA Type III. A whole genome linkage scan identified a ∼140-kb deletion that abrogates expression of LIX1, a novel SMA candidate gene of unknown function. To characterize the progression of feline SMA, we assessed pathological changes in muscle and spinal cord from 3 days of age to beyond onset of clinical signs. Electromyographic (EMG) analysis indicating denervation occurred between 10 and 12 weeks, with the first neurological signs occurring at the same time. Compound motor action potential (CMAP) amplitudes were significantly reduced in the soleus and extensor carpi radialis muscles at 8-11 weeks. Quadriceps femoris muscle fibers from affected cats appeared smaller at 10 weeks; by 12 weeks atrophic fibers were more prevalent than in age-matched controls. In affected cats, significant loss of L5 ventral root axons was observed at 12 weeks. By 21 weeks of age, affected cats had 40% fewer L5 motor axons than normal. There was no significant difference in total L5 soma number, even at 21 weeks; thus degeneration begins distal to the cell body and proceeds retrogradely. Morphometric analysis of L5 ventral roots and horns revealed that 4 weeks prior to axon loss, motor axons in affected cats failed to undergo radial enlargement, suggesting a role for the putative disease gene LIX1 in radial growth of axons.
Collapse
Affiliation(s)
- Erin N Wakeling
- Genetics Program, Michigan State University East Lansing, Michigan 48824, USA.
| | | | | | | | | | | | | |
Collapse
|
241
|
Abstract
Accumulation of excess lipid in nonadipose tissues is associated with oxidative stress and organ dysfunction and plays an important role in diabetic complications. To elucidate molecular events critical for lipotoxicity, we used retroviral promoter trap mutagenesis to generate mutant Chinese hamster ovary cell lines resistant to lipotoxic and oxidative stress. A previous report of a mutant from this screen demonstrated that under lipotoxic conditions, small nucleolar RNAs (snoRNAs) in the rpL13a gene accumulate in the cytosol and serve as critical mediators of lipotoxic cell death. We now report a novel, independent mutant in which a single provirus disrupted one allele of the gene encoding the spliceosomal protein SmD3, creating a model of haploinsufficiency. We show that snoRNA expression and the abundance of snoRNA-containing intron lariats are decreased in SmD3 mutant cells, even though haploinsufficiency of SmD3 supports pre-mRNA splicing. The mechanism through which SmD3 regulates the expression of intronic snoRNAs likely involves effects of SmD3 on the levels of small nuclear RNAs (snRNAs) U4 and U5. Our data implicate SmD3 as a critical determinant in the processing of intronic noncoding RNAs in general and as an upstream mediator of metabolic stress response pathways through the regulation of snoRNA expression.
Collapse
|
242
|
Sarachan K, Valentine K, Gupta K, Moorman V, Gledhill J, Bernens M, Tommos C, Wand A, Van Duyne G. Solution structure of the core SMN-Gemin2 complex. Biochem J 2012; 445:361-70. [PMID: 22607171 PMCID: PMC3462613 DOI: 10.1042/bj20120241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/26/2012] [Accepted: 05/21/2012] [Indexed: 01/29/2023]
Abstract
In humans, assembly of spliceosomal snRNPs (small nuclear ribonucleoproteins) begins in the cytoplasm where the multi-protein SMN (survival of motor neuron) complex mediates the formation of a seven-membered ring of Sm proteins on to a conserved site of the snRNA (small nuclear RNA). The SMN complex contains the SMN protein Gemin2 and several additional Gemins that participate in snRNP biosynthesis. SMN was first identified as the product of a gene found to be deleted or mutated in patients with the neurodegenerative disease SMA (spinal muscular atrophy), the leading genetic cause of infant mortality. In the present study, we report the solution structure of Gemin2 bound to the Gemin2-binding domain of SMN determined by NMR spectroscopy. This complex reveals the structure of Gemin2, how Gemin2 binds to SMN and the roles of conserved SMN residues near the binding interface. Surprisingly, several conserved SMN residues, including the sites of two SMA patient mutations, are not required for binding to Gemin2. Instead, they form a conserved SMN/Gemin2 surface that may be functionally important for snRNP assembly. The SMN-Gemin2 structure explains how Gemin2 is stabilized by SMN and establishes a framework for structure-function studies to investigate snRNP biogenesis as well as biological processes involving Gemin2 that do not involve snRNP assembly.
Collapse
Key Words
- gemin2
- survival of motor neuron (smn)
- small nuclear ribonucleoprotein (snrnp) assembly
- spinal muscular atrophy
- aps, advanced photon source
- chess, cornell high energy synchrotron source
- dtt, dithiothreitol
- gst, glutathione transferase
- hsqc, heteronuclear single-quantum coherence
- mtsl, s-(2,2,5,5-tetramethyl-2,5-dihydro-1h-pyrrol-3-yl)methyl methanesulfonothioate
- noe, nuclear overhauser effect
- np40, nonidet p40
- pre, paramagnetic relaxation enhancement
- rdc, residual dipolar coupling
- rmsd, root mean square deviation
- saxs, small-angle x-ray scattering
- sma, spinal muscular atrophy
- smn, survival of motor neuron
- snrna, small nuclear rna
- snrnp, small nuclear ribonucleoprotein
Collapse
Affiliation(s)
- Kathryn L. Sarachan
- *Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Kathleen G. Valentine
- †Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Kushol Gupta
- †Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Veronica R. Moorman
- *Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - John M. Gledhill
- †Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Matthew Bernens
- †Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Cecilia Tommos
- †Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - A. Joshua Wand
- †Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Gregory D. Van Duyne
- ‡Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
243
|
Satoh M, Ceribelli A, Chan EKL. Common pathways of autoimmune inflammatory myopathies and genetic neuromuscular disorders. Clin Rev Allergy Immunol 2012; 42:16-25. [PMID: 22083460 DOI: 10.1007/s12016-011-8286-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It has been shown that many hereditary motor neuron diseases are caused by mutation of RNA processing enzymes. Survival of motor neuron 1 (SMN1) is well-known as a causative gene for spinal muscular atrophy (SMA) and mutations of glycyl- and tyrosyl-tRNA synthetases are identified as a cause of distal SMA and Charcot-Marie-Tooth disease. Why and how the dysfunction of these ubiquitously expressed genes involved in RNA processing can cause a specific neurological disorder is not well understood. Interestingly, SMN complex has been identified recently as a new target of autoantibodies in polymyositis (PM). Autoantibodies in systemic rheumatic diseases are clinically useful biomarkers associated with a particular diagnosis, subset of a disease, or certain clinical characteristics. Many autoantibodies produced in patients with polymyositis/dermatomyositis (PM/DM) target RNA-protein complexes such as aminoacyl tRNA synthetases. It is interesting to note these same RNA-protein complexes recognized by autoantibodies in PM/DM are also responsible for genetic neuromuscular disease. Certain RNA-protein complexes are also targets of autoantibodies in paraneoplastic neurological disorders. Thus, there are several interesting associations between RNA-processing enzymes and neuromuscular disorders. Although pathogenetic roles of autoantibodies to intracellular antigens are generally considered unlikely, understanding the mechanisms of antigen selection in a particular disease and specific neurological symptoms caused by disruption of ubiquitous RNA-processing enzyme may help identify a common path in genetic neuromuscular disorders and autoimmunity in inflammatory myopathies.
Collapse
Affiliation(s)
- Minoru Satoh
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, Gainesville, FL 32610-0221, USA.
| | | | | |
Collapse
|
244
|
Strzelecka M, Oates AC, Neugebauer KM. Dynamic control of Cajal body number during zebrafish embryogenesis. Nucleus 2012; 1:96-108. [PMID: 21327108 DOI: 10.4161/nucl.1.1.10680] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 02/06/2023] Open
Abstract
The Cajal body (CB) is an evolutionarily conserved nuclear subcompartment, enriched in components of the RNA processing machinery. The composition and dynamics of CBs in cells of living organisms is not well understood. Here we establish the zebrafish embryo as a model system to investigate the properties of CBs during rapid growth and cell division, taking advantage of the ease of live-cell imaging. We show that zebrafish embryo CBs contain coilin and multiple components of the pre-mRNA splicing machinery. Histone mRNA 3' end processing factors, present in CBs in some systems, were instead concentrated in a distinct nuclear body. CBs were present in embryos before and after activation of zygotic gene expression, indicating a maternal contribution of CB components. During the first 24 hours of development, embryonic cells displayed up to 30 CBs per nucleus; these dispersed prior to mitosis and reassembled within minutes upon daughter cell nucleus formation. Following zygotic genome activation, snRNP biogenesis was required for CB assembly and maintenance, suggesting a self-assembly process that determines CB numbers in embryos. Differentiation into muscle, neurons and epidermis was associated with the achievement of a steady state number of 2 CBs per nucleus. We propose that CB number is regulated during development to respond to the demands of gene expression in a rapidly growing embryo.
Collapse
|
245
|
Praveen K, Wen Y, Matera AG. A Drosophila model of spinal muscular atrophy uncouples snRNP biogenesis functions of survival motor neuron from locomotion and viability defects. Cell Rep 2012; 1:624-31. [PMID: 22813737 DOI: 10.1016/j.celrep.2012.05.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/09/2012] [Accepted: 05/11/2012] [Indexed: 11/16/2022] Open
Abstract
The spinal muscular atrophy (SMA) protein, survival motor neuron (SMN), functions in the biogenesis of small nuclear ribonucleoproteins (snRNPs). SMN has also been implicated in tissue-specific functions; however, it remains unclear which of these is important for the etiology of SMA. Smn null mutants display larval lethality and show significant locomotion defects as well as reductions in minor-class spliceosomal snRNAs. Despite these reductions, we found no appreciable defects in the splicing of mRNAs containing minor-class introns. Transgenic expression of low levels of either wild-type or an SMA patient-derived form of SMN rescued the larval lethality and locomotor defects; however, snRNA levels were not restored. Thus, the snRNP biogenesis function of SMN is not a major contributor to the phenotype of Smn null mutants. These findings have major implications for SMA etiology because they show that SMN's role in snRNP biogenesis can be uncoupled from the organismal viability and locomotor defects.
Collapse
Affiliation(s)
- Kavita Praveen
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
246
|
Therapy development for spinal muscular atrophy in SMN independent targets. Neural Plast 2012; 2012:456478. [PMID: 22701806 PMCID: PMC3369530 DOI: 10.1155/2012/456478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder, leading to progressive muscle weakness, atrophy, and sometimes premature death. SMA is caused by mutation or deletion of the survival motor neuron-1 (SMN1) gene. An effective treatment does not presently exist. Since the severity of the SMA phenotype is inversely correlated with expression levels of SMN, the SMN-encoded protein, SMN is the most important therapeutic target for development of an effective treatment for SMA. In recent years, numerous SMN independent targets and therapeutic strategies have been demonstrated to have potential roles in SMA treatment. For example, some neurotrophic, antiapoptotic, and myotrophic factors are able to promote survival of motor neurons or improve muscle strength shown in SMA mouse models or clinical trials. Plastin-3, cpg15, and a Rho-kinase inhibitor regulate axonal dynamics and might reduce the influences of SMN depletion in disarrangement of neuromuscular junction. Stem cell transplantation in SMA model mice resulted in improvement of motor behaviors and extension of survival, likely from trophic support. Although most therapies are still under investigation, these nonclassical treatments might provide an adjunctive method for future SMA therapy.
Collapse
|
247
|
Torres-Benito L, Ruiz R, Tabares L. Synaptic defects in spinal muscular atrophy animal models. Dev Neurobiol 2012; 72:126-33. [PMID: 21567981 DOI: 10.1002/dneu.20912] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proximal spinal muscular atrophy, the most frequent genetic cause of childhood lethality, is caused by homozygous loss or mutation of the SMN1 gene on human chromosome 5, which codes for the survival motor neuron (SMN) protein. SMN plays a role in the assembly of small nuclear ribonucleoproteins and, additionally, in synaptic function. SMN deficiency produces defects in motor neuron β-actin mRNA axonal transport, neurofilament dynamics, neurotransmitter release, and synapse maturation. The underlying molecular mechanisms and, in particular, the role of the cytoskeleton on the pathogenesis of this disease are starting to be revealed.
Collapse
Affiliation(s)
- Laura Torres-Benito
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | | | | |
Collapse
|
248
|
Ahmad S, Wang Y, Shaik GM, Burghes AH, Gangwani L. The zinc finger protein ZPR1 is a potential modifier of spinal muscular atrophy. Hum Mol Genet 2012; 21:2745-58. [PMID: 22422766 DOI: 10.1093/hmg/dds102] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Spinal muscular atrophy (SMA) is caused by mutation of the Survival Motor Neurons 1 (SMN1) gene and is characterized by degeneration of spinal motor neurons. The severity of SMA is primarily influenced by the copy number of the SMN2 gene. Additional modifier genes that lie outside the SMA locus exist and one gene that could modify SMA is the Zinc Finger Protein (ZPR1) gene. To test the significance of ZPR1 downregulation in SMA, we examined the effect of reduced ZPR1 expression in mice with mild and severe SMA. We report that the reduced ZPR1 expression causes increase in the loss of motor neurons, hypermyelination in phrenic nerves, increase in respiratory distress and disease severity and reduces the lifespan of SMA mice. The deficiency of SMN-containing sub-nuclear bodies correlates with the severity of SMA. ZPR1 is required for the accumulation of SMN in sub-nuclear bodies. Further, we report that ZPR1 overexpression increases levels of SMN and promotes accumulation of SMN in sub-nuclear bodies in SMA patient fibroblasts. ZPR1 stimulates neurite growth and rescues axonal growth defects in SMN-deficient spinal cord neurons from SMA mice. These data suggest that the severity of disease correlates negatively with ZPR1 levels and ZPR1 may be a protective modifier of SMA.
Collapse
Affiliation(s)
- Saif Ahmad
- Department of Cell Biology and Anatomy, School of Medicine, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
249
|
Zhou J, Zheng X, Shen H. Targeting RNA-splicing for SMA treatment. Mol Cells 2012; 33:223-8. [PMID: 22382684 PMCID: PMC3887702 DOI: 10.1007/s10059-012-0005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/15/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022] Open
Abstract
The central dogma of DNA-RNA-protein was established more than 40 years ago. However, important biological processes have been identified since the central dogma was developed. For example, methylation is important in the regulation of transcription. In contrast, proteins, are more complex due to modifications such as phosphorylation, glycosylation, ubiquitination, or cleavage. RNA is the mediator between DNA and protein, but it can also be modulated at several levels. Among the most profound discoveries of RNA regulation is RNA splicing. It has been estimated that 80% of pre-mRNA undergo alternative splicing, which exponentially increases biological information flow in cellular processes. However, an increased number of regulated steps inevitably accompanies an increased number of errors. Abnormal splicing is often found in cells, resulting in protein dysfunction that causes disease. Splicing of the survival motor neuron (SMN) gene has been extensively studied during the last two decades. Accumulating knowledge on SMN splicing has led to speculation and search for spinal muscular atrophy (SMA) treatment by stimulating the inclusion of exon 7 into SMN mRNA. This mini-review summaries the latest progress on SMN splicing research as a potential treatment for SMA disease.
Collapse
Affiliation(s)
| | - Xuexiu Zheng
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712,
Korea
| | - Haihong Shen
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712,
Korea
| |
Collapse
|
250
|
Workman E, Kolb SJ, Battle DJ. Spliceosomal small nuclear ribonucleoprotein biogenesis defects and motor neuron selectivity in spinal muscular atrophy. Brain Res 2012; 1462:93-9. [PMID: 22424789 DOI: 10.1016/j.brainres.2012.02.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/17/2012] [Accepted: 02/21/2012] [Indexed: 12/22/2022]
Abstract
The SMN protein is essential and participates in the assembly of macromolecular complexes of RNA and protein in all cells. The best-characterized function of SMN is as an assembler of spliceosomal small nuclear ribonucleoproteins (snRNPs). SMN performs this function as part of a complex with several other proteins called Gemins. snRNPs are assembled in the cytoplasm in a stepwise manner and then are imported to the nucleus where they participate globally in the splicing of pre-mRNA. Mutations in the SMN1 gene result in the motor neuron disease, spinal muscular atrophy (SMA). Most of these mutations result in a reduction in the expression levels of the SMN protein, which, in turn, results in a reduction in snRNP assembly capacity. This review highlights current studies that have investigated the mechanism of SMN-dependent snRNP assembly, as well as the downstream effects on pre-mRNA splicing that result from a decrease in SMN. This article is part of a Special Issue entitled "RNA-Binding Proteins".
Collapse
Affiliation(s)
- Eileen Workman
- Department of Molecular and Cellular Biochemistry, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|