201
|
Computational Design of Calmodulin Mutants with up to 900-Fold Increase in Binding Specificity. J Mol Biol 2009; 385:1470-80. [DOI: 10.1016/j.jmb.2008.09.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/14/2008] [Accepted: 09/17/2008] [Indexed: 11/15/2022]
|
202
|
Grygielska B, Hughes CE, Watson SP. Molecular basis of platelet activation by an alphaIIbbeta3-CHAMPS peptide. J Thromb Haemost 2009; 7:339-46. [PMID: 19036072 DOI: 10.1111/j.1538-7836.2008.03228.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND A novel method, known as computed helical anti-membrane protein (CHAMP), for the design of peptides that bind with high affinity and selectivity to transmembrane helices was recently described and illustrated using peptides that bind alphaIIb- and alphav-integrin subunits, which induce selective activation of integrins alphaIIbbeta3 and alphavbeta3, respectively. OBJECTIVES In the present study, we have investigated the ability of an alphaIIb-CHAMPS peptide (termed integrin-activatory-peptide or IAP) to stimulate protein tyrosine phosphorylation and aggregation in human and mouse platelets. METHODS The ability of IAP to stimulate platelet aggregation and dense granule secretion was measured in washed preparations of human and mouse platelets. Samples were taken for measurement of tyrosine phosphorylation. RESULTS IAP stimulates robust tyrosine phosphorylation of the tyrosine kinase Syk and the FcR gamma-chain, but only weak phosphorylation of PLCgamma2. Aggregation to low but not high concentrations of IAP is reduced in the presence of the Src kinase inhibitor, PP1, or by inhibitors of the two feedback agonists, ADP and thromboxane A(2) (TxA(2)) suggesting that activation is reinforced by Src kinase-driven release of ADP and TxA(2). Unexpectedly, aggregation by IAP is only partially inhibited in human and mouse platelets deficient in integrin alphaIIbbeta3. Further, IAP induces partial aggregation of formaldehyde-fixed platelets. CONCLUSIONS The present study demonstrates that the alphaIIb-CHAMPS peptide induces platelet activation through integrin alphaIIbbeta3-dependent and independent pathways with the former mediating tyrosine phosphorylation of FcR gamma-chain and Syk. The use of the alphaIIb-CHAMPS peptide to study integrin alphaIIbbeta3 function is compromised by non-integrin-mediated effects.
Collapse
Affiliation(s)
- B Grygielska
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, Division of Medical Sciences, The Medical School, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
203
|
Small-molecule inhibitors of integrin alpha2beta1 that prevent pathological thrombus formation via an allosteric mechanism. Proc Natl Acad Sci U S A 2009; 106:719-24. [PMID: 19141632 DOI: 10.1073/pnas.0811622106] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is a grave need for safer antiplatelet therapeutics to prevent heart attack and stroke. Agents targeting the interaction of platelets with the diseased vessel wall could impact vascular disease with minimal effects on normal hemostasis. We targeted integrin alpha(2)beta(1), a collagen receptor, because its overexpression is associated with pathological clot formation whereas its absence does not cause severe bleeding. Structure-activity studies led to highly potent and selective small-molecule inhibitors. Responses of integrin alpha(2)beta(1) mutants to these compounds are consistent with a computational model of their mode of inhibition and shed light on the activation mechanism of I-domain-containing integrins. A potent compound was proven efficacious in an animal model of arterial thrombosis, which demonstrates in vivo efficacy for inhibition of this platelet receptor. These results suggest that targeting integrin alpha(2)beta(1) could be a potentially safe, effective approach to long-term therapy for cardiovascular disease.
Collapse
|
204
|
Sourina O, Torres J, Wang J. Visual Haptic-Based Biomolecular Docking and Its Applications in E-Learning. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-3-642-03270-7_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
205
|
Talbert-Slagle K, DiMaio D. The bovine papillomavirus E5 protein and the PDGF beta receptor: it takes two to tango. Virology 2008; 384:345-51. [PMID: 18990418 DOI: 10.1016/j.virol.2008.09.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
The extremely hydrophobic, 44-amino acid bovine papillomavirus (BPV) E5 protein is the smallest known oncoprotein, which orchestrates cell transformation by causing ligand-independent activation of a cellular receptor tyrosine kinase, the platelet-derived growth factor beta receptor (PDGFbetaR). The E5 protein forms a dimer in transformed cells and is essentially an isolated membrane-spanning segment that binds directly to the transmembrane domain of the PDGFbetaR, inducing receptor dimerization, autophosphorylation, and sustained mitogenic signaling. There are few sequence constraints for activity as long as the overall hydrophobicity of the E5 protein and its ability to dimerize are preserved. Nevertheless, the E5 protein is highly specific for the PDGFbetaR and does not activate other cellular proteins. Genetic screens of thousands of small, artificial hydrophobic proteins with randomized transmembrane domains inserted into an E5 scaffold identified proteins with diverse transmembrane sequences that activate the PDGFbetaR, including some activators as small as 32-amino acids. Analysis of these novel proteins has provided new insight into the requirements for PDGFbetaR activation and specific transmembrane recognition in general. These results suggest that small, transmembrane proteins can be constructed and selected that specifically bind to other cellular or viral transmembrane target proteins. By using this approach, we have isolated a 44-amino acid artificial transmembrane protein that appears to activate the human erythropoietin receptor. Studies of the tiny, hydrophobic BPV E5 protein have not only revealed a novel mechanism of viral oncogenesis, but have also suggested that it may be possible to develop artificial small proteins that specifically modulate much larger target proteins by acting within cellular or viral membranes.
Collapse
Affiliation(s)
- Kristina Talbert-Slagle
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
206
|
Becker V, Sengupta D, Ketteler R, Ullmann GM, Smith JC, Klingmüller U. Packing density of the erythropoietin receptor transmembrane domain correlates with amplification of biological responses. Biochemistry 2008; 47:11771-82. [PMID: 18855427 DOI: 10.1021/bi801425e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of signal-promoting dimeric or oligomeric receptor complexes at the cell surface is modulated by self-interaction of their transmembrane (TM) domains. To address the importance of TM domain packing density for receptor functionality, we examined a set of asparagine mutants in the TM domain of the erythropoietin receptor (EpoR). We identified EpoR-T242N as a receptor variant that is present at the cell surface similar to wild-type EpoR but lacks visible localization in vesicle-like structures and is impaired in efficient activation of specific signaling cascades. Analysis by a molecular modeling approach indicated an increased interhelical distance for the EpoR-T242N TM dimer. By employing the model, we designed additional mutants with increased or decreased packing volume and confirmed a correlation between packing volume and biological responsiveness. These results propose that the packing density of the TM domain provides a novel layer for fine-tuned regulation of signal transduction and cellular decisions.
Collapse
Affiliation(s)
- Verena Becker
- Division Systems Biology of Signal Transduction, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
207
|
Kožíšek M, Svatoš A, Buděšínský M, Muck A, Bauer M, Kotrba P, Ruml T, Havlas Z, Linse S, Rulíšek L. Molecular Design of Specific Metal-Binding Peptide Sequences from Protein Fragments: Theory and Experiment. Chemistry 2008; 14:7836-46. [DOI: 10.1002/chem.200800178] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
208
|
|
209
|
Luo SZ, Li R. Specific heteromeric association of four transmembrane peptides derived from platelet glycoprotein Ib-IX complex. J Mol Biol 2008; 382:448-57. [PMID: 18674540 DOI: 10.1016/j.jmb.2008.07.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 06/08/2008] [Accepted: 07/13/2008] [Indexed: 12/19/2022]
Abstract
As the receptor on the platelet surface for von Willebrand factor, glycoprotein (GP) Ib-IX complex is critically involved in hemostasis and thrombosis. How the complex is assembled from GP Ibalpha, GP Ib beta and GP IX subunits, all of which are type I transmembrane proteins, is not entirely clear. Genetic and mutational analyses have identified the transmembrane (TM) domains of these subunits as active participants in assembly of the complex. In this study, peptides containing the transmembrane domain of each subunit have been produced and their interaction with one another characterized. Only the Ib beta TM sequence, but not the Ibalpha and IX counterparts, can form homo-oligomers in SDS-PAGE and TOXCAT assays. Following up on our earlier observation that a Ib beta-Ibalpha-Ib beta peptide complex (alphabeta(2)) linked through native juxtamembrane disulfide bonds could be produced from isolated Ibalpha and Ib beta TM peptides in detergent micelles, we show here that addition of the IX TM peptide facilitates formation of the native alphabeta(2) complex, reproducing the same effect by the IX subunit in cells expressing the GP Ib-IX complex. Specific fluorescence resonance energy transfer was observed between donor-labeled alphabeta(2) peptide complex and acceptor-conjugated IX TM peptide in micelles. Finally, the mutation D135K in the IX TM peptide could hamper both the formation of the alphabeta(2) complex and the energy transfer, consistent with its reported effect in the full-length complex. Overall, our results have demonstrated directly the native-like heteromeric interaction among the isolated Ibalpha, Ib beta and IX TM peptides, which provides support for the four-helix bundle model of the TM domains in the GP Ib-IX complex and paves the way for further structural analysis. The methods developed in this study may be applicable to other studies of heteromeric interaction among multiple TM helices.
Collapse
Affiliation(s)
- Shi-Zhong Luo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
210
|
Caputo GA, Litvinov RI, Li W, Bennett JS, Degrado WF, Yin H. Computationally designed peptide inhibitors of protein-protein interactions in membranes. Biochemistry 2008; 47:8600-6. [PMID: 18642886 DOI: 10.1021/bi800687h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently reported a computational method (CHAMP) for designing sequence-specific peptides that bind to the membrane-embedded portions of transmembrane proteins. We successfully applied this method to design membrane-spanning peptides targeting the transmembrane domains of the alpha IIb subunit of integrin alpha IIbbeta 3. Previously, we demonstrated that these CHAMP peptides bind specifically with reasonable affinity to isolated transmembrane helices of the targeted transmembrane region. These peptides also induced integrin alpha IIbbeta 3 activation due to disruption of the helix-helix interactions between the transmembrane domains of the alpha IIb and beta 3 subunits. In this paper, we show the direct interaction of the designed anti-alpha IIb CHAMP peptide with isolated full-length integrin alpha IIbbeta 3 in detergent micelles. Further, the behavior of the designed peptides in phospholipid bilayers is essentially identical to their behavior in detergent micelles. In particular, the peptides assume a membrane-spanning alpha-helical conformation that does not disrupt bilayer integrity. The activity and selectivity of the CHAMP peptides were further explored in platelets, comfirming that anti-alpha IIb activates wild-type alpha IIbbeta 3 in whole cells as a result of its disruption of the protein-protein interactions between the alpha and beta subunits in the transmembrane regions. These results demonstrate that CHAMP is a successful chemical biology approach that can provide specific tools for probing the transmembrane domains of proteins.
Collapse
Affiliation(s)
- Gregory A Caputo
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | | | | | | | |
Collapse
|
211
|
Slivka PF, Wong J, Caputo GA, Yin H. Peptide probes for protein transmembrane domains. ACS Chem Biol 2008; 3:402-11. [PMID: 18533658 DOI: 10.1021/cb800049w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Much current interest in chemical biology focuses on the transmembrane domains of proteins, which have emerged as targets for the development of novel diagnostics and therapeutics. Integral membrane proteins are a group of important biomolecules that play pivotal roles in many cellular activities. Previous studies primarily focused on the extra- and/or intracellular domains of membrane proteins. However, the importance of transmembrane regions in the regulation of protein complexes is beginning to emerge. As such, a number of methods for designing and testing novel exogenous peptides that recognize transmembrane targets and modulate cellular functions have been developed. This Review outlines current methodologies for developing these transmembrane probes that may provide useful tools to study a variety of biological phenomena in the membrane.
Collapse
Affiliation(s)
- Peter F. Slivka
- Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, Colorado 80309-0215
| | - Johnny Wong
- Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, Colorado 80309-0215
| | - Gregory A. Caputo
- Department of Chemistry and Biochemistry, 201 Mullica Hill Road, Rowan University, Glassboro, New Jersey 08028-1701
| | - Hang Yin
- Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, Colorado 80309-0215
| |
Collapse
|
212
|
Moore DT, Berger BW, DeGrado WF. Protein-protein interactions in the membrane: sequence, structural, and biological motifs. Structure 2008; 16:991-1001. [PMID: 18611372 PMCID: PMC3771515 DOI: 10.1016/j.str.2008.05.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/25/2008] [Accepted: 05/30/2008] [Indexed: 01/10/2023]
Abstract
Single-span transmembrane (TM) helices have structural and functional roles well beyond serving as mere anchors to tether water-soluble domains in the vicinity of the membrane. They frequently direct the assembly of protein complexes and mediate signal transduction in ways analogous to small modular domains in water-soluble proteins. This review highlights different sequence and structural motifs that direct TM assembly and discusses their roles in diverse biological processes. We believe that TM interactions are potential therapeutic targets, as evidenced by natural proteins that modulate other TM interactions and recent developments in the design of TM-targeting peptides.
Collapse
Affiliation(s)
- David T. Moore
- Department of Biochemistry and Molecular Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - Bryan W. Berger
- Department of Biochemistry and Molecular Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - William F. DeGrado
- Department of Biochemistry and Molecular Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| |
Collapse
|
213
|
Schmitz J, Gottschalk KE. Mechanical regulation of cell adhesion. SOFT MATTER 2008; 4:1373-1387. [PMID: 32907100 DOI: 10.1039/b716805p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cellular adhesion against external forces is governed by both the equilibrium affinity of the involved receptor-ligand bonds and the mechanics of the cell. Certain receptors like integrins change their affinity as well as the mechanics of their anchorage to tune the adhesiveness. Whereas in the last few years the focus of integrin research has lain on the affinity regulation of the adhesion receptors, more recently the importance of cellular mechanics became apparent. Here, we focus on different aspects of the mechanical regulation of the cellular adhesiveness.
Collapse
Affiliation(s)
- Julia Schmitz
- Applied Physics, LMU München, Amalienstr. 54, 80799 München, Germany.
| | | |
Collapse
|
214
|
MacKenzie KR, Fleming KG. Association energetics of membrane spanning alpha-helices. Curr Opin Struct Biol 2008; 18:412-9. [PMID: 18539023 PMCID: PMC7127525 DOI: 10.1016/j.sbi.2008.04.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/07/2008] [Accepted: 04/16/2008] [Indexed: 11/18/2022]
Abstract
Since Popot and Engelman proposed the ‘two-stage’ thermodynamic framework for dissecting the energetics of helical membrane protein folding, scientists have endeavored to measure the free energies of helix–helix associations to better understand how interactions between helices stabilize and specify native membrane protein folds. Chief among the biophysical tools used to probe these energies are sedimentation equilibrium analytical ultracentrifugation, fluorescence resonance energy transfer, and thiol disulfide interchange experiments. Direct and indirect comparisons of thermodynamic results suggest that differences in helix–helix stabilities between micelles and bilayers may not be as large as previously anticipated. Genetic approaches continue to become more quantitative, and the propensities for helices to interact in bacterial membranes generally correlate well with in vitro measurements.
Collapse
Affiliation(s)
- Kevin R MacKenzie
- Department of Biochemistry & Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | | |
Collapse
|
215
|
Hanshaw RG, Stahelin RV, Smith BD. Noncovalent keystone interactions controlling biomembrane structure. Chemistry 2008; 14:1690-7. [PMID: 18085538 DOI: 10.1002/chem.200701589] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a biomedical need to develop molecular recognition systems that selectively target the interfaces of protein and lipid aggregates in biomembranes. This is an extremely challenging problem in supramolecular chemistry because the biological membrane is a complex dynamic assembly of multifarious molecular components with local inhomogeneity. Two simplifying concepts are presented as a framework for basing molecular design strategies. The first generalization is that association of two binding partners in a biomembrane will be dominated by one type of non-covalent interaction which is referred to as the keystone interaction. Structural mutations in membrane proteins that alter the strength of this keystone interaction will likely have a major effect on biological activity and often will be associated with disease. The second generalization is to view the structure of a cell membrane as three spatial regions, that is, the polar membrane surface, the midpolar interfacial region and the non-polar membrane interior. Each region has a distinct dielectric, and the dominating keystone interaction between binding partners will be different. At the highly polar membrane surface, the keystone interactions between charged binding partners are ion-ion and ion-dipole interactions; whereas, ion-dipole and ionic hydrogen bonding are very influential at the mid-polar interfacial region. In the non-polar membrane interior, van der Waals forces and neutral hydrogen bonding are the keystone interactions that often drive molecular association. Selected examples of lipid and transmembrane protein association systems are described to illustrate how the association thermodynamics and kinetics are dominated by these keystone noncovalent interactions.
Collapse
Affiliation(s)
- Roger G Hanshaw
- Department of Chemistry and Biochemistry and Walther Cancer Center, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
216
|
|
217
|
Abstract
Although membrane proteins account for approximately one third of all proteins encoded in the human genome, the functions and structures of their transmembrane domains are much less understood than the water-soluble regions. A major hurdle in studying these transmembrane domains is the lack of appropriate exogenous agents that can be used as specific probes. Despite the daunting challenges, major strides have recently been made in targeting the transmembrane domains of a variety of membrane proteins. High affinity and selectivity have been achieved in model biophysical systems, membranes of bacteria, and mammalian cells.
Collapse
Affiliation(s)
- Hang Yin
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, Boulder, CO 80309-0215, USA.
| |
Collapse
|
218
|
Yin H. Exogene Wirkstoffe zur Erkennung von Transmembrandomänen von Proteinen. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
219
|
Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, Chupin VV, Kirpichnikov MP, Efremov RG, Arseniev AS. Spatial Structure of the Dimeric Transmembrane Domain of the Growth Factor Receptor ErbB2 Presumably Corresponding to the Receptor Active State. J Biol Chem 2008; 283:6950-6. [DOI: 10.1074/jbc.m709202200] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
220
|
Hendriks WJAJ, Elson A, Harroch S, Stoker AW. Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS J 2008; 275:816-30. [DOI: 10.1111/j.1742-4658.2008.06249.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
221
|
Bromley EHC, Channon K, Moutevelis E, Woolfson DN. Peptide and protein building blocks for synthetic biology: from programming biomolecules to self-organized biomolecular systems. ACS Chem Biol 2008; 3:38-50. [PMID: 18205291 DOI: 10.1021/cb700249v] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are several approaches to creating synthetic-biological systems. Here, we describe a molecular-design approach. First, we lay out a possible synthetic-biology space, which we define with a plot of complexity of components versus divergence from nature. In this scheme, there are basic units, which range from natural amino acids to totally synthetic small molecules. These are linked together to form programmable tectons, for example, amphipathic alpha-helices. In turn, tectons can interact to give self-assembled units, which can combine and organize further to produce functional assemblies and systems. To illustrate one path through this vast landscape, we focus on protein engineering and design. We describe how, for certain protein-folding motifs, polypeptide chains can be instructed to fold. These folds can be combined to give structured complexes, and function can be incorporated through computational design. Finally, we describe how protein-based systems may be encapsulated to control and investigate their functions.
Collapse
Affiliation(s)
| | - Kevin Channon
- School of Chemistry, University
of Bristol, BS8 1TS, United Kingdom
| | | | - Derek N. Woolfson
- School of Chemistry, University
of Bristol, BS8 1TS, United Kingdom
- Department of Biochemistry, University of Bristol, BS8 1TD, United Kingdom
| |
Collapse
|
222
|
Albericio F, Arvidson PI, Bisetty K, Giralt E, Govender T, Jali S, Kongsaeree P, Kruger HG, Prabpai S. Trishomocubane amino acid as a beta-turn scaffold. Chem Biol Drug Des 2008; 71:125-30. [PMID: 18205726 DOI: 10.1111/j.1747-0285.2007.00618.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and X-ray structure of two diasteriomeric heptapeptides [Ac-Ala-Ala-Ala-(R/S)-Cage-Ala-Ala-Ala-NH2] with a trishomocubane amino acid as a beta-turn scaffold are reported. The amino acid was synthesized as a racemate and two diastereomeric peptides were obtained. The two peptides were separated by preparative high-pressure liquid chromatography and crystals suitable for X-ray analysis were grown for both diasteriomeric peptides. In general, both the peptides satisfy the criteria for beta-turn conformations. Five of the six Ala residues of both cage peptide crystals satisfy the criteria for 3(10)-helix characteristics and the cage amino acid residue satisfied the alpha-helix classification. These experimental results confirm previous theoretical studies in our laboratory which predicted that the cage moiety would be a strong/active beta-turn inducer.
Collapse
Affiliation(s)
- Fernando Albericio
- Department of Organic Chemistry, University of Barcelona, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
Protein-protein interactions play a central role in biological processes and thus are an appealing target for innovative drug design a nd development. They can be targeted bysmall molecule inhibitors, peptides and peptidomimetics, which represent an alternative to protein therapeutics that carry many disadvantages. In this chapter, I describe specific protein-protein interactions suggested by a novel model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, to be critical for cell activation mediated by multichain immune recognition receptors (MIRRs) expressed on different cells of the hematopoietic system. Unraveling a long-standing mystery of MIRR triggering and transmembrane signaling, the SCHOOL model reveals the intrareceptor transmembrane interactions and interreceptor cytoplasmic homointeractions as universal therapeutic targets for a diverse variety of disorders mediated by immune cells. Further, assuming that the general principles underlying MIRR-mediated transmembrane signaling mechanisms are similar, the SCHOOL model can be applied to any particular receptor of the MIRR family. Thus, an important application of the SCHOOL model is that global therapeutic strategies targeting key protein-protein interactions involved in MIRR triggering and transmembrane signal transduction may be used to treat a diverse set of immune-mediated diseases. This assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T-cell-mediated skin diseases and platelet disorders, or combined to develop novel pharmacological approaches. Intriguingly, the SCHOOL model unravels the molecular mechanisms underlying ability of different human viruses such as human immunodeficiency virus, cytomegalovirus and severe acute respiratory syndrome coronavirus to modulate and/or escape the host immune response. It also demonstrates how the lessons learned from viral pathogenesis can be used practically for rational drug design. Application of this model to platelet collagen receptor signaling has already led to the development of a novel concept of platelet inhibition and the invention of new platelet inhibitors, thus proving the suggested hypothesis and highlighting the importance and broad perspectives of the SCHOOL model in the development of new targeting strategies.
Collapse
|
224
|
Transmembrane domains of the syndecan family of growth factor coreceptors display a hierarchy of homotypic and heterotypic interactions. Proc Natl Acad Sci U S A 2007; 104:20782-7. [PMID: 18093920 DOI: 10.1073/pnas.0708909105] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The single-pass transmembrane domains (TMDs) of the syndecan family of cell surface adhesion molecules have been implicated in functional protein-protein interactions. Although each paralog contains a conserved GxxxG dimerization motif, we show here that the syndecan-1 TMD dimerizes weakly, the syndecan-3 and syndecan-4 TMDs each dimerize strongly, and the syndecan-2 TMD dimerizes very strongly. These markedly different levels of self-association suggest that paralog TMDs play different roles in directing functional interactions of each full-length syndecan family member. We further show that each syndecan TMD forms detergent-resistant heteromeric complexes with other paralogs, and that these interactions exhibit selectivity. Although heteromeric interactions among full-length syndecan paralogs have not been reported, we argue that the distinct hierarchy of protein-protein interactions mediated by the syndecan TMDs may give rise to considerable complexity in syndecan function. The demonstration that TMD homodimerization and heterodimerization can be mediated by GxxxG motifs and modulated by sequence context has implications for the signaling mechanisms of other cell surface receptors, including the integrins and the erbB family.
Collapse
|
225
|
Roth L, Nasarre C, Dirrig-Grosch S, Aunis D, Crémel G, Hubert P, Bagnard D. Transmembrane domain interactions control biological functions of neuropilin-1. Mol Biol Cell 2007; 19:646-54. [PMID: 18045991 DOI: 10.1091/mbc.e07-06-0625] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuropilin-1 (NRP1) is a transmembrane receptor playing a pivotal role in the control of semaphorins and VEGF signaling pathways. The exact mechanism controlling semaphorin receptor complex formation is unknown. A structural analysis and modeling of NRP1 revealed a putative dimerization GxxxG motif potentially important for NRP1 dimerization and oligomerization. Our data show that this motif mediates the dimerization of the transmembrane domain of NRP1 as demonstrated by a dimerization assay (ToxLuc assay) performed in natural membrane and FRET analysis. A synthetic peptide derived from the transmembrane segment of NRP1 abolished the inhibitory effect of Sema3A. This effect depends on the capacity of the peptide to interfere with NRP1 dimerization and the formation of oligomeric complexes. Mutation of the GxxxG dimerization motif in the transmembrane domain of NRP1 confirmed its biological importance for Sema3A signaling. Overall, our results shed light on an essential step required for semaphorin signaling and provide novel evidence for the crucial role of transmembrane domain of bitopic protein containing GxxxG motif in the formation of receptor complexes that are a prerequisite for cell signaling.
Collapse
Affiliation(s)
- Lise Roth
- INSERM U575 Physiopathologie du Système Nerveux, Université Louis Pasteur, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
226
|
Bautista AD, Craig CJ, Harker EA, Schepartz A. Sophistication of foldamer form and function in vitro and in vivo. Curr Opin Chem Biol 2007; 11:685-92. [PMID: 17988934 DOI: 10.1016/j.cbpa.2007.09.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 09/26/2007] [Indexed: 01/24/2023]
Abstract
Advances in the foldamer field in recent years are as diverse as the backbones of which they are composed. Applications have ranged from cellular penetration and membrane disruption to discrete molecular recognition, while efforts to control the complex geometric shape of foldamers has entered the realm of tertiary and quaternary structure. This review will provide recent examples of progress in the foldamer field, highlighting the significance of this class of compounds and the advances that have been made towards exploiting their full potential.
Collapse
Affiliation(s)
- Arjel D Bautista
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
227
|
Hu X, Wang H, Ke H, Kuhlman B. High-resolution design of a protein loop. Proc Natl Acad Sci U S A 2007; 104:17668-73. [PMID: 17971437 PMCID: PMC2077077 DOI: 10.1073/pnas.0707977104] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Indexed: 11/18/2022] Open
Abstract
Despite having irregular structure, protein loops often adopt specific conformations that are critical to protein function. Most studies in de novo protein design have focused on creating proteins with regular elements of secondary structure connected by very short loops or turns. To design longer protein loops that adopt specific conformations, we have developed a protocol within the Rosetta molecular modeling program that iterates between optimizing the sequence and conformation of a loop in search of low-energy sequence-structure pairs. We have tested the procedure by designing 10-residue loops for the connection between the second and third strand in the beta-sandwich protein tenascin. Three low-energy designs from 7,200 flexible backbone trajectories were selected for experimental characterization. All three designs, called LoopA, LoopB, and LoopC, adopt stable folded structures. High-resolution crystal structures of LoopA and LoopB have been solved. LoopB adopts a structure very similar to the design model (0.46 A rmsd), and all but one of the side chains are modeled in the correct rotamers. LoopA crystallized at low pH in a structure that differs dramatically from our design model. It forms a strand-swapped dimer mediated by hydrogen bonds to protonated glutamic acids. Gel filtration indicates that the protein is not a dimer at neutral pH. These results suggest that the high-resolution design of protein loops is possible; however, they also highlight how small changes in protein energetics can dramatically perturb the low free energy structure of a protein.
Collapse
Affiliation(s)
- Xiaozhen Hu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Huanchen Wang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Hengming Ke
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
228
|
|
229
|
Cell integrins: commonly used receptors for diverse viral pathogens. Trends Microbiol 2007; 15:500-7. [DOI: 10.1016/j.tim.2007.10.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 08/13/2007] [Accepted: 10/19/2007] [Indexed: 01/23/2023]
|
230
|
Arnaout MA, Goodman SL, Xiong JP. Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol 2007; 19:495-507. [PMID: 17928215 DOI: 10.1016/j.ceb.2007.08.002] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 08/14/2007] [Indexed: 01/09/2023]
Abstract
Integrins are alpha/beta heterodimeric adhesion glycoprotein receptors that regulate a wide variety of dynamic cellular processes such as cell migration, phagocytosis, and growth and development. X-ray crystallography of the integrin ectodomain revealed its modular architecture and defined its metal-dependent interaction with extracellular ligands. This interaction is regulated from inside the cell (inside-out activation), through the short cytoplasmic alpha and beta integrin tails, which also mediate biochemical and mechanical signals transmitted to the cytoskeleton by the ligand-occupied integrins, effecting major changes in cell shape, behavior, and fate. Recent advances in the structural elucidation of integrins and integrin-binding cytoskeleton proteins are the subjects of this review.
Collapse
Affiliation(s)
- M Amin Arnaout
- Nephrology Division, Leukocyte Biology & Inflammation Program, Structural Biology Program, Massachusetts General Hospital, and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, United States.
| | | | | |
Collapse
|
231
|
Choi J, Zhai D, Zhou X, Satterthwait A, Reed JC, Marassi FM. Mapping the specific cytoprotective interaction of humanin with the pro-apoptotic protein bid. Chem Biol Drug Des 2007; 70:383-92. [PMID: 17927731 DOI: 10.1111/j.1747-0285.2007.00576.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Humanin is a short endogenous peptide, which can provide protection from cell death through its association with various receptors, including the pro-apoptotic Bcl-2 family proteins Bid, Bim, and Bax. By using NMR chemical shift mapping experiments, we demonstrate that the interaction between Humanin-derived peptides and Bid is specific, and we localize the binding site to a region on the surface of Bid, which includes residues from the conserved helical BH3 domain of the protein. The BH3 domain mediates the association of Bid with other Bcl-2 family members and is essential for the protein's cytotoxic activity. The data suggest that Humanin exerts its cytoprotective activity by engaging the Bid BH3 domain; this would hinder the association of Bid with other Bcl-2 family proteins, thereby mitigating its toxicity. The identification of a Humanin-specific binding site on the surface of Bid reinforces its importance as a direct modulator of programmed cell death, and suggests a strategy for the design of cytoprotective peptide inhibitors of Bid.
Collapse
Affiliation(s)
- Jungyuen Choi
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
232
|
Choi J, Zhai D, Zhou X, Satterthwait A, Reed JC, Marassi FM. Mapping the Specific Cytoprotective Interaction of Humanin with the Pro-apoptotic Protein Bid. Chem Biol Drug Des 2007. [DOI: 10.1111/j.1399-3011.2007.00576.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
233
|
Barth P, Schonbrun J, Baker D. Toward high-resolution prediction and design of transmembrane helical protein structures. Proc Natl Acad Sci U S A 2007; 104:15682-7. [PMID: 17905872 PMCID: PMC2000396 DOI: 10.1073/pnas.0702515104] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prediction and design at the atomic level of membrane protein structures and interactions is a critical but unsolved challenge. To address this problem, we have developed an all-atom physical model that describes intraprotein and protein-solvent interactions in the membrane environment. We evaluated the ability of the model to recapitulate the energetics and structural specificities of polytopic membrane proteins by using a battery of in silico prediction and design tests. First, in side-chain packing and design tests, the model successfully predicts the side-chain conformations at 73% of nonexposed positions and the native amino acid identities at 34% of positions in naturally occurring membrane proteins. Second, the model predicts significant energy gaps between native and nonnative structures of transmembrane helical interfaces and polytopic membrane proteins. Third, distortions in transmembrane helices are successfully recapitulated in docking experiments by using fragments of ideal helices judiciously defined around helical kinks. Finally, de novo structure prediction reaches near-atomic accuracy (<2.5 A) for several small membrane protein domains (<150 residues). The success of the model highlights the critical role of van der Waals and hydrogen-bonding interactions in the stability and structural specificity of membrane protein structures and sets the stage for the high-resolution prediction and design of complex membrane protein architectures.
Collapse
Affiliation(s)
- P. Barth
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - J. Schonbrun
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - D. Baker
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
234
|
Abstract
Computationally designed peptides against transmembrane helices point to new approaches to studying membrane protein function. A recent report describes the design of short peptides that bind specifically to transmembrane regions of integrins, providing an exciting tool for probing the biology of membrane proteins.
Collapse
Affiliation(s)
- Amy E Keating
- MIT Department of Biology, Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
235
|
|
236
|
Kang SG, Saven JG. Computational protein design: structure, function and combinatorial diversity. Curr Opin Chem Biol 2007; 11:329-34. [PMID: 17524729 DOI: 10.1016/j.cbpa.2007.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 05/10/2007] [Indexed: 11/26/2022]
Abstract
Computational protein design has blossomed with the development of methods for addressing the complexities involved in specifying the structure, sequence and function of proteins. Recent applications include the design of novel functional membrane and soluble proteins, proteins incorporating non-biological components and protein combinatorial libraries.
Collapse
Affiliation(s)
- Seung-gu Kang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|