201
|
Ng VY, Ang SN, Chan JX, Choo ABH. Characterization of epithelial cell adhesion molecule as a surface marker on undifferentiated human embryonic stem cells. Stem Cells 2010; 28:29-35. [PMID: 19785009 DOI: 10.1002/stem.221] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human embryonic stem cells (hESCs) have the capacity to remain pluripotent and self-renew indefinitely. To discover novel players in the maintenance of hESCs, we have previously reported the generation of monoclonal antibodies that bind to cell surface markers on hESCs, and not to mouse embryonic stem cells or differentiated embryoid bodies. In this study, we have identified the antigen target of one such monoclonal antibody as the epithelial cell adhesion molecule (EpCAM). In undifferentiated hESCs, EpCAM is localized to Octamer 4 (OCT4)-positive pluripotent cells, and its expression is down-regulated upon differentiation. To further understand its biological function in hESCs, endogenous EpCAM expression was silenced using small interfering RNA. EpCAM knockdown had marginal negative effects on OCT4 and TRA-1-60 expression, however cell proliferation was decreased by >40%. Examination of lineage marker expression showed marked upregulation of endoderm and mesoderm genes in EpCAM-silenced cells, under both pluripotent and differentiating conditions. These results were validated using a hESC line whose EpCAM expression has been stably knocked down. Data from the stable line confirmed that downregulation of EpCAM decreases cell growth and increases gene expression in the endoderm and mesoderm lineages. In vivo, hESCs lacking EpCAM were able to form teratomas containing tissues representing the three germ layers, and gene expression analysis yielded marked increase in the endoderm marker alpha fetoprotein compared with control. Together these data demonstrate that EpCAM is a surface marker on undifferentiated hESCs and plays functional roles in proliferation and differentiation.
Collapse
Affiliation(s)
- Valerie Y Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138668, Singapore.
| | | | | | | |
Collapse
|
202
|
Jaglarz MK, Kubrakiewicz J, Bilinski SM. A novel pattern of follicular epithelium morphogenesis in higher dipterans. ZOOLOGY 2010; 113:91-9. [DOI: 10.1016/j.zool.2009.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 11/30/2022]
|
203
|
Abstract
Together with cell growth, division and death, changes in cell shape are of central importance for tissue morphogenesis during development. Cell shape is the product of a cell's material and active properties balanced by external forces. Control of cell shape, therefore, relies on both tight regulation of intracellular mechanics and the cell's physical interaction with its environment. In this review, we first discuss the biological and physical mechanisms of cell shape control. We next examine a number of developmental processes in which cell shape change - either individually or in a coordinated manner - drives embryonic morphogenesis and discuss how cell shape is controlled in these processes. Finally, we emphasize that cell shape control during tissue morphogenesis can only be fully understood by using a combination of cellular, molecular, developmental and biophysical approaches.
Collapse
Affiliation(s)
- Ewa Paluch
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|
204
|
Hwang DS, Waite JH, Tirrell M. Promotion of osteoblast proliferation on complex coacervation-based hyaluronic acid - recombinant mussel adhesive protein coatings on titanium. Biomaterials 2010; 31:1080-4. [PMID: 19892396 PMCID: PMC2835630 DOI: 10.1016/j.biomaterials.2009.10.041] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 10/16/2009] [Indexed: 02/07/2023]
Abstract
Many biological polyelectrolytes are capable of undergoing a fluid-fluid phase separation known as complex coacervation. Coacervates were prepared using hyaluronic acid (HA) and a recombinant fusion protein consisting of mussel adhesive motifs and the RGD peptide (fp-151-RGD). The low interfacial energy of the coacervate was exploited to coat titanium (Ti), a metal widely used in implant materials. The coacervate effectively distributed both HA and fp-151-RGD over the Ti surfaces and enhanced osteoblast proliferation. Approximately half of total fp-151-RGD and HA in the solution transferred to the titanium surface within 2h. Titanium coated with coacervates having high residual negative surface charge showed the highest cell proliferation of preosteoblast cells (MC-3T3) compared to the treatments tested. Indeed, MC-3T3 cells on complex coacervate coated titanium foils exhibited over 5 times greater cell proliferation than bare, HA coated or fp-151-RGD coated titanium.
Collapse
Affiliation(s)
- Dong Soo Hwang
- Material Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - J. Herbert Waite
- Material Research Laboratory, University of California, Santa Barbara, California 93106, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | - Matthew Tirrell
- Material Research Laboratory, University of California, Santa Barbara, California 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
205
|
Focal adhesion kinase-dependent regulation of adhesive forces involves vinculin recruitment to focal adhesions. Biol Cell 2010; 102:203-213. [PMID: 19883375 DOI: 10.1042/bc20090104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND INFORMATION FAK (focal adhesion kinase), an essential non-receptor tyrosine kinase, plays pivotal roles in migratory responses, adhesive signalling and mechanotransduction. FAK-dependent regulation of cell migration involves focal adhesion turnover dynamics as well as actin cytoskeleton polymerization and lamellipodia protrusion. Whereas roles for FAK in migratory and mechanosensing responses have been established, the contribution of FAK to the generation of adhesive forces is not well understood. RESULTS Using FAK-null cells expressing wild-type and mutant FAK under an inducible tetracycline promoter, we analysed the role of FAK in the generation of steady-state adhesive forces using micropatterned substrates and a hydrodynamic adhesion assay. FAK expression reduced steady-state strength by 30% compared with FAK-null cells. FAK expression reduced VCL (vinculin) localization to focal adhesions by 35% independently of changes in integrin binding and localization of talin and paxillin. RNAi (RNA interference) knock-down of VCL abrogated the FAK-dependent differences in adhesive forces. FAK-dependent changes in VCL localization and adhesive forces were confirmed in human primary fibroblasts with FAK knocked down by RNAi. The autophosphorylation Tyr-397 and kinase domain Tyr-576/Tyr-577 sites were differentially required for FAK-mediated adhesive responses. CONCLUSIONS We demonstrate that FAK reduces steady-state adhesion strength by modulating VCL recruitment to focal adhesions. These findings provide insights into the role of FAK in mechanical interactions between a cell and the extracellular matrix.
Collapse
|
206
|
Arboleda-Estudillo Y, Krieg M, Stühmer J, Licata NA, Muller DJ, Heisenberg CP. Movement directionality in collective migration of germ layer progenitors. Curr Biol 2010; 20:161-9. [PMID: 20079641 DOI: 10.1016/j.cub.2009.11.036] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/19/2009] [Accepted: 11/11/2009] [Indexed: 02/04/2023]
Abstract
Collective cell migration, the simultaneous movement of multiple cells that are connected by cell-cell adhesion, is ubiquitous in development, tissue repair, and tumor metastasis [1, 2]. It has been hypothesized that the directionality of cell movement during collective migration emerges as a collective property [3, 4]. Here we determine how movement directionality is established in collective mesendoderm migration during zebrafish gastrulation. By interfering with two key features of collective migration, (1) having neighboring cells and (2) adhering to them, we show that individual mesendoderm cells are capable of normal directed migration when moving as single cells but require cell-cell adhesion to participate in coordinated and directed migration when moving as part of a group. We conclude that movement directionality is not a de novo collective property of mesendoderm cells but rather a property of single mesendoderm cells that requires cell-cell adhesion during collective migration.
Collapse
Affiliation(s)
- Yohanna Arboleda-Estudillo
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
207
|
Szabó A, Czirók A. The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts. MATHEMATICAL MODELLING OF NATURAL PHENOMENA 2010; 5:106. [PMID: 20165554 PMCID: PMC2822353 DOI: 10.1051/mmnp/20105105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Collective cell motility and its guidance via cell-cell contacts is instrumental in several morphogenetic and pathological processes such as vasculogenesis or tumor growth. Multicellular sprout elongation, one of the simplest cases of collective motility, depends on a continuous supply of cells streaming along the sprout towards its tip. The phenomenon is often explained as leader cells pulling the rest of the sprout forward via cell-cell adhesion. Building on an empirically demonstrated analogy between surface tension and cell-cell adhesion, we demonstrate that such a mechanism is unable to recruit cells to the sprout. Moreover, the expansion of such hypothetical sprouts is limited by a form of the Plateau-Taylor instability. In contrast, actively moving cells - guided by cell-cell contacts - can readily populate and expand linear sprouts. We argue that preferential attraction to the surfaces of elongated cells can provide a generic mechanism, shared by several cell types, for multicellular sprout formation.
Collapse
Affiliation(s)
- A. Szabó
- Department of Biological Physics, Eötvos University, Budapest, Hungary
| | - A. Czirók
- Department of Biological Physics, Eötvos University, Budapest, Hungary
- Department of Anatomy & Cell Biology, University of Kansas Medical Center Kansas City, KS, USA
| |
Collapse
|
208
|
Abstract
Collective cell migration is a key process during the development of most organisms. It can involve either the migration of closely packed mesenchymal cells that make dynamic contacts with frequently changing neighbour cells, or the migration of epithelial sheets that typically display more stable cell-cell interactions and less frequent changes in neighbours. These collective movements can be controlled by short- or long-range dynamic gradients of extracellular signalling molecules, depending on the number of cells involved and their distance of migration. These gradients are sensed by some or all of the migrating cells and translated into directed migration, which in many settings is further modulated by cell-contact-mediated attractive or repulsive interactions that result in contact-following or contact-inhibition of locomotion, respectively. Studies of collective migration of groups of epithelial cells during development indicate that, in some cases, only leader cells sense and migrate up an external signal gradient, and that adjacent cells follow through strong cell-cell contacts. In this Commentary, I review studies of collective cell migration of differently sized cell populations during the development of several model organisms, and discuss our current understanding of the molecular mechanisms that coordinate this migration.
Collapse
Affiliation(s)
- Cornelis J Weijer
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
209
|
Warner SJ, Longmore GD. Cdc42 antagonizes Rho1 activity at adherens junctions to limit epithelial cell apical tension. ACTA ACUST UNITED AC 2009; 187:119-33. [PMID: 19805632 PMCID: PMC2762093 DOI: 10.1083/jcb.200906047] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rho promotes actomyosin contractility during epithelial cell remodeling, but Cdc42 keeps the epithelium in shape by limiting RhoA activity. In epithelia, cells are arranged in an orderly pattern with a defined orientation and shape. Cadherin containing apical adherens junctions (AJs) and the associated actomyosin cytoskeleton likely contribute to epithelial cell shape by providing apical tension. The Rho guanosine triphosphatases are well known regulators of cell junction formation, maintenance, and function. Specifically, Rho promotes actomyosin activity and cell contractility; however, what controls and localizes this Rho activity as epithelia remodel is unresolved. Using mosaic clonal analysis in the Drosophila melanogaster pupal eye, we find that Cdc42 is critical for limiting apical cell tension by antagonizing Rho activity at AJs. Cdc42 localizes Par6–atypical protein kinase C (aPKC) to AJs, where this complex limits Rho1 activity and thus actomyosin contractility, independent of its effects on Wiskott-Aldrich syndrome protein and p21-activated kinase. Thus, in addition to its role in the establishment and maintenance of apical–basal polarity in forming epithelia, the Cdc42–Par6–aPKC polarity complex is required to limit Rho activity at AJs and thus modulate apical tension so as to shape the final epithelium.
Collapse
Affiliation(s)
- Stephen J Warner
- Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | | |
Collapse
|
210
|
Martins GG, Rifes P, Amândio R, Rodrigues G, Palmeirim I, Thorsteinsdóttir S. Dynamic 3D cell rearrangements guided by a fibronectin matrix underlie somitogenesis. PLoS One 2009; 4:e7429. [PMID: 19829711 PMCID: PMC2759537 DOI: 10.1371/journal.pone.0007429] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 09/16/2009] [Indexed: 12/26/2022] Open
Abstract
Somites are transient segments formed in a rostro-caudal progression during vertebrate development. In chick embryos, segmentation of a new pair of somites occurs every 90 minutes and involves a mesenchyme-to-epithelium transition of cells from the presomitic mesoderm. Little is known about the cellular rearrangements involved, and, although it is known that the fibronectin extracellular matrix is required, its actual role remains elusive. Using 3D and 4D imaging of somite formation we discovered that somitogenesis consists of a complex choreography of individual cell movements. Epithelialization starts medially with the formation of a transient epithelium of cuboidal cells, followed by cell elongation and reorganization into a pseudostratified epithelium of spindle-shaped epitheloid cells. Mesenchymal cells are then recruited to this medial epithelium through accretion, a phenomenon that spreads to all sides, except the lateral side of the forming somite, which epithelializes by cell elongation and intercalation. Surprisingly, an important contribution to the somite epithelium also comes from the continuous egression of mesenchymal cells from the core into the epithelium via its apical side. Inhibition of fibronectin matrix assembly first slows down the rate, and then halts somite formation, without affecting pseudopodial activity or cell body movements. Rather, cell elongation, centripetal alignment, N-cadherin polarization and egression are impaired, showing that the fibronectin matrix plays a role in polarizing and guiding the exploratory behavior of somitic cells. To our knowledge, this is the first 4D in vivo recording of a full mesenchyme-to-epithelium transition. This approach brought new insights into this event and highlighted the importance of the extracellular matrix as a guiding cue during morphogenesis.
Collapse
Affiliation(s)
- Gabriel G. Martins
- Centro de Biologia Ambiental, Departamento de Biologia Animal Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (GGM); (ST)
| | - Pedro Rifes
- Centro de Biologia Ambiental, Departamento de Biologia Animal Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rita Amândio
- Centro de Biologia Ambiental, Departamento de Biologia Animal Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Gabriela Rodrigues
- Centro de Biologia Ambiental, Departamento de Biologia Animal Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Isabel Palmeirim
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Sólveig Thorsteinsdóttir
- Centro de Biologia Ambiental, Departamento de Biologia Animal Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (GGM); (ST)
| |
Collapse
|
211
|
Martinez-Morales JR, Wittbrodt J. Shaping the vertebrate eye. Curr Opin Genet Dev 2009; 19:511-7. [PMID: 19819125 DOI: 10.1016/j.gde.2009.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 07/24/2009] [Accepted: 08/13/2009] [Indexed: 12/11/2022]
Abstract
For over a century, the vertebrate eye has served as a paradigm for organogenesis. It forms through a complex sequence of morphogenetic events, involving the lateral evagination of the optic vesicles and their subsequent folding into the optic cups. Through intensive studies by experimental embryologists, anatomical descriptions of the process were available since many decades. Recent genetic and molecular work has illuminated essential features of the stereotyped cellular behaviour driving eye morphogenesis. The first pieces of the molecular machinery operating in each individual progenitor cell have been identified. These studies now set the groundwork for a system-wide approach towards understanding the cellular and molecular mechanisms involved in shaping the vertebrate eye.
Collapse
|
212
|
Mateus AM, Gorfinkiel N, Arias AM. Origin and function of fluctuations in cell behaviour and the emergence of patterns. Semin Cell Dev Biol 2009; 20:877-84. [PMID: 19665568 DOI: 10.1016/j.semcdb.2009.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 07/20/2009] [Accepted: 07/31/2009] [Indexed: 11/18/2022]
Abstract
Morphogenesis is the process whereby cells assemble into tissues and organs. Recent studies of this process have revealed heterogeneity of individual cell behaviours that contrasts with the deterministic activity of tissues as a whole. Here we review these observations and suggest that fluctuations and heterogeneities are a central substrate for morphogenesis and that there might exist mechanisms dedicated to the averaging of these fluctuations to ensure robust and reproducible behaviours at the tissue level.
Collapse
Affiliation(s)
- Ana M Mateus
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | | | |
Collapse
|
213
|
Revenu C, Gilmour D. EMT 2.0: shaping epithelia through collective migration. Curr Opin Genet Dev 2009; 19:338-42. [DOI: 10.1016/j.gde.2009.04.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 04/09/2009] [Indexed: 12/14/2022]
|
214
|
Derganc J, Svetina S, Zeks B. Equilibrium mechanics of monolayered epithelium. J Theor Biol 2009; 260:333-9. [PMID: 19576229 DOI: 10.1016/j.jtbi.2009.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 05/20/2009] [Accepted: 06/24/2009] [Indexed: 11/28/2022]
Abstract
In order to fully understand the epithelial mechanics it is essential to integrate different levels of epithelial organization. In this work, we propose a theoretical approach for connecting the macroscopic mechanical properties of a monolayered epithelium to the mechanical properties at the cellular level. The analysis is based on the established mechanical models-at the macroscopic scale the epithelium is described within the mechanics of thin layers, while the cellular level is modeled in terms of the cellular surface (cortical) tension and the intercellular adhesion. The macroscopic elastic energy of the epithelium is linked to the energy of an average epithelial cell. The epithelial equilibrium state is determined by energy minimization and the macroscopic elastic moduli are calculated from deformations around the equilibrium. The results indicate that the epithelial equilibrium state is defined by the ratio between the adhesion strength and the cellular surface tension. The lower and the upper bounds for this ratio are estimated. If the ratio is small, the epithelium is cuboidal, if it is large, the epithelium becomes columnar. Importantly, it is found that the cellular cortical tension and the intercellular adhesion alone cannot produce the flattened squamous epithelium. Any difference in the surface tension between the apical and basal cellular sides bends the epithelium towards the side with the larger surface tension. Interestingly, the analysis shows that the epithelial area expansivity modulus and the shear modulus depend only on the cellular surface tension and not on the intercellular adhesion. The results are presented in a general analytical form, and are thus applicable to a variety of monolayered epithelia, without relying on the specifics of numerical finite-element methods. In addition, by using the standard theoretical tools for multi-laminar systems, the results can be applied to epithelia consisting of layers with different mechanical properties.
Collapse
Affiliation(s)
- Jure Derganc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Lipiceva 2, SI-1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
215
|
Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 2009; 10:445-57. [DOI: 10.1038/nrm2720] [Citation(s) in RCA: 1789] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
216
|
Hocevar A, Ziherl P. Degenerate polygonal tilings in simple animal tissues. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:011904. [PMID: 19658726 DOI: 10.1103/physreve.80.011904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Indexed: 05/28/2023]
Abstract
The salient feature of one-cell-thick epithelia is their en face view, which reveals the polygonal cross section of the close-packed prismatic cells. The physical mechanisms that shape these tissues were hitherto explored using theories based on cell proliferation, which were either entirely topological or included certain morphogenetic forces. But mitosis itself may not be instrumental in molding the tissue. We show that the structure of simple epithelia can be explained by an equilibrium model where energy-degenerate polygons in an entropy-maximizing tiling are described by a single geometric parameter encoding their inflation. The two types of tilings found numerically--ordered and disordered--closely reproduce the patterns observed in Drosophila, Hydra, and Xenopus and they generalize earlier theoretical results. Free of a specific cell self-energy, cell-cell interaction, and cell division kinetics, our model provides an insight into the universality of living and inanimate two-dimensional cellular structures.
Collapse
Affiliation(s)
- A Hocevar
- Department of Theoretical Physics, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | | |
Collapse
|
217
|
Abstract
Living cells are remarkably complex. To unravel this complexity, living-cell assays have been developed that allow delivery of experimental stimuli and measurement of the resulting cellular responses. High-throughput adaptations of these assays, known as living-cell microarrays, which are based on microtiter plates, high-density spotting, microfabrication, and microfluidics technologies, are being developed for two general applications: (a) to screen large-scale chemical and genomic libraries and (b) to systematically investigate the local cellular microenvironment. These emerging experimental platforms offer exciting opportunities to rapidly identify genetic determinants of disease, to discover modulators of cellular function, and to probe the complex and dynamic relationships between cells and their local environment.
Collapse
Affiliation(s)
- Martin L Yarmush
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Massachusetts 02139, USA.
| | | |
Collapse
|
218
|
|