201
|
Sargent KM, Clopton DT, Lu N, Pohlmeier WE, Cupp AS. VEGFA splicing: divergent isoforms regulate spermatogonial stem cell maintenance. Cell Tissue Res 2015; 363:31-45. [PMID: 26553653 DOI: 10.1007/s00441-015-2297-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022]
Abstract
Despite being well-known for regulating angiogenesis in both normal and tumorigenic environments, vascular endothelial growth factor A (VEGFA) has been recently implicated in male fertility, namely in the maintenance of spermatogonial stem cells (SSC). The VEGFA gene can be spliced into multiple distinct isoforms that are either angiogenic or antiangiogenic in nature. Although studies have demonstrated the alternative splicing of VEGFA, including the divergent roles of the two isoform family types, many investigations do not differentiate between them. Data concerning VEGFA in the mammalian testis are limited, but the various angiogenic isoforms appear to promote seminiferous cord formation and to form a gradient across which cells may migrate. Treatment with either antiangiogenic isoforms of VEGFA or with inhibitors to angiogenic signaling impair these processes. Serendipitously, expression of KDR, the primary receptor for both types of VEGFA isoforms, was observed on male germ cells. These findings led to further investigation of the way that VEGFA elicits avascular functions within testes. Following treatment of donor perinatal male mice with either antiangiogenic VEGFA165b or angiogenic VEGFA164 isoforms, seminiferous tubules were less colonized following transplantation with cells from VEGFA165b-treated donors. Thus, VEGFA165b and possibly other antiangiogenic isoforms of VEGFA reduce SSC number either by promoting premature differentiation, inducing cell death, or by preventing SSC formation. Thus, angiogenic isoforms of VEGFA are hypothesized to promote SSC self-renewal, and the divergent isoforms are thought to balance one another to maintain SSC homeostasis in vivo.
Collapse
Affiliation(s)
- Kevin M Sargent
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Debra T Clopton
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Ningxia Lu
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - William E Pohlmeier
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA.
| |
Collapse
|
202
|
Young JC, Wakitani S, Loveland KL. TGF-β superfamily signaling in testis formation and early male germline development. Semin Cell Dev Biol 2015; 45:94-103. [PMID: 26500180 DOI: 10.1016/j.semcdb.2015.10.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022]
Abstract
The TGF-β ligand superfamily contains at least 40 members, many of which are produced and act within the mammalian testis to facilitate formation of sperm. Their progressive expression at key stages and in specific cell types determines the fertility of adult males, influencing testis development and controlling germline differentiation. BMPs are essential for the interactive instructions between multiple cell types in the early embryo that drive initial specification of gamete precursors. In the nascent foetal testis, several ligands including Nodal, TGF-βs, Activins and BMPs, serve as key masculinizing switches by regulating male germline pluripotency, somatic and germline proliferation, and testicular vascularization and architecture. In postnatal life, local production of these factors determine adult testis size by regulating Sertoli cell multiplication and differentiation, in addition to specifying germline differentiation and multiplication. Because TGF-β superfamily signaling is integral to testis formation, it affects processes that underlie testicular pathologies, including testicular cancer, and its potential to contribute to subfertility is beginning to be understood.
Collapse
Affiliation(s)
- Julia C Young
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Shoichi Wakitani
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Laboratory of Veterinary Biochemistry and Molecular Biology, University of Miyazaki, Japan
| | - Kate L Loveland
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
203
|
Lim C, Gandhi S, Biniossek ML, Feng L, Schilling O, Urban S, Chen X. An Aminopeptidase in the Drosophila Testicular Niche Acts in Germline Stem Cell Maintenance and Spermatogonial Dedifferentiation. Cell Rep 2015; 13:315-25. [PMID: 26440886 DOI: 10.1016/j.celrep.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 06/25/2015] [Accepted: 08/31/2015] [Indexed: 12/27/2022] Open
Abstract
Extrinsic cues from the niche are known to regulate adult stem cell self-renewal versus differentiation. Here, we report that an aminopeptidase Slamdance (Sda) acts in the Drosophila testicular niche to maintain germline stem cells (GSCs) and regulate progenitor germ cell dedifferentiation. Mutations in sda lead to dramatic testicular niche deterioration and stem cell loss. Recombinant Sda has specific aminopeptidase activity in vitro, and the in vivo function of Sda requires an intact aminopeptidase domain. Sda is required for accumulation of mature DE-cadherin, and overexpression of DE-cadherin rescues most sda mutant phenotypes, suggesting that DE-cadherin is an important target of Sda. Finally, Sda is both necessary and sufficient to promote dedifferentiation during aging and recovery from genetically manipulated depletion of GSCs. Together, our results suggest that a niche factor promotes both stem cell maintenance and progenitor cell dedifferentiation.
Collapse
Affiliation(s)
- Cindy Lim
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shiv Gandhi
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104 Freiburg, Germany
| | - Lijuan Feng
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research and BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Siniša Urban
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
204
|
Takahashi M, Masuda H, Yoshida M, Ito Y, Nanjo H, Sugiyama T, Maeda D, Goto A. Clusters of proliferating endothelial cells and smooth muscle cells in rabbit carotid arteries. Pathol Int 2015; 65:585-94. [PMID: 26345370 DOI: 10.1111/pin.12348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/04/2015] [Indexed: 11/28/2022]
Abstract
Schwarz and Benditt found clustering of replicating cells in aortic endothelium in 1976 and discussed how homeostasis of the arterial wall is maintained through this nonrandom distribution of replicating cells. However, it is still unclear how cells of vascular walls turnover. In order to address this issue, we evaluated distribution of the cells in mitotic cycle, labeled by Ki67-immunostaining, in serial histological sections of twelve carotid arteries of six adult male Japanese rabbits. As a result, a total of 1713 Ki67-positive endothelial cells (ECs) and 1247 Ki67-positive smooth muscle cells (SMCs) were identified. The Ki67-positivity rate in ECs and SMCs were about 0.048% and 0.0027%, respectively. Many of the Ki67-positive cells clustered in two (EC, 37%; SMC, 33%), three to four (EC, 8%; SMC, 28%), and five to eight cells (EC, 5%; SMC, 10%). Clusters having more than eight cells were not found. Thus, it can be speculated that the cell division of proliferating ECs and SMCs occur four times at most. These novel findings offer great insights for better understanding of the mechanism that underlies cell number regulation of the blood vessel.
Collapse
Affiliation(s)
- Masato Takahashi
- Diagnostic Pathology, Akita Kosei Medical Center, Akita City, Japan
| | - Hirotake Masuda
- Department of Clinical Laboratory, Ogachi Central General Hospital, Yuzawa City, Japan
| | - Makoto Yoshida
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita City, Japan
| | - Yukinobu Ito
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita City, Japan
| | - Hiroshi Nanjo
- Department of Surgical Pathology, Akita University Hospital, Akita City, Japan
| | - Tatsuo Sugiyama
- Diagnostic Pathology, Akita Karyology and Histology Research Center, Yurihonjo City, Akita, Japan
| | - Daichi Maeda
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita City, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita City, Japan
| |
Collapse
|
205
|
Dorn DC, Dorn A. Stem cell autotomy and niche interaction in different systems. World J Stem Cells 2015; 7:922-944. [PMID: 26240680 PMCID: PMC4515436 DOI: 10.4252/wjsc.v7.i6.922] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
The best known cases of cell autotomy are the formation of erythrocytes and thrombocytes (platelets) from progenitor cells that reside in special niches. Recently, autotomy of stem cells and its enigmatic interaction with the niche has been reported from male germline stem cells (GSCs) in several insect species. First described in lepidopterans, the silkmoth, followed by the gipsy moth and consecutively in hemipterans, foremost the milkweed bug. In both, moths and the milkweed bug, GSCs form finger-like projections toward the niche, the apical cells (homologs of the hub cells in Drosophila). Whereas in the milkweed bug the projection terminals remain at the surface of the niche cells, in the gipsy moth they protrude deeply into the singular niche cell. In both cases, the projections undergo serial retrograde fragmentation with progressing signs of autophagy. In the gipsy moth, the autotomized vesicles are phagocytized and digested by the niche cell. In the milkweed bug the autotomized vesicles accumulate at the niche surface and disintegrate. Autotomy and sprouting of new projections appears to occur continuously. The significance of the GSC-niche interactions, however, remains enigmatic. Our concept on the signaling relationship between stem cell-niche in general and GSC and niche (hub cells and cyst stem cells) in particular has been greatly shaped by Drosophila melanogaster. In comparing the interactions of GSCs with their niche in Drosophila with those in species exhibiting GSC autotomy it is obvious that additional or alternative modes of stem cell-niche communication exist. Thus, essential signaling pathways, including niche-stem cell adhesion (E-cadherin) and the direction of asymmetrical GSC division - as they were found in Drosophila - can hardly be translated into the systems where GSC autotomy was reported. It is shown here that the serial autotomy of GSC projections shows remarkable similarities with Wallerian axonal destruction, developmental axon pruning and dying-back degeneration in neurodegenerative diseases. Especially the hypothesis of an existing evolutionary conserved “autodestruction program” in axons that might also be active in GSC projections appears attractive. Investigations on the underlying signaling pathways have to be carried out. There are two other well known cases of programmed cell autotomy: the enucleation of erythroblasts in the process of erythrocyte maturation and the segregation of thousands of thrombocytes (platelets) from one megakaryocyte. Both progenitor cell types - erythroblasts and megakaryocytes - are associated with a niche in the bone marrow, erythroblasts with a macrophage, which they surround, and the megakaryocytes with the endothelial cells of sinusoids and their extracellular matrix. Although the regulatory mechanisms may be specific in each case, there is one aspect that connects all described processes of programmed cell autotomy and neuronal autodestruction: apoptotic pathways play always a prominent role. Studies on the role of male GSC autotomy in stem cell-niche interaction have just started but are expected to reveal hitherto unknown ways of signal exchange. Spermatogenesis in mammals advance our understanding of insect spermatogenesis. Mammal and insect spermatogenesis share some broad principles, but a comparison of the signaling pathways is difficult. We have intimate knowledge from Drosophila, but of almost no other insect, and we have only limited knowledge from mammals. The discovery of stem cell autotomy as part of the interaction with the niche promises new general insights into the complicated stem cell-niche interdependence.
Collapse
|
206
|
Light and electron microscopic studies of the intestinal epithelium in Notoplana humilis (Platyhelminthes, Polycladida): the contribution of mesodermal/gastrodermal neoblasts to intestinal regeneration. Cell Tissue Res 2015; 362:529-40. [DOI: 10.1007/s00441-015-2221-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/12/2015] [Indexed: 02/06/2023]
|
207
|
A Niche for GFRα1-Positive Spermatogonia in the Terminal Segments of the Seminiferous Tubules in Hamster Testes. Stem Cells 2015; 33:2811-24. [DOI: 10.1002/stem.2065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/20/2015] [Indexed: 01/15/2023]
|
208
|
Akbarinejad V, Tajik P, Movahedin M, Youssefi R, Shafiei S, Mazaheri Z. Effect of extracellular matrix on bovine spermatogonial stem cells and gene expression of niche factors regulating their development in vitro. Anim Reprod Sci 2015; 157:95-102. [DOI: 10.1016/j.anireprosci.2015.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 12/22/2022]
|
209
|
Hyakutake K, Kawasaki T, Zhang J, Kubota H, Abe SI, Takamune K. Asymmetrical allocation of JAK1 mRNA during spermatogonial stem cell division in Xenopus laevis. Dev Growth Differ 2015; 57:389-399. [PMID: 25988600 DOI: 10.1111/dgd.12219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/30/2015] [Accepted: 04/15/2015] [Indexed: 01/15/2023]
Abstract
During Xenopus spermatogenesis, each primary spermatogonium (PG), the largest single cell in the testis, undergoes mitotic divisions with a concomitant decrease in size to produce smaller differentiating spermatogonia. The spermatogonial stem cells (SSCs) occur in this PG population. Taking advantage of identifiable and isolatable properties of Xenopus SSCs, we examined JAK1 gene expression during the spermatogenesis because there have been reports on the important role of JAK/STAT pathway in regulating the status of SSCs in Drosophila and mouse. Surprisingly, in situ hybridization revealed the presence of JAK1 mRNA in the differentiating spermatogonia and primary spermatocytes as well as some PGs. Inhibition of JAK1 activity in the testis caused a decrease in percentage of BrdU-incorporating spermatogonia, suggesting that JAK1 was at least involved in regulation of spermatogonial proliferation. Interestingly, single cell reverse transcription-polymerase chain reaction (RT-PCR) clearly showed two different types of SSCs: SSCs with JAK1 mRNA (JAK1+ ) or without JAK1 mRNA (JAK1- ). Since JAK1- SSC level was increased by induction of testis regeneration, self-renewing SSCs were thought to be JAK1- . In addition, we found barrel-shaped PGs, in which JAK1 mRNA was localized asymmetrically to one half of the cell. The stainability with propidium iodide and morphology of two nuclei in the barrel-shaped PG were similar to those of PG nucleus. Based on the above observations, we propose the hypothesis that JAK1+ SSC is preparing for production of PGs destined to differentiate (destined PGs) and the accumulated JAK1 mRNA in the SSC is distributed exclusively into the destined PGs through mitotic division.
Collapse
Affiliation(s)
- Keiichiro Hyakutake
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Toshihiro Kawasaki
- Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, 411-8540, Japan
| | - JiDong Zhang
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Hiroshi Kubota
- Department of New Frontier Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Sin-Ichi Abe
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Kazufumi Takamune
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| |
Collapse
|
210
|
Abstract
Since its heyday in the 1980s and 90s, the field of developmental biology has gone into decline; in part because it has been eclipsed by the rise of genomics and stem cell biology, and in part because it has seemed less pertinent in an era with so much focus on translational impact. In this essay, I argue that recent progress in genome-wide analyses and stem cell research, coupled with technological advances in imaging and genome editing, have created the conditions for the renaissance of a new wave of developmental biology with greater translational relevance. A leader in the field explores why developmental biology has suffered from a relative decline in impact in recent years and presents a personal view as to why the time is ripe for its re-emergence as a key area of research.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and The Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
211
|
Wabik A, Jones PH. Switching roles: the functional plasticity of adult tissue stem cells. EMBO J 2015; 34:1164-79. [PMID: 25812989 PMCID: PMC4426478 DOI: 10.15252/embj.201490386] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/09/2015] [Accepted: 02/11/2015] [Indexed: 12/15/2022] Open
Abstract
Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro-environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles.
Collapse
Affiliation(s)
- Agnieszka Wabik
- MRC Cancer Unit, University of Cambridge Hutchison/MRC Research Centre Cambridge Biomedical Campus, Cambridge, UK
| | - Philip H Jones
- MRC Cancer Unit, University of Cambridge Hutchison/MRC Research Centre Cambridge Biomedical Campus, Cambridge, UK Wellcome Trust Sanger Institute, Hinxton, UK
| |
Collapse
|
212
|
Ikami K, Tokue M, Sugimoto R, Noda C, Kobayashi S, Hara K, Yoshida S. Hierarchical differentiation competence in response to retinoic acid ensures stem cell maintenance during mouse spermatogenesis. Development 2015; 142:1582-92. [PMID: 25858458 PMCID: PMC4419276 DOI: 10.1242/dev.118695] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 03/16/2015] [Indexed: 01/12/2023]
Abstract
Stem cells ensure tissue homeostasis through the production of differentiating and self-renewing progeny. In some tissues, this is achieved by the function of a definitive stem cell niche. However, the mechanisms that operate in mouse spermatogenesis are unknown because undifferentiated spermatogonia (Aundiff) are motile and intermingle with differentiating cells in an 'open' niche environment of seminiferous tubules. Aundiff include glial cell line-derived neurotrophic factor receptor α1 (GFRα1)(+) and neurogenin 3 (NGN3)(+) subpopulations, both of which retain the ability to self-renew. However, whereas GFRα1(+) cells comprise the homeostatic stem cell pool, NGN3(+) cells show a higher probability to differentiate into KIT(+) spermatogonia by as yet unknown mechanisms. In the present study, by combining fate analysis of pulse-labeled cells and a model of vitamin A deficiency, we demonstrate that retinoic acid (RA), which may periodically increase in concentration in the tubules during the seminiferous epithelial cycle, induced only NGN3(+) cells to differentiate. Comparison of gene expression revealed that retinoic acid receptor γ (Rarg) was predominantly expressed in NGN3(+) cells, but not in GFRα1(+) cells, whereas the expression levels of many other RA response-related genes were similar in the two populations. Ectopic expression of RARγ was sufficient to induce GFRα1(+) cells to directly differentiate to KIT(+) cells without transiting the NGN3(+) state. Therefore, RARγ plays key roles in the differentiation competence of NGN3(+) cells. We propose a novel mechanism of stem cell fate selection in an open niche environment whereby undifferentiated cells show heterogeneous competence to differentiate in response to ubiquitously distributed differentiation-inducing signals.
Collapse
Affiliation(s)
- Kanako Ikami
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Moe Tokue
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Ryo Sugimoto
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Chiyo Noda
- Division of Developmental Genetics, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Satoru Kobayashi
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan Division of Developmental Genetics, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Kenshiro Hara
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| |
Collapse
|
213
|
Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis. Proc Natl Acad Sci U S A 2015; 112:E2347-56. [PMID: 25902548 DOI: 10.1073/pnas.1505683112] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mammalian spermatogenesis--the transformation of stem cells into millions of haploid spermatozoa--is elaborately organized in time and space. We explored the underlying regulatory mechanisms by genetically and chemically perturbing spermatogenesis in vivo, focusing on spermatogonial differentiation, which begins a series of amplifying divisions, and meiotic initiation, which ends these divisions. We first found that, in mice lacking the retinoic acid (RA) target gene Stimulated by retinoic acid gene 8 (Stra8), undifferentiated spermatogonia accumulated in unusually high numbers as early as 10 d after birth, whereas differentiating spermatogonia were depleted. We thus conclude that Stra8, previously shown to be required for meiotic initiation, also promotes (but is not strictly required for) spermatogonial differentiation. Second, we found that injection of RA into wild-type adult males induced, independently, precocious spermatogonial differentiation and precocious meiotic initiation; thus, RA acts instructively on germ cells at both transitions. Third, the competencies of germ cells to undergo spermatogonial differentiation or meiotic initiation in response to RA were found to be distinct, periodic, and limited to particular seminiferous stages. Competencies for both transitions begin while RA levels are low, so that the germ cells respond as soon as RA levels rise. Together with other findings, our results demonstrate that periodic RA-STRA8 signaling intersects with periodic germ-cell competencies to regulate two distinct, cell-type-specific responses: spermatogonial differentiation and meiotic initiation. This simple mechanism, with one signal both starting and ending the amplifying divisions, contributes to the prodigious output of spermatozoa and to the elaborate organization of spermatogenesis.
Collapse
|
214
|
Abstract
Recent lineage-tracing studies based on inducible genetic labelling have emphasized a crucial role for stochasticity in the maintenance and regeneration of cycling adult tissues. These studies have revealed that stem cells are frequently lost through differentiation and that this is compensated for by the duplication of neighbours, leading to the consolidation of clonal diversity. Through the combination of long-term lineage-tracing assays with short-term in vivo live imaging, the cellular basis of this stochastic stem cell loss and replacement has begun to be resolved. With a focus on mammalian spermatogenesis, intestinal maintenance and the hair cycle, we review the role of dynamic heterogeneity in the regulation of adult stem cell populations.
Collapse
Affiliation(s)
- Teresa Krieger
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - Benjamin D Simons
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| |
Collapse
|
215
|
Affiliation(s)
- F Kent Hamra
- Department of Pharmacology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
216
|
Raju P, Nyamsuren G, Elkenani M, Kata A, Tsagaan E, Engel W, Adham IM. Pelota mediates gonocyte maturation and maintenance of spermatogonial stem cells in mouse testes. Reproduction 2015; 149:213-21. [DOI: 10.1530/rep-14-0391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pelota (Pelo) is an evolutionarily conserved gene, and its deficiency in Drosophila affects both male and female fertility. In mice, genetic ablation of Pelo leads to embryonic lethality at the early implantation stage as a result of the impaired development of extra-embryonic endoderm (ExEn). To define the consequences of Pelo deletion on male germ cells, we temporally induced deletion of the gene at both embryonic and postnatal stages. Deletion of Pelo in adult mice resulted in a complete loss of whole-germ cell lineages after 45 days of deletion. The absence of newly emerging spermatogenic cycles in mutants confirmed that spermatogonial stem cells (SSCs) were unable to maintain spermatogenesis in the absence of PELO protein. However, germ cells beyond the undifferentiated SSC stage were capable of completing spermatogenesis and producing spermatozoa, even in the absence of PELO. Following the deletion of Pelo during embryonic development, we found that although PELO is dispensable for maintaining gonocytes, it is necessary for the transition of gonocytes to SSCs. Immunohistological and protein analyses revealed the attenuation of FOXO1 transcriptional activity, which induces the expression of many SSC self-renewal genes. The decreased transcriptional activity of FOXO1 in mutant testes was due to enhanced activity of the PI3K/AKT signaling pathway, which led to phosphorylation and cytoplasmic sequestration of FOXO1. These results suggest that PELO negatively regulates the PI3K/AKT pathway and that the enhanced activity of PI3K/AKT and subsequent FOXO1 inhibition are responsible for the impaired development of SSCs in mutant testes.
Collapse
|
217
|
Manku G, Culty M. Mammalian gonocyte and spermatogonia differentiation: recent advances and remaining challenges. Reproduction 2015; 149:R139-57. [DOI: 10.1530/rep-14-0431] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The production of spermatozoa relies on a pool of spermatogonial stem cells (SSCs), formed in infancy from the differentiation of their precursor cells, the gonocytes. Throughout adult life, SSCs will either self-renew or differentiate, in order to maintain a stem cell reserve while providing cells to the spermatogenic cycle. By contrast, gonocytes represent a transient and finite phase of development leading to the formation of SSCs or spermatogonia of the first spermatogenic wave. Gonocyte development involves phases of quiescence, cell proliferation, migration, and differentiation. Spermatogonia, on the other hand, remain located at the basement membrane of the seminiferous tubules throughout their successive phases of proliferation and differentiation. Apoptosis is an integral part of both developmental phases, allowing for the removal of defective cells and the maintenance of proper germ–Sertoli cell ratios. While gonocytes and spermatogonia mitosis are regulated by distinct factors, they both undergo differentiation in response to retinoic acid. In contrast to postpubertal spermatogenesis, the early steps of germ cell development have only recently attracted attention, unveiling genes and pathways regulating SSC self-renewal and proliferation. Yet, less is known on the mechanisms regulating differentiation. The processes leading from gonocytes to spermatogonia have been seldom investigated. While the formation of abnormal gonocytes or SSCs could lead to infertility, defective gonocyte differentiation might be at the origin of testicular germ cell tumors. Thus, it is important to better understand the molecular mechanisms regulating these processes. This review summarizes and compares the present knowledge on the mechanisms regulating mammalian gonocyte and spermatogonial differentiation.
Collapse
|
218
|
Hobbs RM, La HM, Mäkelä JA, Kobayashi T, Noda T, Pandolfi PP. Distinct germline progenitor subsets defined through Tsc2-mTORC1 signaling. EMBO Rep 2015; 16:467-80. [PMID: 25700280 DOI: 10.15252/embr.201439379] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/15/2015] [Indexed: 12/21/2022] Open
Abstract
Adult tissue maintenance is often dependent on resident stem cells; however, the phenotypic and functional heterogeneity existing within this self-renewing population is poorly understood. Here, we define distinct subsets of undifferentiated spermatogonia (spermatogonial progenitor cells; SPCs) by differential response to hyperactivation of mTORC1, a key growth-promoting pathway. We find that conditional deletion of the mTORC1 inhibitor Tsc2 throughout the SPC pool using Vasa-Cre promotes differentiation at the expense of self-renewal and leads to germline degeneration. Surprisingly, Tsc2 ablation within a subset of SPCs using Stra8-Cre did not compromise SPC function. SPC activity also appeared unaffected by Amh-Cre-mediated Tsc2 deletion within somatic cells of the niche. Importantly, we find that differentiation-prone SPCs have elevated mTORC1 activity when compared to SPCs with high self-renewal potential. Moreover, SPCs insensitive to Tsc2 deletion are preferentially associated with mTORC1-active committed progenitor fractions. We therefore delineate SPC subsets based on differential mTORC1 activity and correlated sensitivity to Tsc2 deletion. We propose that mTORC1 is a key regulator of SPC fate and defines phenotypically distinct SPC subpopulations with varying propensities for self-renewal and differentiation.
Collapse
Affiliation(s)
- Robin M Hobbs
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA Australian Regenerative Medicine Institute and Department of Anatomy and Developmental Biology Monash University, Clayton, VIC, Australia
| | - Hue M La
- Australian Regenerative Medicine Institute and Department of Anatomy and Developmental Biology Monash University, Clayton, VIC, Australia
| | - Juho-Antti Mäkelä
- Australian Regenerative Medicine Institute and Department of Anatomy and Developmental Biology Monash University, Clayton, VIC, Australia
| | - Toshiyuki Kobayashi
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tetsuo Noda
- Department of Cell Biology, JFCR Cancer Institute, Tokyo, Japan
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| |
Collapse
|
219
|
Chakraborty P, Buaas FW, Sharma M, Snyder E, de Rooij DG, Braun RE. LIN28A marks the spermatogonial progenitor population and regulates its cyclic expansion. Stem Cells 2015; 32:860-73. [PMID: 24715688 DOI: 10.1002/stem.1584] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022]
Abstract
One of the hallmarks of highly proliferative adult tissues is the presence of a stem cell population that produces progenitor cells bound for differentiation. Progenitor cells undergo multiple transit amplifying (TA) divisions before initiating terminal differentiation. In the adult male germline, daughter cells arising from the spermatogonial stem cells undergo multiple rounds of TA divisions to produce undifferentiated clones of interconnected 2, 4, 8, and 16 cells, collectively termed A(undifferentiated) (A(undiff)) spermatogonia, before entering a stereotypic differentiation cascade. Although the number of TA divisions markedly affects the tissue output both at steady state and during regeneration, mechanisms regulating the expansion of the TA cell population are poorly understood in mammals. Here, we show that mice with a conditional deletion of Lin28a in the adult male germline, display impaired clonal expansion of the progenitor TA A(undiff) spermatogonia. The in vivo proliferative activity of Au(ndiff) spermatogonial cells as indicated by BrdU incorporation during S-phase was reduced in the absence of LIN28A. Thus, contrary to the role of LIN28A as a key determinant of cell fate signals in multiple stem cell lineages, in the adult male germline it functions as an intrinsic regulator of proliferation in the population of A(undiff) TA spermatogonia. In addition, neither precocious differentiation nor diminished capacity for self-renewal potential as assessed by transplantation was observed, suggesting that neither LIN28A itself nor the pool of Aal progenitor cells substantially contribute to the functional stem cell compartment.
Collapse
|
220
|
Kitamura J, Uemura M, Kurozumi M, Sonobe M, Manabe T, Hiai H, Date H, Kinoshita K. Chronic lung injury by constitutive expression of activation-induced cytidine deaminase leads to focal mucous cell metaplasia and cancer. PLoS One 2015; 10:e0117986. [PMID: 25659078 PMCID: PMC4320068 DOI: 10.1371/journal.pone.0117986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 01/04/2015] [Indexed: 11/19/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is an enzyme required for antibody diversification, and it causes DNA mutations and strand breaks. Constitutive AID expression in mice invariably caused lung lesions morphologically similar to human atypical adenomatous hyperplasia (AAH), which can be a precursor of bronchioloalveolar carcinoma. Similar to AAH, mouse AAH-like lesion (MALL) exhibited signs of alveolar differentiation, judging from the expression of alveolar type II (AT2) cell marker surfactant protein C (SP-C). However, electron microscopy indicated that MALL, which possessed certain features of a mucous cell, is distinct from an AAH or AT2 cell. Although MALL developed in all individuals within 30 weeks after birth, lung tumors occurred in only 10%; this suggests that the vast majority of MALLs fail to grow into visible tumors. MALL expressed several recently described markers of lung alveolar regeneration such as p63, keratin 5, keratin 14, leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5), and Lgr6. Increased cell death was observed in the lungs of AID transgenic mice compared with wild-type mice. Based on these observations, we speculate that MALL is a regenerating tissue compensating for cellular loss caused by AID cytotoxicity. AID expression in such regenerating tissue should predispose cells to malignant transformation via its mutagenic activity.
Collapse
Affiliation(s)
- Jiro Kitamura
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
- Department of Thoracic Surgery, Nagahama City Hospital, Nagahama, Japan
| | | | | | - Makoto Sonobe
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | - Hiroshi Hiai
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
221
|
Hermann BP, Mutoji KN, Velte EK, Ko D, Oatley JM, Geyer CB, McCarrey JR. Transcriptional and translational heterogeneity among neonatal mouse spermatogonia. Biol Reprod 2015; 92:54. [PMID: 25568304 DOI: 10.1095/biolreprod.114.125757] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are a subset of undifferentiated spermatogonia responsible for ongoing spermatogenesis in mammalian testes. Spermatogonial stem cells arise from morphologically homogeneous prospermatogonia, but growing evidence suggests that only a subset of prospermatogonia develops into the foundational SSC pool. This predicts that subtypes of undifferentiated spermatogonia with discrete mRNA and protein signatures should be distinguishable in neonatal testes. We used single-cell quantitative RT-PCR to examine mRNA levels of 172 genes in individual spermatogonia from 6-day postnatal (P6) mouse testes. Cells enriched from P6 testes using the StaPut or THY1(+) magnetic cell sorting methods exhibited considerable heterogeneity in the abundance of specific germ cell and stem cell mRNAs, segregating into one somatic and three distinct spermatogonial clusters. However, P6 Id4-eGFP(+) transgenic spermatogonia, which are known to be enriched for SSCs, were more homogeneous in their mRNA levels, exhibiting uniform levels for the majority of genes examined (122 of 172). Interestingly, these cells displayed nonuniform (50 of 172) expression of a smaller cohort of these genes, suggesting there is substantial heterogeneity even within the Id4-eGFP(+) population. Further, although immunofluorescence staining largely demonstrated conformity between mRNA and protein levels, some proteins were observed in patterns that were disparate from those detected for the corresponding mRNAs in Id4-eGFP(+) spermatogonia (e.g., Kit, Sohlh2, Stra8), suggesting additional heterogeneity is introduced at the posttranscriptional level. Taken together, these data demonstrate the existence of multiple spermatogonial subtypes in P6 mouse testes and raise the intriguing possibility that these subpopulations may correlate with the development of functionally distinct spermatogenic cell types.
Collapse
Affiliation(s)
- Brian P Hermann
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas
| | - Kazadi N Mutoji
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas
| | - Ellen K Velte
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Daijin Ko
- Department of Management Science and Statistics, The University of Texas at San Antonio, San Antonio, Texas
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Christopher B Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - John R McCarrey
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
222
|
Xie W, Sun J, Wu J. Construction and analysis of a protein-protein interaction network related to self-renewal of mouse spermatogonial stem cells. MOLECULAR BIOSYSTEMS 2015; 11:835-43. [PMID: 25566695 DOI: 10.1039/c4mb00579a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogonial stem cells (SSCs) are responsible for sustained spermatogenesis throughout the reproductive life of the male. Extensive studies of SSCs have identified dozens of genes that play important roles in sustaining or controlling the pool of SSCs in the mammalian testis. However, there is still limited knowledge of whether or how these key genes interact with each other during SSC self-renewal. Here, we constructed a protein-protein interaction (PPI) network for SSC self-renewal based on interactions between 23 genes essential for SSC self-renewal, which were obtained from a text mining system, and the interacting partners of the 23 key genes, which were differentially expressed in SSCs. The SSC self-renewal PPI network consisted of 246 nodes connected by 844 edges. Topological analyses of the PPI network were conducted to identify genes essential for maintenance of SSC self-renewal. The subnetwork of the SSC self-renewal network suggested that the 23 key genes involved in SSC self-renewal were connected together through other 94 genes. Clustering of the whole network and subnetwork of SSC self-renewal revealed several densely connected regions, implying significant molecular interaction modules essential for SSC self-renewal. Notably, we found the 23 genes to be responsible for SSC self-renewal by forming a continuous PPI network centered on Pou5f1. Our study indicates that it is feasible to explore important proteins and regulatory pathways in biological activities by combining a PPI database with the high-throughput data of gene expression profiles.
Collapse
Affiliation(s)
- Wenhai Xie
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | |
Collapse
|
223
|
Wang S, Wang X, Wu Y, Han C. IGF-1R signaling is essential for the proliferation of cultured mouse spermatogonial stem cells by promoting the G2/M progression of the cell cycle. Stem Cells Dev 2014; 24:471-83. [PMID: 25356638 DOI: 10.1089/scd.2014.0376] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Culture of mouse spermatogonial stem cells (mSSCs) contributes to understanding the mechanisms of mammalian spermatogenesis. Several key growth factors such as GDNF and FGF2 have been known to be essential for the proliferation of cultured mSSCs. However, additional factors regulating SSC proliferation remain to be identified. In this study, we report that IGF-1R signaling is required for the proliferation of cultured mSSCs by promoting the G2/M progression of the cell cycle. IGF-1 and its receptor IGF-1R are expressed in cultured mSSCs as well as in isolated Sertoli cells and interstitial cells. Blockage of IGF-1R signaling either by knockdown of IGF-1R or by the IGF-1R-specific inhibitor picropodophyllin (PPP) significantly reduced the proliferation of mSSCs, increased their apoptosis, and impaired their stem cell activity in an insulin-independent manner. PPP treatment of mSSCs blocked the G2/M progression. In contrast, both GDNF withdrawal and FGF2 signaling blockade decreased the entry of mSSCs into their S phases. Consistently, IGF-1 promoted the G2/M progression of thymidine-treated mSSCs, which were arrested at G1/S boundary synchronously; while GDNF and/or FGF2 stimulated their entry into the S phase. Moreover, IGF-1 activated the phosphorylation of AKT but not that of ERK1/2 in mSSCs. These results indicate that IGF-1R signaling stimulates the proliferation of mSSCs using a distinct mechanism from those by GDNF and FGF2, and will contribute to the establishment of a chemically defined culture system.
Collapse
Affiliation(s)
- Si Wang
- 1 State Key Laboratory of Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
224
|
Barr J, Gordon D, Schedl P, Deshpande G. Xenotransplantation exposes the etiology of azoospermia factor (AZF) induced male sterility. Bioessays 2014; 37:278-83. [PMID: 25524208 DOI: 10.1002/bies.201400134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ramathal et al. have employed an elegant xenotransplantation technique to study the fate of human induced pluripotent stem cells (hiPSCs) from fertile males and from males carrying Y chromosome deletions of the azoospermia factor (AZF) region. When placed in a mouse testis niche, hiPSCs from fertile males differentiate into germ cell-like cells (GCLCs). Highlighting the crucial role of cell autonomous factors in male sterility, hiPSCs derived from azoospermic males prove to be less successful under similar circumstances. Their studies argue that the agametic "Sertoli cell only" phenotype of two of the AZF deletions likely arises from a defect in the maintenance of germline stem cells (GSCs) rather than from a defect in their specification. These observations underscore the importance of the dialogue between the somatic niche and its inhabitant stem cells, and open up interesting questions concerning the functioning of the somatic niche and how it communicates to the GSCs.
Collapse
Affiliation(s)
- Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, NJ
| | | | | | | |
Collapse
|
225
|
Hara K, Nakagawa T, Enomoto H, Suzuki M, Yamamoto M, Simons BD, Yoshida S. Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states. Cell Stem Cell 2014; 14:658-72. [PMID: 24792118 PMCID: PMC4010676 DOI: 10.1016/j.stem.2014.01.019] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/20/2013] [Accepted: 01/29/2014] [Indexed: 12/02/2022]
Abstract
The identity and behavior of mouse spermatogenic stem cells have been a long-standing focus of interest. In the prevailing “As model,” stem cell function is restricted to singly isolated (As) spermatogonia. By examining single-cell dynamics of GFRα1+ stem cells in vivo, we evaluate an alternative hypothesis that, through fragmentation, syncytial spermatogonia also contribute to stem cell function in homeostasis. We use live imaging and pulse labeling to quantitatively determine the fates of individual GFRα1+ cells and find that, during steady-state spermatogenesis, the entire GFRα1+ population comprises a single stem cell pool, in which cells continually interconvert between As and syncytial states. A minimal biophysical model, relying only on the rates of incomplete cell division and syncytial fragmentation, precisely predicts the stochastic fates of GFRα1+ cells during steady state and postinsult regeneration. Thus, our results define an alternative and dynamic model for spermatogenic stem cell function in the mouse testis. GFRα1+ spermatogonia comprise a single stem cell pool during homeostasis GFRα1+ spermatogonia interconvert between singly isolated and syncytial states Rates of incomplete division and syncytial fragmentation govern stem cell dynamics Movement of GFRα1+ spermatogonia is essential for stem cell population asymmetry
Collapse
Affiliation(s)
- Kenshiro Hara
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Toshinori Nakagawa
- Department of Immunobiology and Hematology, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hideki Enomoto
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Mikiko Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, 980-8575, Japan
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
| |
Collapse
|
226
|
Ray D, Pitts PB, Hogarth CA, Whitmore LS, Griswold MD, Ye P. Computer simulations of the mouse spermatogenic cycle. Biol Open 2014; 4:1-12. [PMID: 25505149 PMCID: PMC4295161 DOI: 10.1242/bio.20149068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The spermatogenic cycle describes the periodic development of germ cells in the testicular tissue. The temporal-spatial dynamics of the cycle highlight the unique, complex, and interdependent interaction between germ and somatic cells, and are the key to continual sperm production. Although understanding the spermatogenic cycle has important clinical relevance for male fertility and contraception, there are a number of experimental obstacles. For example, the lengthy process cannot be visualized through dynamic imaging, and the precise action of germ cells that leads to the emergence of testicular morphology remains uncharacterized. Here, we report an agent-based model that simulates the mouse spermatogenic cycle on a cross-section of the seminiferous tubule over a time scale of hours to years, while considering feedback regulation, mitotic and meiotic division, differentiation, apoptosis, and movement. The computer model is able to elaborate the germ cell dynamics in a time-lapse movie format, allowing us to trace individual cells as they change state and location. More importantly, the model provides mechanistic understanding of the fundamentals of male fertility, namely how testicular morphology and sperm production are achieved. By manipulating cellular behaviors either individually or collectively in silico, the model predicts causal events for the altered arrangement of germ cells upon genetic or environmental perturbations. This in silico platform can serve as an interactive tool to perform long-term simulation and to identify optimal approaches for infertility treatment and contraceptive development.
Collapse
Affiliation(s)
- Debjit Ray
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164, USA Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| | - Philip B Pitts
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164, USA School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164, USA
| | - Cathryn A Hogarth
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164, USA
| | - Leanne S Whitmore
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164, USA
| | - Michael D Griswold
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164, USA
| | - Ping Ye
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164, USA
| |
Collapse
|
227
|
Sahin Z, Szczepny A, McLaughlin EA, Meistrich ML, Zhou W, Ustunel I, Loveland KL. Dynamic Hedgehog signalling pathway activity in germline stem cells. Andrology 2014; 2:267-74. [PMID: 24574096 DOI: 10.1111/j.2047-2927.2014.00187.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 12/09/2013] [Accepted: 01/06/2014] [Indexed: 01/04/2023]
Abstract
Although the contribution of Hedgehog (Hh) signalling to stem cell development and oncogenesis is well recognised, its importance for spermatogonial stem cells (SSCs) has not been established. Here we interrogate adult rat SSCs using an established model in which only undifferentiated spermatogonial cells remain in the testis at 15 weeks following irradiation, and spermatogonial differentiation is induced within 4 weeks by gonadotrophin-releasing hormone antagonist (GnRH-ant) administration. Synthesis of Hh pathway components in untreated adult rat testes was compared with that in irradiated testes prior to and after GnRH-ant exposure using in situ hybridization. In adult testes with complete spermatogenesis, the Desert Hedgehog ligand transcript, Dhh, was detected in Sertoli cells, some spermatogonia and in spermatocytes by in situ hybridization. Spermatogenic cells were identified as sites of Hh signalling through detection of transcripts encoding the Hh receptor, Ptc2 transcripts and proteins for the key downstream target of Hh signalling, Gli1 and the Hh transcriptional activator, Gli2. Remarkably, the undifferentiated spermatogonia present in irradiated adult rat testes contained Dhh in addition to Ptc2, Gli1 and Gli2, revealing the potential for an autocrine Hh signalling loop to sustain undifferentiated spermatogonial cells. These transcripts became undetectable by in situ hybridization following GnRH-ant induction of spermatogonial differentiation, however, detection of Gli1 protein in spermatogonia in all groups indicates that Hh signalling is sustained. This is the first evidence of active Hh signalling in mammalian male germline stem cells, as has been documented for some cancer stem cells.
Collapse
Affiliation(s)
- Z Sahin
- Department of Histology and Embryology, Faculty of Medicine, Near East University, Nicosia, Mersin-10, Turkey; Monash Institute of Medical Research, Monash University, Melbourne, VIC, Australia
| | | | | | | | | | | | | |
Collapse
|
228
|
Zhang T, Murphy MW, Gearhart MD, Bardwell VJ, Zarkower D. The mammalian Doublesex homolog DMRT6 coordinates the transition between mitotic and meiotic developmental programs during spermatogenesis. Development 2014; 141:3662-71. [PMID: 25249458 DOI: 10.1242/dev.113936] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In mammals, a key transition in spermatogenesis is the exit from spermatogonial differentiation and mitotic proliferation and the entry into spermatocyte differentiation and meiosis. Although several genes that regulate this transition have been identified, how it is controlled and coordinated remains poorly understood. Here, we examine the role in male gametogenesis of the Doublesex-related gene Dmrt6 (Dmrtb1) in mice and find that Dmrt6 plays a crucial role in directing germ cells through the mitotic-to-meiotic germ cell transition. DMRT6 protein is expressed in late mitotic spermatogonia. In mice of the C57BL/6J strain, a null mutation in Dmrt6 disrupts spermatogonial differentiation, causing inappropriate expression of spermatogonial differentiation factors, including SOHLH1, SOHLH2 and DMRT1 as well as the meiotic initiation factor STRA8, and causing most late spermatogonia to undergo apoptosis. In mice of the 129Sv background, most Dmrt6 mutant germ cells can complete spermatogonial differentiation and enter meiosis, but they show defects in meiotic chromosome pairing, establishment of the XY body and processing of recombination foci, and they mainly arrest in mid-pachynema. mRNA profiling of Dmrt6 mutant testes together with DMRT6 chromatin immunoprecipitation sequencing suggest that DMRT6 represses genes involved in spermatogonial differentiation and activates genes required for meiotic prophase. Our results indicate that Dmrt6 plays a key role in coordinating the transition in gametogenic programs from spermatogonial differentiation and mitosis to spermatocyte development and meiosis.
Collapse
Affiliation(s)
- Teng Zhang
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark W Murphy
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Micah D Gearhart
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vivian J Bardwell
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - David Zarkower
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| |
Collapse
|
229
|
Etzrodt M, Endele M, Schroeder T. Quantitative single-cell approaches to stem cell research. Cell Stem Cell 2014; 15:546-58. [PMID: 25517464 DOI: 10.1016/j.stem.2014.10.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding the molecular control of cell fates is central to stem cell research. Such insight requires quantification of molecular and cellular behavior at the single-cell level. Recent advances now permit high-throughput molecular readouts from single cells as well as continuous, noninvasive observation of cell behavior over time. Here, we review current state-of-the-art approaches used to query stem cell fate at the single-cell level, including advances in lineage tracing, time-lapse imaging, and molecular profiling. We also offer our perspective on the advantages and drawbacks of available approaches, key technical limitations, considerations for data interpretation, and future innovation.
Collapse
Affiliation(s)
- Martin Etzrodt
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Max Endele
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
230
|
Hasegawa K, Saga Y. FGF8-FGFR1 signaling acts as a niche factor for maintaining undifferentiated spermatogonia in the mouse. Biol Reprod 2014; 91:145. [PMID: 25359900 DOI: 10.1095/biolreprod.114.121012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In mammalian testes, spermatogonial stem cells (SSCs) maintain spermatogenesis over a long period of time by undergoing self-renewal and differentiation. SSCs are among the most primitive of spermatogenic cells (undifferentiated spermatogonia), and their activities are strictly regulated by extrinsic niche factors. However, the factors that constitute a testicular niche remain poorly understood. In this study, we demonstrate that fibroblast growth factor (FGF) signaling maintains undifferentiated spermatogonia through activating ERK1/2 signaling in vivo. Undifferentiated spermatogonia comprise GFRA1(+) and NANOS3(+) subpopulations, which are likely to undergo self-renewal and enter the differentiation pathway, respectively. In the testis, Fgfr1 was expressed in the entire population of undifferentiated spermatogonia, and deleting FGFR1 in spermatogenic cells partially inactivated ERK1/2 and resulted in reduced numbers of both GFRA1(+) and NANOS3(+) cells. In addition, Fgf8 was expressed in spermatogenic cells, and loss- and gain-of-function models of FGF8 demonstrated that FGF8 positively regulated the numbers of undifferentiated spermatogonia through FGFR1, particularly among NANOS3(+) cells. Finally we show a possible involvement of FGF signaling in the reversion from NANOS3(+) into GFRA1(+) undifferentiated spermatogonia. Taken together, our data suggest that FGF signaling is an important component of the testicular niche and has a unique function for maintaining undifferentiated spermatogonia.
Collapse
Affiliation(s)
- Kazuteru Hasegawa
- Division of Mammalian Development, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yumiko Saga
- Division of Mammalian Development, National Institute of Genetics, Mishima, Shizuoka, Japan Department of Genetics, Sokendai, Mishima, Shizuoka, Japan
| |
Collapse
|
231
|
Skowron K, Tomsia M, Czekaj P. An experimental approach to the generation of human embryonic stem cells equivalents. Mol Biotechnol 2014; 56:12-37. [PMID: 24146427 DOI: 10.1007/s12033-013-9702-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently, particular attention has been paid to the human embryonic stem cells (hESC) in the context of their potential application in regenerative medicine; however, ethical concerns prevent their clinical application. Induction of pluripotency in somatic cells seems to be a good alternative for hESC recruitment regarding its potential use in tissue regeneration, disease modeling, and drug screening. Since Yamanaka's team in 2006 restored pluripotent state of somatic cells for the first time, a significant progress has been made in the area of induced pluripotent stem cells (iPSC) generation. Here, we review the current state of knowledge in the issue of techniques applied to establish iPSC. Somatic cell nuclear transfer, cell fusion, cell extracts reprogramming, and techniques of direct reprogramming are described. Retroviral and lentiviral transduction are depicted as ways of cell reprogramming with the use of integrating vectors. Contrary to them, adenoviruses, plasmids, single multiprotein expression vectors, and PiggyBac transposition systems are examples of non-integrative vectors used in iPSC generation protocols. Furthermore, reprogramming with the delivery of specific proteins, miRNA or small chemical compounds are presented. Finally, the changes occurring during the reprogramming process are described. It is concluded that subject to some limitations iPSC could become equivalents for hESC in regenerative medicine.
Collapse
Affiliation(s)
- Katarzyna Skowron
- Students Scientific Society, Medical University of Silesia, Katowice, Poland
| | | | | |
Collapse
|
232
|
Hunter D, Anand-Ivell R, Danner S, Ivell R. Models of in vitro spermatogenesis. SPERMATOGENESIS 2014; 2:32-43. [PMID: 22553488 PMCID: PMC3341244 DOI: 10.4161/spmg.19383] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Understanding the mechanisms that lead to the differentiation of male germ cells from their spermatogonial stem cells through meiosis to give rise to mature haploid spermatozoa has been a major quest for many decades. Unlike most other cell types this differentiation process is more or less completely dependent upon the cells being located within the strongly structured niche provided by mature Sertoli cells within an intact seminiferous epithelium. While much new information is currently being obtained through the application and description of relevant gene mutations, there is still a considerable need for in vitro models with which to explore the mechanisms involved. Not only are systems of in vitro spermatogenesis important for understanding the basic science, they have marked pragmatic value in offering ex vivo systems for the artificial maturation of immature germ cells from male infertility patients, as well as providing opportunities for the transgenic manipulation of male germ cells. In this review, we have summarized literature relating to simplistic culturing of germ cells, co-cultures of germ cells with other cell types, especially with Sertoli cells, cultures of seminiferous tubule fragments, and briefly mention the opportunities of xenografting larger testicular pieces. The majority of methods are successful in allowing the differentiation of small steps in the progress of spermatogonia to spermatozoa; few tolerate the chromosomal reduction division through meiosis, and even fewer seem able to complete the complex morphogenesis which results in freely swimming spermatozoa. However, recent progress with complex culture environments, such as 3-d matrices, suggest that possibly success is now not too far away.
Collapse
|
233
|
Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 2014; 346:1248012. [PMID: 25278615 DOI: 10.1126/science.1248012] [Citation(s) in RCA: 1012] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified, which constrains them to act as short-range cellular signals. The locality of Wnt signaling dictates that stem cells exiting the Wnt signaling domain differentiate, spatially delimiting the niche in certain tissues. In some instances, stem cells may act as or generate their own niche, enabling the self-organization of patterned tissues. In this Review, we discuss the various ways by which Wnt operates in stem cell control and, in doing so, identify an integral program for tissue renewal and regeneration.
Collapse
Affiliation(s)
- Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht and CancerGenomics.nl, 3584CT Utrecht, Netherlands
| | - Kyle M Loh
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Roel Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
234
|
Lacerda SMDSN, Costa GMJ, de França LR. Biology and identity of fish spermatogonial stem cell. Gen Comp Endocrinol 2014; 207:56-65. [PMID: 24967950 DOI: 10.1016/j.ygcen.2014.06.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 12/29/2022]
Abstract
Although present at relatively low number in the testis, spermatogonial stem cells (SSCs) are crucial for the establishment and maintenance of spermatogenesis in eukaryotes and, until recently, those cells were investigated in fish using morphological criteria. The isolation and characterization of these cells in fish have been so far limited by the lack of specific molecular markers, hampering the high SSCs biotechnological potential for aquaculture. However, some highly conserved vertebrate molecular markers, such as Gfra1 and Pou5f1/Oct4, are now available representing important candidates for studies evaluating the regulation of SSCs in fish and even functional investigations using germ cells transplantation. A technique already used to demonstrate that, different from mammals, fish germ stem cells (spermatogonia and oogonia) present high sexual plasticity that is determined by the somatic microenvironment. As relatively well established in mammals, and demonstrated in zebrafish and dogfish, this somatic environment is very important for the preferential location and regulation of SSCs. Importantly, a long-term in vitro culture system for SSCs has been now established for some fish species. Therefore, besides the aforementioned possibilities, such culture system would allow the development of strategies to in vitro investigate key regulatory and functional aspects of germline stem cells (ex: self-renewal and/or differentiation) or to amplify SSCs of rare, endangered, or commercially valuable fish species, representing an important tool for transgenesis and the development of new biotechnologies in fish production.
Collapse
Affiliation(s)
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luiz Renato de França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
235
|
Bellaïche J, Goupil AS, Sambroni E, Lareyre JJ, Le Gac F. Gdnf-Gfra1 Pathway Is Expressed in a Spermatogenetic-Dependent Manner and Is Regulated by Fsh in a Fish Testis1. Biol Reprod 2014; 91:94. [DOI: 10.1095/biolreprod.114.119834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
236
|
Hasegawa K, Namekawa SH, Saga Y. MEK/ERK signaling directly and indirectly contributes to the cyclical self-renewal of spermatogonial stem cells. Stem Cells 2014; 31:2517-27. [PMID: 23897718 DOI: 10.1002/stem.1486] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/31/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022]
Abstract
Coordination of stem cell fate is regulated by extrinsic niche signals and stem cell intrinsic factors. In mammalian testes, spermatogonial stem cells maintain constant production of abundant spermatozoa by alternating between self-renewal and differentiation at regular intervals according to a periodical program known as the seminiferous epithelial cycle. Although retinoic acid (RA) signaling has been suggested to direct the cyclical differentiation of spermatogonial stem cells, it remains largely unclear how their cycle-dependent self-renewal/proliferation is regulated. Here, we show that MEK/ERK signaling contributes to the cyclical activity of spermatogonial stem cells. We found that ERK1/2 is periodically activated in Sertoli cells during the stem cell self-renewal/proliferation phase, and that MEK/ERK signaling is required for the stage-related expression of the critical niche factor GDNF. In addition, ERK1/2 is activated in GFRα1-positive spermatogonial stem cells under the control of GDNF and prevent them from being differentiated. These results suggest that MEK/ERK signaling directly and indirectly maintains spermatogonial stem cells by mediating a signal that promotes their periodical self-renewal/proliferation. Conversely, RA signaling directly and indirectly induces differentiation of spermatogonial stem cells. We propose that temporally regulated activations of RA signaling and a signal regulating MEK/ERK antagonistically coordinates the cycle-related activity of spermatogonial stem cells.
Collapse
Affiliation(s)
- Kazuteru Hasegawa
- Division of Mammalian Development, National Institute of Genetics; Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
237
|
Aloisio GM, Nakada Y, Saatcioglu HD, Peña CG, Baker MD, Tarnawa ED, Mukherjee J, Manjunath H, Bugde A, Sengupta AL, Amatruda JF, Cuevas I, Hamra FK, Castrillon DH. PAX7 expression defines germline stem cells in the adult testis. J Clin Invest 2014; 124:3929-44. [PMID: 25133429 PMCID: PMC4153705 DOI: 10.1172/jci75943] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/01/2014] [Indexed: 12/22/2022] Open
Abstract
Spermatogenesis is a complex, multistep process that maintains male fertility and is sustained by rare germline stem cells. Spermatogenic progression begins with spermatogonia, populations of which express distinct markers. The identity of the spermatogonial stem cell population in the undisturbed testis is controversial due to a lack of reliable and specific markers. Here we identified the transcription factor PAX7 as a specific marker of a rare subpopulation of A(single) spermatogonia in mice. PAX7+ cells were present in the testis at birth. Compared with the adult testis, PAX7+ cells constituted a much higher percentage of neonatal germ cells. Lineage tracing in healthy adult mice revealed that PAX7+ spermatogonia self-maintained and produced expanding clones that gave rise to mature spermatozoa. Interestingly, in mice subjected to chemotherapy and radiotherapy, both of which damage the vast majority of germ cells and can result in sterility, PAX7+ spermatogonia selectively survived, and their subsequent expansion contributed to the recovery of spermatogenesis. Finally, PAX7+ spermatogonia were present in the testes of a diverse set of mammals. Our data indicate that the PAX7+ subset of A(single) spermatogonia functions as robust testis stem cells that maintain fertility in normal spermatogenesis in healthy mice and mediate recovery after severe germline injury, such as occurs after cancer therapy.
Collapse
Affiliation(s)
- Gina M. Aloisio
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Yuji Nakada
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hatice D. Saatcioglu
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher G. Peña
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Michael D. Baker
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Edward D. Tarnawa
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jishnu Mukherjee
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hema Manjunath
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Abhijit Bugde
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anita L. Sengupta
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - James F. Amatruda
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ileana Cuevas
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - F. Kent Hamra
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Diego H. Castrillon
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
238
|
Parker N, Falk H, Singh D, Fidaleo A, Smith B, Lopez MS, Shokat KM, Wright WW. Responses to glial cell line-derived neurotrophic factor change in mice as spermatogonial stem cells form progenitor spermatogonia which replicate and give rise to more differentiated progeny. Biol Reprod 2014; 91:92. [PMID: 25165119 DOI: 10.1095/biolreprod.114.119099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis. These cells are classically defined as a subset of morphologically defined A single (As) spermatogonia, which can produce more SSCs or they can give rise to nonstem As cells that, upon replication, generate A paired (Apr) and then A aligned (Aal) spermatogonia. These latter two cell types, along with the nonstem As cells, function as transit-amplifying progenitor cells. It is known that glial cell line-derived neurotrophic factor (GDNF) is essential for maintaining all of these cells, but it is unknown if or how the responses of these cells change as they progress down the pathway to differentiated type A1 spermatogonia. We address this issue by using a chemical-genetic approach to inhibit GDNF signaling in vivo and an in vitro approach to increase GDNF stimulation. We show that inhibition for 2 days suppresses replication of As, Apr, and Aal spermatogonia to an equal extent, whereas stimulation by GDNF preferentially increases replication of As and Apr spermatogonia. We also test if inhibiting GDNF signaling causes As, Apr, and Aal spermatogonia to express Kit, an essential step in their differentiation into type A1 spermatogonia. Inhibition for 3 or 7 days produces a progressive increase in the percentages of As, Apr, and Aal undergoing differentiation, with the largest increase observed in Aal spermatogonia. Finally, we demonstrate that numbers of SSCs decrease more slowly than numbers of progenitor spermatogonia when GDNF signaling is inhibited. Taken together, these data suggest that there are significant changes in the responses to GDNF as SSCs give rise to progenitor spermatogonia, which replicate and gradually differentiate into type A1 spermatogonia.
Collapse
Affiliation(s)
- Nicole Parker
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Hayley Falk
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Dolly Singh
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Anthony Fidaleo
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Benjamin Smith
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Michael S Lopez
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California
| | - William W Wright
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
239
|
Abstract
Asingle cells in undifferentiated spermatogonia are considered to be the most primitive forms of germ stem cells (GSCs). Although GFRα1 is thought to be a marker of Asingle cells, we found that Bmi1(High) is more specific than GFRα1 for Asingle cells. Bmi1(High) expression in Asingle cells is correlated with seminiferous stages, and its expression was followed by the proliferative stage of Asingle GSCs. In contrast, GFRα1 expression was seminiferous stage-independent. Fate analyses of EdU-positive Bmi1(High)-positive cell-derived Asingle cells revealed that these cells self-renewed or generated transient amplifying Apaired cells. Bmi1(High)-positive cells were resistant to irradiation-induced injury, after which they regenerated. Elimination of Bmi1(High)-positive cells from seminiferous tubules resulted in the appearance of tubules with seminiferous stage mismatches. Thus, in this study, we found that Bmi1(High) is a seminiferous stage-dependent marker for long-term GSCs and that Bmi1(High)-positive cells play important roles in maintaining GSCs and in regenerating spermatogenic progenitors after injury.
Collapse
|
240
|
Gautier A, Bosseboeuf A, Auvray P, Sourdaine P. Maintenance of potential spermatogonial stem cells in vitro by GDNF treatment in a chondrichthyan model (Scyliorhinus canicula L.). Biol Reprod 2014; 91:91. [PMID: 25143357 DOI: 10.1095/biolreprod.113.116020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Previous work in dogfish, Scyliorhinus canicula, has identified the testicular germinative area as the spermatogonial stem cell niche. In the present study, an in vitro co-culture system of spermatogonia and somatic cells from the germinative area was developed. Long-term maintenance of spermatogonia has been successful, and addition of GDNF has promoted the development of clones of spermatogonia expressing stem cell characteristics such as alkaline phosphatase activity and has allowed maintenance of self-renewal in spermatogonia for at least 5 mo under culture conditions, notably by decreasing cell apoptosis. Furthermore, clones of spermatogonia expressed the receptor of GDNF, GFRalpha1, which is consistent with the effect of GDNF on cells despite the lack of identification of a GDNF sequence in the dogfish's transcriptome. However, a sequence homologous to artemin has been identified, and in silico analysis supports the hypothesis that artemin could replace GDNF in the germinative area in dogfish. This study, as the first report on long-term in vitro maintenance of spermatogonia in a chondrichthyan species, suggests that the GFRalpha1 signaling function in self-renewal of spermatogonial stem cells is probably conserved in gnathostomes.
Collapse
Affiliation(s)
- Aude Gautier
- Normandie University, Caen, France University of Caen Basse-Normandie, BOREA, Caen, France Centre National de la Recherche Scientifique, UMR 7208, Caen, France
| | - Adrien Bosseboeuf
- Normandie University, Caen, France University of Caen Basse-Normandie, BOREA, Caen, France Centre National de la Recherche Scientifique, UMR 7208, Caen, France Kelia, Group Cellis Pharma, Parc Technopolitain Atalante Saint Malo, Saint Malo, France
| | - Pierrick Auvray
- Kelia, Group Cellis Pharma, Parc Technopolitain Atalante Saint Malo, Saint Malo, France
| | - Pascal Sourdaine
- Normandie University, Caen, France University of Caen Basse-Normandie, BOREA, Caen, France Centre National de la Recherche Scientifique, UMR 7208, Caen, France
| |
Collapse
|
241
|
Chan F, Oatley MJ, Kaucher AV, Yang QE, Bieberich CJ, Shashikant CS, Oatley JM. Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev 2014; 28:1351-62. [PMID: 24939937 PMCID: PMC4066404 DOI: 10.1101/gad.240465.114] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chan et al. generated transgenic mice in which spermatogonial stem cells expressed an Id4-Gfp transgene. Id4-Gfp+ cells exist primarily as a subset of the type Asingle pool and eventually comprise ∼2% of the undifferentiated spermatogonial population in adulthood. RNA sequencing analysis revealed genes whose expression is unique for the Id4-Gfp+/stem cell and Id4-Gfp−/progenitor fractions. These findings provide evidence that stem cells exist as a rare subset of the Asingle pool and reveal transcriptome features distinguishing stem cell and progenitor states within the mammalian male germline. The maintenance of cycling cell lineages relies on undifferentiated subpopulations consisting of stem and progenitor pools. Features that delineate these cell types are undefined for many lineages, including spermatogenesis, which is supported by an undifferentiated spermatogonial population. Here, we generated a transgenic mouse line in which spermatogonial stem cells are marked by expression of an inhibitor of differentiation 4 (Id4)-green fluorescent protein (Gfp) transgene. We found that Id4-Gfp+ cells exist primarily as a subset of the type Asingle pool, and their frequency is greatest in neonatal development and then decreases in proportion during establishment of the spermatogenic lineage, eventually comprising ∼2% of the undifferentiated spermatogonial population in adulthood. RNA sequencing analysis revealed that expression of 11 and 25 genes is unique for the Id4-Gfp+/stem cell and Id4-Gfp−/progenitor fractions, respectively. Collectively, these findings provide the first definitive evidence that stem cells exist as a rare subset of the Asingle pool and reveal transcriptome features distinguishing stem cell and progenitor states within the mammalian male germline.
Collapse
Affiliation(s)
- Frieda Chan
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | - Melissa J Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | - Amy V Kaucher
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | - Qi-En Yang
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, Maryland 21250, USA
| | - Cooduvalli S Shashikant
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jon M Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
242
|
Faucon PC, Pardee K, Kumar RM, Li H, Loh YH, Wang X. Gene networks of fully connected triads with complete auto-activation enable multistability and stepwise stochastic transitions. PLoS One 2014; 9:e102873. [PMID: 25057990 PMCID: PMC4109943 DOI: 10.1371/journal.pone.0102873] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/24/2014] [Indexed: 02/04/2023] Open
Abstract
Fully-connected triads (FCTs), such as the Oct4-Sox2-Nanog triad, have been implicated as recurring transcriptional motifs embedded within the regulatory networks that specify and maintain cellular states. To explore the possible connections between FCT topologies and cell fate determinations, we employed computational network screening to search all possible FCT topologies for multistability, a dynamic property that allows the rise of alternate regulatory states from the same transcriptional network. The search yielded a hierarchy of FCTs with various potentials for multistability, including several topologies capable of reaching eight distinct stable states. Our analyses suggested that complete auto-activation is an effective indicator for multistability, and, when gene expression noise was incorporated into the model, the networks were able to transit multiple states spontaneously. Different levels of stochasticity were found to either induce or disrupt random state transitioning with some transitions requiring layovers at one or more intermediate states. Using this framework we simulated a simplified model of induced pluripotency by including constitutive overexpression terms. The corresponding FCT showed random state transitioning from a terminal state to the pluripotent state, with the temporal distribution of this transition matching published experimental data. This work establishes a potential theoretical framework for understanding cell fate determinations by connecting conserved regulatory modules with network dynamics. Our results could also be employed experimentally, using established developmental transcription factors as seeds, to locate cell lineage specification networks by using auto-activation as a cipher.
Collapse
Affiliation(s)
- Philippe C. Faucon
- School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Keith Pardee
- Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Center for BioDynamics and Center for Advanced Biotechnology, Boston University, Boston, Massachusetts, United States of America
| | - Roshan M. Kumar
- Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Center for BioDynamics and Center for Advanced Biotechnology, Boston University, Boston, Massachusetts, United States of America
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Laboratory, A*STAR Institute of Molecular and Cell Biology, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
243
|
He Z, Jiang J, Kokkinaki M, Tang L, Zeng W, Gallicano I, Dobrinski I, Dym M. MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1. Stem Cells 2014; 31:2205-17. [PMID: 23836497 DOI: 10.1002/stem.1474] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 12/19/2022]
Abstract
Studies on spermatogonial stem cells (SSCs) are of unusual significance because they are the unique stem cells that transmit genetic information to subsequent generations and they can acquire pluripotency to become embryonic stem-like cells that have therapeutic applications in human diseases. MicroRNAs (miRNAs) have recently emerged as critical endogenous regulators in mammalian cells. However, the function and mechanisms of individual miRNAs in regulating SSC fate remain unknown. Here, we report for the first time that miRNA-20 and miRNA-106a are preferentially expressed in mouse SSCs. Functional assays in vitro and in vivo using miRNA mimics and inhibitors reveal that miRNA-20 and miRNA-106a are essential for renewal of SSCs. We further demonstrate that these two miRNAs promote renewal at the post-transcriptional level via targeting STAT3 and Ccnd1 and that knockdown of STAT3, Fos, and Ccnd1 results in renewal of SSCs. This study thus provides novel insights into molecular mechanisms regulating renewal and differentiation of SSCs and may have important implications for regulating male reproduction.
Collapse
Affiliation(s)
- Zuping He
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, USA; Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Sachs C, Robinson BD, Andres Martin L, Webster T, Gilbert M, Lo HY, Rafii S, Ng CK, Seandel M. Evaluation of candidate spermatogonial markers ID4 and GPR125 in testes of adult human cadaveric organ donors. Andrology 2014; 2:607-14. [PMID: 24902969 DOI: 10.1111/j.2047-2927.2014.00226.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 03/13/2014] [Accepted: 04/09/2014] [Indexed: 11/29/2022]
Abstract
The optimal markers for human spermatogonial stem cells (SSCs) are not known. Among the genes recently linked to SSCs in mice and other animals are the basic helix-loop-helix transcription factor ID4 and the orphan G-protein-coupled receptor GPR125. While ID4 and GPR125 are considered putative markers for SSCs, they have not been evaluated for coexpression in human tissue. Furthermore, neither the size nor the character of the human spermatogonial populations that express ID4 and GPR125, respectively, are known. A major barrier to addressing these questions is the availability of healthy adult testis tissue from donors with no known reproductive health problems. To overcome this obstacle, we have employed healthy testicular tissue from a novel set of organ donors (n = 16; aged 17-68 years) who were undergoing post-mortem clinical organ procurement. Using immunolabelling, we found that ID4 and GPR125 are expressed on partially overlapping spermatogonial populations and are more broadly expressed in the normal adult human testis. In addition, we found that expression of ID4 remained stable during ageing. These findings suggest that ID4 and GPR125 could be efficacious for identifying previously unrecognized human spermatogonial subpopulations in conjunction with other putative human stem cell markers, both in younger and older donors.
Collapse
Affiliation(s)
- C Sachs
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Liao HF, Chen WSC, Chen YH, Kao TH, Tseng YT, Lee CY, Chiu YC, Lee PL, Lin QJ, Ching YH, Hata K, Cheng WTK, Tsai MH, Sasaki H, Ho HN, Wu SC, Huang YH, Yen P, Lin SP. DNMT3L promotes quiescence in postnatal spermatogonial progenitor cells. Development 2014; 141:2402-13. [PMID: 24850856 DOI: 10.1242/dev.105130] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ability of adult stem cells to reside in a quiescent state is crucial for preventing premature exhaustion of the stem cell pool. However, the intrinsic epigenetic factors that regulate spermatogonial stem cell quiescence are largely unknown. Here, we investigate in mice how DNA methyltransferase 3-like (DNMT3L), an epigenetic regulator important for interpreting chromatin context and facilitating de novo DNA methylation, sustains the long-term male germ cell pool. We demonstrated that stem cell-enriched THY1(+) spermatogonial stem/progenitor cells (SPCs) constituted a DNMT3L-expressing population in postnatal testes. DNMT3L influenced the stability of promyelocytic leukemia zinc finger (PLZF), potentially by downregulating Cdk2/CDK2 expression, which sequestered CDK2-mediated PLZF degradation. Reduced PLZF in Dnmt3l KO THY1(+) cells released its antagonist, Sal-like protein 4A (SALL4A), which is associated with overactivated ERK and AKT signaling cascades. Furthermore, DNMT3L was required to suppress the cell proliferation-promoting factor SALL4B in THY1(+) SPCs and to prevent premature stem cell exhaustion. Our results indicate that DNMT3L is required to delicately balance the cycling and quiescence of SPCs. These findings reveal a novel role for DNMT3L in modulating postnatal SPC cell fate decisions.
Collapse
Affiliation(s)
- Hung-Fu Liao
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wendy S C Chen
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Chen
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Tzu-Hao Kao
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Yen-Tzu Tseng
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Chien-Yueh Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Chiao Chiu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Lung Lee
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Qian-Jia Lin
- Department of Biochemistry, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Okura, Setagaya, Tokyo 157-8535, Japan
| | - Winston T K Cheng
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 40704, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Hiroyuki Sasaki
- Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei 100, Taiwan
| | - Shinn-Chih Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Pauline Yen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan Center for Systems Biology, National Taiwan University, Taipei 106, Taiwan Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
246
|
Hai Y, Hou J, Liu Y, Liu Y, Yang H, Li Z, He Z. The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Semin Cell Dev Biol 2014; 29:66-75. [DOI: 10.1016/j.semcdb.2014.04.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 01/15/2023]
|
247
|
Voog J, Sandall SL, Hime GR, Resende LPF, Loza-Coll M, Aslanian A, Yates JR, Hunter T, Fuller MT, Jones DL. Escargot restricts niche cell to stem cell conversion in the Drosophila testis. Cell Rep 2014; 7:722-34. [PMID: 24794442 DOI: 10.1016/j.celrep.2014.04.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 02/05/2013] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
Stem cells reside within specialized microenvironments, or niches, that control many aspects of stem cell behavior. Somatic hub cells in the Drosophila testis regulate the behavior of cyst stem cells (CySCs) and germline stem cells (GSCs) and are a primary component of the testis stem cell niche. The shutoff (shof) mutation, characterized by premature loss of GSCs and CySCs, was mapped to a locus encoding the evolutionarily conserved transcription factor Escargot (Esg). Hub cells depleted of Esg acquire CySC characteristics and differentiate as cyst cells, resulting in complete loss of hub cells and eventually CySCs and GSCs, similar to the shof mutant phenotype. We identified Esg-interacting proteins and demonstrate an interaction between Esg and the corepressor C-terminal binding protein (CtBP), which was also required for maintenance of hub cell fate. Our results indicate that niche cells can acquire stem cell properties upon removal of a single transcription factor in vivo.
Collapse
Affiliation(s)
- Justin Voog
- Department of Biomedical Sciences, University of California, San Diego, La Jolla, CA, 92037, USA; Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sharsti L Sandall
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gary R Hime
- ARC Centre of Excellence in Biotechnology and Development, University of Melbourne, VIC 3010, Australia; Department of Anatomy and Neuroscience, University of Melbourne, VIC 3010, Australia
| | - Luís Pedro F Resende
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; GABBA, Instituto Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Mariano Loza-Coll
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Aaron Aslanian
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - D Leanne Jones
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
248
|
Harman JG, Richburg JH. Cisplatin-induced alterations in the functional spermatogonial stem cell pool and niche in C57/BL/6J mice following a clinically relevant multi-cycle exposure. Toxicol Lett 2014; 227:99-112. [PMID: 24704392 DOI: 10.1016/j.toxlet.2014.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 01/15/2023]
Abstract
A typical clinical cis-diamminedichloroplatinum(II) (cisplatin) dosing regimen consists of repeated treatment cycles followed by a recovery period. While effective, this dosing structure results in a prolonged, often permanent, infertility in men. Spermatogonial stem cells (SSCs) are theoretically capable of repopulating the seminiferous tubules after exposure has ceased. We propose that an altered spermatogonial environment during recovery from the initial treatment cycle drives an increase in SSC mitotic cell activity, rendering the SSC pool increasingly susceptible to cisplatin-induced injury from subsequent cycles. To test this hypothesis, the undifferentiated spermatogonia population and niche of the adult mouse (C57/BL/6J) were examined during the recovery periods of a clinically-relevant cisplatin exposure paradigm. Histological examination revealed a disorganization of spermatogenesis correlating with the number of exposure cycles. Quantification of terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick end labeling (TUNEL) staining indicated an increase in apoptotic frequency following exposure. Immunohistochemical examination of Foxo1 and incorporated BrdU showed an increase in the undifferentiated spermatogonial population and mitotic activity in the recovery period in mice exposed to one cycle, but not two cycles of cisplatin. Immunohistochemical investigation of glial cell line-derived neurotrophic factor (GDNF) revealed an increase in production along the basal Sertoli cell membrane throughout the recovery period in all treatment groups. Taken together, these data establish that the impact of cisplatin exposure on the functional stem cell pool and niche correlates with: (1) the number of dosing cycles; (2) mitotic activity of early germ cells; and (3) alterations in the basal Sertoli cell GDNF expression levels after cisplatin-induced testicular injury.
Collapse
Affiliation(s)
- James G Harman
- Center for Molecular and Cellular Toxicology, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712-1074, United States
| | - John H Richburg
- Center for Molecular and Cellular Toxicology, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712-1074, United States.
| |
Collapse
|
249
|
Morales CR, Hermo L, Robaire B. A Man for All Seasons: Celebrating the Scientific Career of Yves Clermont. Biol Reprod 2014; 90:51. [DOI: 10.1095/biolreprod.113.116822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
250
|
Song HW, Wilkinson MF. Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol 2014; 30:14-26. [PMID: 24560784 DOI: 10.1016/j.semcdb.2014.02.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
Spermatogenesis is a multistep process that generates millions of spermatozoa per day in mammals. A key to this process is the spermatogonial stem cell (SSC), which has the dual property of continually renewing and undergoing differentiation into a spermatogonial progenitor that expands and further differentiates. In this review, we will focus on how these proliferative and early differentiation steps in mammalian male germ cells are controlled by transcription factors. Most of the transcription factors that have so far been identified as promoting SSC self-renewal (BCL6B, BRACHYURY, ETV5, ID4, LHX1, and POU3F1) are upregulated by glial cell line-derived neurotrophic factor (GDNF). Since GDNF is crucial for promoting SSC self-renewal, this suggests that these transcription factors are responsible for coordinating the action of GDNF in SSCs. Other transcription factors that promote SSC self-renewal are expressed independently of GDNF (FOXO1, PLZF, POU5F1, and TAF4B) and thus may act in non-GDNF pathways to promote SSC cell growth or survival. Several transcription factors have been identified that promote spermatogonial differentiation (DMRT1, NGN3, SOHLH1, SOHLH2, SOX3, and STAT3); some of these may influence the decision of an SSC to commit to differentiate while others may promote later spermatogonial differentiation steps. Many of these transcription factors regulate each other and act on common targets, suggesting they integrate to form complex transcriptional networks in self-renewing and differentiating spermatogonia.
Collapse
Affiliation(s)
- Hye-Won Song
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|