201
|
Scharf ME, Cai Y, Sun Y, Sen R, Raychoudhury R, Boucias DG. A meta-analysis testing eusocial co-option theories in termite gut physiology and symbiosis. Commun Integr Biol 2017; 10:e1295187. [PMID: 28428832 PMCID: PMC5390826 DOI: 10.1080/19420889.2017.1295187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 01/17/2023] Open
Abstract
The termite gut accomplishes key physiologic functions that underlie termite symbiosis and sociality. However, potential candidate functions of the host-symbiont holobiome have not yet been explored across seemingly divergent processes such as digestion, immunity, caste differentiation, and xenobiotic tolerance. This study took a meta-analysis approach for concurrently studying host and symbiont gut metatranscriptome responses of the lower termite Reticulitermes flavipes, which has ancestral characteristics and hosts a diverse mix of eukaryotic and bacterial symbionts. Thirteen treatments were compared from 5 categories (dietary, social, hormonal, immunological, and xenobiotic), revealing 3 main insights. First, each of the 5 tested colonies had distinct magnitudes of transcriptome response, likely as a result of unique symbiont profiles, which highlights the uniqueness of individual termite colonies. Second, after normalization to standardize colony response magnitudes, unique treatment-linked metatranscriptome topologies became apparent. Third, despite colony and topology differences, 4 co-opted master genes emerged that were universally responsive across diverse treatments. These master genes encode host functions related to protein translation and symbiont functions related to protein degradation and pore formation in microbial cell walls. Three of the 4 master genes were from co-evolved protist symbionts, highlighting potentially co-evolved roles for gut symbiota in coordinating functional responses of the collective host-symbiont holobiome. Lastly, for host genes identified, these results provide annotations of recent termite genome sequences. By revealing conserved domain genes, as well as apparent roles for gut symbiota in holobiome regulation, this study provides new insights into co-opted eusocial genes and symbiont roles in termite sociobiology.
Collapse
Affiliation(s)
- Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Yunpeng Cai
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Yijun Sun
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Ruchira Sen
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | | | - Drion G Boucias
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
202
|
Barker JL, Bronstein JL, Friesen ML, Jones EI, Reeve HK, Zink AG, Frederickson ME. Synthesizing perspectives on the evolution of cooperation within and between species. Evolution 2017; 71:814-825. [PMID: 28071790 DOI: 10.1111/evo.13174] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
Abstract
Cooperation is widespread both within and between species, but are intraspecific and interspecific cooperation fundamentally similar or qualitatively different phenomena? This review evaluates this question, necessary for a general understanding of the evolution of cooperation. First, we outline three advantages of cooperation relative to noncooperation (acquisition of otherwise inaccessible goods and services, more efficient acquisition of resources, and buffering against variability), and predict when individuals should cooperate with a conspecific versus a heterospecific partner to obtain these advantages. Second, we highlight five axes along which heterospecific and conspecific partners may differ: relatedness and fitness feedbacks, competition and resource use, resource-generation abilities, relative evolutionary rates, and asymmetric strategy sets and outside options. Along all of these axes, certain asymmetries between partners are more common in, but not exclusive to, cooperation between species, especially complementary resource use and production. We conclude that cooperation within and between species share many fundamental qualities, and that differences between the two systems are explained by the various asymmetries between partners. Consideration of the parallels between intra- and interspecific cooperation facilitates application of well-studied topics in one system to the other, such as direct benefits within species and kin-selected cooperation between species, generating promising directions for future research.
Collapse
Affiliation(s)
- Jessica L Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721.,Current Address: Aarhus Institute of Advanced Studies, Aarhus University, 8000, Aarhus C, Denmark
| | - Judith L Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| | - Maren L Friesen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
| | - Emily I Jones
- Department of BioSciences, Rice University, Houston, Texas, 77005
| | - H Kern Reeve
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, 14853
| | - Andrew G Zink
- Department of Biology, San Francisco State University, San Francisco, California, 94132
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
203
|
Trapp J, McAfee A, Foster LJ. Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees. Mol Ecol 2017; 26:718-739. [DOI: 10.1111/mec.13986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Judith Trapp
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| | - Alison McAfee
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
204
|
Toth AL, Rehan SM. Molecular Evolution of Insect Sociality: An Eco-Evo-Devo Perspective. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:419-442. [PMID: 27912247 DOI: 10.1146/annurev-ento-031616-035601] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The evolution of eusociality is a perennial issue in evolutionary biology, and genomic advances have fueled steadily growing interest in the genetic changes underlying social evolution. Along with a recent flurry of research on comparative and evolutionary genomics in different eusocial insect groups (bees, ants, wasps, and termites), several mechanistic explanations have emerged to describe the molecular evolution of eusociality from solitary behavior. These include solitary physiological ground plans, genetic toolkits of deeply conserved genes, evolutionary changes in protein-coding genes, cis regulation, and the structure of gene networks, epigenetics, and novel genes. Despite this proliferation of ideas, there has been little synthesis, even though these ideas are not mutually exclusive and may in fact be complementary. We review available data on molecular evolution of insect sociality and highlight key biotic and abiotic factors influencing social insect genomes. We then suggest both phylogenetic and ecological evolutionary developmental biology (eco-evo-devo) perspectives for a more synthetic view of molecular evolution in insect societies.
Collapse
Affiliation(s)
- Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011;
- Department of Entomology, Iowa State University, Ames, Iowa 50011
| | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire 03824;
| |
Collapse
|
205
|
Jones BM, Kingwell CJ, Wcislo WT, Robinson GE. Caste-biased gene expression in a facultatively eusocial bee suggests a role for genetic accommodation in the evolution of eusociality. Proc Biol Sci 2017; 284:20162228. [PMID: 28053060 PMCID: PMC5247497 DOI: 10.1098/rspb.2016.2228] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
Developmental plasticity may accelerate the evolution of phenotypic novelty through genetic accommodation, but studies of genetic accommodation often lack knowledge of the ancestral state to place selected traits in an evolutionary context. A promising approach for assessing genetic accommodation involves using a comparative framework to ask whether ancestral plasticity is related to the evolution of a particular trait. Bees are an excellent group for such comparisons because caste-based societies (eusociality) have evolved multiple times independently and extant species exhibit different modes of eusociality. We measured brain and abdominal gene expression in a facultatively eusocial bee, Megalopta genalis, and assessed whether plasticity in this species is functionally linked to eusocial traits in other bee lineages. Caste-biased abdominal genes in M. genalis overlapped significantly with caste-biased genes in obligately eusocial bees. Moreover, caste-biased genes in M. genalis overlapped significantly with genes shown to be rapidly evolving in multiple studies of 10 bee species, particularly for genes in the glycolysis pathway and other genes involved in metabolism. These results provide support for the idea that eusociality can evolve via genetic accommodation, with plasticity in facultatively eusocial species like M. genalis providing a substrate for selection during the evolution of caste in obligately eusocial lineages.
Collapse
Affiliation(s)
- Beryl M Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Smithsonian Tropical Research Institute, Panama City 20521-9100, Panama
| | - Callum J Kingwell
- Smithsonian Tropical Research Institute, Panama City 20521-9100, Panama
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Panama City 20521-9100, Panama
| | - Gene E Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
206
|
|
207
|
Worley KC, Richards S, Rogers J. The value of new genome references. Exp Cell Res 2016; 358:433-438. [PMID: 28017728 DOI: 10.1016/j.yexcr.2016.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/22/2016] [Indexed: 12/24/2022]
Abstract
Genomic information has become a ubiquitous and almost essential aspect of biological research. Over the last 10-15 years, the cost of generating sequence data from DNA or RNA samples has dramatically declined and our ability to interpret those data increased just as remarkably. Although it is still possible for biologists to conduct interesting and valuable research on species for which genomic data are not available, the impact of having access to a high quality whole genome reference assembly for a given species is nothing short of transformational. Research on a species for which we have no DNA or RNA sequence data is restricted in fundamental ways. In contrast, even access to an initial draft quality genome (see below for definitions) opens a wide range of opportunities that are simply not available without that reference genome assembly. Although a complete discussion of the impact of genome sequencing and assembly is beyond the scope of this short paper, the goal of this review is to summarize the most common and highest impact contributions that whole genome sequencing and assembly has had on comparative and evolutionary biology.
Collapse
Affiliation(s)
- Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
208
|
|
209
|
Jedlička P, Ernst UR, Votavová A, Hanus R, Valterová I. Gene Expression Dynamics in Major Endocrine Regulatory Pathways along the Transition from Solitary to Social Life in a Bumblebee, Bombus terrestris. Front Physiol 2016; 7:574. [PMID: 27932998 PMCID: PMC5121236 DOI: 10.3389/fphys.2016.00574] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/10/2016] [Indexed: 01/28/2023] Open
Abstract
Understanding the social evolution leading to insect eusociality requires, among other, a detailed insight into endocrine regulatory mechanisms that have been co-opted from solitary ancestors to play new roles in the complex life histories of eusocial species. Bumblebees represent well-suited models of a relatively primitive social organization standing on the mid-way to highly advanced eusociality and their queens undergo both, a solitary and a social phase, separated by winter diapause. In the present paper, we characterize the gene expression levels of major endocrine regulatory pathways across tissues, sexes, and life-stages of the buff-tailed bumblebee, Bombus terrestris, with special emphasis on critical stages of the queen's transition from solitary to social life. We focused on fundamental genes of three pathways: (1) Forkhead box protein O and insulin/insulin-like signaling, (2) Juvenile hormone (JH) signaling, and (3) Adipokinetic hormone signaling. Virgin queens were distinguished by higher expression of forkhead box protein O and downregulated insulin-like peptides and JH signaling, indicated by low expression of methyl farnesoate epoxidase (MFE) and transcription factor Krüppel homolog 1 (Kr-h1). Diapausing queens showed the expected downregulation of JH signaling in terms of low MFE and vitellogenin (Vg) expressions, but an unexpectedly high expression of Kr-h1. By contrast, reproducing queens revealed an upregulation of MFE and Vg together with insulin signaling. Surprisingly, the insulin growth factor 1 (IGF-1) turned out to be a queen-specific hormone. Workers exhibited an expression pattern of MFE and Vg similar to that of reproducing queens. Males were characterized by high Kr-h1 expression and low Vg level. The tissue comparison unveiled an unexpected resemblance between the fat body and hypopharyngeal glands across all investigated genes, sexes, and life stages.
Collapse
Affiliation(s)
- Pavel Jedlička
- Department of Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| | - Ulrich R Ernst
- Department of Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| | | | - Robert Hanus
- Department of Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| | - Irena Valterová
- Research Group of Infochemicals, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| |
Collapse
|
210
|
|
211
|
Niu J, Meeus I, Smagghe G. Differential expression pattern of Vago in bumblebee (Bombus terrestris), induced by virulent and avirulent virus infections. Sci Rep 2016; 6:34200. [PMID: 27680717 PMCID: PMC5040954 DOI: 10.1038/srep34200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/06/2016] [Indexed: 01/20/2023] Open
Abstract
Viruses are one of the main drivers of the decline of domesticated and wild bees but the mechanisms of antiviral immunity in pollinators are poorly understood. Recent work has suggested that next to the small interfering RNA (siRNA) pathway other immune-related pathways play a role in the defense of the bee hosts against viral infection. In addition, Vago plays a role in the cross-talk between the innate immune pathways in Culex mosquito cells. Here we describe the Vago orthologue in bumblebees of Bombus terrestris, and investigated its role upon the infection of two different bee viruses, the virulent Israeli acute paralysis virus (IAPV) and the avirulent slow bee paralysis virus (SBPV). Our results showed that BtVago was downregulated upon the infection of IAPV that killed all bumblebees, but not with SBPV where the workers survived the virus infection. Thus, for the first time, Vago/Vago-like expression appears to be associated with the virulence of virus and may act as a modulator of antiviral immunity.
Collapse
Affiliation(s)
- Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.,Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.,Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
212
|
Jungreis I, Chan CS, Waterhouse RM, Fields G, Lin MF, Kellis M. Evolutionary Dynamics of Abundant Stop Codon Readthrough. Mol Biol Evol 2016; 33:3108-3132. [PMID: 27604222 PMCID: PMC5100048 DOI: 10.1093/molbev/msw189] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Translational stop codon readthrough emerged as a major regulatory mechanism affecting hundreds of genes in animal genomes, based on recent comparative genomics and ribosomal profiling evidence, but its evolutionary properties remain unknown. Here, we leverage comparative genomic evidence across 21 Anopheles mosquitoes to systematically annotate readthrough genes in the malaria vector Anopheles gambiae, and to provide the first study of abundant readthrough evolution, by comparison with 20 Drosophila species. Using improved comparative genomics methods for detecting readthrough, we identify evolutionary signatures of conserved, functional readthrough of 353 stop codons in the malaria vector, Anopheles gambiae, and of 51 additional Drosophila melanogaster stop codons, including several cases of double and triple readthrough and of readthrough of two adjacent stop codons. We find that most differences between the readthrough repertoires of the two species arose from readthrough gain or loss in existing genes, rather than birth of new genes or gene death; that readthrough-associated RNA structures are sometimes gained or lost while readthrough persists; that readthrough is more likely to be lost at TAA and TAG stop codons; and that readthrough is under continued purifying evolutionary selection in mosquito, based on population genetic evidence. We also determine readthrough-associated gene properties that predate readthrough, and identify differences in the characteristic properties of readthrough genes between clades. We estimate more than 600 functional readthrough stop codons in mosquito and 900 in fruit fly, provide evidence of readthrough control of peroxisomal targeting, and refine the phylogenetic extent of abundant readthrough as following divergence from centipede.
Collapse
Affiliation(s)
- Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA .,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Clara S Chan
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA .,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Robert M Waterhouse
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA .,Broad Institute of MIT and Harvard, Cambridge, MA.,Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, Geneva, Switzerland.,Swiss Institute of Bioinformatics, rue Michel-Servet 1, Geneva, Switzerland
| | | | | | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA .,Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
213
|
"If it looks like a duck…" - why humans need to focus on different approaches than insects if we are to become efficiently and effectively ultrasocial. Behav Brain Sci 2016; 39:e94. [PMID: 27561700 DOI: 10.1017/s0140525x15000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The parallels between the agricultural successes of ultrasocial insects and those of humans are interesting and potentially important. There are a number of important caveats, however, including the relative complexities of insect reproduction, their more rigidly determined altricial patterns of social behaviour, the roles of post-reproductive group members, and differences in the known factors involved in ultrasocietal collapse.
Collapse
|
214
|
Thompson GJ, Richards MH. Editorial: Genetic Effects on Social Traits: Empirical Studies from Social Animals. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
215
|
Korb J. Why do social insect queens live so long? Approaches to unravel the sociality-aging puzzle. CURRENT OPINION IN INSECT SCIENCE 2016; 16:104-107. [PMID: 27720043 DOI: 10.1016/j.cois.2016.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/02/2016] [Accepted: 06/07/2016] [Indexed: 05/25/2023]
Abstract
Social insects are characterized by an apparent reshaping of the fecundity/longevity trade-off with sociality. Currently, we have only sketchy information about the potential underlying causes and mechanisms of aging and senescence which in addition are restricted to few model insect organisms (mainly the fruit fly Drosophila melanogaster and the honey bee Apis mellifera). How can we gain a more thorough understanding how sociality shapes senescence and the fecundity/longevity trade-off? By reviewing available literature, I propose a comparative approach that offers the opportunity to gain fundamental insights into uncovering the basis for this life history trade-off and its reshaping with sociality.
Collapse
Affiliation(s)
- Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Germany.
| |
Collapse
|
216
|
Séguret A, Bernadou A, Paxton RJ. Facultative social insects can provide insights into the reversal of the longevity/fecundity trade-off across the eusocial insects. CURRENT OPINION IN INSECT SCIENCE 2016; 16:95-103. [PMID: 27720058 DOI: 10.1016/j.cois.2016.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
In eusocial insects, reversal of the fecundity/longevity trade-off and extreme differences in life histories between castes of the same species garner scientific and public interest. Facultative social species at the threshold of sociality, in which individuals are socially plastic, provide an excellent opportunity to understand the causes and mechanisms underlying this reversal in life history trade-off associated with eusociality. We briefly present the ultimate factors favoring sociality and the association between fecundity and longevity in facultative eusocial insects, including kin selection and disposable soma, as well as proximate mechanisms observed in such species, such as differences in hormone titers and functions. Potential genetic underpinnings of lifespan and fecundity differences between castes are discussed and future research directions are proposed.
Collapse
Affiliation(s)
- Alice Séguret
- Institute for Biology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Abel Bernadou
- Zoology/Evolutionary Biology, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Robert J Paxton
- Institute for Biology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; iDiv, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| |
Collapse
|
217
|
Elsner D, Kremer LP, Arning N, Bornberg-Bauer E. Chapter 6. Comparative genomic approaches to investigate molecular traits specific to social insects. CURRENT OPINION IN INSECT SCIENCE 2016; 16:87-94. [PMID: 27720056 DOI: 10.1016/j.cois.2016.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/01/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
Ageing is a feature of nearly all known organisms and, by its connection to survival, appears to trade off with fecundity. However, in some organisms such as in queens of social insects, this negative relation appears reversed and individuals live long and reproduce much. Since new experimental techniques, transcriptomes and genomes of many social insects have recently become available, a comparison of these data in a phylogenetic framework becomes feasible. This allows the study of general trends, species specific oddities and evolutionary dynamics of the molecular properties and changes which underlie ageing, fecundity and the reversal of this negative association. In the framework of social insect evolution, we review the most important recent insights, computational methods, their applications and data resources which are available.
Collapse
Affiliation(s)
- Daniel Elsner
- Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany.
| | - Lukas Pm Kremer
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University, Hüfferstrasse 1, D-48149 Münster, Germany
| | - Nicolas Arning
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University, Hüfferstrasse 1, D-48149 Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University, Hüfferstrasse 1, D-48149 Münster, Germany
| |
Collapse
|
218
|
Helmkampf M, Mikheyev AS, Kang Y, Fewell J, Gadau J. Gene expression and variation in social aggression by queens of the harvester ant Pogonomyrmex californicus. Mol Ecol 2016; 25:3716-30. [PMID: 27178446 DOI: 10.1111/mec.13700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/14/2016] [Accepted: 05/02/2016] [Indexed: 02/03/2023]
Abstract
A key requirement for social cooperation is the mitigation and/or social regulation of aggression towards other group members. Populations of the harvester ant Pogonomyrmex californicus show the alternate social phenotypes of queens founding nests alone (haplometrosis) or in groups of unrelated yet cooperative individuals (pleometrosis). Pleometrotic queens display an associated reduction in aggression. To understand the proximate drivers behind this variation, we placed foundresses of the two populations into social environments with queens from the same or the alternate population, and measured their behaviour and head gene expression profiles. A proportion of queens from both populations behaved aggressively, but haplometrotic queens were significantly more likely to perform aggressive acts, and conflict escalated more frequently in pairs of haplometrotic queens. Whole-head RNA sequencing revealed variation in gene expression patterns, with the two populations showing moderate differentiation in overall transcriptional profile, suggesting that genetic differences underlie the two founding strategies. The largest detected difference, however, was associated with aggression, regardless of queen founding type. Several modules of coregulated genes, involved in metabolism, immune system and neuronal function, were found to be upregulated in highly aggressive queens. Conversely, nonaggressive queens exhibited a striking pattern of upregulation in chemosensory genes. Our results highlight that the social phenotypes of cooperative vs. solitary nest founding tap into a set of gene regulatory networks that seem to govern aggression level. We also present a number of highly connected hub genes associated with aggression, providing opportunity to further study the genetic underpinnings of social conflict and tolerance.
Collapse
Affiliation(s)
- Martin Helmkampf
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ, 85287, USA
| | - Alexander S Mikheyev
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, 904-0495, Japan
| | - Yun Kang
- College of Letters and Sciences, Arizona State University, 7001 E. Williams Field Road, Mesa, AZ, 85212, USA
| | - Jennifer Fewell
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ, 85287, USA
| | - Jürgen Gadau
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ, 85287, USA
| |
Collapse
|
219
|
|
220
|
Linksvayer TA, Wade MJ. Theoretical Predictions for Sociogenomic Data: The Effects of Kin Selection and Sex-Limited Expression on the Evolution of Social Insect Genomes. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
221
|
|
222
|
Howe J, Schiøtt M, Boomsma JJ. Tachykinin Expression Levels Correlate with Caste-Specific Aggression in Workers of the Leaf-Cutting Ant Acromyrmex echinatior. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
223
|
Rehan SM, Glastad KM, Lawson SP, Hunt BG. The Genome and Methylome of a Subsocial Small Carpenter Bee, Ceratina calcarata. Genome Biol Evol 2016; 8:1401-10. [PMID: 27048475 PMCID: PMC4898796 DOI: 10.1093/gbe/evw079] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 12/14/2022] Open
Abstract
Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality. Despite advances in genomic studies of both solitary and eusocial insects, we still lack genomic resources for early insect societies. To study the genetic basis of social traits requires comparison of genomes from a diversity of organisms ranging from solitary to complex social forms. Here we present the genome of a subsocial bee, Ceratina calcarata This study begins to address the types of genomic changes associated with the earliest origins of simple sociality using the small carpenter bee. Genes associated with lipid transport and DNA recombination have undergone positive selection in C. calcarata relative to other bee lineages. Furthermore, we provide the first methylome of a noneusocial bee. Ceratina calcarata contains the complete enzymatic toolkit for DNA methylation. As in the honey bee and many other holometabolous insects, DNA methylation is targeted to exons. The addition of this genome allows for new lines of research into the genetic and epigenetic precursors to complex social behaviors.
Collapse
Affiliation(s)
- Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham
| | | | - Sarah P Lawson
- Department of Biological Sciences, University of New Hampshire, Durham
| | | |
Collapse
|
224
|
The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity. Nat Commun 2016; 7:11370. [PMID: 27102219 PMCID: PMC4844696 DOI: 10.1038/ncomms11370] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/18/2016] [Indexed: 12/30/2022] Open
Abstract
The transition to multicellularity has occurred numerous times in all domains of life, yet its initial steps are poorly understood. The volvocine green algae are a tractable system for understanding the genetic basis of multicellularity including the initial formation of cooperative cell groups. Here we report the genome sequence of the undifferentiated colonial alga, Gonium pectorale, where group formation evolved by co-option of the retinoblastoma cell cycle regulatory pathway. Significantly, expression of the Gonium retinoblastoma cell cycle regulator in unicellular Chlamydomonas causes it to become colonial. The presence of these changes in undifferentiated Gonium indicates extensive group-level adaptation during the initial step in the evolution of multicellularity. These results emphasize an early and formative step in the evolution of multicellularity, the evolution of cell cycle regulation, one that may shed light on the evolutionary history of other multicellular innovations and evolutionary transitions.
Collapse
|
225
|
Camiletti AL, Thompson GJ. Drosophila As a Genetically Tractable Model for Social Insect Behavior. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
226
|
Klein A, Schultner E, Lowak H, Schrader L, Heinze J, Holman L, Oettler J. Evolution of Social Insect Polyphenism Facilitated by the Sex Differentiation Cascade. PLoS Genet 2016; 12:e1005952. [PMID: 27031240 PMCID: PMC4816456 DOI: 10.1371/journal.pgen.1005952] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/02/2016] [Indexed: 11/18/2022] Open
Abstract
The major transition to eusociality required the evolution of a switch to canalize development into either a reproductive or a helper, the nature of which is currently unknown. Following predictions from the ‘theory of facilitated variation’, we identify sex differentiation pathways as promising candidates because of their pre-adaptation to regulating development of complex phenotypes. We show that conserved core genes, including the juvenile hormone-sensitive master sex differentiation gene doublesex (dsx) and a krüppel homolog 2 (kr-h2) with putative regulatory function, exhibit both sex and morph-specific expression across life stages in the ant Cardiocondyla obscurior. We hypothesize that genes in the sex differentiation cascade evolved perception of alternative input signals for caste differentiation (i.e. environmental or genetic cues), and that their inherent switch-like and epistatic behavior facilitated signal transfer to downstream targets, thus allowing them to control differential development into morphological castes. Division of labor into reproductive queens and helper workers in the societies of ants, bees and wasps is achieved by phenotypic plasticity, which allows individuals to embark on discrete developmental trajectories in response to variable signals. These signals can be genetic, epigenetic or environmental, thereby resembling the extreme variation in signals for sex determination across multicellular animals. We show that common developmental pathways downstream of these input signals, including the conserved sex differentiation gene doublesex, regulate sex and caste-specific phenotypic differentiation in the ant species Cardiocondyla obscurior. Many different mechanisms of gene regulation have been implicated in controlling caste-specific development in social insects but these all depend on a higher-level genetic switch. We propose that highly conserved hub genes such as dsx, which can translate variable input signals into large transcription differences using intermediate-level regulators, are tightly linked with the repeated evolutionary transition to eusociality and caste polyphenism.
Collapse
Affiliation(s)
- Antonia Klein
- Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Eva Schultner
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Helena Lowak
- Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Lukas Schrader
- Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Jürgen Heinze
- Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Luke Holman
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jan Oettler
- Institut für Zoologie, Universität Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
227
|
Standage DS, Berens AJ, Glastad KM, Severin AJ, Brendel VP, Toth AL. Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Mol Ecol 2016; 25:1769-84. [PMID: 26859767 DOI: 10.1111/mec.13578] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/07/2016] [Accepted: 01/18/2016] [Indexed: 01/04/2023]
Abstract
Comparative genomics of social insects has been intensely pursued in recent years with the goal of providing insights into the evolution of social behaviour and its underlying genomic and epigenomic basis. However, the comparative approach has been hampered by a paucity of data on some of the most informative social forms (e.g. incipiently and primitively social) and taxa (especially members of the wasp family Vespidae) for studying social evolution. Here, we provide a draft genome of the primitively eusocial model insect Polistes dominula, accompanied by analysis of caste-related transcriptome and methylome sequence data for adult queens and workers. Polistes dominula possesses a fairly typical hymenopteran genome, but shows very low genomewide GC content and some evidence of reduced genome size. We found numerous caste-related differences in gene expression, with evidence that both conserved and novel genes are related to caste differences. Most strikingly, these -omics data reveal a major reduction in one of the major epigenetic mechanisms that has been previously suggested to be important for caste differences in social insects: DNA methylation. Along with a conspicuous loss of a key gene associated with environmentally responsive DNA methylation (the de novo DNA methyltransferase Dnmt3), these wasps have greatly reduced genomewide methylation to almost zero. In addition to providing a valuable resource for comparative analysis of social insect evolution, our integrative -omics data for this important behavioural and evolutionary model system call into question the general importance of DNA methylation in caste differences and evolution in social insects.
Collapse
Affiliation(s)
- Daniel S Standage
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Ali J Berens
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Karl M Glastad
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew J Severin
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.,Office of Biotechnology, Iowa State University, Ames, IA, 50011, USA
| | - Volker P Brendel
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,School of Informatics and Computing, Indiana University, Bloomington, IN, 47405, USA
| | - Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.,Department of Entomology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
228
|
Olejarz JW, Allen B, Veller C, Gadagkar R, Nowak MA. Evolution of worker policing. J Theor Biol 2016; 399:103-16. [PMID: 26976051 DOI: 10.1016/j.jtbi.2016.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 01/23/2016] [Accepted: 03/02/2016] [Indexed: 11/25/2022]
Abstract
Workers in insect societies are sometimes observed to kill male eggs of other workers, a phenomenon known as worker policing. We perform a mathematical analysis of the evolutionary dynamics of policing. We investigate the selective forces behind policing for both dominant and recessive mutations for different numbers of matings of the queen. The traditional, relatedness-based argument suggests that policing evolves if the queen mates with more than two males, but does not evolve if the queen mates with a single male. We derive precise conditions for the invasion and stability of policing alleles. We find that the relatedness-based argument is not robust with respect to small changes in colony efficiency caused by policing. We also calculate evolutionarily singular strategies and determine when they are evolutionarily stable. We use a population genetics approach that applies to dominant or recessive mutations of any effect size.
Collapse
Affiliation(s)
- Jason W Olejarz
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
| | - Benjamin Allen
- Department of Mathematics, Emmanuel College, Boston, MA 02115, USA; Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA; Center for Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA
| | - Carl Veller
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Raghavendra Gadagkar
- Centre for Ecological Sciences and Centre for Contemporary Studies, Indian Institute of Science, Bangalore 560 012, India; Indian National Science Academy, New Delhi 110 002, India
| | - Martin A Nowak
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Mathematics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
229
|
Salmela H, Stark T, Stucki D, Fuchs S, Freitak D, Dey A, Kent CF, Zayed A, Dhaygude K, Hokkanen H, Sundström L. Ancient Duplications Have Led to Functional Divergence of Vitellogenin-Like Genes Potentially Involved in Inflammation and Oxidative Stress in Honey Bees. Genome Biol Evol 2016; 8:495-506. [PMID: 26961250 PMCID: PMC4825421 DOI: 10.1093/gbe/evw014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protection against inflammation and oxidative stress is key in slowing down aging processes. The honey bee (Apis mellifera) shows flexible aging patterns linked to the social role of individual bees. One molecular factor associated with honey bee aging regulation is vitellogenin, a lipoglycophosphoprotein with anti-inflammatory and antioxidant properties. Recently, we identified three genes in Hymenopteran genomes arisen from ancient insect vitellogenin duplications, named vg-like-A, -B, and -C. The function of these vitellogenin homologs is unclear. We hypothesize that some of them might share gene- and protein-level similarities and a longevity-supporting role with vitellogenin. Here, we show how the structure and modifications of the vg-like genes and proteins have diverged from vitellogenin. Furthermore, all three vg-like genes show signs of positive selection, but the spatial location of the selected protein sites differ from those found in vitellogenin. We show that all these genes are expressed in both long-lived winter worker bees and in summer nurse bees with intermediate life expectancy, yet only vg-like-A shows elevated expression in winter bees as found in vitellogenin. Finally, we show that vg-like-A responds more strongly than vitellogenin to inflammatory and oxidative conditions in summer nurse bees, and that also vg-like-B responds to oxidative stress. We associate vg-like-A and, to lesser extent, vg-like-B to the antiaging roles of vitellogenin, but that vg-like-C probably is involved in some other function. Our analysis indicates that an ancient duplication event facilitated the adaptive and functional divergence of vitellogenin and its paralogs in the honey bee.
Collapse
Affiliation(s)
- Heli Salmela
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Taina Stark
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Dimitri Stucki
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Siiri Fuchs
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Dalial Freitak
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Alivia Dey
- Department of Biology, York University, Toronto, ON, Canada
| | - Clement F Kent
- Department of Biology, York University, Toronto, ON, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON, Canada
| | - Kishor Dhaygude
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Heikki Hokkanen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Liselotte Sundström
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| |
Collapse
|
230
|
Dennis B, Kemp WP. How Hives Collapse: Allee Effects, Ecological Resilience, and the Honey Bee. PLoS One 2016; 11:e0150055. [PMID: 26910061 PMCID: PMC4765896 DOI: 10.1371/journal.pone.0150055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 02/09/2016] [Indexed: 12/05/2022] Open
Abstract
We construct a mathematical model to quantify the loss of resilience in collapsing honey bee colonies due to the presence of a strong Allee effect. In the model, recruitment and mortality of adult bees have substantial social components, with recruitment enhanced and mortality reduced by additional adult bee numbers. The result is an Allee effect, a net per-individual rate of hive increase that increases as a function of adult bee numbers. The Allee effect creates a critical minimum size in adult bee numbers, below which mortality is greater than recruitment, with ensuing loss of viability of the hive. Under ordinary and favorable environmental circumstances, the critical size is low, and hives remain large, sending off viably-sized swarms (naturally or through beekeeping management) when hive numbers approach an upper stable equilibrium size (carrying capacity). However, both the lower critical size and the upper stable size depend on many parameters related to demographic rates and their enhancement by bee sociality. Any environmental factors that increase mortality, decrease recruitment, or interfere with the social moderation of these rates has the effect of exacerbating the Allee effect by increasing the lower critical size and substantially decreasing the upper stable size. As well, the basin of attraction to the upper stable size, defined by the model potential function, becomes narrower and shallower, indicating the loss of resilience as the hive becomes subjected to increased risk of falling below the critical size. Environmental effects of greater severity can cause the two equilibria to merge and the basin of attraction to the upper stable size to disappear, resulting in collapse of the hive from any initial size. The model suggests that multiple proximate causes, among them pesticides, mites, pathogens, and climate change, working singly or in combinations, could trigger hive collapse.
Collapse
Affiliation(s)
- Brian Dennis
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, 83844–1136, United States of America
- Department of Statistical Science, University of Idaho, Moscow, Idaho, 83844–1136, United States of America
- * E-mail:
| | - William P. Kemp
- USDA Agricultural Research Service, Red River Valley Agricultural Research Center, 1605 Albrecht Blvd North, Fargo, North Dakota, 58102–2765, United States of America
| |
Collapse
|
231
|
|
232
|
Corona M, Libbrecht R, Wheeler DE. Molecular mechanisms of phenotypic plasticity in social insects. CURRENT OPINION IN INSECT SCIENCE 2016; 13:55-60. [PMID: 27436553 DOI: 10.1016/j.cois.2015.12.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/23/2015] [Accepted: 12/11/2015] [Indexed: 06/06/2023]
Abstract
Polyphenism in insects, whereby a single genome expresses different phenotypes in response to environmental cues, is a fascinating biological phenomenon. Social insects are especially intriguing examples of phenotypic plasticity because division of labor results in the development of extreme morphological phenotypes, such as the queen and worker castes. Although sociality evolved independently in ants, bees, wasps and termites, similar genetic pathways regulate phenotypic plasticity in these different groups of social insects. The insulin/insulin-like growth signaling (IIS) plays a key role in this process. Recent research reveals that IIS interacts with other pathways including target of rapamycin (TOR), epidermal growth factor receptor (Egfr), juvenile hormone (JH) and vitellogenin (Vg) to regulate caste differentiation.
Collapse
Affiliation(s)
- Miguel Corona
- USDA Bee Research, 10300 Baltimore Avenue, Building 306, Beltsville, MD 20705, USA
| | - Romain Libbrecht
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Switzerland
| | - Diana E Wheeler
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
233
|
Kapheim KM. Genomic sources of phenotypic novelty in the evolution of eusociality in insects. CURRENT OPINION IN INSECT SCIENCE 2016; 13:24-32. [PMID: 27436550 DOI: 10.1016/j.cois.2015.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/13/2015] [Accepted: 10/28/2015] [Indexed: 06/06/2023]
Abstract
Genomic resources are now available for closely related species that vary in social behavior, providing insight on the genomics of social evolution. Changes in the architecture of gene regulatory networks likely influence the evolutionary trajectory of social traits. Evolutionarily novel genes are likely important in the evolution of social diversity among insects, but it is unclear whether new genes played a driving role in the advent or elaboration of eusociality or if they were instead a result of other genomic features of eusociality. The worker phenotype appears to be the center of genetic novelty, but the mechanisms for this remain unresolved. Future studies are needed to understand how genetic novelty arises, becomes incorporated into existing gene regulatory networks, and the effects this has on the evolution of social traits in closely related social and solitary species.
Collapse
Affiliation(s)
- Karen M Kapheim
- Utah State University, Department of Biology, 5305 Old Main Hill, Logan UT 84322, USA.
| |
Collapse
|
234
|
Southey BR, Zhu P, Carr-Markell MK, Liang ZS, Zayed A, Li R, Robinson GE, Rodriguez-Zas SL. Characterization of Genomic Variants Associated with Scout and Recruit Behavioral Castes in Honey Bees Using Whole-Genome Sequencing. PLoS One 2016; 11:e0146430. [PMID: 26784945 PMCID: PMC4718678 DOI: 10.1371/journal.pone.0146430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/15/2015] [Indexed: 12/01/2022] Open
Abstract
Among forager honey bees, scouts seek new resources and return to the colony, enlisting recruits to collect these resources. Differentially expressed genes between these behaviors and genetic variability in scouting phenotypes have been reported. Whole-genome sequencing of 44 Apis mellifera scouts and recruits was undertaken to detect variants and further understand the genetic architecture underlying the behavioral differences between scouts and recruits. The median coverage depth in recruits and scouts was 10.01 and 10.7 X, respectively. Representation of bacterial species among the unmapped reads reflected a more diverse microbiome in scouts than recruits. Overall, 1,412,705 polymorphic positions were analyzed for associations with scouting behavior, and 212 significant (p-value < 0.0001) associations with scouting corresponding to 137 positions were detected. Most frequent putative transcription factor binding sites proximal to significant variants included Broad-complex 4, Broad-complex 1, Hunchback, and CF2-II. Three variants associated with scouting were located within coding regions of ncRNAs including one codon change (LOC102653644) and 2 frameshift indels (LOC102654879 and LOC102655256). Significant variants were also identified on the 5’UTR of membrin, and 3’UTRs of laccase 2 and diacylglycerol kinase theta. The 60 significant variants located within introns corresponded to 39 genes and most of these positions were > 1000 bp apart from each other. A number of these variants were mapped to ncRNA LOC100578102, solute carrier family 12 member 6-like gene, and LOC100576965 (meprin and TRAF-C homology domain containing gene). Functional categories represented among the genes corresponding to significant variants included: neuronal function, exoskeleton, immune response, salivary gland development, and enzymatic food processing. These categories offer a glimpse into the molecular support to the behaviors of scouts and recruits. The level of association between genomic variants and scouting behavior observed in this study may be linked to the honey bee’s genomic plasticity and fluidity of transition between castes.
Collapse
Affiliation(s)
- Bruce R. Southey
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ping Zhu
- Biodynamic Optical Imaging Center, College of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Morgan K. Carr-Markell
- School of Integrative Biology, Ecology, Evolution, and Conservation Biology Program, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Zhengzheng S. Liang
- School of Molecular and Cell Biology and Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Amro Zayed
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing, China and Biodynamic Optical Imaging Center, Peking-Tsinghua Center for Life Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Gene E. Robinson
- Carle Woese Institute for Genomic Biology, Department of Entomology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, Department of Statistics, Neuroscience Program, and Carle Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
235
|
Ronai I, Vergoz V, Oldroyd B. The Mechanistic, Genetic, and Evolutionary Basis of Worker Sterility in the Social Hymenoptera. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
236
|
|
237
|
|
238
|
|
239
|
Taborsky M, Taborsky B. Evolution of genetic and physiological mechanisms of cooperative behaviour. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
240
|
Romiguier J, Cameron SA, Woodard SH, Fischman BJ, Keller L, Praz CJ. Phylogenomics Controlling for Base Compositional Bias Reveals a Single Origin of Eusociality in Corbiculate Bees. Mol Biol Evol 2015; 33:670-8. [DOI: 10.1093/molbev/msv258] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
241
|
Elsik CG, Tayal A, Diesh CM, Unni DR, Emery ML, Nguyen HN, Hagen DE. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine. Nucleic Acids Res 2015; 44:D793-800. [PMID: 26578564 PMCID: PMC4702858 DOI: 10.1093/nar/gkv1208] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/27/2015] [Indexed: 11/13/2022] Open
Abstract
We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search.
Collapse
Affiliation(s)
- Christine G Elsik
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA MU Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Aditi Tayal
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Colin M Diesh
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Deepak R Unni
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Marianne L Emery
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Hung N Nguyen
- MU Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Darren E Hagen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
242
|
Brito DV, Silva CGN, Hasselmann M, Viana LS, Astolfi-Filho S, Carvalho-Zilse GA. Molecular characterization of the gene feminizer in the stingless bee Melipona interrupta (Hymenoptera: Apidae) reveals association to sex and caste development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:24-30. [PMID: 26393998 DOI: 10.1016/j.ibmb.2015.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
In highly eusocial insects, development of reproductive traits are regulated not only by sex determination pathway, but it also depends on caste fate. The molecular basis of both mechanisms in stingless bees and possible interaction with each other is still obscure. Here, we investigate sex determination in Melipona interrupta, focusing on characterization and expression analysis of the feminizer gene (Mi-fem), and its association to a major component of caste determination, the juvenile hormone (JH). We present evidence that Mi-fem mRNA is sex-specifically spliced in which only the female splice variant encodes the full length protein, following the same principle known for other bee species. We quantified Mi-fem expression among developmental stages, sexes and castes. Mi-fem expression varies considerably throughout development, with higher expression levels in embryos. Also, fem levels in pupae and newly emerged adults were significantly higher in queens than workers and males. Finally, we ectopically applied JH in cocoon spinning larvae, which correspond to the time window where queen/worker phenotypes diverge. We observed a significantly increase in Mi-fem expression compared to control groups. Since up to 100% of females turn into queens when treated with JH (while control groups are composed mainly of workers), we propose that fem might act to regulate queens' development. Our findings provide support for the conserved regulatory function of fem in Melipona bees and demonstrate a significant correlation between key elements of sex and caste determination pathways, opening the avenue to further investigate the molecular basis of these complex traits.
Collapse
Affiliation(s)
- Diana V Brito
- Grupo de Pesquisas em Abelhas, Instituto Nacional de Pesquisas da Amazônia, Manaus 69080-971, AM, Brazil; Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart 70599, BW, Germany.
| | - Carlos Gustavo N Silva
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus 69077-000, AM, Brazil
| | - Martin Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart 70599, BW, Germany
| | - Luciana S Viana
- Grupo de Pesquisas em Abelhas, Instituto Nacional de Pesquisas da Amazônia, Manaus 69080-971, AM, Brazil
| | - Spartaco Astolfi-Filho
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus 69077-000, AM, Brazil
| | - Gislene A Carvalho-Zilse
- Grupo de Pesquisas em Abelhas, Instituto Nacional de Pesquisas da Amazônia, Manaus 69080-971, AM, Brazil
| |
Collapse
|
243
|
Elgar MA. Integrating insights across diverse taxa: challenges for understanding social evolution. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
244
|
Olejarz JW, Allen B, Veller C, Nowak MA. The evolution of non-reproductive workers in insect colonies with haplodiploid genetics. eLife 2015; 4:e08918. [PMID: 26485033 PMCID: PMC4755779 DOI: 10.7554/elife.08918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022] Open
Abstract
Eusociality is a distinct form of biological organization. A key characteristic of advanced eusociality is the presence of non-reproductive workers. Why evolution should produce organisms that sacrifice their own reproductive potential in order to aid others is an important question in evolutionary biology. Here, we provide a detailed analysis of the selective forces that determine the emergence and stability of non-reproductive workers. We study the effects, in situations where the queen of the colony has mated once or several times, of recessive and dominant sterility alleles acting in her offspring. Contrary to widespread belief based on heuristic arguments of genetic relatedness, non-reproductive workers can easily evolve in polyandrous species. The crucial quantity is the functional relationship between a colony’s reproductive rate and the fraction of non-reproductive workers present in that colony. We derive precise conditions for natural selection to favor the evolution of non-reproductive workers. DOI:http://dx.doi.org/10.7554/eLife.08918.001 Certain wasps, bees and ants live in highly organized social groups in which one member of a colony (the queen) produces all or almost all of the offspring. This form of social organization – called eusociality – raises an important question for evolutionary biology: why do individuals that forego the chance to reproduce and instead raise the offspring of others evolve? One factor linked to the evolution of eusociality in insects is a system that determines the gender of offspring known as haplodiploidy. In this system, female offspring develop from fertilized eggs, while male offspring develop from unfertilized eggs. The queen mates with male insects and so she can produce both male and female offspring. On the other hand, the workers – which are also female – do not mate and therefore can only produce male offspring. So, should these workers produce their own male eggs, or should all male offspring come from the queen? The answer to this question could depend on whether the queen has mated with a single male (monandry) or with multiple males (polyandry) because this affects how closely related the other insects in the colony are to each other. It is a widespread belief that monandry is important for the evolution of non-reproductive workers. Here, Olejarz et al. develop a mathematical model that explores the conditions under which natural selection favors the evolution of non-reproductive workers. Contrary to the widespread belief, it turns out that non-reproductive workers can easily evolve in polyandrous species. The crucial quantity is the relationship between the overall reproductive rate of the colony and the fraction of non-reproductive workers present in that colony. Olejarz et al. challenge the view that single mating is crucial for the evolution of non-reproductive workers. The study demonstrates the need for precise mathematical models of population dynamics and natural selection instead of informal arguments that are only based on considerations of genetic relatedness. DOI:http://dx.doi.org/10.7554/eLife.08918.002
Collapse
Affiliation(s)
- Jason W Olejarz
- Program for Evolutionary Dynamics, Harvard University, Cambridge, United States
| | - Benjamin Allen
- Program for Evolutionary Dynamics, Harvard University, Cambridge, United States.,Center for Mathematical Sciences and Applications, Harvard University, Cambridge, United States.,Department of Mathematics, Emmanuel College, Boston, United States
| | - Carl Veller
- Program for Evolutionary Dynamics, Harvard University, Cambridge, United States.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Martin A Nowak
- Program for Evolutionary Dynamics, Harvard University, Cambridge, United States.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Department of Mathematics, Harvard University, Cambridge, United States
| |
Collapse
|
245
|
Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies. Proc Natl Acad Sci U S A 2015; 112:13970-5. [PMID: 26483466 DOI: 10.1073/pnas.1515937112] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phenotypic plasticity is important in adaptation and shapes the evolution of organisms. However, we understand little about what aspects of the genome are important in facilitating plasticity. Eusocial insect societies produce plastic phenotypes from the same genome, as reproductives (queens) and nonreproductives (workers). The greatest plasticity is found in the simple eusocial insect societies in which individuals retain the ability to switch between reproductive and nonreproductive phenotypes as adults. We lack comprehensive data on the molecular basis of plastic phenotypes. Here, we sequenced genomes, microRNAs (miRNAs), and multiple transcriptomes and methylomes from individual brains in a wasp (Polistes canadensis) and an ant (Dinoponera quadriceps) that live in simple eusocial societies. In both species, we found few differences between phenotypes at the transcriptional level, with little functional specialization, and no evidence that phenotype-specific gene expression is driven by DNA methylation or miRNAs. Instead, phenotypic differentiation was defined more subtly by nonrandom transcriptional network organization, with roles in these networks for both conserved and taxon-restricted genes. The general lack of highly methylated regions or methylome patterning in both species may be an important mechanism for achieving plasticity among phenotypes during adulthood. These findings define previously unidentified hypotheses on the genomic processes that facilitate plasticity and suggest that the molecular hallmarks of social behavior are likely to differ with the level of social complexity.
Collapse
|
246
|
Cunningham CB, Ji L, Wiberg RAW, Shelton J, McKinney EC, Parker DJ, Meagher RB, Benowitz KM, Roy-Zokan EM, Ritchie MG, Brown SJ, Schmitz RJ, Moore AJ. The Genome and Methylome of a Beetle with Complex Social Behavior, Nicrophorus vespilloides (Coleoptera: Silphidae). Genome Biol Evol 2015; 7:3383-96. [PMID: 26454014 PMCID: PMC4700941 DOI: 10.1093/gbe/evv194] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 12/22/2022] Open
Abstract
Testing for conserved and novel mechanisms underlying phenotypic evolution requires a diversity of genomes available for comparison spanning multiple independent lineages. For example, complex social behavior in insects has been investigated primarily with eusocial lineages, nearly all of which are Hymenoptera. If conserved genomic influences on sociality do exist, we need data from a wider range of taxa that also vary in their levels of sociality. Here, we present the assembled and annotated genome of the subsocial beetle Nicrophorus vespilloides, a species long used to investigate evolutionary questions of complex social behavior. We used this genome to address two questions. First, do aspects of life history, such as using a carcass to breed, predict overlap in gene models more strongly than phylogeny? We found that the overlap in gene models was similar between N. vespilloides and all other insect groups regardless of life history. Second, like other insects with highly developed social behavior but unlike other beetles, does N. vespilloides have DNA methylation? We found strong evidence for an active DNA methylation system. The distribution of methylation was similar to other insects with exons having the most methylated CpGs. Methylation status appears highly conserved; 85% of the methylated genes in N. vespilloides are also methylated in the hymentopteran Nasonia vitripennis. The addition of this genome adds a coleopteran resource to answer questions about the evolution and mechanistic basis of sociality and to address questions about the potential role of methylation in social behavior.
Collapse
Affiliation(s)
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia
| | - R Axel W Wiberg
- Centre for Biological Diversity, School of Biology, University of St. Andrews, Fife, United Kingdom
| | - Jennifer Shelton
- Division of Biology & Bioinformatics Center & Arthropod Genomics Center, Kansas State University
| | | | - Darren J Parker
- Centre for Biological Diversity, School of Biology, University of St. Andrews, Fife, United Kingdom
| | | | | | | | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St. Andrews, Fife, United Kingdom
| | - Susan J Brown
- Division of Biology & Bioinformatics Center & Arthropod Genomics Center, Kansas State University
| | | | | |
Collapse
|
247
|
Sunagar K, Morgenstern D, Reitzel AM, Moran Y. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom. J Proteomics 2015; 135:62-72. [PMID: 26385003 DOI: 10.1016/j.jprot.2015.09.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023]
Abstract
Animal venom is a complex cocktail of bioactive chemicals that traditionally drew interest mostly from biochemists and pharmacologists. However, in recent years the evolutionary and ecological importance of venom is realized as this trait has direct and strong influence on interactions between species. Moreover, venom content can be modulated by environmental factors. Like many other fields of biology, venom research has been revolutionized in recent years by the introduction of systems biology approaches, i.e., genomics, transcriptomics and proteomics. The employment of these methods in venom research is known as 'venomics'. In this review we describe the history and recent advancements of venomics and discuss how they are employed in studying venom in general and in particular in the context of evolutionary ecology. We also discuss the pitfalls and challenges of venomics and what the future may hold for this emerging scientific field.
Collapse
Affiliation(s)
- Kartik Sunagar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Morgenstern
- Proteomics Resource Center, Langone Medical Center, New York University, New York, USA.
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
248
|
Dunn CW, Ryan JF. The evolution of animal genomes. Curr Opin Genet Dev 2015; 35:25-32. [PMID: 26363125 DOI: 10.1016/j.gde.2015.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 11/18/2022]
Abstract
Genome sequences are now available for hundreds of species sampled across the animal phylogeny, bringing key features of animal genome evolution into sharper focus. The field of animal evolutionary genomics has focused on identifying and classifying the diversity genomic features, reconstructing the history of evolutionary changes in animal genomes, and testing hypotheses about the evolutionary relationships of animals. The grand challenges moving forward are to connect evolutionary changes in genomes with particular evolutionary changes in phenotypes, and to determine which changes are driven by selection. This will require far greater genome sampling both across and within species, extensive phenotype data, a well resolved animal phylogeny, and advances in comparative methods.
Collapse
Affiliation(s)
- Casey W Dunn
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI 02906, USA.
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd., St Augustine, FL 32080, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
249
|
Why may allopregnanolone help alleviate loneliness? Med Hypotheses 2015; 85:947-52. [PMID: 26365247 DOI: 10.1016/j.mehy.2015.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/03/2015] [Accepted: 09/04/2015] [Indexed: 01/21/2023]
Abstract
Impaired biosynthesis of Allopregnanolone (ALLO), a brain endogenous neurosteroid, has been associated with numerous behavioral dysfunctions, which range from anxiety- and depressive-like behaviors to aggressive behavior and changes in responses to contextual fear conditioning in rodent models of emotional dysfunction. Recent animal research also demonstrates a critical role of ALLO in social isolation. Although there are likely aspects of perceived social isolation that are uniquely human, there is also continuity across species. Both human and animal research show that perceived social isolation (which can be defined behaviorally in animals and humans) has detrimental effects on physical health, such as increased hypothalamic pituitary adrenal (HPA) activity, decreased brain-derived neurotrophic factor (BDNF) expression, and increased depressive behavior. The similarities between animal and human research suggest that perceived social isolation (loneliness) may also be associated with a reduction in the synthesis of ALLO, potentially by reducing BDNF regulation and increasing HPA activity through the hippocampus, amygdala, and bed nucleus of the stria terminalis (BNST), especially during social threat processing. Accordingly, exogenous administration of ALLO (or ALLO precursor, such as pregnenolone), in humans may help alleviate loneliness. Congruent with our hypothesis, exogenous administration of ALLO (or ALLO precursors) in humans has been shown to improve various stress-related disorders that show similarities between animals and humans i.e., post-traumatic stress disorders, traumatic brain injuries. Because a growing body of evidence demonstrates the benefits of ALLO in socially isolated animals, we believe our ALLO hypothesis can be applied to loneliness in humans, as well.
Collapse
|
250
|
Jones BM, Wcislo WT, Robinson GE. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis. G3 (BETHESDA, MD.) 2015; 5:2127-35. [PMID: 26276382 PMCID: PMC4592995 DOI: 10.1534/g3.115.021261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022]
Abstract
Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell-cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity.
Collapse
Affiliation(s)
- Beryl M Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, Illinois 61801 Smithsonian Tropical Research Institute, Panama City, Panama 20521-9100 Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Panama City, Panama 20521-9100
| | - Gene E Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, Illinois 61801 Department of Entomology, University of Illinois, Urbana, Illinois 61801 Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801 Neuroscience Program, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|