201
|
Haldrup J, Weiss S, Schmidt L, Sørensen KD. Investigation of enzalutamide, docetaxel, and cabazitaxel resistance in the castration resistant prostate cancer cell line C4 using genome-wide CRISPR/Cas9 screening. Sci Rep 2023; 13:9043. [PMID: 37270558 DOI: 10.1038/s41598-023-35950-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Enzalutamide, docetaxel, and cabazitaxel treatment resistance is a major problem in metastatic castration resistant prostate cancer (mCRPC), but the underlying genetic determinants are poorly understood. To identify genes that modulate treatment response to these drugs, we performed three genome-wide CRISPR/Cas9 knockout screens in the mCRPC cell line C4. The screens identified seven candidates for enzalutamide (BCL2L13, CEP135, E2F4, IP6K2, KDM6A, SMS, and XPO4), four candidates for docetaxel (DRG1, LMO7, NCOA2, and ZNF268), and nine candidates for cabazitaxel (ARHGAP11B, DRG1, FKBP5, FRYL, PRKAB1, RP2, SMPD2, TCEA2, and ZNF585B). We generated single-gene C4 knockout clones/populations for all genes and could validate effect on treatment response for five genes (IP6K2, XPO4, DRG1, PRKAB1, and RP2). Altered enzalutamide response upon IP6K2 and XPO4 knockout was associated with deregulation of AR, mTORC1, and E2F signaling, and deregulated p53 signaling (IP6K2 only) in C4 mCRPC cells. Our study highlights the necessity of performing individual validation of candidate hits from genome-wide CRISPR screens. Further studies are needed to assess the generalizability and translational potential of these findings.
Collapse
Affiliation(s)
- Jakob Haldrup
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Weiss
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Linnéa Schmidt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karina Dalsgaard Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
202
|
Pitzen SP, Dehm SM. Basal epithelial cells in prostate development, tumorigenesis, and cancer progression. Cell Cycle 2023; 22:1303-1318. [PMID: 37098827 PMCID: PMC10228417 DOI: 10.1080/15384101.2023.2206502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 04/27/2023] Open
Abstract
The prostate epithelium is composed of two predominant cell populations: luminal and basal epithelial cells. Luminal cells have a secretory function that supports male fertility while basal cells function in regeneration and maintenance of epithelial tissue. Recent studies in humans and mice have expanded our knowledge of the role and regulation of luminal and basal cells in prostate organogenesis, development, and homeostasis. The insights from healthy prostate biology can inform studies focused on the origins of prostate cancer, progression of the disease, and development of resistance to targeted hormonal therapies. In this review, we discuss a critical role for basal cells in the development and maintenance of healthy prostate tissue. Additionally, we provide evidence supporting a role for basal cells in oncogenesis and therapeutic resistance mechanisms of prostate cancer. Finally, we describe basal cell regulators that may promote lineage plasticity and basal cell identity in prostate cancers that have developed therapeutic resistance. These regulators could serve as therapeutic targets to inhibit or delay resistance and thereby improve outcomes for prostate cancer patients.
Collapse
Affiliation(s)
- Samuel P. Pitzen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, and Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
203
|
Venkadakrishnan VB, Yamada Y, Weng K, Idahor O, Beltran H. Significance of RB Loss in Unlocking Phenotypic Plasticity in Advanced Cancers. Mol Cancer Res 2023; 21:497-510. [PMID: 37052520 PMCID: PMC10239360 DOI: 10.1158/1541-7786.mcr-23-0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Cancer cells can undergo plasticity in response to environmental stimuli or under selective therapeutic pressures that result in changes in phenotype. This complex phenomenon of phenotypic plasticity is now recognized as a hallmark of cancer. Lineage plasticity is often associated with loss of dependence on the original oncogenic driver and is facilitated, in part, by underlying genomic and epigenetic alterations. Understanding the molecular drivers of cancer plasticity is critical for the development of novel therapeutic strategies. The retinoblastoma gene RB1 (encoding RB) is the first tumor suppressor gene to be discovered and has a well-described role in cell-cycle regulation. RB is also involved in diverse cellular functions beyond cell cycle including differentiation. Here, we describe the emerging role of RB loss in unlocking cancer phenotypic plasticity and driving therapy resistance across cancer types. We highlight parallels in cancer with the noncanonical role of RB that is critical for normal development and lineage specification, and the downstream consequences of RB loss including epigenetic reprogramming and chromatin reorganization that can lead to changes in lineage program. Finally, we discuss potential therapeutic approaches geared toward RB loss cancers undergoing lineage reprogramming.
Collapse
Affiliation(s)
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenny Weng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Boston College, Chestnut Hill, Massachusetts, USA
| | - Osasenaga Idahor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard University, Cambridge, Massachusetts, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
204
|
Shan X, Long Q, Garfall AL, Susanibar-Adaniya SP. High SOX2 expression is associated with poor survival in patients with newly diagnosed multiple myeloma. Blood Cancer J 2023; 13:86. [PMID: 37217520 DOI: 10.1038/s41408-023-00855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Affiliation(s)
- Xinhe Shan
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Qi Long
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Alfred L Garfall
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandra P Susanibar-Adaniya
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
205
|
Abstract
Treatment-resistant cancer, such as neuroendocrine prostate cancer (NEPC), is a lethal disease with limited therapeutic options. RB1 is a tumor suppressor gene that is lost in a majority of NEPC tumors. In this issue of the JCI, Wang and colleagues examined how RB1 loss may sensitize cancer cells to ferroptosis inducers through elevation of ACSL4, a key enzyme that promotes lipid peroxidation and triggers ferroptosis. We discuss a high potential of RB1-deficient cells to undergo ferroptosis due to the elevation of ACSL4. This is normally kept in check by abundant expression of GPX4, an antioxidant enzyme, in cancer cells. This balance, however, is tilted by GPX4 inhibitors, leading to massive ferroptosis. We highlight possible therapeutic strategies that exploit this inherent vulnerability for targeting RB1-deficient, treatment-resistant cancer.
Collapse
Affiliation(s)
- Wanqing Xie
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shivani Agarwal
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jindan Yu
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Human Genetics and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
206
|
Ware KE, Thomas BC, Olawuni PD, Sheth MU, Hawkey N, Yeshwanth M, Miller BC, Vietor KJ, Jolly MK, Kim SY, Armstrong AJ, Somarelli JA. A synthetic lethal screen for Snail-induced enzalutamide resistance identifies JAK/STAT signaling as a therapeutic vulnerability in prostate cancer. Front Mol Biosci 2023; 10:1104505. [PMID: 37228586 PMCID: PMC10203420 DOI: 10.3389/fmolb.2023.1104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Despite substantial improvements in the treatment landscape of prostate cancer, the evolution of hormone therapy-resistant and metastatic prostate cancer remains a major cause of cancer-related death globally. The mainstay of treatment for advanced prostate cancer is targeting of androgen receptor signaling, including androgen deprivation therapy plus second-generation androgen receptor blockade (e.g., enzalutamide, apalutamide, darolutamide), and/or androgen synthesis inhibition (abiraterone). While these agents have significantly prolonged the lives of patients with advanced prostate cancer, is nearly universal. This therapy resistance is mediated by diverse mechanisms, including both androgen receptor-dependent mechanisms, such as androgen receptor mutations, amplifications, alternative splicing, and amplification, as well as non-androgen receptor-mediated mechanisms, such as lineage plasticity toward neuroendocrine-like or epithelial-mesenchymal transition (EMT)-like lineages. Our prior work identified the EMT transcriptional regulator Snail as critical to hormonal therapy resistance and is commonly detected in human metastatic prostate cancer. In the current study, we sought to interrogate the actionable landscape of EMT-mediated hormone therapy resistant prostate cancer to identify synthetic lethality and collateral sensitivity approaches to treating this aggressive, therapy-resistant disease state. Using a combination of high-throughput drug screens and multi-parameter phenotyping by confluence imaging, ATP production, and phenotypic plasticity reporters of EMT, we identified candidate synthetic lethalities to Snail-mediated EMT in prostate cancer. These analyses identified multiple actionable targets, such as XPO1, PI3K/mTOR, aurora kinases, c-MET, polo-like kinases, and JAK/STAT as synthetic lethalities in Snail+ prostate cancer. We validated these targets in a subsequent validation screen in an LNCaP-derived model of resistance to sequential androgen deprivation and enzalutamide. This follow-up screen provided validation of inhibitors of JAK/STAT and PI3K/mTOR as therapeutic vulnerabilities for both Snail+ and enzalutamide-resistant prostate cancer.
Collapse
Affiliation(s)
- Kathryn E. Ware
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| | - Beatrice C. Thomas
- Dr. Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Pelumi D. Olawuni
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| | - Maya U. Sheth
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| | - Nathan Hawkey
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| | - M. Yeshwanth
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Brian C. Miller
- Division of Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Katherine J. Vietor
- Division of Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Andrew J. Armstrong
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Jason A. Somarelli
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
207
|
Williams A, Gutgesell L, de Wet L, Selman P, Dey A, Avineni M, Kapoor I, Mendez M, Brown R, Lamperis S, Blajszczak C, Bueter E, Kregel S, Vander Griend DJ, Szmulewitz R. SOX 2 expression in prostate cancer drives resistance to nuclear hormone receptor signaling inhibition through the WEE1/CDK1 signaling axis. Cancer Lett 2023; 565:216209. [PMID: 37169162 DOI: 10.1016/j.canlet.2023.216209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
The development of androgen receptor signaling inhibitor (ARSI) drug resistance in prostate cancer (PC) remains therapeutically challenging. Our group has described the role of sex determining region Y-box 2 (SOX2) overexpression in ARSI-resistant PC. Continuing this work, we report that NR3C1, the gene encoding glucocorticoid receptor (GR), is a novel SOX2 target in PC, positively regulating its expression. Similar to ARSI treatment, SOX2-positive PC cells are insensitive to GR signaling inhibition using a GR modulating therapy. To understand SOX2-mediated nuclear hormone receptor signaling inhibitor (NHRSI) insensitivity, we performed RNA-seq in SOX2-positive and -negative PC cells following NHRSI treatment. RNA-seq prioritized differentially regulated genes mediating the cell cycle, including G2 checkpoint WEE1 Kinase (WEE1) and cyclin-dependent kinase 1 (CDK1). Additionally, WEE1 and CDK1 were differentially expressed in PC patient tumors dichotomized by high vs low SOX2 gene expression. Importantly, pharmacological targeting of WEE1 (WEE1i) in combination with an ARSI or GR modulator re-sensitizes SOX2-positive PC cells to nuclear hormone receptor signaling inhibition in vitro, and WEE1i combined with ARSI significantly slowed tumor growth in vivo. Collectively, our data suggest SOX2 predicts NHRSI resistance, and simultaneously indicates the addition of WEE1i to improve therapeutic efficacy of NHRSIs in SOX2-positive PC.
Collapse
Affiliation(s)
- Anthony Williams
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Lisa Gutgesell
- Department of Pathology, University of Illinois at Chicago, 909 S Wolcott Avenue, Chicago, IL, 60612, USA
| | - Larischa de Wet
- Department of Pathology, University of Illinois at Chicago, 909 S Wolcott Avenue, Chicago, IL, 60612, USA
| | - Phillip Selman
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Arunangsu Dey
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Mahati Avineni
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Isha Kapoor
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Megan Mendez
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Ryan Brown
- Department of Pathology, University of Illinois at Chicago, 909 S Wolcott Avenue, Chicago, IL, 60612, USA
| | - Sophia Lamperis
- Department of Medicine, Section of Hematology and Oncology, Northwestern University - Feinberg School of Medicine, 420 E Superior St, Chicago, IL, 60611, USA
| | - Chuck Blajszczak
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Eric Bueter
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA; Committee on Cancer Biology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Steve Kregel
- Department of Cancer Biology, Loyola University - Cardinal Bernardin Cancer Center, 2160 S 1st Ave, Maywood, IL, 60153, USA
| | - Donald J Vander Griend
- Department of Pathology, University of Illinois at Chicago, 909 S Wolcott Avenue, Chicago, IL, 60612, USA
| | - Russell Szmulewitz
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA.
| |
Collapse
|
208
|
Krishnan B, Sanidas I, Dyson NJ. Seeing is believing: the impact of RB on nuclear organization. Cell Cycle 2023; 22:1357-1366. [PMID: 37139582 DOI: 10.1080/15384101.2023.2206352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The retinoblastoma tumor suppressor (RB) prevents G1 to S cell cycle transition by inhibiting E2F activity. This function requires that RB remains un- or underphosphorylated (the so-called active forms of RB). Recently, we showed that active forms of RB cause widespread changes in nuclear architecture that are visible under a microscope. These phenotypes did not correlate with cell cycle arrest or repression of the E2F transcriptional program, but appeared later, and were associated with the appearance of autophagy or in IMR-90 cells with senescence markers. In this perspective, we describe the relative timing of these RB-induced events and discuss the mechanisms that may underlie RB-induced chromatin dispersion. We consider the relationship between RB-induced dispersion, autophagy, and senescence and the potential connection between dispersion and cell cycle exit.
Collapse
Affiliation(s)
- Badri Krishnan
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
209
|
Gillessen S, Bossi A, Davis ID, de Bono J, Fizazi K, James ND, Mottet N, Shore N, Small E, Smith M, Sweeney CJ, Tombal B, Antonarakis ES, Aparicio AM, Armstrong AJ, Attard G, Beer TM, Beltran H, Bjartell A, Blanchard P, Briganti A, Bristow RG, Bulbul M, Caffo O, Castellano D, Castro E, Cheng HH, Chi KN, Chowdhury S, Clarke CS, Clarke N, Daugaard G, De Santis M, Duran I, Eeles R, Efstathiou E, Efstathiou J, Ekeke ON, Evans CP, Fanti S, Feng FY, Fonteyne V, Fossati N, Frydenberg M, George D, Gleave M, Gravis G, Halabi S, Heinrich D, Herrmann K, Higano C, Hofman MS, Horvath LG, Hussain M, Jereczek-Fossa BA, Jones R, Kanesvaran R, Kellokumpu-Lehtinen PL, Khauli RB, Klotz L, Kramer G, Leibowitz R, Logothetis C, Mahal B, Maluf F, Mateo J, Matheson D, Mehra N, Merseburger A, Morgans AK, Morris MJ, Mrabti H, Mukherji D, Murphy DG, Murthy V, Nguyen PL, Oh WK, Ost P, O'Sullivan JM, Padhani AR, Pezaro CJ, Poon DMC, Pritchard CC, Rabah DM, Rathkopf D, Reiter RE, Rubin MA, Ryan CJ, Saad F, Sade JP, Sartor O, Scher HI, Sharifi N, Skoneczna I, Soule H, Spratt DE, Srinivas S, Sternberg CN, Steuber T, Suzuki H, et alGillessen S, Bossi A, Davis ID, de Bono J, Fizazi K, James ND, Mottet N, Shore N, Small E, Smith M, Sweeney CJ, Tombal B, Antonarakis ES, Aparicio AM, Armstrong AJ, Attard G, Beer TM, Beltran H, Bjartell A, Blanchard P, Briganti A, Bristow RG, Bulbul M, Caffo O, Castellano D, Castro E, Cheng HH, Chi KN, Chowdhury S, Clarke CS, Clarke N, Daugaard G, De Santis M, Duran I, Eeles R, Efstathiou E, Efstathiou J, Ekeke ON, Evans CP, Fanti S, Feng FY, Fonteyne V, Fossati N, Frydenberg M, George D, Gleave M, Gravis G, Halabi S, Heinrich D, Herrmann K, Higano C, Hofman MS, Horvath LG, Hussain M, Jereczek-Fossa BA, Jones R, Kanesvaran R, Kellokumpu-Lehtinen PL, Khauli RB, Klotz L, Kramer G, Leibowitz R, Logothetis C, Mahal B, Maluf F, Mateo J, Matheson D, Mehra N, Merseburger A, Morgans AK, Morris MJ, Mrabti H, Mukherji D, Murphy DG, Murthy V, Nguyen PL, Oh WK, Ost P, O'Sullivan JM, Padhani AR, Pezaro CJ, Poon DMC, Pritchard CC, Rabah DM, Rathkopf D, Reiter RE, Rubin MA, Ryan CJ, Saad F, Sade JP, Sartor O, Scher HI, Sharifi N, Skoneczna I, Soule H, Spratt DE, Srinivas S, Sternberg CN, Steuber T, Suzuki H, Sydes MR, Taplin ME, Tilki D, Türkeri L, Turco F, Uemura H, Uemura H, Ürün Y, Vale CL, van Oort I, Vapiwala N, Walz J, Yamoah K, Ye D, Yu EY, Zapatero A, Zilli T, Omlin A. Management of patients with advanced prostate cancer-metastatic and/or castration-resistant prostate cancer: Report of the Advanced Prostate Cancer Consensus Conference (APCCC) 2022. Eur J Cancer 2023; 185:178-215. [PMID: 37003085 DOI: 10.1016/j.ejca.2023.02.018] [Show More Authors] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Innovations in imaging and molecular characterisation together with novel treatment options have improved outcomes in advanced prostate cancer. However, we still lack high-level evidence in many areas relevant to making management decisions in daily clinical practise. The 2022 Advanced Prostate Cancer Consensus Conference (APCCC 2022) addressed some questions in these areas to supplement guidelines that mostly are based on level 1 evidence. OBJECTIVE To present the voting results of the APCCC 2022. DESIGN, SETTING, AND PARTICIPANTS The experts voted on controversial questions where high-level evidence is mostly lacking: locally advanced prostate cancer; biochemical recurrence after local treatment; metastatic hormone-sensitive, non-metastatic, and metastatic castration-resistant prostate cancer; oligometastatic prostate cancer; and managing side effects of hormonal therapy. A panel of 105 international prostate cancer experts voted on the consensus questions. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The panel voted on 198 pre-defined questions, which were developed by 117 voting and non-voting panel members prior to the conference following a modified Delphi process. A total of 116 questions on metastatic and/or castration-resistant prostate cancer are discussed in this manuscript. In 2022, the voting was done by a web-based survey because of COVID-19 restrictions. RESULTS AND LIMITATIONS The voting reflects the expert opinion of these panellists and did not incorporate a standard literature review or formal meta-analysis. The answer options for the consensus questions received varying degrees of support from panellists, as reflected in this article and the detailed voting results are reported in the supplementary material. We report here on topics in metastatic, hormone-sensitive prostate cancer (mHSPC), non-metastatic, castration-resistant prostate cancer (nmCRPC), metastatic castration-resistant prostate cancer (mCRPC), and oligometastatic and oligoprogressive prostate cancer. CONCLUSIONS These voting results in four specific areas from a panel of experts in advanced prostate cancer can help clinicians and patients navigate controversial areas of management for which high-level evidence is scant or conflicting and can help research funders and policy makers identify information gaps and consider what areas to explore further. However, diagnostic and treatment decisions always have to be individualised based on patient characteristics, including the extent and location of disease, prior treatment(s), co-morbidities, patient preferences, and treatment recommendations and should also incorporate current and emerging clinical evidence and logistic and economic factors. Enrolment in clinical trials is strongly encouraged. Importantly, APCCC 2022 once again identified important gaps where there is non-consensus and that merit evaluation in specifically designed trials. PATIENT SUMMARY The Advanced Prostate Cancer Consensus Conference (APCCC) provides a forum to discuss and debate current diagnostic and treatment options for patients with advanced prostate cancer. The conference aims to share the knowledge of international experts in prostate cancer with healthcare providers worldwide. At each APCCC, an expert panel votes on pre-defined questions that target the most clinically relevant areas of advanced prostate cancer treatment for which there are gaps in knowledge. The results of the voting provide a practical guide to help clinicians discuss therapeutic options with patients and their relatives as part of shared and multidisciplinary decision-making. This report focuses on the advanced setting, covering metastatic hormone-sensitive prostate cancer and both non-metastatic and metastatic castration-resistant prostate cancer. TWITTER SUMMARY Report of the results of APCCC 2022 for the following topics: mHSPC, nmCRPC, mCRPC, and oligometastatic prostate cancer. TAKE-HOME MESSAGE At APCCC 2022, clinically important questions in the management of advanced prostate cancer management were identified and discussed, and experts voted on pre-defined consensus questions. The report of the results for metastatic and/or castration-resistant prostate cancer is summarised here.
Collapse
Affiliation(s)
- Silke Gillessen
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland.
| | - Alberto Bossi
- Genitourinary Oncology, Prostate Brachytherapy Unit, Gustave Roussy, Paris, France
| | - Ian D Davis
- Monash University and Eastern Health, Victoria, Australia
| | - Johann de Bono
- The Institute of Cancer Research, London, UK; Royal Marsden Hospital, London, UK
| | - Karim Fizazi
- Institut Gustave Roussy, University of Paris Saclay, Villejuif, France
| | | | | | - Neal Shore
- Medical Director, Carolina Urologic Research Center, Myrtle Beach, SC, USA; CMO, Urology/Surgical Oncology, GenesisCare, Myrtle Beach, SC, USA
| | - Eric Small
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Matthew Smith
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Christopher J Sweeney
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
| | | | | | - Ana M Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA
| | | | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Himisha Beltran
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Pierre Blanchard
- Gustave Roussy, Département de Radiothérapie, Université Paris-Saclay, Oncostat, Inserm U-1018, F-94805, Villejuif, France
| | - Alberto Briganti
- Unit of Urology/Division of Oncology, URI, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Rob G Bristow
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Christie NHS Trust and CRUK Manchester Institute and Cancer Centre, Manchester, UK
| | - Muhammad Bulbul
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Orazio Caffo
- Department of Medical Oncology, Santa Chiara Hospital, 38122 Trento, Italy
| | - Daniel Castellano
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Elena Castro
- Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain
| | - Heather H Cheng
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kim N Chi
- BC Cancer, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Simon Chowdhury
- Guys and St Thomas's NHS Foundation Trust, London, United Kingdom
| | - Caroline S Clarke
- Research Department of Primary Care & Population Health, Royal Free Campus, University College London, London, UK
| | - Noel Clarke
- The Christie and Salford Royal Hospitals, Manchester, UK
| | - Gedske Daugaard
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maria De Santis
- Department of Urology, Charité Universitätsmedizin, Berlin, Germany; Department of Urology, Medical University of Vienna, Austria
| | - Ignacio Duran
- Department of Medical Oncology, Hospital Universitario Marques de Valdecilla, IDIVAL, Santander, Cantabria, Spain
| | - Ross Eeles
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | | | - Jason Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Onyeanunam Ngozi Ekeke
- Department of Surgery, University of Port Harcourt Teaching Hospital, Alakahia, Port Harcourt, Nigeria
| | | | - Stefano Fanti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Felix Y Feng
- University of California, San Francisco, San Francisco, CA, USA
| | - Valerie Fonteyne
- Department of Radiation-Oncology, Ghent University Hospital, Ghent, Belgium
| | - Nicola Fossati
- Department of Urology, Ospedale Regionale di Lugano, Civico USI - Università della Svizzera Italiana, Lugano, Switzerland
| | - Mark Frydenberg
- Department of Surgery, Prostate Cancer Research Program, Department of Anatomy & Developmental Biology, Faculty Nursing, Medicine & Health Sciences, Monash University, Melbourne, Australia
| | - Dan George
- Departments of Medicine and Surgery, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Martin Gleave
- Urological Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Gwenaelle Gravis
- Department of Medical Oncology, Institut Paoli Calmettes, Aix-Marseille Université, Marseille, France
| | - Susan Halabi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Daniel Heinrich
- Department of Oncology and Radiotherapy, Innlandet Hospital Trust, Gjøvik, Norway
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Celestia Higano
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Lisa G Horvath
- Chris O'Brien Lifehouse, Camperdown, NSW, Australia; Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia
| | - Maha Hussain
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Barbara A Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Department of Radiotherapy, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Rob Jones
- School of Cancer Sciences, University of Glasgow, United Kingdom
| | | | - Pirkko-Liisa Kellokumpu-Lehtinen
- Faculty of Medicine and Health Technology, Tampere University and Tampere Cancer Center, Tampere, Finland; Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
| | - Raja B Khauli
- Division of Urology and the Naef K. Basile Cancer Institute (NKBCI), American University of Beirut Medical Center, Beirut, Lebanon
| | - Laurence Klotz
- Division of Urology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Raja Leibowitz
- Oncology Institute, Shamir Medical Center, Be'er Ya'akov, Israel; Faculty of Medicine, Tel-Aviv University, Israel
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; University of Athens Alexandra Hospital, Athens, Greece
| | - Brandon Mahal
- Department of Radiation Oncology, University of Miami Sylvester Cancer Center, Miami, FL, USA
| | - Fernando Maluf
- Beneficiência Portuguesa de São Paulo, São Paulo, SP, Brasil; Departamento de Oncologia, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Joaquin Mateo
- Department of Medical Oncology and Prostate Cancer Translational Research Group. Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital, Barcelona, Spain
| | - David Matheson
- Faculty of Education, Health and Wellbeing, Walsall Campus, Walsall, UK
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Axel Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Alicia K Morgans
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Morris
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hind Mrabti
- National Institute of Oncology, Mohamed V University, Rabat, Morocco
| | - Deborah Mukherji
- Clemenceau Medical Center Dubai, United Arab Emirates, Faculty of Medicine, American University of Beirut, Lebanon
| | - Declan G Murphy
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | | | - Paul L Nguyen
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - William K Oh
- Chief, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Piet Ost
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Department of Radiation Oncology, Iridium Netwerk, Antwerp, Belgium, Ghent University, Ghent, Belgium
| | - Joe M O'Sullivan
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland Cancer Centre, Belfast City Hospital, Belfast, Northern Ireland
| | - Anwar R Padhani
- Mount Vernon Cancer Centre and Institute of Cancer Research, London, UK
| | - Carmel J Pezaro
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Darren M C Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Hong Kong; The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Danny M Rabah
- Cancer Research Chair and Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Urology, KFSHRC Riyadh, Saudi Arabia
| | - Dana Rathkopf
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Mark A Rubin
- Bern Center for Precision Medicine and Department for Biomedical Research, Bern, Switzerland
| | - Charles J Ryan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Fred Saad
- Centre Hospitalier de Université de Montréal, Montreal, Canada
| | | | | | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nima Sharifi
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA; Department of Cancer Biology, GU Malignancies Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Iwona Skoneczna
- Rafal Masztak Grochowski Hospital, Maria Sklodowska Curie National Research Institute of Oncology, Warsaw, Poland
| | - Howard Soule
- Prostate Cancer Foundation, Santa Monica, CA, USA
| | - Daniel E Spratt
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Sandy Srinivas
- Division of Medical Oncology, Stanford University Medical Center, Stanford, CA, USA
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, Division of Hematology and Oncology, Meyer Cancer Center, New York Presbyterian Hospital, New York, NY, USA
| | - Thomas Steuber
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Matthew R Sydes
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, Koc University Hospital, Istanbul, Turkey
| | - Levent Türkeri
- Department of Urology, M.A. Aydınlar Acıbadem University, Altunizade Hospital, Istanbul, Turkey
| | - Fabio Turco
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Hiroji Uemura
- Yokohama City University Medical Center, Yokohama, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yüksel Ürün
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey; Ankara University Cancer Research Institute, Ankara, Turkey
| | - Claire L Vale
- University College London, MRC Clinical Trials Unit at UCL, London, UK
| | - Inge van Oort
- Department of Urology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Neha Vapiwala
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jochen Walz
- Department of Urology, Institut Paoli-Calmettes Cancer Centre, Marseille, France
| | - Kosj Yamoah
- Department of Radiation Oncology & Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, Tampa, FL, USA
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Evan Y Yu
- Department of Medicine, Division of Oncology, University of Washington and Fred Hutchinson Cancer Center, G4-830, Seattle, WA, USA
| | - Almudena Zapatero
- Department of Radiation Oncology, Hospital Universitario de La Princesa, Health Research Institute, Madrid, Spain
| | - Thomas Zilli
- Radiation Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurelius Omlin
- Onkozentrum Zurich, University of Zurich and Tumorzentrum Hirslanden Zurich, Switzerland
| |
Collapse
|
210
|
Tu SM, Aydin AM, Maraboyina S, Chen Z, Singh S, Gokden N, Langford T. Stem Cell Origin of Cancer: Implications of Oncogenesis Recapitulating Embryogenesis in Cancer Care. Cancers (Basel) 2023; 15:cancers15092516. [PMID: 37173982 PMCID: PMC10177345 DOI: 10.3390/cancers15092516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
From this perspective, we wonder about the clinical implications of oncology recapturing ontogeny in the contexts of neoantigens, tumor biomarkers, and cancer targets. We ponder about the biological ramifications of finding remnants of mini-organs and residuals of tiny embryos in some tumors. We reminisce about classical experiments showing that the embryonic microenvironment possesses antitumorigenic properties. Ironically, a stem-ness niche-in the wrong place at the wrong time-is also an onco-niche. We marvel at the paradox of TGF-beta both as a tumor suppressor and a tumor promoter. We query about the dualism of EMT as a stem-ness trait engaged in both normal development and abnormal disease states, including various cancers. It is uncanny that during fetal development, proto-oncogenes wax, while tumor-suppressor genes wane. Similarly, during cancer development, proto-oncogenes awaken, while tumor-suppressor genes slumber. Importantly, targeting stem-like pathways has therapeutic implications because stem-ness may be the true driver, if not engine, of the malignant process. Furthermore, anti-stem-like activity elicits anti-cancer effects for a variety of cancers because stem-ness features may be a universal property of cancer. When a fetus survives and thrives despite immune surveillance and all the restraints of nature and the constraints of its niche, it is a perfect baby. Similarly, when a neoplasm survives and thrives in an otherwise healthy and immune-competent host, is it a perfect tumor? Therefore, a pertinent narrative of cancer depends on a proper perspective of cancer. If malignant cells are derived from stem cells, and both cells are intrinsically RB1 negative and TP53 null, do the absence of RB1 and loss of TP53 really matter in this whole narrative and an entirely different perspective of cancer?
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ahmet Murat Aydin
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sanjay Maraboyina
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zhongning Chen
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sunny Singh
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Timothy Langford
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
211
|
Zhou Y, Li T, Jia M, Dai R, Wang R. The Molecular Biology of Prostate Cancer Stem Cells: From the Past to the Future. Int J Mol Sci 2023; 24:ijms24087482. [PMID: 37108647 PMCID: PMC10140972 DOI: 10.3390/ijms24087482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Prostate cancer (PCa) continues to rank as the second leading cause of cancer-related mortality in western countries, despite the golden treatment using androgen deprivation therapy (ADT) or anti-androgen therapy. With decades of research, scientists have gradually realized that the existence of prostate cancer stem cells (PCSCs) successfully explains tumor recurrence, metastasis and therapeutic failure of PCa. Theoretically, eradication of this small population may improve the efficacy of current therapeutic approaches and prolong PCa survival. However, several characteristics of PCSCs make their diminishment extremely challenging: inherent resistance to anti-androgen and chemotherapy treatment, over-activation of the survival pathway, adaptation to tumor micro-environments, escape from immune attack and being easier to metastasize. For this end, a better understanding of PCSC biology at the molecular level will definitely inspire us to develop PCSC targeted approaches. In this review, we comprehensively summarize signaling pathways responsible for homeostatic regulation of PCSCs and discuss how to eliminate these fractional cells in clinical practice. Overall, this study deeply pinpoints PCSC biology at the molecular level and provides us some research perspectives.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
212
|
Liu J, Zhao Y, He D, Jones KM, Tang S, Allison DB, Zhang Y, Chen J, Zhang Q, Wang X, Li C, Wang C, Li L, Liu X. A kinome-wide CRISPR screen identifies CK1α as a target to overcome enzalutamide resistance of prostate cancer. Cell Rep Med 2023; 4:101015. [PMID: 37075701 PMCID: PMC10140619 DOI: 10.1016/j.xcrm.2023.101015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/13/2023] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
Enzalutamide (ENZA), a second-generation androgen receptor antagonist, has significantly increased progression-free and overall survival of patients with metastatic prostate cancer (PCa). However, resistance remains a prominent obstacle in treatment. Utilizing a kinome-wide CRISPR-Cas9 knockout screen, we identified casein kinase 1α (CK1α) as a therapeutic target to overcome ENZA resistance. Depletion or pharmacologic inhibition of CK1α enhanced ENZA efficacy in ENZA-resistant cells and patient-derived xenografts. Mechanistically, CK1α phosphorylates the serine residue S1270 and modulates the protein abundance of ataxia telangiectasia mutated (ATM), a primary initiator of DNA double-strand break (DSB)-response signaling, which is compromised in ENZA-resistant cells and patients. Inhibition of CK1α stabilizes ATM, resulting in the restoration of DSB signaling, and thus increases ENZA-induced cell death and growth arrest. Our study details a therapeutic approach for ENZA-resistant PCa and characterizes a particular perspective for the function of CK1α in the regulation of DNA-damage response.
Collapse
Affiliation(s)
- Jinghui Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Katelyn M Jones
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Shan Tang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Derek B Allison
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Qiongsi Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Xinyi Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Lang Li
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
213
|
Roy P, Singh KP. Epigenetic mechanism of therapeutic resistance and potential of epigenetic therapeutics in chemorefractory prostate cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:173-210. [PMID: 37657858 DOI: 10.1016/bs.ircmb.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Prostate cancer is the second leading cause of cancer death among men in the United States. Depending upon the histopathological subtypes of prostate cancers, various therapeutic options, such as androgen deprivation therapy (ADT), androgen receptor signaling inhibitors (ARSI), immunotherapy, and chemotherapy, are available to treat prostate cancer. While these therapeutics are effective in the initial stages during treatments, the tumors subsequently develop resistance to these therapies. Despite all the progress made so far, therapeutic resistance remains a major challenge in the treatment of prostate cancer. Although various mechanisms have been reported for the resistance development in prostate cancer, altered expression of genes either directly or indirectly involved in drug response pathways is a common event. In addition to the genetic basis of gene regulation such as mutations and gene amplifications, epigenetic alterations involved in the aberrant expression of genes have frequently been shown to be associated not only with cancer initiation and progression but also with therapeutic resistance development. There are several review articles compiling reports on genetic mechanisms involved in therapeutic resistance in prostate cancer. However, epigenetic mechanisms for the therapeutic resistance development in prostate cancer have not yet been summarized in a review article. Therefore, the objective of this article is to compile various reports and provide a comprehensive review of the epigenetic aberrations, and aberrant expression of genes by epigenetic mechanisms involved in CRPCs and therapeutic resistance development in prostate cancer. Additionally, the potential of epigenetic-based therapeutics in the treatment of chemorefractory prostate cancer as evidenced by clinical trials has also been discussed.
Collapse
Affiliation(s)
- Priti Roy
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
214
|
Li XF, Selli C, Zhou HL, Cao J, Wu S, Ma RY, Lu Y, Zhang CB, Xun B, Lam AD, Pang XC, Fernando A, Zhang Z, Unciti-Broceta A, Carragher NO, Ramachandran P, Henderson NC, Sun LL, Hu HY, Li GB, Sawyers C, Qian BZ. Macrophages promote anti-androgen resistance in prostate cancer bone disease. J Exp Med 2023; 220:213858. [PMID: 36749798 PMCID: PMC9948761 DOI: 10.1084/jem.20221007] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/14/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (PC) is the final stage of PC that acquires resistance to androgen deprivation therapies (ADT). Despite progresses in understanding of disease mechanisms, the specific contribution of the metastatic microenvironment to ADT resistance remains largely unknown. The current study identified that the macrophage is the major microenvironmental component of bone-metastatic PC in patients. Using a novel in vivo model, we demonstrated that macrophages were critical for enzalutamide resistance through induction of a wound-healing-like response of ECM-receptor gene expression. Mechanistically, macrophages drove resistance through cytokine activin A that induced fibronectin (FN1)-integrin alpha 5 (ITGA5)-tyrosine kinase Src (SRC) signaling cascade in PC cells. This novel mechanism was strongly supported by bioinformatics analysis of patient transcriptomics datasets. Furthermore, macrophage depletion or SRC inhibition using a novel specific inhibitor significantly inhibited resistant growth. Together, our findings elucidated a novel mechanism of macrophage-induced anti-androgen resistance of metastatic PC and a promising therapeutic approach to treat this deadly disease.
Collapse
Affiliation(s)
- Xue-Feng Li
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Cigdem Selli
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Han-Lin Zhou
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- BGI-Shenzhen, Shenzhen, China
- BGI-Henan, BGI-Shenzhen, Xinxiang, China
| | - Jian Cao
- Department of Urology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya Medicine School, Central South University, Changsha, China
| | - Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruo-Yu Ma
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Ye Lu
- BGI-Shenzhen, Shenzhen, China
- BGI-Henan, BGI-Shenzhen, Xinxiang, China
| | - Cheng-Bin Zhang
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Bijie Xun
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Alyson D. Lam
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Xiao-Cong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Anu Fernando
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Zeda Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Neil O. Carragher
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Prakash Ramachandran
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neil C. Henderson
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ling-Ling Sun
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hai-Yan Hu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Gui-Bo Li
- BGI-Shenzhen, Shenzhen, China
- BGI-Henan, BGI-Shenzhen, Xinxiang, China
| | - Charles Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Charles Sawyers:
| | - Bin-Zhi Qian
- Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Correspondence to Bin-Zhi Qian:
| |
Collapse
|
215
|
Ding LN, Yu YY, Ma CJ, Lei CJ, Zhang HB. SOX2-associated signaling pathways regulate biological phenotypes of cancers. Biomed Pharmacother 2023; 160:114336. [PMID: 36738502 DOI: 10.1016/j.biopha.2023.114336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
SOX2 is a transcription factor involved in multiple stages of embryonic development. In related reports, SOX2 was found to be abnormally expressed in tumor tissues and correlated with clinical features such as TNM staging, tumor grade, and prognosis in patients with various cancer types. In most cancer types, SOX2 is a tumor-promoting factor that regulates tumor progression and metastasis primarily by maintaining the stemness of cancer cells. In addition, SOX2 also regulates the proliferation, apoptosis, invasion, migration, ferroptosis and drug resistance of cancer cells. However, SOX2 acts as a tumor suppressor in some cases in certain cancer types, such as gastric and lung cancer. These key regulatory functions of SOX2 involve complex regulatory networks, including protein-protein and protein-nucleic acid interactions through signaling pathways and noncoding RNA interactions, modulating SOX2 expression may be a potential therapeutic strategy for clinical cancer patients. Therefore, we sorted out the phenotypes related to SOX2 in cancer, hoping to provide a basis for further clinical translation.
Collapse
Affiliation(s)
- L N Ding
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Y Y Yu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - C J Ma
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - C J Lei
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - H B Zhang
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
216
|
Bae SY, Bergom HE, Day A, Greene JT, Sychev ZE, Larson G, Corey E, Plymate SR, Freedman TS, Hwang JH, Drake JM. ZBTB7A as a novel vulnerability in neuroendocrine prostate cancer. Front Endocrinol (Lausanne) 2023; 14:1093332. [PMID: 37065756 PMCID: PMC10090553 DOI: 10.3389/fendo.2023.1093332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/08/2023] [Indexed: 03/31/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer. NEPC is characterized by the loss of androgen receptor (AR) signaling and transdifferentiation toward small-cell neuroendocrine (SCN) phenotypes, which results in resistance to AR-targeted therapy. NEPC resembles other SCN carcinomas clinically, histologically and in gene expression. Here, we leveraged SCN phenotype scores of various cancer cell lines and gene depletion screens from the Cancer Dependency Map (DepMap) to identify vulnerabilities in NEPC. We discovered ZBTB7A, a transcription factor, as a candidate promoting the progression of NEPC. Cancer cells with high SCN phenotype scores showed a strong dependency on RET kinase activity with a high correlation between RET and ZBTB7A dependencies in these cells. Utilizing informatic modeling of whole transcriptome sequencing data from patient samples, we identified distinct gene networking patterns of ZBTB7A in NEPC versus prostate adenocarcinoma. Specifically, we observed a robust association of ZBTB7A with genes promoting cell cycle progression, including apoptosis regulating genes. Silencing ZBTB7A in a NEPC cell line confirmed the dependency on ZBTB7A for cell growth via suppression of the G1/S transition in the cell cycle and induction of apoptosis. Collectively, our results highlight the oncogenic function of ZBTB7A in NEPC and emphasize the value of ZBTB7A as a promising therapeutic strategy for targeting NEPC tumors.
Collapse
Affiliation(s)
- Song Yi Bae
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| | - Hannah E. Bergom
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Abderrahman Day
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| | - Joseph T. Greene
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| | - Zoi E. Sychev
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| | - Gabrianne Larson
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Stephen R. Plymate
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, United States
- Geriatric Research, Education, and Clinical Center, Veterans Affairs (VA) Puget Sound Health Care System, Seattle, WA, United States
| | - Tanya S. Freedman
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Justin H. Hwang
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Justin M. Drake
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Department of Urology, University of Washington, Seattle, WA, United States
- Department of Urology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
217
|
Han S, Shi T, Liao Y, Chen D, Yang F, Wang M, Ma J, Li H, Xu Y, Zhu T, Chen W, Wang G, Han Y, Xu C, Wang W, Cai S, Zhang X, Xing N. Tumor immune contexture predicts recurrence after prostatectomy and efficacy of androgen deprivation and immunotherapy in prostate cancer. J Transl Med 2023; 21:194. [PMID: 36918939 PMCID: PMC10012744 DOI: 10.1186/s12967-022-03827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/11/2022] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Prostate cancer is one of the most common cancers in men with notable interpatient heterogeneity. Implications of the immune microenvironment in predicting the biochemical recurrence-free survival (BCRFS) after radical prostatectomy and the efficacy of systemic therapies in prostate cancer remain ambiguous. METHODS The tumor immune contexture score (TICS) involving eight immune contexture-related signatures was developed using seven cohorts of 1120 patients treated with radical prostatectomy (training: GSE46602, GSE54460, GSE70769, and GSE94767; validation: GSE70768, DKFZ2018, and TCGA). The association between the TICS and treatment efficacy was investigated in GSE111177 (androgen deprivation therapy [ADT]) and EGAS00001004050 (ipilimumab). RESULTS A high TICS was associated with prolonged BCRFS after radical prostatectomy in the training (HR = 0.32, 95% CI 0.24-0.45, P < 0.001) and the validation cohorts (HR = 0.45, 95% CI 0.32-0.62, P < 0.001). The TICS showed stable prognostic power independent of tumor stage, surgical margin, pre-treatment prostatic specific antigen (PSA), and Gleason score (multivariable HR = 0.50, 95% CI 0.39-0.63, P < 0.001). Adding the TICS into the prognostic model constructed using clinicopathological features significantly improved its 1/2/3/4/5-year area under curve (P < 0.05). A low TICS was associated with high homologous recombination deficiency scores, abnormally activated pathways concerning DNA replication, cell cycle, steroid hormone biosynthesis, and drug metabolism, and fewer tumor-infiltrating immune cells (P < 0.05). The patients with a high TICS had favorable BCRFS with ADT (HR = 0.25, 95% CI 0.06-0.99, P = 0.034) or ipilimumab monotherapy (HR = 0.23, 95% CI 0.06-0.81, P = 0.012). CONCLUSIONS Our study delineates the associations of tumor immune contexture with molecular features, recurrence after radical prostatectomy, and the efficacy of ADT and immunotherapy. The TICS may improve the existing risk stratification systems and serve as a patient-selection tool for ADT and immunotherapy in prostate cancer.
Collapse
Affiliation(s)
- Sujun Han
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Taoping Shi
- Department of Urology, Chinese PLA General Hospital, No 28 Fuxing Road, Beijing, 100853, China
| | - Yuchen Liao
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mingshuai Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jing Ma
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Hu Li
- Department of Urology, Shanxian Central Hospital of Shandong Province, Heze, 274300, Shandong, China
| | - Yu Xu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Tengfei Zhu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Wenxi Chen
- Burning Rock Biotech, Guangzhou, 510300, China
| | | | - Yusheng Han
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, No 28 Fuxing Road, Beijing, 100853, China.
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
218
|
Chen L, Ji Y, Li A, Liu B, Shen K, Su R, Ma Z, Zhang W, Wang Q, Zhu Y, Xue W. High-throughput drug screening identifies fluoxetine as a potential therapeutic agent for neuroendocrine prostate cancer. Front Oncol 2023; 13:1085569. [PMID: 36994207 PMCID: PMC10042075 DOI: 10.3389/fonc.2023.1085569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionNeuroendocrine prostate cancer (NEPC) is an aggressive subtype of prostate cancer with poor prognosis and resistance to hormone therapy, which has limited therapeutic approaches. Therefore, this study aimed to identify a novel treatment for NEPC and provide evidence of its inhibitory effects.MethodsWe performed a high-throughput drug screening and identified fluoxetine, originally an FDA-approved antidepressant, as candidate therapeutic agent for NEPC. We carried out both in vitro and in vivo experiments to demonstrate the inhibitory effects of fluoxetine on NEPC models and its mechanism in detail.ResultsOur results demonstrated that fluoxetine effectively curbed the neuroendocrine differentiation and inhibited cell viability by targeting the AKT pathway. Preclinical test in NEPC mice model (PBCre4: Ptenf/f; Trp53f/f; Rb1f/f) showed that fluoxetine effectively prolonged the overall survival and reduced the risk of tumor distant metastases.DiscussionThis work repurposed fluoxetine for antitumor application, and supported its clinical development for NEPC therapy, which may provide a promising therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qi Wang
- *Correspondence: Qi Wang, ; Yinjie Zhu,
| | | | | |
Collapse
|
219
|
Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, Wang W, Chen ZS, Han CH. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther 2023; 8:113. [PMID: 36906600 PMCID: PMC10008648 DOI: 10.1038/s41392-023-01383-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jia-Xin Qin
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Medical College, Southeast University, Nanjing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China. .,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
220
|
Ramesh S, Selvakumar P, Ameer MY, Lian S, Abdullah Alzarooni AIM, Ojha S, Mishra A, Tiwari A, Kaushik A, Jung YD, Chouaib S, Lakshmanan VK. State-of-the-art therapeutic strategies for targeting cancer stem cells in prostate cancer. Front Oncol 2023; 13:1059441. [PMID: 36969009 PMCID: PMC10035756 DOI: 10.3389/fonc.2023.1059441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
The development of new therapeutic strategies is on the increase for prostate cancer stem cells, owing to current standardized therapies for prostate cancer, including chemotherapy, androgen deprivation therapy (ADT), radiotherapy, and surgery, often failing because of tumor relapse ability. Ultimately, tumor relapse develops into advanced castration-resistant prostate cancer (CRPC), which becomes an irreversible and systemic disease. Hence, early identification of the intracellular components and molecular networks that promote prostate cancer is crucial for disease management and therapeutic intervention. One of the potential therapeutic methods for aggressive prostate cancer is to target prostate cancer stem cells (PCSCs), which appear to be a primary focal point of cancer metastasis and recurrence and are resistant to standardized therapies. PCSCs have also been documented to play a major role in regulating tumorigenesis, sphere formation, and the metastasis ability of prostate cancer with their stemness features. Therefore, the current review highlights the origin and identification of PCSCs and their role in anti-androgen resistance, as well as stemness-related signaling pathways. In addition, the review focuses on the current advanced therapeutic strategies for targeting PCSCs that are helping to prevent prostate cancer initiation and progression, such as microRNAs (miRNAs), nanotechnology, chemotherapy, immunotherapy, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing system, and photothermal ablation (PTA) therapy.
Collapse
Affiliation(s)
- Saravanan Ramesh
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Preethi Selvakumar
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Mohamed Yazeer Ameer
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | | | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anshuman Mishra
- Translational Research & Sustainable Healthcare Management, Institute of Advanced Materials, IAAM, Ulrika, Sweden
| | - Ashutosh Tiwari
- Translational Research & Sustainable Healthcare Management, Institute of Advanced Materials, IAAM, Ulrika, Sweden
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, United States
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, India
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Equipe Labellisée par la Ligue Contre le Cancer, EPHE, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Vinoth-Kumar Lakshmanan
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
- Translational Research & Sustainable Healthcare Management, Institute of Advanced Materials, IAAM, Ulrika, Sweden
- *Correspondence: Vinoth-Kumar Lakshmanan,
| |
Collapse
|
221
|
Wu Y, Clark KC, Niranjan B, Chüeh AC, Horvath LG, Taylor RA, Daly RJ. Integrative characterisation of secreted factors involved in intercellular communication between prostate epithelial or cancer cells and fibroblasts. Mol Oncol 2023; 17:469-486. [PMID: 36608258 PMCID: PMC9980303 DOI: 10.1002/1878-0261.13376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Reciprocal interactions between prostate cancer cells and carcinoma-associated fibroblasts (CAFs) mediate cancer development and progression; however, our understanding of the signalling pathways mediating these cellular interactions remains incomplete. To address this, we defined secretome changes upon co-culture of prostate epithelial or cancer cells with fibroblasts that mimic bi-directional communication in tumours. Using antibody arrays, we profiled conditioned media from mono- and co-cultures of prostate fibroblasts, epithelial and cancer cells, identifying secreted proteins that are upregulated in co-culture compared to mono-culture. Six of these (CXCL10, CXCL16, CXCL6, FST, PDGFAA, IL-17B) were functionally screened by siRNA knockdown in prostate cancer cell/fibroblast co-cultures, revealing a key role for follistatin (FST), a secreted glycoprotein that binds and bioneutralises specific members of the TGF-β superfamily, including activin A. Expression of FST by both cell types was required for the fibroblasts to enhance prostate cancer cell proliferation and migration, whereas FST knockdown in co-culture grafts decreased tumour growth in mouse xenografts. This study highlights the complexity of prostate cancer cell-fibroblast communication, demonstrates that co-culture secretomes cannot be predicted from individual cultures, and identifies FST as a tumour-microenvironment-derived secreted factor that represents a candidate therapeutic target.
Collapse
Affiliation(s)
- Yunjian Wu
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Kimberley C. Clark
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Birunthi Niranjan
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoriaAustralia
| | - Anderly C. Chüeh
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Lisa G. Horvath
- Garvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
- University of SydneyNew South WalesAustralia
- Chris O'Brien LifehouseSydneyNew South WalesAustralia
| | - Renea A. Taylor
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
- Cancer Research Division, Peter MacCallum Cancer CentreThe University of MelbourneVictoriaAustralia
| | - Roger J. Daly
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
222
|
Liang S, Wang Q, Wen Y, Wang Y, Li M, Wang Q, Peng J, Guo L. Ligand-independent EphA2 contributes to chemoresistance in small-cell lung cancer by enhancing PRMT1-mediated SOX2 methylation. Cancer Sci 2023; 114:921-936. [PMID: 36377249 PMCID: PMC9986087 DOI: 10.1111/cas.15653] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Chemoresistance is the crux of clinical treatment failure of small-cell lung cancer (SCLC). Cancer stem cells play a critical role in therapeutic resistance of malignant tumors. Studies have shown that the role of erythropoietin-producing hepatocellular A2 (EphA2) in tumors is complex. This study aimed to test the hypothesis that ligand-independent activation of EphA2 modulates chemoresistance by enhancing stemness in SCLC. We verified that EphA2 was activated in chemoresistance sublines in a ligand-independent manner rather than a ligand-dependent manner. Ligand-independent EphA2 enhanced the expression of stemness-associated biomarkers (CD44, Myc, and SOX2), accelerated epithelial-mesenchymal transition (EMT) and reinforced self-renewal to drive the chemoresistance of SCLC, while the P817H mutant EphA2 neutralized intrinsic function. Co-immunoprecipitation (co-IP) and GST-pull down experiments were conducted to verify that EphA2 directly interacted with PRMT1. Moreover, EphA2 increased the expression and activity of PRMT1. Whereafter, PRMT1 interacted with and methylated SOX2 to induce stemness and chemoresistance in SCLC. Pharmacological inhibition of EphA2 showed a synergistic anti-tumor effect with chemotherapy in preclinical models, including patient-derived xenograft (PDX) models. These findings highlight, for the first time, that the EphA2/PRMT1/SOX2 pathway induces chemoresistance in SCLC by promoting stemness. EphA2 is a potential therapeutic target in SCLC treatment.
Collapse
Affiliation(s)
- Shumei Liang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiuping Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yang Wen
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yu Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Man Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiongyao Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
223
|
De Sarkar N, Patton RD, Doebley AL, Hanratty B, Adil M, Kreitzman AJ, Sarthy JF, Ko M, Brahma S, Meers MP, Janssens DH, Ang LS, Coleman IM, Bose A, Dumpit RF, Lucas JM, Nunez TA, Nguyen HM, McClure HM, Pritchard CC, Schweizer MT, Morrissey C, Choudhury AD, Baca SC, Berchuck JE, Freedman ML, Ahmad K, Haffner MC, Montgomery RB, Corey E, Henikoff S, Nelson PS, Ha G. Nucleosome Patterns in Circulating Tumor DNA Reveal Transcriptional Regulation of Advanced Prostate Cancer Phenotypes. Cancer Discov 2023; 13:632-653. [PMID: 36399432 PMCID: PMC9976992 DOI: 10.1158/2159-8290.cd-22-0692] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/01/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Advanced prostate cancers comprise distinct phenotypes, but tumor classification remains clinically challenging. Here, we harnessed circulating tumor DNA (ctDNA) to study tumor phenotypes by ascertaining nucleosome positioning patterns associated with transcription regulation. We sequenced plasma ctDNA whole genomes from patient-derived xenografts representing a spectrum of androgen receptor active (ARPC) and neuroendocrine (NEPC) prostate cancers. Nucleosome patterns associated with transcriptional activity were reflected in ctDNA at regions of genes, promoters, histone modifications, transcription factor binding, and accessible chromatin. We identified the activity of key phenotype-defining transcriptional regulators from ctDNA, including AR, ASCL1, HOXB13, HNF4G, and GATA2. To distinguish NEPC and ARPC in patient plasma samples, we developed prediction models that achieved accuracies of 97% for dominant phenotypes and 87% for mixed clinical phenotypes. Although phenotype classification is typically assessed by IHC or transcriptome profiling from tumor biopsies, we demonstrate that ctDNA provides comparable results with diagnostic advantages for precision oncology. SIGNIFICANCE This study provides insights into the dynamics of nucleosome positioning and gene regulation associated with cancer phenotypes that can be ascertained from ctDNA. New methods for classification in phenotype mixtures extend the utility of ctDNA beyond assessments of somatic DNA alterations with important implications for molecular classification and precision oncology. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Navonil De Sarkar
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Pathology and Prostate Cancer Center of Excellence, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert D. Patton
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Anna-Lisa Doebley
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington
- Medical Scientist Training Program, University of Washington, Seattle, Washington
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Mohamed Adil
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Adam J. Kreitzman
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jay F. Sarthy
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Minjeong Ko
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sandipan Brahma
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Michael P. Meers
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Derek H. Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Lisa S. Ang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Arnab Bose
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ruth F. Dumpit
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jared M. Lucas
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Talina A. Nunez
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Holly M. Nguyen
- Department of Urology, University of Washington, Seattle, Washington
| | | | - Colin C. Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Michael T. Schweizer
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Atish D. Choudhury
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sylvan C. Baca
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Matthew L. Freedman
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kami Ahmad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Michael C. Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - R. Bruce Montgomery
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Urology, University of Washington, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Corresponding Authors: Gavin Ha, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-2802; E-mail: ; and Peter S. Nelson, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-3377; E-mail:
| | - Gavin Ha
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
- Corresponding Authors: Gavin Ha, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-2802; E-mail: ; and Peter S. Nelson, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-3377; E-mail:
| |
Collapse
|
224
|
Abdulfatah E, Fine SW, Lotan TL, Mehra R. Reprint of: de novo neuroendocrine features in prostate cancer. Hum Pathol 2023; 133:115-125. [PMID: 36894369 DOI: 10.1016/j.humpath.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 03/09/2023]
Abstract
Neuroendocrine tumors of the prostate are rare and encompass a group of entities that are classified based on a combination of morphological and immunohistochemical features. Despite the 2016 World Health Organization classification of prostatic neuroendocrine tumors, variants have been reported that do not fit well in the categorization scheme. While the majority of these tumors arise in the setting of castration-resistant prostate cancer (postandrogen deprivation therapy), de novo cases may occur. In this review, we highlight the most significant pathological and immunohistochemical features, emerging biomarkers, and molecular features of such tumors.
Collapse
Affiliation(s)
- Eman Abdulfatah
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21211, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA; Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, 48109, USA; Michigan Center for Translational Pathology, Ann Arbor, MI, 48104, USA.
| |
Collapse
|
225
|
Zhang L, Liu C, Zhang B, Zheng J, Singh PK, Bshara W, Wang J, Gomez EC, Zhang X, Wang Y, Zhu X, Goodrich DW. PTEN Loss Expands the Histopathologic Diversity and Lineage Plasticity of Lung Cancers Initiated by Rb1/Trp53 Deletion. J Thorac Oncol 2023; 18:324-338. [PMID: 36473627 PMCID: PMC9974779 DOI: 10.1016/j.jtho.2022.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION High-grade neuroendocrine tumors of the lung such as SCLC are recalcitrant cancers for which more effective systemic therapies are needed. Despite their histopathologic and molecular heterogeneity, they are generally treated as a single disease entity with similar chemotherapy regimens. Whereas marked clinical responses can be observed, they are short-lived. Inter- and intratumoral heterogeneity is considered a confounding factor in these unsatisfactory clinical outcomes, yet the origin of this heterogeneity and its impact on therapeutic responses is not well understood. METHODS New genetically engineered mouse models are used to test the effects of PTEN loss on the development of lung tumors initiated by Rb1 and Trp53 tumor suppressor gene deletion. RESULTS Complete PTEN loss drives more rapid tumor development with a greater diversity of tumor histopathology ranging from adenocarcinoma to SCLC. PTEN loss also drives transcriptional heterogeneity as marked lineage plasticity is observed within histopathologic subtypes. Spatial profiling indicates transcriptional heterogeneity exists both within and among tumor foci with transcriptional patterns correlating with spatial position, implying that the growth environment influences gene expression. CONCLUSIONS These results identify PTEN loss as a clinically relevant genetic alteration driving the molecular and histopathologic heterogeneity of neuroendocrine lung tumors initiated by Rb1/Trp53 mutations.
Collapse
Affiliation(s)
- Letian Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Congrong Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, People's Republic of China
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, People's Republic of China
| | - Jie Zheng
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, People's Republic of China
| | - Prashant K Singh
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Xiaojing Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Yanqing Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Xiang Zhu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, People's Republic of China
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
226
|
Tímár J, Honn KV, Hendrix MJC, Marko-Varga G, Jalkanen S. Newly identified form of phenotypic plasticity of cancer: immunogenic mimicry. Cancer Metastasis Rev 2023; 42:323-334. [PMID: 36754910 PMCID: PMC10014767 DOI: 10.1007/s10555-023-10087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Cancer plasticity is now a recognized new hallmark of cancer which is due to disturbances of cell differentiation programs. It is manifested not only in various forms like the best-known epithelial-mesenchymal transition (EMT) but also in vasculogenic and megakaryocytic mimicries regulated by EMT-specific or less-specific transcription factors such as HIF1a or STAT1/2. Studies in the past decades provided ample data that cancer plasticity can be manifested also in the expression of a vast array of immune cell genes; best-known examples are PDL1/CD274, CD47, or IDO, and we termed it immunogenic mimicry (IGM). However, unlike other types of plasticities which are epigenetically regulated, expression of IGM genes are frequently due to gene amplifications. It is important that the majority of the IGM genes are regulated by interferons (IFNs) suggesting that their protein expressions are regulated by the immune microenvironment. Most of the IGM genes have been shown to be involved in immune escape of cancers broadening the repertoire of these mechanisms and offering novel targets for immunotherapeutics.
Collapse
Affiliation(s)
- József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
| | - Kenneth V Honn
- Departments of Pathology, Oncology and Chemistry, Wayne State University, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Mary J C Hendrix
- Department of Biology, Shepherd University, Shepherdstown, WV, USA
| | - György Marko-Varga
- Clinical Protein Science and Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Sirpa Jalkanen
- Medicity Research Laboratories, Turku, Finland.,InFLAMES Flagship, University of Turku, Turku, Finland
| |
Collapse
|
227
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
228
|
He Y, Ji Z, Gong Y, Fan L, Xu P, Chen X, Miao J, Zhang K, Zhang W, Ma P, Zhao H, Cheng C, Wang D, Wang J, Jing N, Liu K, Zhang P, Dong B, Zhuang G, Fu Y, Xue W, Gao WQ, Zhu HH. Numb/Parkin-directed mitochondrial fitness governs cancer cell fate via metabolic regulation of histone lactylation. Cell Rep 2023; 42:112033. [PMID: 36724072 DOI: 10.1016/j.celrep.2023.112033] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/30/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
Cell plasticity and neuroendocrine differentiation in prostate and lung adenocarcinomas are one of the major reasons for therapeutic resistance to targeted therapy. Whether and how metabolic changes contribute to this adenocarcinoma-to-neuroendocrine cell fate transition remains largely unclear. Here we show that neuroendocrine prostate or lung cancer cells possess mostly fragmented mitochondria with low membrane potential and rely on glycolysis for energy metabolism. We further show an important role of the cell fate determinant Numb in mitochondrial quality control via binding to Parkin and facilitating Parkin-mediated mitophagy. Deficiency in the Numb/Parkin pathway in prostate or lung adenocarcinomas causes a metabolic reprogramming featured with a significant increase in production of lactate acid, which subsequently leads to an upregulation of histone lactylation and transcription of neuroendocrine-associated genes. Collectively, the Numb/Parkin-directed mitochondrial fitness is a key metabolic switch and a promising therapeutic target on cancer cell plasticity through the regulation of histone lactylation.
Collapse
Affiliation(s)
- Yuman He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Yiming Gong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Liancheng Fan
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Penghui Xu
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Juju Miao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Kai Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Wentian Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Pengfei Ma
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Huifang Zhao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Chaping Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Deng Wang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Na Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China; School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kaiyuan Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Baijun Dong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Yujie Fu
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xue
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China; School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China.
| |
Collapse
|
229
|
Luo F, Tshering LF, Tutuska K, Szenk M, Rubel D, Rail JG, Russ S, Liu J, Nemajerova A, Balázsi G, Talos F. A luminal intermediate cell state maintains long-term prostate homeostasis and contributes to tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529762. [PMID: 36909551 PMCID: PMC10002646 DOI: 10.1101/2023.02.24.529762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Cellular heterogeneity poses tremendous challenges for developing cell-targeted therapies and biomarkers of clinically significant prostate cancer. The origins of this heterogeneity within normal adult and aging tissue remain unknown, leaving cellular states and transcriptional programs that allow expansions of malignant clones unidentified. To define cell states that contribute to early cancer development, we performed clonal analyses and single cell transcriptomics of normal prostate from genetically-engineered mouse models. We uncovered a luminal transcriptional state with a unique "basal-like" Wnt/p63 signaling ( luminal intermediate , LumI) which contributes to the maintenance of long-term prostate homeostasis. Moreover, LumI cells greatly expand during early stages of tumorigenesis in several mouse models of prostate cancer. Genetic ablation of p63 in vivo in luminal cells reduced the formation of aggressive clones in mouse prostate tumor models. Finally, the LumI cells and Wnt signaling appear to significantly increase in human aging prostate and prostate cancer samples, highlighting the importance of this hybrid cell state for human pathologies with potential translational impact.
Collapse
|
230
|
Jindal R, Nanda A, Pillai M, Ware KE, Singh D, Sehgal M, Armstrong AJ, Somarelli JA, Jolly MK. Emergent dynamics of underlying regulatory network links EMT and androgen receptor-dependent resistance in prostate cancer. Comput Struct Biotechnol J 2023; 21:1498-1509. [PMID: 36851919 PMCID: PMC9957767 DOI: 10.1016/j.csbj.2023.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Advanced prostate cancer patients initially respond to hormone therapy, be it in the form of androgen deprivation therapy or second-generation hormone therapies, such as abiraterone acetate or enzalutamide. However, most men with prostate cancer eventually develop hormone therapy resistance. This resistance can arise through multiple mechanisms, such as through genetic mutations, epigenetic mechanisms, or through non-genetic pathways, such as lineage plasticity along epithelial-mesenchymal or neuroendocrine-like axes. These mechanisms of hormone therapy resistance often co-exist within a single patient's tumor and can overlap within a single cell. There exists a growing need to better understand how phenotypic heterogeneity and plasticity results from emergent dynamics of the regulatory networks governing androgen independence. Here, we investigated the dynamics of a regulatory network connecting the drivers of androgen receptor (AR) splice variant-mediated androgen independence and those of epithelial-mesenchymal transition. Model simulations for this network revealed four possible phenotypes: epithelial-sensitive (ES), epithelial-resistant (ER), mesenchymal-resistant (MR) and mesenchymal-sensitive (MS), with the latter phenotype occurring rarely. We observed that well-coordinated "teams" of regulators working antagonistically within the network enable these phenotypes. These model predictions are supported by multiple transcriptomic datasets both at single-cell and bulk levels, including in vitro EMT induction models and clinical samples. Further, our simulations reveal spontaneous stochastic switching between the ES and MR states. Addition of the immune checkpoint molecule, PD-L1, to the network was able to capture the interactions between AR, PD-L1, and the mesenchymal marker SNAIL, which was also confirmed through quantitative experiments. This systems-level understanding of the driver of androgen independence and EMT could aid in understanding non-genetic transitions and progression of such cancers and help in identifying novel therapeutic strategies or targets.
Collapse
Affiliation(s)
- Rashi Jindal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Abheepsa Nanda
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Maalavika Pillai
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Kathryn E. Ware
- Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC 27710, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Manas Sehgal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Andrew J. Armstrong
- Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jason A. Somarelli
- Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC 27710, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
231
|
Singh A, Saint-Antoine M. Probing transient memory of cellular states using single-cell lineages. Front Microbiol 2023; 13:1050516. [PMID: 36824587 PMCID: PMC9942930 DOI: 10.3389/fmicb.2022.1050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023] Open
Abstract
The inherent stochasticity in the gene product levels can drive single cells within an isoclonal population to different phenotypic states. The dynamic nature of this intercellular variation, where individual cells can transition between different states over time, makes it a particularly hard phenomenon to characterize. We reviewed recent progress in leveraging the classical Luria-Delbrück experiment to infer the transient heritability of the cellular states. Similar to the original experiment, individual cells were first grown into cell colonies, and then, the fraction of cells residing in different states was assayed for each colony. We discuss modeling approaches for capturing dynamic state transitions in a growing cell population and highlight formulas that identify the kinetics of state switching from the extent of colony-to-colony fluctuations. The utility of this method in identifying multi-generational memory of the both expression and phenotypic states is illustrated across diverse biological systems from cancer drug resistance, reactivation of human viruses, and cellular immune responses. In summary, this fluctuation-based methodology provides a powerful approach for elucidating cell-state transitions from a single time point measurement, which is particularly relevant in situations where measurements lead to cell death (as in single-cell RNA-seq or drug treatment) or cause an irreversible change in cell physiology.
Collapse
Affiliation(s)
- Abhyudai Singh
- Departments of Electrical and Computer Engineering, Biomedical Engineering, Mathematical Sciences University of Delaware, Newark, DE, United States
| | | |
Collapse
|
232
|
Vasciaveo A, Arriaga JM, de Almeida FN, Zou M, Douglass EF, Picech F, Shibata M, Rodriguez-Calero A, de Brot S, Mitrofanova A, Chua CW, Karan C, Realubit R, Pampou S, Kim JY, Afari SN, Mukhammadov T, Zanella L, Corey E, Alvarez MJ, Rubin MA, Shen MM, Califano A, Abate-Shen C. OncoLoop: A Network-Based Precision Cancer Medicine Framework. Cancer Discov 2023; 13:386-409. [PMID: 36374194 PMCID: PMC9905319 DOI: 10.1158/2159-8290.cd-22-0342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/22/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Prioritizing treatments for individual patients with cancer remains challenging, and performing coclinical studies using patient-derived models in real time is often unfeasible. To circumvent these challenges, we introduce OncoLoop, a precision medicine framework that predicts drug sensitivity in human tumors and their preexisting high-fidelity (cognate) model(s) by leveraging drug perturbation profiles. As a proof of concept, we applied OncoLoop to prostate cancer using genetically engineered mouse models (GEMM) that recapitulate a broad spectrum of disease states, including castration-resistant, metastatic, and neuroendocrine prostate cancer. Interrogation of human prostate cancer cohorts by Master Regulator (MR) conservation analysis revealed that most patients with advanced prostate cancer were represented by at least one cognate GEMM-derived tumor (GEMM-DT). Drugs predicted to invert MR activity in patients and their cognate GEMM-DTs were successfully validated in allograft, syngeneic, and patient-derived xenograft (PDX) models of tumors and metastasis. Furthermore, OncoLoop-predicted drugs enhanced the efficacy of clinically relevant drugs, namely, the PD-1 inhibitor nivolumab and the AR inhibitor enzalutamide. SIGNIFICANCE OncoLoop is a transcriptomic-based experimental and computational framework that can support rapid-turnaround coclinical studies to identify and validate drugs for individual patients, which can then be readily adapted to clinical practice. This framework should be applicable in many cancer contexts for which appropriate models and drug perturbation data are available. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Alessandro Vasciaveo
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Juan Martín Arriaga
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Francisca Nunes de Almeida
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Min Zou
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Eugene F. Douglass
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Florencia Picech
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Maho Shibata
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Antonio Rodriguez-Calero
- Department for Biomedical Research, University of Bern, Bern, Switzerland 3008
- Institute of Pathology, University of Bern and Inselspital, Bern, Switzerland 3008
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Switzerland 3012
| | - Antonina Mitrofanova
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Chee Wai Chua
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Charles Karan
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Ronald Realubit
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Sergey Pampou
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Jaime Y. Kim
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Stephanie N. Afari
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Timur Mukhammadov
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Luca Zanella
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA USA 98195
| | - Mariano J. Alvarez
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- DarwinHealth Inc, New York, NY
| | - Mark A. Rubin
- Department for Biomedical Research, University of Bern, Bern, Switzerland 3008
- Bern Center for Precision Medicine (BCPM) Bern, Switzerland 3008
| | - Michael M. Shen
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
| | - Andrea Califano
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Cory Abate-Shen
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA 10032
| |
Collapse
|
233
|
Epigenetic mechanisms underlying subtype heterogeneity and tumor recurrence in prostate cancer. Nat Commun 2023; 14:567. [PMID: 36732329 PMCID: PMC9895058 DOI: 10.1038/s41467-023-36253-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
|
234
|
Fan L, Gong Y, He Y, Gao WQ, Dong X, Dong B, Zhu HH, Xue W. TRIM59 is suppressed by androgen receptor and acts to promote lineage plasticity and treatment-induced neuroendocrine differentiation in prostate cancer. Oncogene 2023; 42:559-571. [PMID: 36544044 DOI: 10.1038/s41388-022-02498-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022]
Abstract
The incidence of treatment-induced neuroendocrine prostate cancer (t-NEPC) has been greatly increasing after the usage of secondgeneration androgen receptor (AR) pathway inhibitors (ARPIs). Neuroendocrine differentiation (NED) is closely associated with ARPI treatment failure and poor prognosis in prostate cancer (PCa) patients. However, the molecular mechanisms of NED are not fully understood. Here we report that upregulation of TRIM59, a TRIM family protein, is strongly correlated with ARPI treatment mediated NED and shorter patient survival in PCas. AR binds to TRIM59 promoter and represses its transcription. ARPI treatment leads to a reversal of repressive epigenetic modifications on TRIM59 gene and the transcriptional restraint on TRIM59 by AR. Upregulated TRIM59 then drives the NED of PCa by enhancing the degradation of RB1 and P53 and upregulating downstream lineage plasticity-promoting transcription factor SOX2. Altogether, TRIM59 is negatively regulated by AR and acts as a key driver for NED in PCas. Our study provides a novel prognostic marker for PCas and shed new light on the molecular pathogenesis of t-NEPC, a deadly variant of PCa.
Collapse
Affiliation(s)
- Liancheng Fan
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yiming Gong
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuman He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center & Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center & Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xuesen Dong
- Department of Urological Sciences, Vancouver Prostate Cancer Centre, University of BC, Vancouver, BC, V6H 3Z6, Canada
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Helen He Zhu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China. .,State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center & Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
235
|
Dianat-Moghadam H, Sharifi M, Salehi R, Keshavarz M, Shahgolzari M, Amoozgar Z. Engaging stemness improves cancer immunotherapy. Cancer Lett 2023; 554:216007. [PMID: 36396102 DOI: 10.1016/j.canlet.2022.216007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Intra-tumoral immune cells promote the stemness of cancer stem cells (CSCs) in the tumor microenvironment (TME). CSCs promote tumor progression, relapse, and resistance to immunotherapy. Cancer stemness induces the expression of neoantigens and neo-properties in CSCs, creating an opportunity for targeted immunotherapies. Isolation of stem-like T cells or retaining stemness in T clonotypes strategies produces exhaustion-resistance T cells with superior re-expansion capacity and long-lasting responses after adoptive cell therapies. Stem cells-derived NK cells may be the next generation of NK cell products for immunotherapy. Here, we have reviewed mechanisms by which stemness factors modulated the immunoediting of the TME and summarized the potentials of CSCs in the development of immunotherapy regimens, including CAR-T cells, CAR-NK cells, cancer vaccines, and monoclonal antibodies. We have discussed the natural or genetically engineered stem-like T cells and stem cell-derived NK cells with increased cytotoxicity to tumor cells. Finally, we have provided a perspective on approaches that may improve the therapeutic efficacy of these novel adoptive cell-based products in targeting immunosuppressive TME.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Shahgolzari
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
236
|
Shi H, Williams MJ, Satas G, Weiner AC, McPherson A, Shah SP. Exploiting allele-specific transcriptional effects of subclonal copy number alterations for genotype-phenotype mapping in cancer cell populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523464. [PMID: 36711951 PMCID: PMC9882029 DOI: 10.1101/2023.01.10.523464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Somatic copy number alterations drive aberrant gene expression in cancer cells. In tumors with high levels of chromosomal instability, subclonal copy number alterations (CNAs) are a prevalent feature which often result in heterogeneous cancer cell populations with distinct phenotypes1. However, the extent to which subclonal CNAs contribute to clone-specific phenotypes remains poorly understood, in part due to the lack of methods to quantify how CNAs influence gene expression at a subclone level. We developed TreeAlign, which computationally integrates independently sampled single-cell DNA and RNA sequencing data from the same cell population and explicitly models gene dosage effects from subclonal alterations. We show through quantitative benchmarking data and application to human cancer data with single cell DNA and RNA libraries that TreeAlign accurately encodes clone-specific transcriptional effects of subclonal CNAs, the impact of allelic imbalance on allele-specific transcription, and obviates the need to arbitrarily define genotypic clones from a phylogenetic tree a priori. Combined, these advances lead to highly granular definitions of clones with distinct copy-number driven expression programs with increased resolution and accuracy over competing methods. The resulting improvement in assignment of transcriptional phenotypes to genomic clones enables clone-clone gene expression comparisons and explicit inference of genes that are mechanistically altered through CNAs, and identification of expression programs that are genomically independent. Our approach sets the stage for dissecting the relative contribution of fixed genomic alterations and dynamic epigenetic processes on gene expression programs in cancer.
Collapse
Affiliation(s)
- Hongyu Shi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Marc J. Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gryte Satas
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adam C. Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sohrab P. Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
237
|
Tsujino T, Takai T, Hinohara K, Gui F, Tsutsumi T, Bai X, Miao C, Feng C, Gui B, Sztupinszki Z, Simoneau A, Xie N, Fazli L, Dong X, Azuma H, Choudhury AD, Mouw KW, Szallasi Z, Zou L, Kibel AS, Jia L. CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer. Nat Commun 2023; 14:252. [PMID: 36650183 PMCID: PMC9845315 DOI: 10.1038/s41467-023-35880-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Prostate cancer harboring BRCA1/2 mutations are often exceptionally sensitive to PARP inhibitors. However, genomic alterations in other DNA damage response genes have not been consistently predictive of clinical response to PARP inhibition. Here, we perform genome-wide CRISPR-Cas9 knockout screens in BRCA1/2-proficient prostate cancer cells and identify previously unknown genes whose loss has a profound impact on PARP inhibitor response. Specifically, MMS22L deletion, frequently observed (up to 14%) in prostate cancer, renders cells hypersensitive to PARP inhibitors by disrupting RAD51 loading required for homologous recombination repair, although this response is TP53-dependent. Unexpectedly, loss of CHEK2 confers resistance rather than sensitivity to PARP inhibition through increased expression of BRCA2, a target of CHEK2-TP53-E2F7-mediated transcriptional repression. Combined PARP and ATR inhibition overcomes PARP inhibitor resistance caused by CHEK2 loss. Our findings may inform the use of PARP inhibitors beyond BRCA1/2-deficient tumors and support reevaluation of current biomarkers for PARP inhibition in prostate cancer.
Collapse
Affiliation(s)
- Takuya Tsujino
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Tomoaki Takai
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kunihiko Hinohara
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fu Gui
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Takeshi Tsutsumi
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Xiao Bai
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Chenkui Miao
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Chao Feng
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Bin Gui
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Zsofia Sztupinszki
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Antoine Simoneau
- Department of Pathology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Ning Xie
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Atish D Choudhury
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute & Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Zoltan Szallasi
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Lee Zou
- Department of Pathology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Adam S Kibel
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Li Jia
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
238
|
Sreekumar A, Saini S. Role of transcription factors and chromatin modifiers in driving lineage reprogramming in treatment-induced neuroendocrine prostate cancer. Front Cell Dev Biol 2023; 11:1075707. [PMID: 36711033 PMCID: PMC9879360 DOI: 10.3389/fcell.2023.1075707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Therapy-induced neuroendocrine prostate cancer (NEPC) is a highly lethal variant of prostate cancer that is increasing in incidence with the increased use of next-generation of androgen receptor (AR) pathway inhibitors. It arises via a reversible trans-differentiation process, referred to as neuroendocrine differentiation (NED), wherein prostate cancer cells show decreased expression of AR and increased expression of neuroendocrine (NE) lineage markers including enolase 2 (ENO2), chromogranin A (CHGA) and synaptophysin (SYP). NEPC is associated with poor survival rates as these tumors are aggressive and often metastasize to soft tissues such as liver, lung and central nervous system despite low serum PSA levels relative to disease burden. It has been recognized that therapy-induced NED involves a series of genetic and epigenetic alterations that act in a highly concerted manner in orchestrating lineage switching. In the recent years, we have seen a spurt in research in this area that has implicated a host of transcription factors and epigenetic modifiers that play a role in driving this lineage switching. In this article, we review the role of important transcription factors and chromatin modifiers that are instrumental in lineage reprogramming of prostate adenocarcinomas to NEPC under the selective pressure of various AR-targeted therapies. With an increased understanding of the temporal and spatial interplay of transcription factors and chromatin modifiers and their associated gene expression programs in NEPC, better therapeutic strategies are being tested for targeting NEPC effectively.
Collapse
|
239
|
Chen J, Shi M, Chuen Choi SY, Wang Y, Lin D, Zeng H, Wang Y. Genomic alterations in neuroendocrine prostate cancer: A systematic review and meta‐analysis. BJUI COMPASS 2023; 4:256-265. [PMID: 37025467 PMCID: PMC10071089 DOI: 10.1002/bco2.212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Background Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer. We performed a systematic review and meta-analysis to evaluate the prevalence of genomic alterations in NEPC and better understand its molecular features to potentially inform precision medicine. Methods EMBASE, PubMed, and Cochrane Central Register of Controlled Trials databases were searched for eligible studies until March 2022. Study qualities were assessed using the Q-genie tool. The prevalence of gene mutations and copy number alterations (CNAs) were extracted, and meta-analysis was performed using R Studio with meta package. Results A total of 14 studies with 449 NEPC patients were included in this meta-analysis. The most frequently mutated gene in NEPC was TP53 (49.8%), and the prevalence of deleterious mutations in ATM/BRCA was 16.8%. Common CNAs in NEPC included RB1 loss (58.3%), TP53 loss (42.8%), PTEN loss (37.0%), AURKA amplification (28.2%), and MYCN amplification (22.9%). RB1/TP53 alterations and concurrent RB1 and TP53 alterations were remarkably common in NEPC, with a prevalence of 83.8% and 43.9%, respectively. Comparative analyses indicated that the prevalence of (concurrent) RB1/TP53 alterations was significantly higher in de novo NEPC than in treatment-emergent NEPC (t-NEPC). Conclusions This study presents the comprehensive prevalence of common genomic alterations and potentially actionable targets in NEPC and reveals the genomic differences between de novo NEPC and t-NEPC. Our findings highlight the importance of genomic testing in patients for precision medicine and provide insights into future studies exploring different NEPC subtypes.
Collapse
Affiliation(s)
- Junru Chen
- Department of Urology, Institute of Urology, West China Hospital Sichuan University Chengdu Sichuan China
- Vancouver Prostate Centre Vancouver BC Canada
- Department of Urologic Sciences, Faculty of Medicine University of British Columbia Vancouver BC Canada
- Department of Experimental Therapeutics BC Cancer Agency Vancouver BC Canada
| | - Mingchen Shi
- Vancouver Prostate Centre Vancouver BC Canada
- Department of Urologic Sciences, Faculty of Medicine University of British Columbia Vancouver BC Canada
- Department of Experimental Therapeutics BC Cancer Agency Vancouver BC Canada
| | - Stephen Yiu Chuen Choi
- Vancouver Prostate Centre Vancouver BC Canada
- Department of Urologic Sciences, Faculty of Medicine University of British Columbia Vancouver BC Canada
- Department of Experimental Therapeutics BC Cancer Agency Vancouver BC Canada
| | - Yu Wang
- Vancouver Prostate Centre Vancouver BC Canada
- Department of Urologic Sciences, Faculty of Medicine University of British Columbia Vancouver BC Canada
- Department of Experimental Therapeutics BC Cancer Agency Vancouver BC Canada
| | - Dong Lin
- Vancouver Prostate Centre Vancouver BC Canada
- Department of Urologic Sciences, Faculty of Medicine University of British Columbia Vancouver BC Canada
- Department of Experimental Therapeutics BC Cancer Agency Vancouver BC Canada
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital Sichuan University Chengdu Sichuan China
| | - Yuzhuo Wang
- Vancouver Prostate Centre Vancouver BC Canada
- Department of Urologic Sciences, Faculty of Medicine University of British Columbia Vancouver BC Canada
- Department of Experimental Therapeutics BC Cancer Agency Vancouver BC Canada
| |
Collapse
|
240
|
Neuroendocrine neoplasms of the lung and gastrointestinal system: convergent biology and a path to better therapies. Nat Rev Clin Oncol 2023; 20:16-32. [PMID: 36307533 DOI: 10.1038/s41571-022-00696-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
Neuroendocrine neoplasms (NENs) can develop in almost any organ and span a spectrum from well-differentiated and indolent neuroendocrine tumours (NETs) to poorly differentiated and highly aggressive neuroendocrine carcinomas (NECs), including small-cell lung cancer (SCLC). These neoplasms are thought to primarily derive from neuroendocrine precursor cells located throughout the body and can also arise through neuroendocrine transdifferentiation of organ-specific epithelial cell types. Hence, NENs constitute a group of tumour types that share key genomic and phenotypic characteristics irrespective of their site of origin, albeit with some organ-specific differences. The establishment of representative preclinical models for several of these disease entities together with analyses of human tumour specimens has provided important insights into crucial aspects of their biology with therapeutic implications. In this Review, we provide a comprehensive overview of the current understanding of NENs of the gastrointestinal system and lung from clinical and biological perspectives. Research on NENs has typically been siloed by the tumour site of origin, and a cross-cutting view might enable advances in one area to accelerate research in others. Therefore, we aim to emphasize that a better understanding of the commonalities and differences of NENs arising in different organs might more effectively inform clinical research to define therapeutic targets and ultimately optimize patient care.
Collapse
|
241
|
Seo E, Kang M. Current status and clinical application of patient-derived tumor organoid model in kidney and prostate cancers. BMB Rep 2023; 56:24-31. [PMID: 36476272 PMCID: PMC9887101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 01/28/2023] Open
Abstract
Urological cancers such as kidney, bladder, prostate, and testicular cancers are the most common types of cancers worldwide with high mortality and morbidity. To date, traditional cell lines and animal models have been broadly used to study pre-clinical applications and underlying molecular mechanisms of urological cancers. However, they cannot reflect biological phenotypes of real tissues and clinical diversities of urological cancers in vitro system. In vitro models cannot be utilized to reflect the tumor microenvironment or heterogeneity. Cancer organoids in three-dimensional culture have emerged as a promising platform for simulating tumor microenvironment and revealing heterogeneity. In this review, we summarize recent advances in prostate and kidney cancer organoids regarding culture conditions, advantages, and applications of these cancer organoids. [BMB Reports 2023; 56(1): 24-31].
Collapse
Affiliation(s)
- Eunjeong Seo
- Molecular Pharmacology, OliPass Corporation, Yongin 17015, Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Seoul 06351, Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
242
|
Seo E, Kang M. Current status and clinical application of patient-derived tumor organoid model in kidney and prostate cancers. BMB Rep 2023; 56:24-31. [PMID: 36476272 PMCID: PMC9887101 DOI: 10.5483/bmbrep.2022-0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 11/30/2023] Open
Abstract
Urological cancers such as kidney, bladder, prostate, and testicular cancers are the most common types of cancers worldwide with high mortality and morbidity. To date, traditional cell lines and animal models have been broadly used to study pre-clinical applications and underlying molecular mechanisms of urological cancers. However, they cannot reflect biological phenotypes of real tissues and clinical diversities of urological cancers in vitro system. In vitro models cannot be utilized to reflect the tumor microenvironment or heterogeneity. Cancer organoids in three-dimensional culture have emerged as a promising platform for simulating tumor microenvironment and revealing heterogeneity. In this review, we summarize recent advances in prostate and kidney cancer organoids regarding culture conditions, advantages, and applications of these cancer organoids. [BMB Reports 2023; 56(1): 24-31].
Collapse
Affiliation(s)
- Eunjeong Seo
- Molecular Pharmacology, OliPass Corporation, Yongin 17015, Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Seoul 06351, Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
243
|
Niharika, Roy A, Mishra J, Chakraborty S, Singh SP, Patra SK. Epigenetic regulation of pluripotency inducer genes NANOG and SOX2 in human prostate cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:241-260. [PMID: 37019595 DOI: 10.1016/bs.pmbts.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The cells of multicellular organisms are genetically homogeneous but heterogenous in structure and function by virtue of differential gene expression. During embryonic development, differential gene expression by modification of chromatin (DNA and histone complex) regulates the developmental proceedings before and after the germ layers are formed. Post-replicative DNA modification, where the fifth carbon atom of the cytosine gets methylated (hereafter, DNA methylation), does not incorporate mutations within the DNA. In the past few years, a boom has been observed in the field of research related to various epigenetic regulation models, which includes DNA methylation, post-translational modification of histone tails, control of chromatin structure by non-coding RNAs, and remodeling of nucleosome. Epigenetic effects like DNA methylation or histone modification play a cardinal role in development but also be able to arise stochastically, as observed during aging, in tumor development and cancer progression. Over the past few decades, researchers allured toward the involvement of pluripotency inducer genes in cancer progression and apparent for prostate cancer (PCa); also, PCa is the most diagnosed tumor worldwide and comes to the second position in causing mortality in men. The anomalous articulation of pluripotency-inducing transcription factor; SRY-related HMG box-containing transcription factor-2 (SOX2), Octamer-binding transcription factor 4 (OCT4) or POU domain, class 5, transcription factor 1 (POU5F1), and NANOG have been reported in different cancers which includes breast cancer, tongue cancer, and lung cancer, etc. Although there is a variety in gene expression signatures demonstrated by cancer cells, the epigenetic mode of regulation at the pluripotency-associated genes in PCa has been recently explored. This chapter focuses on the epigenetic control of NANOG and SOX2 genes in human PCa and the precise role thereof executed by the two transcription factors.
Collapse
|
244
|
Li Y, Wang H, Pan Y, Wang S, Zhang Z, Zhou H, Xu M, Liu X. Identification of bicalutamide resistance-related genes and prognosis prediction in patients with prostate cancer. Front Endocrinol (Lausanne) 2023; 14:1125299. [PMID: 37143720 PMCID: PMC10151815 DOI: 10.3389/fendo.2023.1125299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/30/2023] [Indexed: 05/06/2023] Open
Abstract
Background Prostate cancer (PCa) is the second most common type of cancer and the fifth leading cause of cancer-related death in men. Androgen deprivation therapy (ADT) has become the first-line therapy for inhibiting PCa progression; however, nearly all patients receiving ADT eventually progress to castrate-resistant prostate cancer. Therefore, this study aimed to identify hub genes related to bicalutamide resistance in PCa and provide new insights into endocrine therapy resistance. Methods The data were obtained from public databases. Weighted correlation network analysis was used to identify the gene modules related to bicalutamide resistance, and the relationship between the samples and disease-free survival was analyzed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed, and hub genes were identified. The LASSO algorithm was used to develop a bicalutamide resistance prognostic model in patients with PCa, which was then verified. Finally, we analyzed the tumor mutational heterogeneity and immune microenvironment in both groups. Results Two drug resistance gene modules were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that both modules are involved in RNA splicing. The protein-protein interaction network identified 10 hub genes in the brown module LUC7L3, SNRNP70, PRPF3, LUC7L, CLASRP, CLK1, CLK2, U2AF1L4, NXF1, and THOC1) and 13 in the yellow module (PNN, PPWD1, SRRM2, DHX35, DMTF1, SALL4, MTA1, HDAC7, PHC1, ACIN1, HNRNPH1, DDX17, and HDAC6). The prognostic model composed of RNF207, REC8, DFNB59, HOXA2, EPOR, PILRB, LSMEM1, TCIRG1, ABTB1, ZNF276, ZNF540, and DPY19L2 could effectively predict patient prognosis. Genomic analysis revealed that the high- and low-risk groups had different mutation maps. Immune infiltration analysis showed a statistically significant difference in immune infiltration between the high- and low-risk groups, and that the high-risk group may benefit from immunotherapy. Conclusion In this study, bicalutamide resistance genes and hub genes were identified in PCa, a risk model for predicting the prognosis of patients with PCa was constructed, and the tumor mutation heterogeneity and immune infiltration in high- and low-risk groups were analyzed. These findings offer new insights into ADT resistance targets and prognostic prediction in patients with PCa.
Collapse
|
245
|
Qian C, Yang Q, Freedland SJ, Di Vizio D, Ellis L, You S, Freeman MR. Activation of ONECUT2 by RB1 loss in castration-resistant prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:397-407. [PMID: 36636695 PMCID: PMC9831918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 01/14/2023]
Abstract
Functional loss of the two major tumor repressors, TP53 and RB1, is frequently involved in the emergence and progression of castration-resistant prostate cancer (CRPC). Inactivating mutations in TP53 and RB1 promote lineage variants that suppress the androgen receptor axis and enhance therapy resistance. The present study provides the first evidence that RB1 loss, and not TP53 loss, is sufficient to activate the master regulator transcription factor ONECUT2 (OC2) in mCRPC. OC2 upregulation is common in CRPC and drives metastasis and lineage plasticity, particularly neuroendocrine differentiation, in model systems. Pharmacologic inhibition of OC2 was reported to suppress established human CRPC metastases in mice. Here we show that RB1 silencing in human and mouse prostate cancer models is sufficient to upregulate OC2, at least in part through epigenetic regulation. OC2 expression downregulated TP53 transcription and inactivated RB1 via phosphorylation. OC2 expression and activation in human CRPC correlated with bi- or single-allelic loss of RB1 and inversely with RB1 expression and activity. A small molecule OC2 inhibitor blocked enzalutamide-induced lineage plasticity in vitro. These findings indicate that activation of OC2 in CRPC occurs in response to RB1 inactivation, and that biomarkers of RB1 activity may be useful for stratifying patients refractory to hormone therapy where OC2 is targeted pharmacologically.
Collapse
Affiliation(s)
- Chen Qian
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, USA
| | - Qian Yang
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, USA
| | - Stephen J Freedland
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, USA
| | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, USA
| | - Leigh Ellis
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, USA
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical CenterLos Angeles, CA 90048, USA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, USA
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, USA
| |
Collapse
|
246
|
Urabe F, Yamamoto Y, Kimura T. miRNAs in prostate cancer: Intercellular and extracellular communications. Int J Urol 2022; 29:1429-1438. [PMID: 36122303 DOI: 10.1111/iju.15043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 12/23/2022]
Abstract
Prostate cancer is the most prevalent male cancer in Western Europe and North America. Although new drugs were recently approved, clinical challenges such as accurately predicting and screening drug-resistant prostate cancer remain. microRNAs are short noncoding RNA molecules that participate in gene regulation at the post-transcriptional level by targeting messenger RNAs. There is accumulating evidence that intracellular microRNAs play important roles as promoters or inhibitors of prostate cancer progression. Additionally, recent studies showed that microRNAs are encapsulated in extracellular vesicles and shuttled into the extracellular space. Transfer of extracellular microRNAs contributes to intercellular communication between prostate cancer cells and components of the tumor microenvironment, which can promote prostate cancer progression. Furthermore, due to their encapsulation in extracellular vesicles, extracellular microRNAs can be stably present in body fluids which contain high levels of RNase. Thus, circulating microRNAs have great potential as noninvasive diagnostic and prognostic biomarkers for prostate cancer. Here, we summarize the roles of intracellular and extracellular microRNAs in prostate cancer progression and discuss the potential of microRNA-based therapeutics as a novel treatment strategy for prostate cancer.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
247
|
Wu Y, Clark KC, Nguyen EV, Niranjan B, Horvath LG, Taylor RA, Daly RJ. Proteomic characterisation of prostate cancer intercellular communication reveals cell type-selective signalling and TMSB4X-dependent fibroblast reprogramming. Cell Oncol (Dordr) 2022; 45:1311-1328. [PMID: 36169805 DOI: 10.1007/s13402-022-00719-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In prostate cancer, the tumour microenvironment (TME) represents an important regulator of disease progression and response to treatment. In the TME, cancer-associated fibroblasts (CAFs) play a key role in tumour progression, however the mechanisms underpinning fibroblast-cancer cell interactions are incompletely resolved. Here, we address this by applying cell type-specific labelling with amino acid precursors (CTAP) and mass spectrometry (MS)-based (phospho)proteomics to prostate cancer for the first time. METHODS Reciprocal interactions between PC3 prostate cancer cells co-cultured with WPMY-1 prostatic fibroblasts were characterised using CTAP-MS. Signalling network changes were determined using Metascape and Enrichr and visualised using Cytoscape. Thymosin β4 (TMSB4X) overexpression was achieved via retroviral transduction and assayed by ELISA. Cell motility was determined using Transwell and random cell migration assays and expression of CAF markers by indirect immunofluorescence. RESULTS WPMY-1 cells co-cultured with PC3s demonstrated a CAF-like phenotype, characterised by enhanced PDGFRB expression and alterations in signalling pathways regulating epithelial-mesenchymal transition, cytoskeletal organisation and cell polarisation. In contrast, co-cultured PC3 cells exhibited more modest network changes, with alterations in mTORC1 signalling and regulation of the actin cytoskeleton. The expression of the actin binding protein TMSB4X was significantly decreased in co-cultured WPMY-1 fibroblasts, and overexpression of TMSB4X in fibroblasts decreased migration of co-cultured PC3 cells, reduced fibroblast motility, and protected the fibroblasts from being educated to a CAF-like phenotype by prostate cancer cells. CONCLUSIONS This study highlights the potential of CTAP-MS to characterise intercellular communication within the prostate TME and identify regulators of cellular crosstalk such as TMSB4X.
Collapse
Affiliation(s)
- Yunjian Wu
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Kimberley C Clark
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Elizabeth V Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Birunthi Niranjan
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Lisa G Horvath
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- University of Sydney, Camperdown, NSW, 2006, Australia
- Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
| | - Renea A Taylor
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, 3800, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
248
|
Mirzaei S, Paskeh MDA, Entezari M, Mirmazloomi SR, Hassanpoor A, Aboutalebi M, Rezaei S, Hejazi ES, Kakavand A, Heidari H, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. SOX2 function in cancers: Association with growth, invasion, stemness and therapy response. Biomed Pharmacother 2022; 156:113860. [DOI: 10.1016/j.biopha.2022.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022] Open
|
249
|
Castellón EA, Indo S, Contreras HR. Cancer Stemness/Epithelial-Mesenchymal Transition Axis Influences Metastasis and Castration Resistance in Prostate Cancer: Potential Therapeutic Target. Int J Mol Sci 2022; 23:ijms232314917. [PMID: 36499245 PMCID: PMC9736174 DOI: 10.3390/ijms232314917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer death in men, worldwide. Mortality is highly related to metastasis and hormone resistance, but the molecular underlying mechanisms are poorly understood. We have studied the presence and role of cancer stem cells (CSCs) and the Epithelial-Mesenchymal transition (EMT) in PCa, using both in vitro and in vivo models, thereby providing evidence that the stemness-mesenchymal axis seems to be a critical process related to relapse, metastasis and resistance. These are complex and related processes that involve a cooperative action of different cancer cell subpopulations, in which CSCs and mesenchymal cancer cells (MCCs) would be responsible for invading, colonizing pre-metastatic niches, initiating metastasis and an evading treatments response. Manipulating the stemness-EMT axis genes on the androgen receptor (AR) may shed some light on the effect of this axis on metastasis and castration resistance in PCa. It is suggested that the EMT gene SNAI2/Slug up regulates the stemness gene Sox2, and vice versa, inducing AR expression, promoting metastasis and castration resistance. This approach will provide new sight about the role of the stemness-mesenchymal axis in the metastasis and resistance mechanisms in PCa and their potential control, contributing to develop new therapeutic strategies for patients with metastatic and castration-resistant PCa.
Collapse
Affiliation(s)
- Enrique A. Castellón
- Correspondence: (E.A.C.); (H.R.C.); Tel.: +56-229-786-863 (E.A.C.); +56-229-786-862 (H.R.C.)
| | | | - Héctor R. Contreras
- Correspondence: (E.A.C.); (H.R.C.); Tel.: +56-229-786-863 (E.A.C.); +56-229-786-862 (H.R.C.)
| |
Collapse
|
250
|
Zhao D, Zhang M, Huang S, Liu Q, Zhu S, Li Y, Jiang W, Kiss DL, Cao Q, Zhang L, Chen K. CHD6 promotes broad nucleosome eviction for transcriptional activation in prostate cancer cells. Nucleic Acids Res 2022; 50:12186-12201. [PMID: 36408932 PMCID: PMC9757051 DOI: 10.1093/nar/gkac1090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being a member of the chromodomain helicase DNA-binding protein family, little is known about the exact role of CHD6 in chromatin remodeling or cancer disease. Here we show that CHD6 binds to chromatin to promote broad nucleosome eviction for transcriptional activation of many cancer pathways. By integrating multiple patient cohorts for bioinformatics analysis of over a thousand prostate cancer datasets, we found CHD6 expression elevated in prostate cancer and associated with poor prognosis. Further comprehensive experiments demonstrated that CHD6 regulates oncogenicity of prostate cancer cells and tumor development in a murine xenograft model. ChIP-Seq for CHD6, along with MNase-Seq and RNA-Seq, revealed that CHD6 binds on chromatin to evict nucleosomes from promoters and gene bodies for transcriptional activation of oncogenic pathways. These results demonstrated a key function of CHD6 in evicting nucleosomes from chromatin for transcriptional activation of prostate cancer pathways.
Collapse
Affiliation(s)
- Dongyu Zhao
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Min Zhang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Shaodong Huang
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Liu
- Department of Urology, and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sen Zhu
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yanqiang Li
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Weihua Jiang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Daniel L Kiss
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Qi Cao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Urology, and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kaifu Chen
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|