201
|
Cai Y, Liu Y, Wu Z, Wang J, Zhang X. Effects of Diet and Exercise on Circadian Rhythm: Role of Gut Microbiota in Immune and Metabolic Systems. Nutrients 2023; 15:2743. [PMID: 37375647 DOI: 10.3390/nu15122743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
A close relationship exists between the intestinal microbiota and the circadian rhythm, which is mainly regulated by the central-biological-clock system and the peripheral-biological-clock system. At the same time, the intestinal flora also reflects a certain rhythmic oscillation. A poor diet and sedentary lifestyle will lead to immune and metabolic diseases. A large number of studies have shown that the human body can be influenced in its immune regulation, energy metabolism and expression of biological-clock genes through diet, including fasting, and exercise, with intestinal flora as the vector, thereby reducing the incidence rates of diseases. This article mainly discusses the effects of diet and exercise on the intestinal flora and the immune and metabolic systems from the perspective of the circadian rhythm, which provides a more effective way to prevent immune and metabolic diseases by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Yidan Cai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jing Wang
- China Rural Technology Development Center, Beijing 100045, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
202
|
Chen G, Tang Q, Yu S, Shen Y, Sun J, Peng J, Yin Y, Feng G, Lu X, Mei G, Zhang Y, Wan Q, Zhang L, Chen L. Developmental growth plate cartilage formation suppressed by artificial light at night via inhibiting BMAL1-driven collagen hydroxylation. Cell Death Differ 2023; 30:1503-1516. [PMID: 37029304 PMCID: PMC10244380 DOI: 10.1038/s41418-023-01152-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 04/09/2023] Open
Abstract
Exposure to artificial light at night (LAN) can induce obesity, depressive disorder and osteoporosis, but the pernicious effects of excessive LAN exposure on tissue structure are poorly understood. Here, we demonstrated that artificial LAN can impair developmental growth plate cartilage extracellular matrix (ECM) formation and cause endoplasmic reticulum (ER) dilation, which in turn compromises bone formation. Excessive LAN exposure induces downregulation of the core circadian clock protein BMAL1, which leads to collagen accumulation in the ER. Further investigations suggest that BMAL1 is the direct transcriptional activator of prolyl 4-hydroxylase subunit alpha 1 (P4ha1) in chondrocytes, which orchestrates collagen prolyl hydroxylation and secretion. BMAL1 downregulation induced by LAN markedly inhibits proline hydroxylation and transport of collagen from ER to golgi, thereby inducing ER stress in chondrocytes. Restoration of BMAL1/P4HA1 signaling can effectively rescue the dysregulation of cartilage formation within the developmental growth plate induced by artificial LAN exposure. In summary, our investigations suggested that LAN is a significant risk factor in bone growth and development, and a proposed novel strategy targeting enhancement of BMAL1-mediated collagen hydroxylation could be a potential therapeutic approach to facilitate bone growth.
Collapse
Affiliation(s)
- Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yufeng Shen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Gang Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
203
|
Kahn RE, Dayanidhi S, Lacham-Kaplan O, Hawley JA. Molecular clocks, satellite cells, and skeletal muscle regeneration. Am J Physiol Cell Physiol 2023; 324:C1332-C1340. [PMID: 37184229 PMCID: PMC11932531 DOI: 10.1152/ajpcell.00073.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Skeletal muscle comprises approximately 50% of individual body mass and plays vital roles in locomotion, heat production, and whole body metabolic homeostasis. This tissue exhibits a robust diurnal rhythm that is under control of the suprachiasmatic nucleus (SCN) region of the hypothalamus. The SCN acts as a "central" coordinator of circadian rhythms, while cell-autonomous "peripheral" clocks are located within almost all other tissues/organs in the body. Synchronization of the peripheral clocks in muscles (and other tissues) together with the central clock is crucial to ensure temporally coordinated physiology across all organ systems. By virtue of its mass, human skeletal muscle contains the largest collection of peripheral clocks, but within muscle resides a local stem cell population, satellite cells (SCs), which have their own functional molecular clock, independent of the numerous muscle clocks. Skeletal muscle has a daily turnover rate of 1%-2%, so the regenerative capacity of this tissue is important for whole body homeostasis/repair and depends on successful SC myogenic progression (i.e., proliferation, differentiation, and fusion). Emerging evidence suggests that SC-mediated muscle regeneration may, in part, be regulated by molecular clocks involved in SC-specific diurnal transcription. Here we provide insights on molecular clock regulation of muscle regeneration/repair and provide a novel perspective on the interplay between SC-specific molecular clocks, myogenic programs, and cell cycle kinetics that underpin myogenic progression.
Collapse
Affiliation(s)
- Ryan E Kahn
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Orly Lacham-Kaplan
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| |
Collapse
|
204
|
Lu Z, Li X, Wang M, Zhang X, Zhuang R, Wu F, Li W, Zhu W, Zhang B. Liver-Specific Bmal1 Depletion Reverses the Beneficial Effects of Nobiletin on Liver Cholesterol Homeostasis in Mice Fed with High-Fat Diet. Nutrients 2023; 15:nu15112547. [PMID: 37299510 DOI: 10.3390/nu15112547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Nobiletin (NOB), a naturally occurring small-molecule compound abundant in citrus peels, has displayed potential lipid-lowering and circadian-enhancing properties in preclinical studies. However, the requirement of specific clock genes for the beneficial effects of NOB is not well understood. In the current study, mice with a liver-specific deletion of the core clock component, Bmal1-Bmal1LKO-were fed a high-fat diet (HFD) ad libitum for eight weeks, while NOB (200 mg/kg) was administered by daily oral gavage from the fifth week and throughout the last four weeks. NOB decreased liver triglyceride (TG) alongside the decreasing mRNA levels of de novo lipogenesis (DNL) genes in both Bmal1flox/flox and Bmal1LKO mice. NOB increased serum very low-density lipoprotein (VLDL) levels in Bmal1LKO mice, which was consistent with higher liver Shp and lower Mttp mRNA expression levels, the key genes that facilitate VLDL assembly and secretion. NOB decreased liver and serum cholesterol levels in the Bmal1flox/flox mice, consistent with lower Hmgcr and higher Cyp7a1, Cyp8b1, Gata4 and Abcg5 mRNA levels in the liver. In contrast, in the Bmal1LKO mice, NOB increased Hmgcr mRNA levels and had no effect on the above-mentioned genes related to bile acid synthesis and cholesterol excretion, which might contribute to the elevation of liver and serum cholesterol levels in NOB-treated Bmal1LKO mice. NOB inhibited hepatic DNL and decreased liver TG levels in HFD-fed mice independently of liver Bmal1, whereas liver-specific Bmal1 depletion reversed the beneficial effects of NOB on liver cholesterol homeostasis. The complex interactions between NOB, the circadian clock and lipid metabolism in the liver warrant further research.
Collapse
Affiliation(s)
- Zhitian Lu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xudong Li
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Min Wang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaojun Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Runxuan Zhuang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Fan Wu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Wenxue Li
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Wei Zhu
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Bo Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
205
|
Hoshino K. Problems in the Development of the Sleep-Wake Rhythm Influence Neurodevelopmental Disorders in Children. Diagnostics (Basel) 2023; 13:diagnostics13111859. [PMID: 37296711 DOI: 10.3390/diagnostics13111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Development of the sleep-wake rhythm has a significant effect on the physical and mental development of children. The sleep-wake rhythm is controlled by aminergic neurons in the brainstem's ascending reticular activating system, which is associated with synaptogenesis and the promotion of brain development. The sleep-wake rhythm develops rapidly within the first year after birth. At 3-4 months of age, the framework of the circadian rhythm is established. The objective of the present review is to assess a hypothesis concerning problems in the development of the sleep-wake rhythm and their effect on neurodevelopmental disorders. Autism spectrum disorder is characterised by a delay in the development of sleep rhythms at 3-4 months of age and also insomnia and night-time awakenings, as supported by several reports. Melatonin may shorten the sleep latency in ASD. Rett syndrome sufferers kept awake during the daytime were analysed by the Sleep-wake Rhythm Investigation Support System (SWRISS) (IAC, Inc., (Tokyo, Japan)), and the cause was found to be the dysfunction of aminergic neurons. Children and adolescents with attention deficit hyperactivity disorder show sleep problems such as resistance to bedtime, difficulty falling asleep, sleep apnoea, and restless legs syndrome. Sleep deprivation syndrome in schoolchildren is deeply influenced by Internet use, games, and smartphones, and this syndrome affects emotion, learning, concentration, and executive functioning. Sleep disorders in adults are strongly considered to affect not only the physiological/autonomic nervous system but also neurocognitive/psychiatric symptoms. Even adults cannot avoid serious problems, much less children, and the impact of sleep problems is considerably greater in adults. Paediatricians and nurses should be aware of the significance, from birth, of sleep development and sleep hygiene education for carers and parents. This research was reviewed and approved by the ethical committee of the Segawa Memorial Neurological Clinic for Children (No. SMNCC23-02).
Collapse
Affiliation(s)
- Kyoko Hoshino
- Segawa Memorial Neurological Clinic for Children, Tokyo 101-0062, Japan
| |
Collapse
|
206
|
Wang Y, Zhuo Z, Wang H. Epilepsy, gut microbiota, and circadian rhythm. Front Neurol 2023; 14:1157358. [PMID: 37273718 PMCID: PMC10232836 DOI: 10.3389/fneur.2023.1157358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
In recent years, relevant studies have found changes in gut microbiota (GM) in patients with epilepsy. In addition, impaired sleep and circadian patterns are common symptoms of epilepsy. Moreover, the types of seizures have a circadian rhythm. Numerous reports have indicated that the GM and its metabolites have circadian rhythms. This review will describe changes in the GM in clinical and animal studies under epilepsy and circadian rhythm disorder, respectively. The aim is to determine the commonalities and specificities of alterations in GM and their impact on disease occurrence in the context of epilepsy and circadian disruption. Although clinical studies are influenced by many factors, the results suggest that there are some commonalities in the changes of GM. Finally, we discuss the links among epilepsy, gut microbiome, and circadian rhythms, as well as future research that needs to be conducted.
Collapse
Affiliation(s)
- Yao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Childhood Epilepsy and Immunology, Zhengzhou, China
- Henan Provincial Children's Neurological Disease Clinical Diagnosis and Treatment Center, Zhengzhou, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Childhood Epilepsy and Immunology, Zhengzhou, China
- Henan Provincial Children's Neurological Disease Clinical Diagnosis and Treatment Center, Zhengzhou, China
| |
Collapse
|
207
|
Nevels TL, Wirth MD, Ginsberg JP, McLain AC, Burch JB. The role of sleep and heart rate variability in metabolic syndrome: evidence from the Midlife in the United States study. Sleep 2023; 46:zsad013. [PMID: 36727300 PMCID: PMC10171632 DOI: 10.1093/sleep/zsad013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/11/2022] [Indexed: 02/03/2023] Open
Abstract
STUDY OBJECTIVES Poor sleep and autonomic dysregulation can both disrupt metabolic processes. This study examined the individual and combined effects of poor sleep and reduced heart rate variability (HRV) on metabolic syndrome among 966 participants in the Midlife in the United States II (MIDUS II) study. METHODS Self-reported sleep was assessed using the Pittsburgh Sleep Quality Index (PSQI). HRV was acquired from 11-minute resting heart rate recordings. Spearman correlations, general linear regression, and logistic regression models were used to examine the study hypotheses. RESULTS Poor sleep quality was associated with metabolic syndrome when global PSQI scores were evaluated as a continuous (odds ratio [OR]: 1.07, 95% confidence interval [CI]: 1.03 to 1.11) or categorical measure (cutoff > 5, OR: 1.58, 95% CI: 1.19 to 2.10), after adjustment for confounding. There also was an association between reduced HRV and metabolic syndrome (ln [HF-HRV] OR: 0.89, 95% CI: 0.80 to 0.99; ln [LF-HRV] OR: 0.82, 95% CI: 0.72 to 0.92; ln [SDRR] OR: 0.59, 95% CI: 0.43 to 0.79; ln [RMSSD] OR: 0.75, 95% CI: 0.60 to 0.94). When the combined effects of poor sleep and low HRV were examined, the association with metabolic syndrome was further strengthened relative to those with normal sleep and HRV. CONCLUSIONS To the best of the author's knowledge, this is the first study to suggest a combined effect of poor sleep and low HRV on the odds of metabolic syndrome.
Collapse
Affiliation(s)
- Torrance L Nevels
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Columbia Veterans Affairs Health Care System, Columbia, SC, USA
- U.S. Military Interservice Physician Assistant Program, MEDCoE, Joint Base San Antonio-Fort Sam Houston, TX, USA
| | - Michael D Wirth
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- College of Nursing, University of South Carolina, Columbia, SC, USA
| | - J P Ginsberg
- Department of Pathology, Microbiology, and Immunology, Saybrook University, Pasadena, CA, USA
| | - Alexander C McLain
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - James B Burch
- Department of Family Medicine and Population Health, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
208
|
Li Z, Fu B, Wei A, Wu Y, Huang M, Zhang E, Cui B, Wang B, Peng H. d-Glucosamine induces circadian phase delay by promoting BMAL1 degradation through AMPK/mTOR pathway. Life Sci 2023; 325:121765. [PMID: 37169147 DOI: 10.1016/j.lfs.2023.121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Circadian rhythms are closely linked to the metabolic network through circadian feedback regulation. The hexosamine biosynthetic pathway (HBP) is a branch of glucose metabolism that affects circadian rhythms through the O-linked N-acetylglucosamine modification (O-GlcNAcylation) of clock proteins. Here, we found out that, among the downstream metabolites regulated by d-glucosamine (GlcN) in HBP salvage pathway, only GlcN is able to induce circadian phase delay both in vitro and in vivo. Mechanistic studies indicated that the phase-shift induced by GlcN is independent of O-GlcNAcylation. Instead, GlcN selectively up-regulates p-AMPK activity, leading to the inhibition of mTOR signaling pathway, and thus down-regulation of p-BMAL1 both in human cell line and mouse tissues. Moreover, GlcN promoted BMAL1 degradation via proteasome pathway. These findings reveal a novel molecular mechanism of GlcN in regulating clock phase and suggest the therapeutic potential of GlcN as new use for an old drug in the future treatment of shift work and circadian misalignment.
Collapse
Affiliation(s)
- Zeqi Li
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bo Fu
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Aili Wei
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanchen Wu
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Huang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Enhao Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bo Cui
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bo Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Hui Peng
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
209
|
Mawatari K, Koike N, Nohara K, Wirianto M, Uebanso T, Shimohata T, Shikishima Y, Miura H, Nii Y, Burish MJ, Yagita K, Takahashi A, Yoo SH, Chen Z. The Polymethoxyflavone Sudachitin Modulates the Circadian Clock and Improves Liver Physiology. Mol Nutr Food Res 2023; 67:e2200270. [PMID: 36829302 DOI: 10.1002/mnfr.202200270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/13/2022] [Indexed: 02/26/2023]
Abstract
SCOPE Polymethoxylated flavones (PMFs) are a group of natural compounds known to display a wide array of beneficial effects to promote physiological fitness. Recent studies reveal circadian clocks as an important cellular mechanism mediating preventive efficacy of the major PMF Nobiletin against metabolic disorders. Sudachitin is a PMF enriched in Citrus sudachi, and its functions and mechanism of action are poorly understood. METHODS AND RESULTS Using circadian reporter cells, it shows that Sudachitin modulates circadian amplitude and period of Bmal1 promoter-driven reporter rhythms, and real-time qPCR analysis shows that Sudachitin alters expression of core clock genes, notably Bmal1, at both transcript and protein levels. Mass-spec analysis reveals systemic exposure in vivo. In mice fed with high-fat diet with or without Sudachitin, it observes increased nighttime activity and daytime sleep, accompanied by significant metabolic improvements in a circadian time-dependent manner, including respiratory quotient, blood lipid and glucose profiles, and liver physiology. Focusing on liver, RNA-sequencing and metabolomic analyses reveal prevalent diurnal alteration in both gene expression and metabolite accumulation. CONCLUSION This study elucidates Sudachitin as a new clock-modulating PMF with beneficial effects to improve diurnal metabolic homeostasis and liver physiology, suggesting the circadian clock as a fundamental mechanism to safeguard physiological well-being.
Collapse
Affiliation(s)
- Kazuaki Mawatari
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, 465 Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazunari Nohara
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Yasuhiro Shikishima
- Ikeda Yakusou Corporation, 1808-1 Shuzunakatsu, Ikeda-cho, Miyoshi-city, Tokushima, 778-0020, Japan
| | - Hiroyuki Miura
- Ikeda Yakusou Corporation, 1808-1 Shuzunakatsu, Ikeda-cho, Miyoshi-city, Tokushima, 778-0020, Japan
| | - Yoshitaka Nii
- Food and Biotechnology Division, Tokushima Prefectural Industrial Technology Center, 11-2 Nishibari, Saika-cho, Tokushima, 770-8021, Japan
| | - Mark J Burish
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, 465 Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| |
Collapse
|
210
|
Ragozzino FJ, Peterson B, Karatsoreos IN, Peters JH. Circadian regulation of glutamate release pathways shapes synaptic throughput in the brainstem nucleus of the solitary tract (NTS). J Physiol 2023; 601:1881-1896. [PMID: 36975145 PMCID: PMC10192157 DOI: 10.1113/jp284370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Circadian regulation of autonomic reflex pathways pairs physiological function with the daily light cycle. The brainstem nucleus of the solitary tract (NTS) is a key candidate for rhythmic control of the autonomic nervous system. Here we investigated circadian regulation of NTS neurotransmission and synaptic throughput using patch-clamp electrophysiology in brainstem slices from mice. We found that spontaneous quantal glutamate release onto NTS neurons showed strong circadian rhythmicity, with the highest rate of release during the light phase and the lowest in the dark, that were sufficient to drive day/night differences in constitutive postsynaptic action potential firing. In contrast, afferent evoked action potential throughput was enhanced during the dark and diminished in the light. Afferent-driven synchronous release pathways showed a similar decrease in release probability that did not explain the enhanced synaptic throughput during the night. However, analysis of postsynaptic membrane properties revealed diurnal changes in conductance, which, when coupled with the circadian changes in glutamate release pathways, tuned synaptic throughput between the light and dark phases. These coordinated pre-/postsynaptic changes encode nuanced control over synaptic performance and pair NTS action potential firing and vagal throughput with time of day. KEY POINTS: Vagal afferent neurons relay information from peripheral organs to the brainstem nucleus of the solitary tract (NTS) to initiate autonomic reflex pathways as well as providing important controls of food intake, digestive function and energy balance. Vagally mediated reflexes and behaviours are under strong circadian regulation. Diurnal fluctuations in presynaptic vesicle release pathways and postsynaptic membrane conductances provide nuanced control over NTS action potential firing and vagal synaptic throughput. Coordinated pre-/postsynaptic changes represent a fundamental mechanism mediating daily changes in vagal afferent signalling and autonomic function.
Collapse
Affiliation(s)
- Forrest J. Ragozzino
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - BreeAnne Peterson
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Ilia N. Karatsoreos
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - James H. Peters
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
211
|
Abusamak M, Al-Tamimi M, Al-Waeli H, Tahboub K, Cai W, Morris M, Tamimi F, Nicolau B. Chronotherapy in dentistry: A scoping review. Chronobiol Int 2023; 40:684-697. [PMID: 37052061 DOI: 10.1080/07420528.2023.2200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
The circadian clock modulates almost all vital aspects of our physiology and metabolism, including processes relevant to dentistry, such as healing, inflammation and nociception. Chronotherapy is an emerging field aiming to improve therapeutic efficacy and decrease adverse effects on health outcomes. This scoping review aimed to systematically map the evidence underpinning chronotherapy in dentistry and to identify gaps in knowledge. We conducted a systematic scoping search using four databases (Medline, Scopus, CINAHL and Embase). We identified 3908 target articles screened by two blinded reviewers, and only original animal and human studies investigating the chronotherapeutic use of drugs or interventions in dentistry were included. Of the 24 studies included, 19 were human studies and five were animal studies. Chrono-radiotherapy and chrono-chemotherapy reduced treatment side effects and improved therapeutic response, leading to higher survival rates in cancer patients. Animal studies reported that tooth movement and periodontal tissue response to orthodontic forces follow a diurnal rhythm that might influence bone metabolism. Profound and prolonged local anesthesia could be achieved when injected in the evening. Although the overall quality of the included studies was low, chronotherapy applications in dentistry seem to have favourable outcomes, especially in head and neck cancer treatments.
Collapse
Affiliation(s)
- Mohammad Abusamak
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Mohammad Al-Tamimi
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Haider Al-Waeli
- Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kawkab Tahboub
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Wenji Cai
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Martin Morris
- Schulich Library of Physical Sciences, Life Sciences and Engineering, McGill University, Montreal, Quebec, Canada
| | - Faleh Tamimi
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - Belinda Nicolau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
212
|
Yuan M, Lu W, Lan Y, Yang J, Yin J, Wang D. Current role and future perspectives of electroacupuncture in circadian rhythm regulation. Heliyon 2023; 9:e15986. [PMID: 37205998 PMCID: PMC10189514 DOI: 10.1016/j.heliyon.2023.e15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/02/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
In recent years, in-depth research on chronobiology has been conducted, and the circadian rhythm has become a new target for the treatment of diseases. Circadian rhythms are closely related to the normal physiological functions of organisms. Increasing evidence indicates that circadian rhythm disorders are the pathological basis of diseases such as sleep disorders, depression, cardiovascular diseases, and cancer. As an economical, safe, and effective treatment method, electroacupuncture has been widely used in clinical practice. In this paper, we summarize the current literature on electroacupuncture's regulation of circadian rhythm disorders and circadian clock genes. In addition, we briefly explore the optimization of electroacupuncture intervention programmes and the feasibility of implementing electroacupuncture intervention programmes at selected times in clinical practice. We conclude that electroacupuncture may have good application prospects in circadian rhythm regulation, but this conclusion needs to be confirmed by clinical trials.
Collapse
Affiliation(s)
- Min Yuan
- Department of Rehabilitation Medicine, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Wei Lu
- Department of Rehabilitation Medicine, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Ying Lan
- Department of Intensive Care Unit, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Jiaen Yang
- Department of TCM Rehabilitation Medicine, Affiliated Foshan Gaoming Hospital of Guangdong Medical University, Foshan, China
| | - Jun Yin
- Department of Rehabilitation Medicine, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Dong Wang
- Department of Rehabilitation Medicine, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- Corresponding author.
| |
Collapse
|
213
|
Popa AD, Niță O, Gherasim A, Enache AI, Caba L, Mihalache L, Arhire LI. A Scoping Review of the Relationship between Intermittent Fasting and the Human Gut Microbiota: Current Knowledge and Future Directions. Nutrients 2023; 15:2095. [PMID: 37432222 PMCID: PMC10180719 DOI: 10.3390/nu15092095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 07/12/2023] Open
Abstract
Intermittent fasting (IF) has been promoted as an alternative to dietary caloric restriction for the treatment of obesity. IF restricts the amount of food consumed and improves the metabolic balance by synchronizing it with the circadian rhythm. Dietary changes have a rapid effect on the gut microbiota, modulating the interaction between meal timing and host circadian rhythms. Our paper aims to review the relationships between IF and human gut microbiota. In this study, the primary area of focus was the effect of IF on the diversity and composition of gut microbiota and its relationship with weight loss and metabolomic alterations, which are particularly significant for metabolic syndrome characteristics. We discussed each of these findings according to the type of IF involved, i.e., time-restricted feeding, Ramadan fasting, alternate-day fasting, and the 5:2 diet. Favorable metabolic effects regarding the reciprocity between IF and gut microbiota changes have also been highlighted. In conclusion, IF may enhance metabolic health by modifying the gut microbiota. However additional research is required to draw definitive conclusions about this outcome because of the limited number and diverse designs of existing studies.
Collapse
Affiliation(s)
| | - Otilia Niță
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (A.I.E.); (L.C.); (L.M.); (L.I.A.)
| | - Andreea Gherasim
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (A.I.E.); (L.C.); (L.M.); (L.I.A.)
| | | | | | | | | |
Collapse
|
214
|
Birnie M, Claydon M, Troy O, Flynn B, Yoshimura M, Kershaw Y, Zhao Z, Demski-Allen R, Barker G, Warburton E, Bortolotto Z, Lightman S, Conway-Campbell B. Circadian regulation of hippocampal function is disrupted with corticosteroid treatment. Proc Natl Acad Sci U S A 2023; 120:e2211996120. [PMID: 37023133 PMCID: PMC10104554 DOI: 10.1073/pnas.2211996120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/24/2023] [Indexed: 04/07/2023] Open
Abstract
Disrupted circadian activity is associated with many neuropsychiatric disorders. A major coordinator of circadian biological systems is adrenal glucocorticoid secretion which exhibits a pronounced preawakening peak that regulates metabolic, immune, and cardiovascular processes, as well as mood and cognitive function. Loss of this circadian rhythm during corticosteroid therapy is often associated with memory impairment. Surprisingly, the mechanisms that underlie this deficit are not understood. In this study, in rats, we report that circadian regulation of the hippocampal transcriptome integrates crucial functional networks that link corticosteroid-inducible gene regulation to synaptic plasticity processes via an intrahippocampal circadian transcriptional clock. Further, these circadian hippocampal functions were significantly impacted by corticosteroid treatment delivered in a 5-d oral dosing treatment protocol. Rhythmic expression of the hippocampal transcriptome, as well as the circadian regulation of synaptic plasticity, was misaligned with the natural light/dark circadian-entraining cues, resulting in memory impairment in hippocampal-dependent behavior. These findings provide mechanistic insights into how the transcriptional clock machinery within the hippocampus is influenced by corticosteroid exposure, leading to adverse effects on critical hippocampal functions, as well as identifying a molecular basis for memory deficits in patients treated with long-acting synthetic corticosteroids.
Collapse
Affiliation(s)
- Matthew T. Birnie
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| | - Matthew D. B. Claydon
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Oliver Troy
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| | - Benjamin P. Flynn
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| | - Mitsuhiro Yoshimura
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| | - Yvonne M. Kershaw
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| | - Zidong Zhao
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| | - Rebecca C. R. Demski-Allen
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Gareth R. I. Barker
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - E. Clea Warburton
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Zuner A. Bortolotto
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| | - Becky L. Conway-Campbell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, School of Medicine, University of Bristol, BristolBS1 3NY, United Kingdom
| |
Collapse
|
215
|
Areshidze DA, Kozlova MA, Mnikhovich MV, Bezuglova TV, Chernikov VP, Gioeva ZV, Borisov AV. Influence of Various Light Regimes on Morphofunctional Condition of Transplantable Melanoma B16. Biomedicines 2023; 11:biomedicines11041135. [PMID: 37189753 DOI: 10.3390/biomedicines11041135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
A study of the morphofunctional condition of mice with transplantable melanoma B16 under the influence of a normal daylight regime, constant lighting and constant darkness was conducted. It was shown that exposure to constant lighting leads to intensification of the proliferation of melanoma cells, more significant growth and spread of the tumor, the development of more pronounced secondary changes, the presence of perivascular growth and an increase in perineural invasion. At the same time, keeping of animals in constant darkness significantly reduced the intensity of the proliferative process in the tumor and lead to tumor regression in the absence of signs of lympho-, intravascular and intraneural invasion. Intergroup differences in tumor cell status were confirmed by the results of micromorphometric studies. It was also shown that the expression of clock genes was suppressed by an exposure to constant light, while an influence of constant darkness, on contrary, led to its intensification.
Collapse
Affiliation(s)
- David A Areshidze
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Maria A Kozlova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Maxim V Mnikhovich
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Tatyana V Bezuglova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Valery P Chernikov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Zarina V Gioeva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Aleksey V Borisov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| |
Collapse
|
216
|
Pivovarova-Ramich O, Zimmermann HG, Paul F. Multiple sclerosis and circadian rhythms: Can diet act as a treatment? Acta Physiol (Oxf) 2023; 237:e13939. [PMID: 36700353 DOI: 10.1111/apha.13939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory and neurodegenerative disease of the central nervous system (CNS) with increasing incidence and prevalence. MS is associated with inflammatory and metabolic disturbances that, as preliminary human and animal data suggest, might be mediated by disruption of circadian rhythmicity. Nutrition habits can influence the risk for MS, and dietary interventions may be effective in modulating MS disease course. Chronotherapeutic approaches such as time-restricted eating (TRE) may benefit people with MS by stabilizing the circadian clock and restoring immunological and metabolic rhythms, thus potentially counteracting disease progression. This review provides a summary of selected studies on dietary intervention in MS, circadian rhythms, and their disruption in MS, including clock gene variations, circadian hormones, and retino-hypothalamic tract changes. Furthermore, we present studies that reported diurnal variations in MS, which might result from circadian disruption. And lastly, we suggest how chrononutritive approaches like TRE might counteract MS disease activity.
Collapse
Affiliation(s)
- Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Hanna Gwendolyn Zimmermann
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
217
|
Kembro JM, Flesia AG, Nieto PS, Caliva JM, Lloyd D, Cortassa S, Aon MA. A dynamically coherent pattern of rhythms that matches between distant species across the evolutionary scale. Sci Rep 2023; 13:5326. [PMID: 37005423 PMCID: PMC10067965 DOI: 10.1038/s41598-023-32286-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
We address the temporal organization of circadian and ultradian rhythms, crucial for understanding biological timekeeping in behavior, physiology, metabolism, and alignment with geophysical time. Using a newly developed five-steps wavelet-based approach to analyze high-resolution time series of metabolism in yeast cultures and spontaneous movement, metabolism, and feeding behavior in mice, rats, and quails, we describe a dynamically coherent pattern of rhythms spanning over a broad range of temporal scales (hours to minutes). The dynamic pattern found shares key features among the four, evolutionary distant, species analyzed. Specifically, a branching appearance given by splitting periods from 24 h into 12 h, 8 h and below in mammalian and avian species, or from 14 h down to 0.07 h in yeast. Scale-free fluctuations with long-range correlations prevail below ~ 4 h. Synthetic time series modeling support a scenario of coexisting behavioral rhythms, with circadian and ultradian rhythms at the center of the emergent pattern observed.
Collapse
Affiliation(s)
- J M Kembro
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Universidad Nacional de Córdoba, Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina
| | - A G Flesia
- Facultad de Matemática, Astronomía, Física y Computación, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigación y Estudios de La Matemática (CIEM, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - P S Nieto
- Facultad de Matemática, Astronomía, Física y Computación, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Física Enrique Gaviola (IFEG, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - J M Caliva
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - D Lloyd
- Schools of Bioscience and Engineering, Cardiff University, Cardiff, Wales, UK
| | - S Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, USA
| | - M A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, USA.
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
218
|
Sheng M, Chen X, Yu Y, Wu Q, Kou J, Chen G. Rev-erbα agonist SR9009 protects against cerebral ischemic injury through mechanisms involving Nrf2 pathway. Front Pharmacol 2023; 14:1102567. [PMID: 37063298 PMCID: PMC10102520 DOI: 10.3389/fphar.2023.1102567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/08/2023] [Indexed: 04/03/2023] Open
Abstract
Backgrounds: The circadian clock protein Rev-erbα is a crucial regulator of circadian rhythms that affects multiple molecular, cellular, and physiology pathways that control susceptibility, injury, and recovery in the neurological disorders. Emerging evidence suggest that Rev-erbα plays a key role in the inflammation and oxidative stress, two pivotal mechanisms in the pathogenesis, progression, and recovery process of ischemic stroke. However, it remains inconclusive whether Rev-erbα activation is protective against ischemic brain damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, a master regulator of inflammatory and oxidative responses. Our study aimed to determine whether pharmacological activation of Rev-erbα by SR9009 protects against acute ischemic brain damage partly via Nrf2 pathway.Methods: Adult mice were pretreated with SR9009 or Nrf2 inhibitor all-trans-retinoic acid (ATRA) for 3 days prior to Sham or middle cerebral artery occlusion (MCAO) operation. After ischemia for 1 h and reperfusion for 24 h, the neurological function and cerebral infarction volume were determined, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content and glutathione peroxidase (GSH-PX) activity in serum were detected by kit. The mRNA and/or protein level of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), Period (Per)1, Brain and muscle arnt-like1 (Bmal1), Circadian locomotor output cycles kaput (Clock), Rev-erbα, Nrf2, heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO1) in cerebral cortex were detected by q-PCR and Western blot.Results: We confirmed that SR9009 activated Rev-erbα gene in the cerebral cortex under basal condition. At 24 h after reperfusion, SR9009 ameliorated acute neurological deficits, reduced infarct volume. Meanwhile, the inflammatory TNF-α, IL-1β, iNOS and MDA content levels were significant decreased, SOD and GSH-PX activity were obviously increased, which were markedly blunted (or abolished) by ATRA. SR9009 enhanced the induction of Nrf2 and its downstream target genes HO-1 and NQO1 after ischemic insult. In addition, we found that SR9009 restored Rev-erbα, Bmal1, Clock, Per1 genes expression in the cerebral cortex under ischemic condition.Conclusion: Taken together, Rev-erbα activation by SR9009 protects against ischemic stroke damage, at least, partly through Nrf2 pathway.
Collapse
Affiliation(s)
- Mingyue Sheng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xun Chen
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan Yu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Wu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junping Kou
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Gangling Chen, ; Junping Kou,
| | - Gangling Chen
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Gangling Chen, ; Junping Kou,
| |
Collapse
|
219
|
Wang L, Zhou L, Liu S, Liu Y, Zhao J, Chen Y, Liu Y. Artepillin C Time−Dependently Alleviates Metabolic Syndrome in Obese Mice by Regulating CREB/CRTC2−BMAL1 Signaling. Nutrients 2023; 15:nu15071644. [PMID: 37049484 PMCID: PMC10096790 DOI: 10.3390/nu15071644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Artepillin C (APC), a cAMP-response element−binding (CREB)/CREB regulated transcription coactivator 2 (CRTC2) inhibitor isolated from Brazilian green propolis, can ameliorate metabolic syndrome in obese mice. Because the sensitivity and responsiveness of the body to the drug depend on the time of day and the circadian clock alignment, the optimal administration time of APC for desired efficacy in treating metabolic syndrome remains unclear. In this study, APC (20 mg/kg) or the vehicle was intraperitoneally injected into obese mice once daily for one or three weeks. The results of the insulin tolerance test, pyruvate tolerance test, and histological and biochemical assays showed that APC could improve whole−body glucose homeostasis and decrease hepatic lipid synthesis following a circadian rhythm. Further exploration of the underlying mechanism revealed that APC may disturb the diurnal oscillations of the expression of brain and muscle ARNT−like protein (BMAL1) in primary hepatocytes and the livers of the study subjects. Moreover, APC could inhibit hepatic BMAL1 expression by blocking the CREB/CRTC2 transcription complex. BMAL1 overexpression in primary hepatocytes or the livers of db/db mice antagonized the inhibitory effect of APC on hepatic lipid metabolism. In conclusion, the chronotherapy of APC may relieve metabolic syndrome in obese mice, and the mechanism behind APC−mediated time−of−day effects on metabolic syndrome were unveiled, thereby providing a foundation for optimized APC treatment from a mechanistic perspective.
Collapse
|
220
|
Raji-Amirhasani A, Khaksari M, Soltani Z, Saberi S, Iranpour M, Darvishzadeh Mahani F, Hajializadeh Z, Sabet N. Beneficial effects of time and energy restriction diets on the development of experimental acute kidney injury in Rat: Bax/Bcl-2 and histopathological evaluation. BMC Nephrol 2023; 24:59. [PMID: 36941590 PMCID: PMC10026443 DOI: 10.1186/s12882-023-03104-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
People's lifestyles and, especially, their eating habits affect their health and the functioning of the organs in their bodies, including the kidneys. One's diet influences the cells' responses to stressful conditions such as acute kidney injury (AKI). This study aims to determine the preconditioning effects of four different diets: energy restriction (ER) diet, time restriction (TR) eating, intermittent fasting (IF), and high-fat diet (HF) on histopathological indices of the kidney as well as the molecules involved in apoptosis during AKI. Adult male rats underwent ER, TR, IF, and HF diets for eight weeks. Then, AKI was induced, and renal function indices, histopathological indices, and molecules involved in apoptosis were measured. In animals with AKI, urinary albumin excretion, serum urea, creatinine and, Bax/Bcl-2 ratio increased in the kidney, while renal eGFR decreased. ER and TR diets improved renal parameters and prevented an increase in the Bax/Bcl-2 ratio. The IF diet improved renal parameters but had no effect on the Bax/Bcl-2 ratio. On the other hand, the HF diet worsened renal function and increased the Bax/Bcl-2 ratio. Histopathological examination also showed improved kidney conditions in the ER and TR groups and more damage in the HF group. This study demonstrated that ER and TR diets have renoprotective effects on AKI and possibly cause the resistance of kidney cells to damage by reducing the Bax/Bcl-2 ratio and improving apoptotic conditions.
Collapse
Affiliation(s)
- Alireza Raji-Amirhasani
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shadan Saberi
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pathology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Darvishzadeh Mahani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Hajializadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
221
|
Gutman R, Pendergast JS, Nakamura W, Kojima S. Editorial: Circadian desynchrony: Consequences, mechanisms, and Open Issues. Front Physiol 2023; 14:1177643. [PMID: 37008001 PMCID: PMC10064150 DOI: 10.3389/fphys.2023.1177643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Affiliation(s)
- Roee Gutman
- Laboratory of Integrative Physiology, The Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Animal Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Julie S Pendergast
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Wataru Nakamura
- Department of Oral Chrono-Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
222
|
Chopra K, Folkmanaitė M, Stockdale L, Shathish V, Ishibashi S, Bergin R, Amich J, Amaya E. Duox is the primary NADPH oxidase responsible for ROS production during adult caudal fin regeneration in zebrafish. iScience 2023; 26:106147. [PMID: 36843843 PMCID: PMC9950526 DOI: 10.1016/j.isci.2023.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/28/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Sustained elevated levels of reactive oxygen species (ROS) have been shown to be essential for regeneration in many organisms. This has been shown primarily via the use of pharmacological inhibitors targeting the family of NADPH oxidases (NOXes). To identify the specific NOXes involved in ROS production during adult caudal fin regeneration in zebrafish, we generated nox mutants for duox, nox5 and cyba (a key subunit of NOXes 1-4) and crossed these lines with a transgenic line ubiquitously expressing HyPer, which permits the measurement of ROS levels. Homozygous duox mutants had the greatest effect on ROS levels and rate of fin regeneration among the single mutants. However, duox:cyba double mutants showed a greater effect on fin regeneration than the single duox mutants, suggesting that Nox1-4 also play a role during regeneration. This work also serendipitously found that ROS levels in amputated adult zebrafish fins oscillate with a circadian rhythm.
Collapse
Affiliation(s)
- Kunal Chopra
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Milda Folkmanaitė
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Liam Stockdale
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Vishali Shathish
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Shoko Ishibashi
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Rachel Bergin
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jorge Amich
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda 28220 Madrid, Spain
| | - Enrique Amaya
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
223
|
Asher G, Zhu B. Beyond circadian rhythms: emerging roles of ultradian rhythms in control of liver functions. Hepatology 2023; 77:1022-1035. [PMID: 35591797 PMCID: PMC9674798 DOI: 10.1002/hep.32580] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/08/2022]
Abstract
The mammalian liver must cope with various metabolic and physiological changes that normally recur every day and primarily stem from daily cycles of rest-activity and fasting-feeding. Although a large body of evidence supports the reciprocal regulation of circadian rhythms and liver function, the research on the hepatic ultradian rhythms have largely been lagging behind. However, with the advent of more cost-effective high-throughput omics technologies, high-resolution time-lapse imaging, and more robust and powerful mathematical tools, several recent studies have shed new light on the presence and functions of hepatic ultradian rhythms. In this review, we will first very briefly discuss the basic principles of circadian rhythms, and then cover in greater details the recent literature related to ultradian rhythms. Specifically, we will highlight the prevalence and mechanisms of hepatic 12-h rhythms, and 8-h rhythms, which cycle at the second and third harmonics of circadian frequency. Finally, we also refer to ultradian rhythms with other frequencies and examine the limitations of the current approaches as well as the challenges related to identifying ultradian rhythm and addressing their molecular underpinnings.
Collapse
Affiliation(s)
- Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
224
|
Huang L, Chen Y, Wen S, Lu D, Shen X, Deng H, Xu L. Is time-restricted eating (8/16) beneficial for body weight and metabolism of obese and overweight adults? A systematic review and meta-analysis of randomized controlled trials. Food Sci Nutr 2023; 11:1187-1200. [PMID: 36911845 PMCID: PMC10002957 DOI: 10.1002/fsn3.3194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Time-restricted eating (TRE) is a new therapeutic strategy for the management of weight loss and dysmetabolic diseases. At present, TRE (8/16, 8 h eating:16 h fasting) is the most common form of TRE. Therefore, this meta-analysis included randomized controlled trials (RCTs) on TRE (8/16) in overweight and obese adults to determine its impact on body weight and metabolism. Articles reviewed from PubMed, Ovid MEDLINE, Embase, and Cochrane Central Register for the relevant RCTs that compared TRE (8/16) to non-TRE in overweight and obese adults. Eight RCTs were included in this meta-analysis. Participants following TRE (8/16) showed significant body weight reduction (mean difference [MD]: -1.48 kg, 95% confidence interval [CI]: -2.53 to -0.44) and fat mass reduction (MD: -1.09 kg, 95% CI: -1.55 to -0.63). There was no significant difference in lean mass change with TRE intervention (MD: -0.48 kg, 95% CI: -1.02 to 0.05, p = .08, I 2 = 41%). The energy restriction and early TRE (eTRE) subgroups resulted in greater weight loss. TRE (8/16) showed beneficial effects on the homeostatic model assessment of insulin resistance (HOMA-IR, MD: -0.32, 95% CI: -0.59 to -0.06), but had no significant effect on other parameters of glucose metabolism and lipid profiles. In conclusion, TRE (8/16), especially eTRE, or in combination with caloric intake restriction, is a potential therapeutic strategy for weight control in overweight and obese adults. TRE (8/16) also reduced HOMA-IR; therefore, it may have a positive effect on glucose metabolism.
Collapse
Affiliation(s)
- Lu Huang
- Department of Obstetrics and Gynecology, West China Second University HospitalSichuan UniversityChengduChina
- Reproductive Endocrinology and Regulation Laboratory, West China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University)Ministry of EducationChengduChina
- The Joint Laboratory for Reproductive Medicine of Sichuan University‐The Chinese University of Hong KongChengduChina
| | - Yan Chen
- Department of Obstetrics and Gynecology, West China Second University HospitalSichuan UniversityChengduChina
- Reproductive Endocrinology and Regulation Laboratory, West China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University)Ministry of EducationChengduChina
- The Joint Laboratory for Reproductive Medicine of Sichuan University‐The Chinese University of Hong KongChengduChina
| | - Shu Wen
- Department of Critical Care MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Danhua Lu
- Department of Obstetrics and Gynecology, West China Second University HospitalSichuan UniversityChengduChina
- Reproductive Endocrinology and Regulation Laboratory, West China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University)Ministry of EducationChengduChina
- The Joint Laboratory for Reproductive Medicine of Sichuan University‐The Chinese University of Hong KongChengduChina
| | - Xiaoyang Shen
- Department of Obstetrics and Gynecology, West China Second University HospitalSichuan UniversityChengduChina
- Reproductive Endocrinology and Regulation Laboratory, West China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University)Ministry of EducationChengduChina
- The Joint Laboratory for Reproductive Medicine of Sichuan University‐The Chinese University of Hong KongChengduChina
| | - Hongxia Deng
- Department of Obstetrics and Gynecology, West China Second University HospitalSichuan UniversityChengduChina
- Reproductive Endocrinology and Regulation Laboratory, West China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University)Ministry of EducationChengduChina
- The Joint Laboratory for Reproductive Medicine of Sichuan University‐The Chinese University of Hong KongChengduChina
| | - Liangzhi Xu
- Department of Obstetrics and Gynecology, West China Second University HospitalSichuan UniversityChengduChina
- Reproductive Endocrinology and Regulation Laboratory, West China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University)Ministry of EducationChengduChina
- The Joint Laboratory for Reproductive Medicine of Sichuan University‐The Chinese University of Hong KongChengduChina
| |
Collapse
|
225
|
Wang Y, Guo H, He F. Circadian disruption: from mouse models to molecular mechanisms and cancer therapeutic targets. Cancer Metastasis Rev 2023; 42:297-322. [PMID: 36513953 DOI: 10.1007/s10555-022-10072-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
The circadian clock is a timekeeping system for numerous biological rhythms that contribute to the regulation of numerous homeostatic processes in humans. Disruption of circadian rhythms influences physiology and behavior and is associated with adverse health outcomes, especially cancer. However, the underlying molecular mechanisms of circadian disruption-associated cancer initiation and development remain unclear. It is essential to construct good circadian disruption models to uncover and validate the detailed molecular clock framework of circadian disruption in cancer development and progression. Mouse models are the most widely used in circadian studies due to their relatively small size, fast reproduction cycle, easy genome manipulation, and economic practicality. Here, we reviewed the current mouse models of circadian disruption, including suprachiasmatic nuclei destruction, genetic engineering, light disruption, sleep deprivation, and other lifestyle factors in our understanding of the crosstalk between circadian rhythms and oncogenic signaling, as well as the molecular mechanisms of circadian disruption that promotes cancer growth. We focused on the discoveries made with the nocturnal mouse, diurnal human being, and cell culture and provided several circadian rhythm-based cancer therapeutic strategies.
Collapse
Affiliation(s)
- Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
226
|
The circadian demethylation of a unique intronic deoxymethylCpG-rich island boosts the transcription of its cognate circadian clock output gene. Proc Natl Acad Sci U S A 2023; 120:e2214062120. [PMID: 36791105 PMCID: PMC9974474 DOI: 10.1073/pnas.2214062120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
We demonstrate that there is a tight functional relationship between two highly evolutionary conserved cell processes, i.e., the circadian clock (CC) and the circadian DNA demethylation-methylation of cognate deoxyCpG-rich islands. We have discovered that every circadian clock-controlled output gene (CCG), but not the core clock nor its immediate-output genes, contains a single cognate intronic deoxyCpG-rich island, the demethylation-methylation of which is controlled by the CC. During the transcriptional activation period, these intronic islands are demethylated and, upon dimerization of two YY1 protein binding sites located upstream to the transcriptional enhancer and downstream from the deoxyCpG-rich island, store activating components initially assembled on a cognate active enhancer (a RORE, a D-box or an E-box), in keeping with the generation of a transcriptionally active condensate that boosts the initiation of transcription of their cognate pre-mRNAs. We report how these single intronic deoxyCpG-rich islands are instrumental in such a circadian activation/repression transcriptional process.
Collapse
|
227
|
Isherwood CM, van der Veen DR, Hassanin H, Skene DJ, Johnston JD. Human glucose rhythms and subjective hunger anticipate meal timing. Curr Biol 2023; 33:1321-1326.e3. [PMID: 36822203 DOI: 10.1016/j.cub.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023]
Abstract
Circadian rhythms, metabolism, and nutrition are closely linked.1 Timing of a three-meal daily feeding pattern synchronizes some human circadian rhythms.2 Despite animal data showing anticipation of food availability, linked to a food-entrainable oscillator,3 it is unknown whether human physiology predicts mealtimes and restricted food availability. In a controlled laboratory protocol, we tested the hypothesis that the human circadian system anticipates large meals. Twenty-four male participants undertook an 8-day laboratory study, with strict sleep-wake schedules, light-dark schedules, and food intake. For 6 days, participants consumed either hourly small meals throughout the waking period or two large daily meals (7.5 and 14.5 h after wake-up). All participants then undertook a 37-h constant routine. Interstitial glucose was measured every 15 min throughout the protocol. Hunger was assessed hourly during waking periods. Saliva melatonin was measured in the constant routine. During the 6-day feeding pattern, both groups exhibited increasing glucose concentration early each morning. In the small meal group, glucose concentrations continued to increase across the day. However, in the large meal group, glucose concentrations decreased from 2 h after waking until the first meal. Average 24-h glucose concentration did not differ between groups. In the constant routine, there was no difference in melatonin onset between groups, but antiphasic glucose rhythms were observed, with low glucose at the time of previous meals in the large meal group. Moreover, in the large meal group, constant routine hunger scores increased before the predicted meal times. These data support the existence of human food anticipation.
Collapse
Affiliation(s)
- Cheryl M Isherwood
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Daan R van der Veen
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Hana Hassanin
- Clinical Research Facility, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XP, UK
| | - Debra J Skene
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Jonathan D Johnston
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| |
Collapse
|
228
|
Roth JR, Varshney S, de Moraes RCM, Melkani GC. Circadian-mediated regulation of cardiometabolic disorders and aging with time-restricted feeding. Obesity (Silver Spring) 2023; 31 Suppl 1:40-49. [PMID: 36623845 PMCID: PMC10089654 DOI: 10.1002/oby.23664] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023]
Abstract
Circadian rhythms are present throughout biology, from the molecular level to complex behaviors such as eating and sleeping. They are driven by molecular clocks within cells, and different tissues can have unique rhythms. Circadian disruption can trigger obesity and other common metabolic disorders such as aging, diabetes, and cardiovascular disease, and circadian genes control metabolism. At an organismal level, feeding and fasting rhythms are key drivers of circadian rhythms. This underscores the bidirectional relationship between metabolism and circadian rhythms, and many metabolic disorders have circadian disruption or misalignment. Therefore, studying circadian rhythms may offer new avenues for understanding the etiology and management of obesity. This review describes how circadian rhythm dysregulation is linked with cardiometabolic disorders and how the lifestyle intervention of time-restricted feeding (TRF) regulates them. TRF reinforces feeding-fasting rhythms without reducing caloric intake and ameliorates metabolic disorders such as obesity and associated cardiac dysfunction, along with reducing inflammation. TRF optimizes the expression of genes and pathways related to normal metabolic function, linking metabolism with TRF's benefits and demonstrating the molecular link between metabolic disorders and circadian rhythms. Thus, TRF has tremendous therapeutic potential that could be easily adopted to reduce obesity-linked dysfunction and cardiometabolic disorders.
Collapse
Affiliation(s)
- Jonathan R. Roth
- Department of Pathology, Division of Molecular and Cellular Pathology, School of Medicine, The University of Alabama at Birmingham, AL 35294, USA
| | - Shweta Varshney
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ruan Carlos Macedo de Moraes
- Department of Pathology, Division of Molecular and Cellular Pathology, School of Medicine, The University of Alabama at Birmingham, AL 35294, USA
| | - Girish C. Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, School of Medicine, The University of Alabama at Birmingham, AL 35294, USA
| |
Collapse
|
229
|
Jain SN, Patil SB. Perspectives of colon-specific drug delivery in the management of morning symptoms of rheumatoid arthritis. Inflammopharmacology 2023; 31:253-264. [PMID: 36544060 DOI: 10.1007/s10787-022-01120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis is a chronic condition that is characterized by joint pain and inflammation. It is an autoimmune disorder in which the body tissues are erroneously attacked by the immune system of the host itself. It has been evident that rheumatoid arthritis symptoms follow a 24 h circadian rhythm and exhibit high thresholds of pain, functional disability, and stiffness predominantly early in the morning. Colon-specific drug delivery systems can be utilized in the formulations to be used in the treatment of rheumatoid arthritis. The colon-specific drug delivery system has shown promising results in the treatment of different diseases at the colonic site like Crohn's disease, ulcerative colitis, colon cancer, etc. The colon-specific drug delivery is capable of delivering the formulation at the predetermined location and predetermined time. The early morning symptoms of rheumatoid arthritis like pain and inflammation can be treated using the various approaches of the colon-specific drug delivery system because it will lead to patient compliance as the patient will not require administering the formulation immediately after waking up in the morning. This review also explains the immunological factors which may trigger rheumatoid arthritis in human beings. It further explores conventional approaches like pH-dependant, microorganisms-driven, pressure-controlled, and time-dependant formulations. By employing two or more conventional approaches given above the various novel approaches have been designed to eliminate the drawbacks of individual techniques.
Collapse
Affiliation(s)
- Swapnil N Jain
- Department of Pharmaceutics, SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, 423101, India
| | - Sanjay B Patil
- Department of Pharmaceutics, SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, 423101, India.
| |
Collapse
|
230
|
Gallop MR, Tobin SY, Chaix A. Finding balance: understanding the energetics of time-restricted feeding in mice. Obesity (Silver Spring) 2023; 31 Suppl 1:22-39. [PMID: 36513496 PMCID: PMC9877167 DOI: 10.1002/oby.23607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
Over the course of mammalian evolution, the ability to store energy likely conferred a survival advantage when food became scarce. A long-term increase in energy storage results from an imbalance between energy intake and energy expenditure, two tightly regulated parameters that generally balance out to maintain a fairly stable body weight. Understanding the molecular determinants of this feat likely holds the key to new therapeutic development to manage obesity and associated metabolic dysfunctions. Time-restricted feeding (TRF), a dietary intervention that limits feeding to the active phase, can prevent and treat obesity and metabolic dysfunction in rodents fed a high-fat diet, likely by exerting effects on energetic balance. Even when body weight is lower in mice on active-phase TRF, food intake is generally isocaloric as compared with ad libitum fed controls. This discrepancy between body weight and energy intake led to the hypothesis that energy expenditure is increased during TRF. However, at present, there is no consensus in the literature as to how TRF affects energy expenditure and energy balance as a whole, and the mechanisms behind metabolic adaptation under TRF are unknown. This review examines our current understanding of energy balance on TRF in rodents and provides a framework for future studies to evaluate the energetics of TRF and its molecular determinants.
Collapse
Affiliation(s)
- Molly R Gallop
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Selene Y Tobin
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| |
Collapse
|
231
|
Verma AK, Singh S, Rizvi SI. Aging, circadian disruption and neurodegeneration: Interesting interplay. Exp Gerontol 2023; 172:112076. [PMID: 36574855 DOI: 10.1016/j.exger.2022.112076] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
The circadian system is an intricate molecular network of coordinating circadian clocks that organize the internal synchrony of the organism in response to the environment. These rhythms are maintained by genetically programmed positive and negative auto-regulated transcriptional and translational feedback loops that sustain 24-hour oscillations in mRNA and protein components of the endogenous circadian clock. Since inter and intracellular activity of the central pacemaker appears to reduce with aging, the interaction between the circadian clock and aging continues to elude our understanding. In this review article, we discuss circadian clock components at the molecular level and how aging adversely affects circadian clock functioning in rodents and humans. The natural decline in melatonin levels with aging strongly contributes to circadian dysregulation resulting in the development of neurological anomalies. Additionally, inappropriate environmental conditions such as Artificial Light at Night (ALAN) can cause circadian disruption or chronodisruption (CD) which can result in a variety of pathological diseases, including premature aging. Furthermore, we summarize recent evidence suggesting that CD may also be a predisposing factor for the development of age-related neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), although more investigation is required to prove this link. Finally, certain chrono-enhancement approaches have been offered as intervention strategies to prevent, alleviate, or mitigate the impacts of CD. This review thus aims to bring together recent advancements in the chronobiology of the aging process, as well as its role in NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India; Psychedelics Research Group, Biological Psychiatry Laboratory and Hadassah BrainLabs, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
232
|
Hahn K, Sundar IK. Current Perspective on the Role of the Circadian Clock and Extracellular Matrix in Chronic Lung Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2455. [PMID: 36767821 PMCID: PMC9915635 DOI: 10.3390/ijerph20032455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The circadian clock is a biochemical oscillator that rhythmically regulates physiological and behavioral processes such as inflammation, immunity, and metabolism in mammals. Circadian clock disruption is a key driver for chronic inflammatory as well as fibrotic lung diseases. While the mechanism of circadian clock regulation in the lung has been minimally explored, some evidence suggests that the transforming growth factor β (TGFβ) signaling pathway and subsequent extracellular matrix (ECM) accumulation in the lung may be controlled via a clock-dependent mechanism. Recent advancements in this area led us to believe that pharmacologically targeting the circadian clock molecules may be a novel therapeutic approach for treating chronic inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Here, we update the current perspective on the circadian clock role in TGFβ1 signaling and extracellular matrix production during chronic lung diseases.
Collapse
Affiliation(s)
- Kameron Hahn
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
233
|
Circadian rhythm disruption is associated with skeletal muscle dysfunction within the blind Mexican Cavefish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525368. [PMID: 36747688 PMCID: PMC9900830 DOI: 10.1101/2023.01.25.525368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Circadian control of physiology and metabolism is pervasive throughout nature, with circadian disruption contributing to premature aging, neurodegenerative disease, and type 2 diabetes (Musiek et al. 2016; Panda, 2016). It has become increasingly clear that peripheral tissues, such as skeletal muscle, possess cell-autonomous clocks crucial for metabolic homeostasis (Gabriel et al. 2021). In fact, disruption of the skeletal muscle circadian rhythm results in insulin resistance, sarcomere disorganization, and muscle weakness in both vertebrates and non-vertebrates - indicating that maintenance of a functional muscle circadian rhythm provides an adaptive advantage. We and others have found that cavefish possess a disrupted central circadian rhythm and, interestingly, a skeletal muscle phenotype strikingly similar to circadian knock-out mutants; namely, muscle loss, muscle weakness, and insulin resistance (Olsen et al. 2022; Riddle et al. 2018; Mack et al. 2021). However, whether the cavefish muscle phenotype results from muscle-specific circadian disruption remains untested. To this point, we investigated genome-wide, circadian-regulated gene expression within the skeletal muscle of the Astyanax mexicanus - comprised of the river-dwelling surface fish and troglobitic cavefish - providing novel insights into the evolutionary consequence of circadian disruption on skeletal muscle physiology.
Collapse
|
234
|
Guevara-Garcia A, Soleilhac M, Minc N, Delacour D. Regulation and functions of cell division in the intestinal tissue. Semin Cell Dev Biol 2023:S1084-9521(23)00004-6. [PMID: 36702722 DOI: 10.1016/j.semcdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing epithelial tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs to ensure correct organ formation and functioning. In these processes, proliferation rates and division orientation regulate the speed, timing and direction of tissue expansion but also its proper patterning. Moreover, tissue homeostasis relies on spatio-temporal modulations of daughter cell behavior and arrangement. These aspects are particularly crucial in the intestine, which is one of the most proliferative tissues in adults, making it a very attractive adult organ system to study the role of cell division on epithelial morphogenesis and organ function. Although epithelial cell division has been the subject of intense research for many years in multiple models, it still remains in its infancy in the context of the intestinal tissue. In this review, we focus on the current knowledge on cell division and regulatory mechanisms at play in the intestinal epithelial tissue, as well as their importance in developmental biology and physiopathology.
Collapse
Affiliation(s)
| | - Matis Soleilhac
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Delphine Delacour
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| |
Collapse
|
235
|
Malek EM, Navalta JW, McGinnis GR. Time of Day and Chronotype-Dependent Synchrony Effects Exercise-Induced Reduction in Migraine Load: A Pilot Cross-Over Randomized Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032083. [PMID: 36767448 PMCID: PMC9915413 DOI: 10.3390/ijerph20032083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 06/01/2023]
Abstract
Migraines are the most common cause of chronic pain. Effective, non-pharmacological strategies to reduce migraine load, like exercise, are needed, but it is unclear how exercise timing and chronotype modulate the effects. We sought to determine the effects of time-of-day of exercise, and synchrony with one's chronotype, on migraine load. We performed a pilot cross-over randomized trial where participants with chronic migraine completed two one-month exercise interventions, consisting of either morning exercise (before 09:00 a.m.) or evening exercise (after 7:00 p.m.) in a randomized repeated measures cross-over design (Clinical Trial #NCT04553445). Synchrony was determined by exercise time and chronotype (i.e., a morning type participant exercising in the morning is 'in-sync,' while an evening type participant exercising in the morning is 'out-of-sync'). Migraine burden, and anthropometric assessment occurred before and after each month of exercise. Data was analyzed using repeated measures ANOVA with significance accepted at p < 0.05. When comparing morning and evening exercise, there was no significant improvements in any migraine-related parameters. However, when comparing in-sync and out-of-sync exercise, we found that migraine burden was only improved following in-sync exercise, while no benefits were seen in out-of-sync exercise. Our data suggests that exercise timing has limited impact, but synchrony with chronotype may be essential to decrease migraine load in chronic migraineurs.
Collapse
|
236
|
Martel J, Chang SH, Chevalier G, Ojcius DM, Young JD. Influence of electromagnetic fields on the circadian rhythm: Implications for human health and disease. Biomed J 2023; 46:48-59. [PMID: 36681118 PMCID: PMC10105029 DOI: 10.1016/j.bj.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Living organisms have evolved within the natural electromagnetic fields (EMFs) of the earth which comprise the global atmospheric electrical circuit, Schumann resonances (SRs) and the geomagnetic field. Research suggests that the circadian rhythm, which controls several physiological functions in the human body, can be influenced by light but also by the earth's EMFs. Cyclic solar disturbances, including sunspots and seasonal weakening of the geomagnetic field, can affect human health, possibly by disrupting the circadian rhythm and downstream physiological functions. Severe disruption of the circadian rhythm increases inflammation which can induce fatigue, fever and flu-like symptoms in a fraction of the population and worsen existing symptoms in old and diseased individuals, leading to periodic spikes of infectious and chronic diseases. Possible mechanisms underlying sensing of the earth's EMFs involve entrainment via electrons and electromagnetic waves, light-dependent radical pair formation in retina cryptochromes, and paramagnetic magnetite nanoparticles. Factors such as electromagnetic pollution from wireless devices, base antennas and low orbit internet satellites, shielding by non-conductive materials used in shoes and buildings, and local geomagnetic anomalies may also affect sensing of the earth's EMFs by the human body and contribute to circadian rhythm disruption and disease development.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsin Chang
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Gaétan Chevalier
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - David M Ojcius
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA
| | - John D Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan.
| |
Collapse
|
237
|
Zhao D, Guallar E, Woolf TB, Martin L, Lehmann H, Coughlin J, Holzhauer K, Goheer AA, McTigue KM, Lent MR, Hawkins M, Clark JM, Bennett WL. Association of Eating and Sleeping Intervals With Weight Change Over Time: The Daily24 Cohort. J Am Heart Assoc 2023; 12:e026484. [PMID: 36651320 PMCID: PMC9973633 DOI: 10.1161/jaha.122.026484] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background We aim to evaluate the association between meal intervals and weight trajectory among adults from a clinical cohort. Methods and Results This is a multisite prospective cohort study of adults recruited from 3 health systems. Over the 6-month study period, 547 participants downloaded and used a mobile application to record the timing of meals and sleep for at least 1 day. We obtained information on weight and comorbidities at each outpatient visit from electronic health records for up to 10 years before until 10 months after baseline. We used mixed linear regression to model weight trajectories. Mean age was 51.1 (SD 15.0) years, and body mass index was 30.8 (SD 7.8) kg/m2; 77.9% were women, and 77.5% reported White race. Mean interval from first to last meal was 11.5 (2.3) hours and was not associated with weight change. The number of meals per day was positively associated with weight change. The average difference in annual weight change (95% CI) associated with an increase of 1 daily meal was 0.28 kg (0.02-0.53). Conclusions Number of daily meals was positively associated with weight change over 6 years. Our findings did not support the use of time-restricted eating as a strategy for long-term weight loss in a general medical population.
Collapse
Affiliation(s)
- Di Zhao
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
| | - Eliseo Guallar
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
| | - Thomas B. Woolf
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMD
| | - Lindsay Martin
- Division of General Internal MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Harold Lehmann
- Division of Health Sciences InformaticsJohns Hopkins University School of MedicineBaltimoreMD
| | - Janelle Coughlin
- Division of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMD
| | - Katherine Holzhauer
- Division of General Internal MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Attia A. Goheer
- Department of Health Policy and ManagementJohns Hopkins Bloomberg School of Public HealthBaltimoreMD
| | | | - Michelle R. Lent
- School of Professional and Applied PsychologyPhiladelphia College of Osteopathic MedicinePhiladelphiaPA
| | - Marquis Hawkins
- Department of EpidemiologyUniversity of PittsburghPittsburghPA
| | - Jeanne M. Clark
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMD,Division of General Internal MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Wendy L. Bennett
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMD,Division of General Internal MedicineJohns Hopkins University School of MedicineBaltimoreMD
| |
Collapse
|
238
|
Phillips DJ, Blaine S, Wallace NK, Karatsoreos IN. Brain-derived neurotrophic factor Val66Met polymorphism modulates the effects of circadian desynchronization on activity and sleep in male mice. Front Neurosci 2023; 16:1013673. [PMID: 36699530 PMCID: PMC9868941 DOI: 10.3389/fnins.2022.1013673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/30/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction Understanding how environmental interact challenges with genetic predispositions modulate health and wellbeing is an important area of biomedical research. Circadian rhythms play an important role in coordinating the multitude of cellular and tissue processes that organisms use to predict and adapt to regular changes in the environment, and robust circadian rhythms contribute to optimal physiological and behavioral responses to challenge. However, artificial lighting and modern round-the-clock lifestyles can disrupt the circadian system, leading to desynchronization of clocks throughout the brain and body. When coupled with genetic predispositions, circadian desynchronization may compound negative outcomes. Polymorphisms in the brain-derived neurotrophic (BDNF) gene contribute to variations in neurobehavioral responses in humans, including impacts on sleep, with the common Val66Met polymorphism linked to several negative outcomes. Methods We explored how the Val66Met polymorphism modulates the response to environmental circadian desynchronization (ECD) in a mouse model. ECD was induced by housing adult male mice in a 20 h light-dark cycle (LD10:10; 10 h light, 10 h dark). Sleep and circadian activity were recorded in homozygous (Met) mice and their wild-type (Val) littermates in a standard 24 h LD cycle (LD12:12), then again after 20, 40, and 60 days of ECD. Results We found ECD significantly affected the sleep/wake timing in Val mice, however, Met mice maintained appropriate sleep timing after 20 days ECD, but not after 40 and 60 days of ECD. In addition, the rise in delta power at lights on was absent in Val mice but was maintained in Met mice. To elucidate the circadian and homeostatic contribution to disrupted sleep, mice were sleep deprived by gentle handling in LD12:12 and after 20 days in ECD. Following 6 h of sleep deprivation delta power was increased for both Val and Met mice in LD12:12 and ECD conditions. However, the time constant was significantly longer in the Val mice during ECD compared to LD12:12, suggesting a functioning but altered sleep homeostat. Discussion These data suggest the Val66Met mutation is associated with an ability to resist the effects of LD10:10, which may result in carriers suffering fewer negative impacts of ECD.
Collapse
Affiliation(s)
- Derrick J. Phillips
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, United States
| | - Scott Blaine
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Naomi K. Wallace
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Ilia N. Karatsoreos
- Neuroscience and Behavior Program, Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
239
|
Yan X, Xu P, Sun X. Circadian rhythm disruptions: A possible link of bipolar disorder and endocrine comorbidities. Front Psychiatry 2023; 13:1065754. [PMID: 36683994 PMCID: PMC9849950 DOI: 10.3389/fpsyt.2022.1065754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Epidemiological studies have demonstrated an association between bipolar disorder (BP) and endocrine diseases. Further, circadian rhythm disruptions may be a potential common pathophysiological mechanism of both disorders. This review provides a brief overview of the molecular mechanisms of circadian rhythms, as well as roles circadian rhythms play in BP and common endocrine comorbidities such as diabetes and thyroid disease. Treatments targeting the circadian system, both pharmacological and non-pharmacological, are also discussed. The hope is to elicit new interest to the importance of circadian system in BP and offer new entry points and impetus to the development of medicine.
Collapse
Affiliation(s)
| | | | - Xueli Sun
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
240
|
Yan L, Sundaram S, Rust BM, Palmer DG, Johnson LK, Zeng H. Consumption of a high-fat diet alters transcriptional rhythmicity in liver from pubertal mice. Front Nutr 2023; 9:1068350. [PMID: 36687679 PMCID: PMC9845732 DOI: 10.3389/fnut.2022.1068350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Childhood obesity is associated with adult obesity, which is a risk factor for chronic diseases. Obesity, as an environmental cue, alters circadian rhythms. The hypothesis of this study was that consumption of a high-fat diet alters metabolic rhythms in pubertal mice. Methods Weanling female C57BL/6NHsd mice were fed a standard AIN93G diet or a high-fat diet (HFD) for 3 weeks. Livers were collected from six-week-old mice every 4 h over a period of 48 h for transcriptome analysis. Results and discussion The HFD altered rhythmicity of differentially rhythmic transcripts in liver. Specifically, the HFD elevated expression of circadian genes Clock, Per1, and Cry1 and genes encoding lipid metabolism Fads1 and Fads2, while decreased expression of circadian genes Bmal1 and Per2 and lipid metabolism genes Acaca, Fasn, and Scd1. Hierarchical clustering analysis of differential expression genes showed that the HFD-mediated metabolic disturbance was most active in the dark phase, ranging from Zeitgeber time 16 to 20. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis of differentially expressed genes showed that the HFD up-regulated signaling pathways related to fatty acid and lipid metabolism, steroid and steroid hormone biosynthesis, amino acid metabolism and protein processing in the endoplasmic reticulum, glutathione metabolism, and ascorbate and aldarate metabolism in the dark phase. Down-regulations included MAPK pathway, lipolysis in adipocytes, Ras and Rap1 pathways, and pathways related to focal adhesion, cell adhesion molecules, and extracellular matrix-receptor interaction. In summary, the HFD altered metabolic rhythms in pubertal mice with the greatest alterations in the dark phase. These alterations may disrupt metabolic homeostasis in puberty and lead to metabolic disorders.
Collapse
|
241
|
Abstract
Our physiology and behavior follow precise daily programs that adapt us to the alternating opportunities and challenges of day and night. Under experimental isolation, these rhythms persist with a period of approximately one day (circadian), demonstrating their control by an internal autonomous clock. Circadian time is created at the cellular level by a transcriptional/translational feedback loop (TTFL) in which the protein products of the Period and Cryptochrome genes inhibit their own transcription. Because the accumulation of protein is slow and delayed, the system oscillates spontaneously with a period of ∼24 hours. This cell-autonomous TTFL controls cycles of gene expression in all major tissues and these cycles underpin our daily metabolic programs. In turn, our innumerable cellular clocks are coordinated by a central pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. When isolated in slice culture, the SCN TTFL and its dependent cycles of neural activity persist indefinitely, operating as "a clock in a dish". In vivo, SCN time is synchronized to solar time by direct innervation from specialized retinal photoreceptors. In turn, the precise circadian cycle of action potential firing signals SCN-generated time to hypothalamic and brain stem targets, which co-ordinate downstream autonomic, endocrine, and behavioral (feeding) cues to synchronize and sustain the distributed cellular clock network. Circadian time therefore pervades every level of biological organization, from molecules to society. Understanding its mechanisms offers important opportunities to mitigate the consequences of circadian disruption, so prevalent in modern societies, that arise from shiftwork, aging, and neurodegenerative diseases, not least Huntington's disease.
Collapse
Affiliation(s)
- Andrew P. Patton
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
242
|
Lane JM, Qian J, Mignot E, Redline S, Scheer FAJL, Saxena R. Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet 2023; 24:4-20. [PMID: 36028773 PMCID: PMC10947799 DOI: 10.1038/s41576-022-00519-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Circadian rhythms and sleep are fundamental biological processes integral to human health. Their disruption is associated with detrimental physiological consequences, including cognitive, metabolic, cardiovascular and immunological dysfunctions. Yet many of the molecular underpinnings of sleep regulation in health and disease have remained elusive. Given the moderate heritability of circadian and sleep traits, genetics offers an opportunity that complements insights from model organism studies to advance our fundamental molecular understanding of human circadian and sleep physiology and linked chronic disease biology. Here, we review recent discoveries of the genetics of circadian and sleep physiology and disorders with a focus on those that reveal causal contributions to complex diseases.
Collapse
Affiliation(s)
- Jacqueline M Lane
- Center for Genomic Medicine and Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Jingyi Qian
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Emmanuel Mignot
- Center for Narcolepsy, Stanford University, Palo Alto, California, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| | - Richa Saxena
- Center for Genomic Medicine and Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
243
|
Fatty acid metabolism in liver and muscle is strongly modulated by photoperiod in Fischer 344 rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112621. [PMID: 36525774 DOI: 10.1016/j.jphotobiol.2022.112621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Circadian and seasonal variations produce variations in physiological processes throughout the day and the year, respectively. In this sense, both the light and the moment of feeding are strong modulators of the central and peripheral clocks. However, little is known about its influence on certain metabolic parameters and on the composition of liver and muscle fatty acids (FA). In the present study, 24 Fischer 344 rats were exposed for 11 weeks to different photoperiods, L6, L12 and L18, with 6, 12 and 18 h of light/day, respectively. They were fed a standard diet. Serum metabolic parameters, gene expression of liver enzymes and gastrocnemius muscle involved in the synthesis, elongation, desaturation and β-oxidation of FA were analyzed. We have found that exposure to different hours of light has a clear effect on FA composition and gene expression in the liver. Mainly, the biosynthesis of unsaturated FA was altered in the L18 animals with respect to those exposed to L12, while the L6 did not show significant changes. At the muscle level, differences were observed in the concentration of mono and polyunsaturated FA. A multivariate analysis confirmed the differences between L12 and L18 in a significant way. We conclude that exposure to long days produces changes in the composition of liver and muscle FA, as well as changes in the gene expression of oxidative enzymes compared to exposure to L12, which could be a consequence of different seasonal eating patterns.
Collapse
|
244
|
Bennett S, Sato S. Enhancing the metabolic benefits of exercise: Is timing the key? Front Endocrinol (Lausanne) 2023; 14:987208. [PMID: 36875451 PMCID: PMC9974656 DOI: 10.3389/fendo.2023.987208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Physical activity represents a potent, non-pharmacological intervention delaying the onset of over 40 chronic metabolic and cardiovascular diseases, including type 2 diabetes, coronary heart disease, and reducing all-cause mortality. Acute exercise improves glucose homeostasis, with regular participation in physical activity promoting long-term improvements in insulin sensitivity spanning healthy and disease population groups. At the skeletal muscle level, exercise promotes significant cellular reprogramming of metabolic pathways through the activation of mechano- and metabolic sensors, which coordinate downstream activation of transcription factors, augmenting target gene transcription associated with substrate metabolism and mitochondrial biogenesis. It is well established that frequency, intensity, duration, and modality of exercise play a critical role in the type and magnitude of adaptation; albeit, exercise is increasingly considered a vital lifestyle factor with a critical role in the entrainment of the biological clock. Recent research efforts revealed the time-of-day-dependent impact of exercise on metabolism, adaptation, performance, and subsequent health outcomes. The synchrony between external environmental and behavioural cues with internal molecular circadian clock activity is a crucial regulator of circadian homeostasis in physiology and metabolism, defining distinct metabolic and physiological responses to exercise unique to the time of day. Optimising exercise outcomes following when to exercise would be essential to establishing personalised exercise medicine depending on exercise objectives linked to disease states. We aim to provide an overview of the bimodal impact of exercise timing, i.e. the role of exercise as a time-giver (zeitgeber) to improve circadian clock alignment and the underpinning clock control of metabolism and the temporal impact of exercise timing on the metabolic and functional outcomes associated with exercise. We will propose research opportunities that may further our understanding of the metabolic rewiring induced by specific exercise timing.
Collapse
|
245
|
Chen W, Liu X, Bao L, Yang P, Zhou H. Health effects of the time-restricted eating in adults with obesity: A systematic review and meta-analysis. Front Nutr 2023; 10:1079250. [PMID: 36875837 PMCID: PMC9979543 DOI: 10.3389/fnut.2023.1079250] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/06/2023] [Indexed: 02/18/2023] Open
Abstract
Background The number of people suffering from overweight or obesity has been steadily increasing in recent years. As a new form of diet, the efficacy of time-restricted eating (TRE) remains debatable. Objective This meta-analysis quantified the effect of TRE on weight change and other physical parameters in obese and overweight adults. Methods We did a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing the TRE interventions on weight loss and other metabolic parameters by searching PubMed, Embase, and Cochrane Central Register of Controlled Trials to identify eligible trials published from database inception up until 23 August 2022. The risk of bias was assessed using the Revised Cochrane risk-of-bias tool (ROB-2.0). Meta-analysis was performed using Review Manager 5.4.1 software. Results Nine RCTs with 665 individuals (345 in the TRE group while 320 in the control group) were included. Results indicated that TRE had a greater decrease in body weight (-1.28 kg; 95% CI [-2.05, -0.52], p = 0.001), fat mass (-0.72 kg; 95% CI [-1.40, -0.03], p = 0.04), body mass index (-0.34 kg/m2; 95% CI [-0.64, -0.04], p = 0.03) and diastolic blood pressure (-2.26 mmHg 95% CI [-4.02, -0.50], p = 0.01). However, the meta-analysis demonstrated that there was no significant difference between TRE and the control group in lean mass, systolic blood pressure, waist circumference, fasting glucose, fasting insulin, homeostasis model assessment-insulin resistance (HOMA-IR), total cholesterol, high-density lipoprotein, low-density lipoprotein, and triglycerides. Besides, the duration of the study and daily eating window also had an impact on weight change. Conclusion TRE was associated with reductions in weight and fat mass and can be a dietary intervention option for adults with obesity. But high-quality trials and longer follow-ups are needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Weiyi Chen
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiaoli Liu
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Lei Bao
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Ping Yang
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Huihui Zhou
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
246
|
Hussein AI, Carroll D, Bui M, Wolff A, Matheny H, Hogue B, Lybrand K, Cooke M, Bragdon B, Morgan E, Demissie S, Gerstenfeld L. Oxidative metabolism is impaired by phosphate deficiency during fracture healing and is mechanistically related to BMP induced chondrocyte differentiation. Bone Rep 2023. [DOI: 10.1016/j.bonr.2023.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
247
|
Obstructive Sleep Apnea, Circadian Clock Disruption, and Metabolic Consequences. Metabolites 2022; 13:metabo13010060. [PMID: 36676985 PMCID: PMC9863434 DOI: 10.3390/metabo13010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic disorder characterized by recurrent episodes of apnea and hypopnea during sleep. It is associated with various cardiovascular and metabolic complications, including type 2 diabetes mellitus (T2DM) and obesity. Many pathways can be responsible for T2DM development in OSA patients, e.g., those related to HIF-1 and SIRT1 expression. Moreover, epigenetic mechanisms, such as miRNA181a or miRNA199, are postulated to play a pivotal role in this link. It has been proven that OSA increases the occurrence of circadian clock disruption, which is also a risk factor for metabolic disease development. Circadian clock disruption impairs the metabolism of glucose, lipids, and the secretion of bile acids. Therefore, OSA-induced circadian clock disruption may be a potential, complex, underlying pathway involved in developing and exacerbating metabolic diseases among OSA patients. The current paper summarizes the available information pertaining to the relationship between OSA and circadian clock disruption in the context of potential mechanisms leading to metabolic disorders.
Collapse
|
248
|
Song S, Chen L, Bai M, Wang S, Ye X, Lin Y, Luo X, Li Z, Zhang L, Zhu X, Wang Z, Chen Y. Time-restricted feeding ameliorates dextran sulfate sodium-induced colitis via reducing intestinal inflammation. Front Nutr 2022; 9:1043783. [PMID: 36618695 PMCID: PMC9822721 DOI: 10.3389/fnut.2022.1043783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Time-restricted feeding (TRF) is an emerging dietary intervention that improves metabolic disorders such as obesity, insulin resistance and dyslipidemia. Inflammatory bowel disease (IBD) is a chronic inflammatory disorder affecting the gastrointestinal tract, where nutrition plays an important role in its pathogenesis. Although numerous strategies of nutritional intervention have been reported, whether TRF can improve IBD has been elusive. In this study, we investigated the effect of two cycles of 7-day TRF intervention in a dextran sulfate sodium-induced IBD mouse model. We found that TRF was able to reduce the disease activity index and ameliorate the IBD-associated symptoms, as well as increase the number of colonic crypts and decrease the histological score in the colon. Furthermore, TRF lowered the percentage of CD4+ T cells in the peripheral blood and mesenteric lymph node, and increased the number of CD4+CD25+ T cells in the mesenteric lymph nodes. Additionally, TRF reduced the infiltration of leukocytes and macrophages around the crypt base in the colon. However, unlike the intermittent caloric restriction with fasting-mimicking diet, TRF was not able to increase the markers of progenitor and cell proliferation in the colon. Collectively, these results demonstrated that TRF is able to improve IBD in mice via reduction in intestinal inflammation.
Collapse
Affiliation(s)
- Shuo Song
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lingling Chen
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Meijuan Bai
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shuo Wang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xiaoyi Ye
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yijun Lin
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xuemei Luo
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Zixuan Li
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lingling Zhang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xinyu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zinan Wang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yan Chen
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China,School of Life Science and Technology, ShanghaiTech University, Shanghai, China,*Correspondence: Yan Chen,
| |
Collapse
|
249
|
Chen G, Wang G, Xu W, Xiao Y, Peng Y. Transcriptome analysis of fat accumulation in 3T3-L1 adipocytes induced by chlorantraniliprole. Front Nutr 2022; 9:1091477. [PMID: 36590199 PMCID: PMC9797500 DOI: 10.3389/fnut.2022.1091477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Chlorantraniliprole is a diamide insecticide widely used in agriculture. Chlorantraniliprole has been previously found to increase the accumulation of triglycerides (fats) in adipocytes, however, the underlying molecular mechanism is unknown. The present study aimed to explore the molecular mechanisms of chlorantraniliprole-induced fat accumulation in 3T3-L1 adipocytes. Methods We measured the triglyceride content in chlorantraniliprole-treated 3T3-L1 adipocytes, and collected cell samples treated with chlorantraniliprole for 24 h and without any treatment for RNA sequencing. Results Compared with the control group, the content of triglyceride in the treatment group of chlorantraniliprole was significantly increased. The results of RNA sequencing (RNA-seq) showed that 284 differentially expressed genes (DEGs) were identified after treatment with chlorantraniliprole, involving 39 functional groups of gene ontology (GO) and 213 KEGG pathways. Moreover, these DEGs were significantly enriched in several key genes that regulate adipocyte differentiation and lipogenesis including Igf1, Rarres2, Nr1h3, and Psmb8. Discussion In general, these results suggest that chlorantraniliprole-induced lipogenesis is attributed to a whole-gene transcriptome response, which promotes further understanding of the potential mechanism of chlorantraniliprole-induced adipogenesis.
Collapse
Affiliation(s)
- Ge Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ge Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weidong Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China,*Correspondence: Weidong Xu,
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China,Ye Peng,
| |
Collapse
|
250
|
Association of circadian rhythms with brain disorder incidents: a prospective cohort study of 72242 participants. Transl Psychiatry 2022; 12:514. [PMID: 36517471 PMCID: PMC9751105 DOI: 10.1038/s41398-022-02278-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythm disruption (CRD) is a shared characteristic of various brain disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and major depression disorder (MDD). Disruption of circadian rhythm might be a risk factor for brain disorder incidents. From 7-day accelerometry data of 72,242 participants in UK Biobank, we derived a circadian relative amplitude variable, which to some extent reflected the degree of circadian rhythm disruption. Records of brain disorder incidents were obtained from a wide range of health outcomes across self-report, primary care, hospital inpatient data, and death data. Using multivariate Cox proportional hazard ratio regression, we created two models adjusting for different covariates. Then, linear correlations between relative amplitude and several brain morphometric measures were examined in participants with brain MRI data. After a median follow-up of around 6.1 years, 72,242 participants were included in the current study (female 54.9%; mean age 62.1 years). Individuals with reduced relative amplitude had increasing risk of all-cause dementia (Hazard ratio 1.23 [95% CI 1.15 to 1.31]), PD (1.33 [1.25 to 1.41]), stroke (1.13 [1.06 to 1.22]), MDD (1.18 [1.13 to 1.23]), and anxiety disorder (1.14 [1.09 to 1.20]) in fully adjusted models. Additionally, significant correlations were found between several cortical regions and white matter tracts and relative amplitude that have been linked to dementia and psychiatric disorders. We confirm CRD to be a risk factor for various brain disorders. Interventions for regulating circadian rhythm may have clinical relevance to reducing the risk of various brain disorders.
Collapse
|