201
|
Boettiger A, Murphy S. Advances in Chromatin Imaging at Kilobase-Scale Resolution. Trends Genet 2020; 36:273-287. [PMID: 32007290 PMCID: PMC7197267 DOI: 10.1016/j.tig.2019.12.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
It is now widely appreciated that the spatial organization of the genome is nonrandom, and its complex 3D folding has important consequences for many genome processes. Recent developments in multiplexed, super-resolution microscopy have enabled an unprecedented view of the polymeric structure of chromatin - from the loose folds of whole chromosomes to the detailed loops of cis-regulatory elements that regulate gene expression. Facilitated by the use of robotics, microfluidics, and improved approaches to super-resolution, thousands to hundreds of thousands of individual cells can now be analyzed in an individual experiment. This has led to new insights into the nature of genomic structural features identified by sequencing, such as topologically associated domains (TADs), and the nature of enhancer-promoter interactions underlying transcriptional regulation. We review these recent improvements.
Collapse
Affiliation(s)
- Alistair Boettiger
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Sedona Murphy
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
202
|
Heterogeneous fluid-like movements of chromatin and their implications to transcription. Biophys Rev 2020; 12:461-468. [PMID: 32206982 DOI: 10.1007/s12551-020-00675-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/02/2020] [Indexed: 01/10/2023] Open
Abstract
Eukaryotic chromatin is a complex of genome DNA and associated proteins, and its structure and dynamics play a crucial role in regulating DNA functions. Chromatin takes rather irregular structures in the nucleus and exhibits heterogeneous sub-diffusive movements as polymers fluctuating in a fluid state. Using genome-wide single-nucleosome tracking data, heterogeneity of movements was statistically analyzed, which categorized chromatin into two types: slow chromatin that moves under structurally constrained environments and fast chromatin that moves with less constraints. Interactions of chromatin to various protein factors determine the motional constraints. For example, loss of the cohesin complex that bundles the chromatin chains reduces the motional constraints and increases the population of fast chromatin. Another example is the transcriptional machinery. While it was previously thought that the transcriptional activity is associated with more open and dynamic chromatin structure, recent studies suggested a more nuanced role of transcription in chromatin dynamics: dynamic association/dissociation of active RNA polymerase II (RNAPII) and other transcription factors and Mediators (TF-Meds) transiently bridges transcriptionally active DNA regions, which forms a loose network of chromatin and constrains chromatin movement, enhancing the slow chromatin population. This new view on the dynamical effects of transcription urges a reflection on the traditional model of transcription factories and invites the more recent models of condensates/phase-separated liquid droplets of RNAPII, transcription factors, and Mediators. The combined procedure of genome-wide single-nucleosome tracking and its statistical analysis would unveil heterogeneity in the chromatin movement, which should provide a key to understanding the relations among chromatin dynamics, structure, and function.
Collapse
|
203
|
Lakadamyali M, Cosma MP. Visualizing the genome in high resolution challenges our textbook understanding. Nat Methods 2020; 17:371-379. [DOI: 10.1038/s41592-020-0758-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/22/2020] [Indexed: 12/29/2022]
|
204
|
Chedin F, Benham CJ. Emerging roles for R-loop structures in the management of topological stress. J Biol Chem 2020; 295:4684-4695. [PMID: 32107311 DOI: 10.1074/jbc.rev119.006364] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
R-loop structures are a prevalent class of alternative non-B DNA structures that form during transcription upon invasion of the DNA template by the nascent RNA. R-loops form universally in the genomes of organisms ranging from bacteriophages, bacteria, and yeasts to plants and animals, including mammals. A growing body of work has linked these structures to both physiological and pathological processes, in particular to genome instability. The rising interest in R-loops is placing new emphasis on understanding the fundamental physicochemical forces driving their formation and stability. Pioneering work in Escherichia coli revealed that DNA topology, in particular negative DNA superhelicity, plays a key role in driving R-loops. A clear role for DNA sequence was later uncovered. Here, we review and synthesize available evidence on the roles of DNA sequence and DNA topology in controlling R-loop formation and stability. Factoring in recent developments in R-loop modeling and single-molecule profiling, we propose a coherent model accounting for the interplay between DNA sequence and DNA topology in driving R-loop structure formation. This model reveals R-loops in a new light as powerful and reversible topological stress relievers, an insight that significantly expands the repertoire of R-loops' potential biological roles under both normal and aberrant conditions.
Collapse
Affiliation(s)
- Frederic Chedin
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616 .,Genome Center, University of California, Davis, California 95616
| | - Craig J Benham
- Genome Center, University of California, Davis, California 95616 .,Departments of Mathematics and Biomedical Engineering, University of California, Davis, California 95616
| |
Collapse
|
205
|
McCord RP, Kaplan N, Giorgetti L. Chromosome Conformation Capture and Beyond: Toward an Integrative View of Chromosome Structure and Function. Mol Cell 2020; 77:688-708. [PMID: 32001106 PMCID: PMC7134573 DOI: 10.1016/j.molcel.2019.12.021] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapidly developing technologies have recently fueled an exciting era of discovery in the field of chromosome structure and nuclear organization. In addition to chromosome conformation capture (3C) methods, new alternative techniques have emerged to study genome architecture and biological processes in the nucleus, often in single or living cells. This sets an unprecedented stage for exploring the mechanisms that link chromosome structure and biological function. Here we review popular as well as emerging approaches to study chromosome organization, focusing on the contribution of complementary methodologies to our understanding of structures revealed by 3C methods and their biological implications, and discuss the next technical and conceptual frontiers.
Collapse
Affiliation(s)
- Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Noam Kaplan
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
206
|
Babokhov M, Hibino K, Itoh Y, Maeshima K. Local Chromatin Motion and Transcription. J Mol Biol 2020; 432:694-700. [DOI: 10.1016/j.jmb.2019.10.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
|
207
|
Zhu K, Su H. Unraveling Dynamic Transitions in Time-Resolved Biomolecular Motions by A Dressed Diffusion Model. J Phys Chem A 2020; 124:613-617. [PMID: 31589443 DOI: 10.1021/acs.jpca.9b08142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent experimental data reveal the complexity of diffusion dynamics beyond the scope of classical Brownian dynamics. The particles exhibit diverse diffusive motions from the anomalous toward classical diffusion over a wide range of temporal scales. Here a dressed diffusion model is developed to account for non-Brownian phenomena. By coupling the particle dynamics with a local field, the dressed diffusion model generalizes the Langevin equation through coupled damping kernels and generates the salient feature of time-dependent diffusion dynamics reported in the experimental measurements of biomolecules. The dressed diffusion model provides one quantitative aspect for future endeavors in this rapid-growing field.
Collapse
Affiliation(s)
- Kaicheng Zhu
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
| | - Haibin Su
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
| |
Collapse
|
208
|
Finn EH, Misteli T. Molecular basis and biological function of variability in spatial genome organization. Science 2019; 365:365/6457/eaaw9498. [PMID: 31488662 DOI: 10.1126/science.aaw9498] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
The complex three-dimensional organization of genomes in the cell nucleus arises from a wide range of architectural features including DNA loops, chromatin domains, and higher-order compartments. Although these features are universally present in most cell types and tissues, recent single-cell biochemistry and imaging approaches have demonstrated stochasticity in transcription and high variability of chromatin architecture in individual cells. We review the occurrence, mechanistic basis, and functional implications of stochasticity in genome organization. We summarize recent observations on cell- and allele-specific variability of genome architecture, discuss the nature of extrinsic and intrinsic sources of variability in genome organization, and highlight potential implications of structural heterogeneity for genome function.
Collapse
Affiliation(s)
| | - Tom Misteli
- National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
209
|
Higashikuni Y, Lu TK. Advancing CRISPR-Based Programmable Platforms beyond Genome Editing in Mammalian Cells. ACS Synth Biol 2019; 8:2607-2619. [PMID: 31751114 DOI: 10.1021/acssynbio.9b00297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human diseases are caused by dysregulation of cellular biological programs that are encoded in DNA. Unveiling the endogenous programs and encoding new programs into the genome are key to creating novel diagnostic and therapeutic strategies. CRISPR/Cas9, originally identified in bacteria, has revolutionized genome editing in mammalian cells. Recent advances in CRISPR technologies have provided new programmable platforms for modifying cell function and behavior. CRISPR-based transcriptional regulators and modified gRNAs have enabled multiplexed regulation and visualization of genome dynamics with spatiotemporal precision. Using these toolkits, genome-scale screening platforms can identify key genetic elements or combinations thereof that modulate phenotypes in mammalian cells. In addition, imaging platforms for multiplexed genomic labeling have been created to study the conformation and dynamics of chromatin in living cells, which are essential for genome function. Furthermore, CRISPR-based computation and memory platforms have been built in living mammalian cells by using DNA as a data processing and storage medium to regulate and monitor cellular behaviors. The conditional regulation of CRISPR-based parts has enabled the design of complex multilayered biological programs. CRISPR-based memory platforms can continuously record biological events as mutations in defined DNA loci. By making use of base editors, CRISPR-based computation and memory platforms have been interconnected to perform logic operations based on past events. These technologies open up new avenues for understanding biological phenomena and designing mammalian cells as living machines for biomedical applications.
Collapse
|
210
|
Kempfer R, Pombo A. Methods for mapping 3D chromosome architecture. Nat Rev Genet 2019; 21:207-226. [PMID: 31848476 DOI: 10.1038/s41576-019-0195-2] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Determining how chromosomes are positioned and folded within the nucleus is critical to understanding the role of chromatin topology in gene regulation. Several methods are available for studying chromosome architecture, each with different strengths and limitations. Established imaging approaches and proximity ligation-based chromosome conformation capture (3C) techniques (such as DNA-FISH and Hi-C, respectively) have revealed the existence of chromosome territories, functional nuclear landmarks (such as splicing speckles and the nuclear lamina) and topologically associating domains. Improvements to these methods and the recent development of ligation-free approaches, including GAM, SPRITE and ChIA-Drop, are now helping to uncover new aspects of 3D genome topology that confirm the nucleus to be a complex, highly organized organelle.
Collapse
Affiliation(s)
- Rieke Kempfer
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
211
|
Application and prospects of CRISPR/Cas9-based methods to trace defined genomic sequences in living and fixed plant cells. Chromosome Res 2019; 28:7-17. [PMID: 31792795 DOI: 10.1007/s10577-019-09622-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
The 3D organization of chromatin plays an important role in genome stability and many other pivotal biological programs. Therefore, the establishment of imaging methods, which enable us to study the dynamics of chromatin in living cells, is necessary. Although primary live cell imaging methods were a breakthrough, there is a need to develop more specific labeling techniques. With the discovery of programmable DNA binding proteins, such zinc finger proteins (ZFP), transcription activator-like effectors (TALE), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a major leap forward was made. Here, we review the applications and potential of fluorescent repressor-operator systems, programmable DNA binding proteins with an emphasis on CRISPR-based chromatin imaging in living and fixed cells, and their potential application in plant science.
Collapse
|
212
|
Wissink EM, Vihervaara A, Tippens ND, Lis JT. Nascent RNA analyses: tracking transcription and its regulation. Nat Rev Genet 2019; 20:705-723. [PMID: 31399713 PMCID: PMC6858503 DOI: 10.1038/s41576-019-0159-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
The programmes that direct an organism's development and maintenance are encoded in its genome. Decoding of this information begins with regulated transcription of genomic DNA into RNA. Although transcription and its control can be tracked indirectly by measuring stable RNAs, it is only by directly measuring nascent RNAs that the immediate regulatory changes in response to developmental, environmental, disease and metabolic signals are revealed. Multiple complementary methods have been developed to quantitatively track nascent transcription genome-wide at nucleotide resolution, all of which have contributed novel insights into the mechanisms of gene regulation and transcription-coupled RNA processing. Here we critically evaluate the array of strategies used for investigating nascent transcription and discuss the recent conceptual advances they have provided.
Collapse
Affiliation(s)
- Erin M Wissink
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Anniina Vihervaara
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Nathaniel D Tippens
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
213
|
Garcia HG, Berrocal A, Kim YJ, Martini G, Zhao J. Lighting up the central dogma for predictive developmental biology. Curr Top Dev Biol 2019; 137:1-35. [PMID: 32143740 DOI: 10.1016/bs.ctdb.2019.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the last 30years have witnessed the mapping of the wiring diagrams of the gene regulatory networks that dictate cell fate and animal body plans, specific understanding building on such network diagrams that shows how DNA regulatory regions control gene expression lags far behind. These networks have yet to yield the predictive power necessary to, for example, calculate how the concentration dynamics of input transcription factors and DNA regulatory sequence prescribes output patterns of gene expression that, in turn, determine body plans themselves. Here, we argue that reaching a predictive understanding of developmental decision-making calls for an interplay between theory and experiment aimed at revealing how the regulation of the processes of the central dogma dictate network connections and how network topology guides cells toward their ultimate developmental fate. To make this possible, it is crucial to break free from the snapshot-based understanding of embryonic development facilitated by fixed-tissue approaches and embrace new technologies that capture the dynamics of developmental decision-making at the single cell level, in living embryos.
Collapse
Affiliation(s)
- Hernan G Garcia
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, United States; Department of Physics, University of California at Berkeley, Berkeley, CA, United States; Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, United States; Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, CA, United States.
| | - Augusto Berrocal
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, United States
| | - Yang Joon Kim
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, United States
| | - Gabriella Martini
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, United States
| | - Jiaxi Zhao
- Department of Physics, University of California at Berkeley, Berkeley, CA, United States
| |
Collapse
|
214
|
Mao S, Ying Y, Wu X, Krueger CJ, Chen AK. CRISPR/dual-FRET molecular beacon for sensitive live-cell imaging of non-repetitive genomic loci. Nucleic Acids Res 2019; 47:e131. [PMID: 31504824 PMCID: PMC6847002 DOI: 10.1093/nar/gkz752] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 01/19/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genomic imaging systems predominantly rely on fluorescent protein reporters, which lack the optical properties essential for sensitive dynamic imaging. Here, we modified the CRISPR single-guide RNA (sgRNA) to carry two distinct molecular beacons (MBs) that can undergo fluorescence resonance energy transfer (FRET) and demonstrated that the resulting system, CRISPR/dual-FRET MB, enables dynamic imaging of non-repetitive genomic loci with only three unique sgRNAs.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
215
|
Gil N, Ulitsky I. Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet 2019; 21:102-117. [DOI: 10.1038/s41576-019-0184-5] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
|
216
|
Barutcu AR, Blencowe BJ, Rinn JL. Differential contribution of steady-state RNA and active transcription in chromatin organization. EMBO Rep 2019; 20:e48068. [PMID: 31448565 PMCID: PMC6776903 DOI: 10.15252/embr.201948068] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Nuclear RNA and the act of transcription have been implicated in nuclear organization. However, their global contribution to shaping fundamental features of higher-order chromatin organization such as topologically associated domains (TADs) and genomic compartments remains unclear. To investigate these questions, we perform genome-wide chromatin conformation capture (Hi-C) analysis in the presence and absence of RNase before and after crosslinking, or a transcriptional inhibitor. TAD boundaries are largely unaffected by RNase treatment, although a subtle disruption of compartmental interactions is observed. In contrast, transcriptional inhibition leads to weaker TAD boundary scores. Collectively, our findings demonstrate differences in the relative contribution of RNA and transcription to the formation of TAD boundaries detected by the widely used Hi-C methodology.
Collapse
Affiliation(s)
- A Rasim Barutcu
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMAUSA
- Donnelly CentreUniversity of TorontoTorontoONCanada
| | - Benjamin J Blencowe
- Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - John L Rinn
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMAUSA
- Present address:
Department of BiochemistryBioFrontiersUniversity of ColoradoBoulderCOUSA
| |
Collapse
|
217
|
Ashwin SS, Nozaki T, Maeshima K, Sasai M. Organization of fast and slow chromatin revealed by single-nucleosome dynamics. Proc Natl Acad Sci U S A 2019; 116:19939-19944. [PMID: 31527274 PMCID: PMC6778247 DOI: 10.1073/pnas.1907342116] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Understanding chromatin organization and dynamics is important, since they crucially affect DNA functions. In this study, we investigate chromatin dynamics by statistically analyzing single-nucleosome movement in living human cells. Bimodal nature of the mean square displacement distribution of nucleosomes allows for a natural categorization of the nucleosomes as fast and slow. Analyses of the nucleosome-nucleosome correlation functions within these categories along with the density of vibrational modes show that the nucleosomes form dynamically correlated fluid regions (i.e., dynamic domains of fast and slow nucleosomes). Perturbed nucleosome dynamics by global histone acetylation or cohesin inactivation indicate that nucleosome-nucleosome interactions along with tethering of chromatin chains organize nucleosomes into fast and slow dynamic domains. A simple polymer model is introduced, which shows the consistency of this dynamic domain picture. Statistical analyses of single-nucleosome movement provide rich information on how chromatin is dynamically organized in a fluid manner in living cells.
Collapse
Affiliation(s)
- S S Ashwin
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
| | - Tadasu Nozaki
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, SOKENDAI, Shizuoka 411-8540, Japan
| | - Masaki Sasai
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan;
| |
Collapse
|
218
|
Mechanisms of Interplay between Transcription Factors and the 3D Genome. Mol Cell 2019; 76:306-319. [PMID: 31521504 DOI: 10.1016/j.molcel.2019.08.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/20/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022]
Abstract
Transcription factors (TFs) bind DNA in a sequence-specific manner and thereby serve as the protein anchors and determinants of 3D genome organization. Conversely, chromatin conformation shapes TF activity, for example, by looping TF-bound enhancers to distally located target genes. Despite considerable effort, our understanding of the mechanistic relation between TFs and 3D genome organization remains limited, in large part due to this interdependency. In this review, we summarize the evidence for the diverse mechanisms by which TFs and their activity shape the 3D genome and vice versa. We further highlight outstanding questions and potential approaches for untangling the complex relation between TF activity and the 3D genome.
Collapse
|
219
|
Benabdallah NS, Williamson I, Illingworth RS, Kane L, Boyle S, Sengupta D, Grimes GR, Therizols P, Bickmore WA. Decreased Enhancer-Promoter Proximity Accompanying Enhancer Activation. Mol Cell 2019; 76:473-484.e7. [PMID: 31494034 PMCID: PMC6838673 DOI: 10.1016/j.molcel.2019.07.038] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 05/08/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Abstract
Enhancers can regulate the promoters of their target genes over very large genomic distances. It is widely assumed that mechanisms of enhancer action involve the reorganization of three-dimensional chromatin architecture, but this is poorly understood. The predominant model involves physical enhancer-promoter interaction by looping out the intervening chromatin. However, studying the enhancer-driven activation of the Sonic hedgehog gene (Shh), we have identified a change in chromosome conformation that is incompatible with this simple looping model. Using super-resolution 3D-FISH and chromosome conformation capture, we observe a decreased spatial proximity between Shh and its enhancers during the differentiation of embryonic stem cells to neural progenitors. We show that this can be recapitulated by synthetic enhancer activation, is impeded by chromatin-bound proteins located between the enhancer and the promoter, and appears to involve the catalytic activity of poly (ADP-ribose) polymerase. Our data suggest that models of enhancer-promoter communication need to encompass chromatin conformations other than looping. Super-resolution microscopy reveals increased enhancer-promoter separation upon activation Synthetic enhancer activation supports decreased enhancer-promoter proximity Enhancer-promoter separation can be driven by poly(ADP-ribose) polymerase 1
Collapse
Affiliation(s)
- Nezha S Benabdallah
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Robert S Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Lauren Kane
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Dipta Sengupta
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Pierre Therizols
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; UMR INSERM 944, CNRS 7212, Bâtiment Jean Bernard, Hôpital Saint Louis, Paris, France
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
220
|
Wu X, Mao S, Yang Y, Rushdi MN, Krueger CJ, Chen AK. A CRISPR/molecular beacon hybrid system for live-cell genomic imaging. Nucleic Acids Res 2019; 46:e80. [PMID: 29718399 PMCID: PMC6061827 DOI: 10.1093/nar/gky304] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
The clustered regularly interspersed short palindromic repeat (CRISPR) gene-editing system has been repurposed for live-cell genomic imaging, but existing approaches rely on fluorescent protein reporters, making sensitive and continuous imaging difficult. Here, we present a fluorophore-based live-cell genomic imaging system that consists of a nuclease-deactivated mutant of the Cas9 protein (dCas9), a molecular beacon (MB), and an engineered single-guide RNA (sgRNA) harboring a unique MB target sequence (sgRNA-MTS), termed CRISPR/MB. Specifically, dCas9 and sgRNA-MTS are first co-expressed to target a specific locus in cells, followed by delivery of MBs that can then hybridize to MTS to illuminate the target locus. We demonstrated the feasibility of this approach for quantifying genomic loci, for monitoring chromatin dynamics, and for dual-color imaging when using two orthogonal MB/MTS pairs. With flexibility in selecting different combinations of fluorophore/quencher pairs and MB/MTS sequences, our CRISPR/MB hybrid system could be a promising platform for investigating chromatin activities.
Collapse
Affiliation(s)
- Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,School of Life Sciences, Peking University, Beijing 100871, China
| | - Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yantao Yang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Muaz N Rushdi
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
221
|
Engreitz J, Abudayyeh O, Gootenberg J, Zhang F. CRISPR Tools for Systematic Studies of RNA Regulation. Cold Spring Harb Perspect Biol 2019; 11:11/8/a035386. [PMID: 31371352 DOI: 10.1101/cshperspect.a035386] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA molecules perform diverse functions in mammalian cells, including transferring genetic information from DNA to protein and playing diverse regulatory roles through interactions with other cellular components. Here, we discuss how clustered regularly interspaced short palindromic repeat (CRISPR)-based technologies for directed perturbations of DNA and RNA are revealing new insights into RNA regulation. First, we review the fundamentals of CRISPR-Cas enzymes and functional genomics tools that leverage these systems. Second, we explore how these new perturbation technologies are transforming the study of regulation of and by RNA, focusing on the functions of DNA regulatory elements and long noncoding RNAs (lncRNAs). Third, we highlight an emerging class of RNA-targeting CRISPR-Cas enzymes that have the potential to catalyze studies of RNA biology by providing tools to directly perturb or measure RNA modifications and functions. Together, these tools enable systematic studies of RNA function and regulation in mammalian cells.
Collapse
Affiliation(s)
- Jesse Engreitz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Harvard Society of Fellows, Harvard University, Cambridge, Massachusetts 02139
| | - Omar Abudayyeh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jonathan Gootenberg
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
222
|
Kim K, Eom J, Jung I. Characterization of Structural Variations in the Context of 3D Chromatin Structure. Mol Cells 2019; 42:512-522. [PMID: 31362468 PMCID: PMC6681866 DOI: 10.14348/molcells.2019.0137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 01/17/2023] Open
Abstract
Chromosomes located in the nucleus form discrete units of genetic material composed of DNA and protein complexes. The genetic information is encoded in linear DNA sequences, but its interpretation requires an understanding of threedimensional (3D) structure of the chromosome, in which distant DNA sequences can be juxtaposed by highly condensed chromatin packing in the space of nucleus to precisely control gene expression. Recent technological innovations in exploring higher-order chromatin structure have uncovered organizational principles of the 3D genome and its various biological implications. Very recently, it has been reported that large-scale genomic variations may disrupt higher-order chromatin organization and as a consequence, greatly contribute to disease-specific gene regulation for a range of human diseases. Here, we review recent developments in studying the effect of structural variation in gene regulation, and the detection and the interpretation of structural variations in the context of 3D chromatin structure.
Collapse
Affiliation(s)
- Kyukwang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Junghyun Eom
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
223
|
Zheng H, Xie W. The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol 2019; 20:535-550. [DOI: 10.1038/s41580-019-0132-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
224
|
Maeshima K, Ide S, Babokhov M. Dynamic chromatin organization without the 30-nm fiber. Curr Opin Cell Biol 2019; 58:95-104. [DOI: 10.1016/j.ceb.2019.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
|
225
|
Redolfi J, Zhan Y, Valdes-Quezada C, Kryzhanovska M, Guerreiro I, Iesmantavicius V, Pollex T, Grand RS, Mulugeta E, Kind J, Tiana G, Smallwood SA, de Laat W, Giorgetti L. DamC reveals principles of chromatin folding in vivo without crosslinking and ligation. Nat Struct Mol Biol 2019; 26:471-480. [PMID: 31133702 PMCID: PMC6561777 DOI: 10.1038/s41594-019-0231-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Current understanding of chromosome folding largely relies on chromosome conformation capture (3C)-based experiments, where chromosomal interactions are detected as ligation products after chromatin crosslinking. To measure chromosome structure in vivo, quantitatively and without crosslinking and ligation, we implemented a modified version of DamID named DamC, which combines DNA-methylation based detection of chromosomal interactions with next-generation sequencing and biophysical modelling of methylation kinetics. DamC performed in mouse embryonic stem cells provides the first in vivo validation of the existence of topologically associating domains (TADs), CTCF loops and confirms 3C-based measurements of the scaling of contact probabilities. Combining DamC with transposon-mediated genomic engineering shows that new loops can be formed between ectopic and endogenous CTCF sites, which redistributes physical interactions within TADs. DamC provides the first crosslinking- and ligation-free demonstration of the existence of key structural features of chromosomes and provides novel insights into how chromosome structure within TADs can be manipulated.
Collapse
Affiliation(s)
- Josef Redolfi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christian Valdes-Quezada
- Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands.,University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Isabel Guerreiro
- Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands.,University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Jop Kind
- Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands.,University Medical Center Utrecht, Utrecht, the Netherlands
| | - Guido Tiana
- Università degli Studi di Milano and INFN, Milan, Italy
| | | | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands.,University Medical Center Utrecht, Utrecht, the Netherlands
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
226
|
Alexander JM, Guan J, Li B, Maliskova L, Song M, Shen Y, Huang B, Lomvardas S, Weiner OD. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. eLife 2019; 8:e41769. [PMID: 31124784 PMCID: PMC6534382 DOI: 10.7554/elife.41769] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Enhancers are important regulatory elements that can control gene activity across vast genetic distances. However, the underlying nature of this regulation remains obscured because it has been difficult to observe in living cells. Here, we visualize the spatial organization and transcriptional output of the key pluripotency regulator Sox2 and its essential enhancer Sox2 Control Region (SCR) in living embryonic stem cells (ESCs). We find that Sox2 and SCR show no evidence of enhanced spatial proximity and that spatial dynamics of this pair is limited over tens of minutes. Sox2 transcription occurs in short, intermittent bursts in ESCs and, intriguingly, we find this activity demonstrates no association with enhancer proximity, suggesting that direct enhancer-promoter contacts do not drive contemporaneous Sox2 transcription. Our study establishes a framework for interrogation of enhancer function in living cells and supports an unexpected mechanism for enhancer control of Sox2 expression that uncouples transcription from enhancer proximity.
Collapse
Affiliation(s)
- Jeffrey M Alexander
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoUnited States
| | - Juan Guan
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUnited States
| | - Bingkun Li
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Lenka Maliskova
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Michael Song
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoUnited States
- Pharmaceutical Sciences and Pharmacogenomics Graduate ProgramUniversity of California, San FranciscoSan FranciscoUnited States
| | - Yin Shen
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoUnited States
- Pharmaceutical Sciences and Pharmacogenomics Graduate ProgramUniversity of California, San FranciscoSan FranciscoUnited States
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Bo Huang
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew York CityUnited States
- Mortimer B Zuckerman Mind Brain and Behavior InstituteColumbia UniversityNew York CityUnited States
| | - Orion D Weiner
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
227
|
Transcription factors and 3D genome conformation in cell-fate decisions. Nature 2019; 569:345-354. [PMID: 31092938 DOI: 10.1038/s41586-019-1182-7] [Citation(s) in RCA: 329] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/19/2019] [Indexed: 12/31/2022]
Abstract
How cells adopt different identities has long fascinated biologists. Signal transduction in response to environmental cues results in the activation of transcription factors that determine the gene-expression program characteristic of each cell type. Technological advances in the study of 3D chromatin folding are bringing the role of genome conformation in transcriptional regulation to the fore. Characterizing this role of genome architecture has profound implications, not only for differentiation and development but also for diseases including developmental malformations and cancer. Here we review recent studies indicating that the interplay between transcription and genome conformation is a driving force for cell-fate decisions.
Collapse
|
228
|
Schoenfelder S, Fraser P. Long-range enhancer–promoter contacts in gene expression control. Nat Rev Genet 2019; 20:437-455. [DOI: 10.1038/s41576-019-0128-0] [Citation(s) in RCA: 486] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
229
|
Abstract
Chromosomes are not very mobile during interphase. In this issue, Nagashima et al. (2019. J. Cell Biol https://doi.org/10.1083/jcb.201811090) propose that the overall stabilization of genome structure is achieved by loose connections between DNA regions brought about by transcriptionally active RNA polymerases.
Collapse
Affiliation(s)
- Hodaya Hochberg-Laufer
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
230
|
Abstract
In the postgenomic era, it is clear that the human genome encodes thousands of long noncoding RNAs (lncRNAs). Along the way, RNA imaging (e.g., RNA fluorescence in situ hybridization [RNA-FISH]) has been instrumental in identifying powerful roles for lncRNAs based on their subcellular localization patterns. Here, we explore how RNA imaging technologies have shed new light on how, when, and where lncRNAs may play functional roles. Specifically, we will synthesize the underlying principles of RNA imaging techniques by exploring several landmark lncRNA imaging studies that have illuminated key insights into lncRNA biology.
Collapse
Affiliation(s)
- Arjun Raj
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder and BioFrontiers Institute, Boulder, Colorado 80303
| |
Collapse
|
231
|
Epigenetic modulation of a hardwired 3D chromatin landscape in two naive states of pluripotency. Nat Cell Biol 2019; 21:568-578. [PMID: 31036938 DOI: 10.1038/s41556-019-0310-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/11/2019] [Indexed: 01/09/2023]
Abstract
The mechanisms underlying enhancer activation and the extent to which enhancer-promoter rewiring contributes to spatiotemporal gene expression are not well understood. Using integrative and time-resolved analyses we show that the extensive transcriptome and epigenome resetting during the conversion between 'serum' and '2i' states of mouse embryonic stem cells (ESCs) takes place with minimal enhancer-promoter rewiring that becomes more evident in primed-state pluripotency. Instead, differential gene expression is strongly linked to enhancer activation via H3K27ac. Conditional depletion of transcription factors and allele-specific enhancer analysis reveal an essential role for Esrrb in H3K27 acetylation and activation of 2i-specific enhancers. Restoration of a polymorphic ESRRB motif using CRISPR-Cas9 in a hybrid ESC line restores ESRRB binding and enhancer H3K27ac in an allele-specific manner but has no effect on chromatin interactions. Our study shows that enhancer activation in serum- and 2i-ESCs is largely driven by transcription factor binding and epigenetic marking in a hardwired network of chromatin interactions.
Collapse
|
232
|
Greenberg M, Teissandier A, Walter M, Noordermeer D, Bourc'his D. Dynamic enhancer partitioning instructs activation of a growth-related gene during exit from naïve pluripotency. eLife 2019; 8:44057. [PMID: 30990414 PMCID: PMC6488298 DOI: 10.7554/elife.44057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/15/2019] [Indexed: 12/29/2022] Open
Abstract
During early mammalian development, the chromatin landscape undergoes profound transitions. The Zdbf2 gene—involved in growth control—provides a valuable model to study this window: upon exit from naïve pluripotency and prior to tissue differentiation, it undergoes a switch from a distal to a proximal promoter usage, accompanied by a switch from polycomb to DNA methylation occupancy. Using a mouse embryonic stem cell (ESC) system to mimic this period, we show here that four enhancers contribute to the Zdbf2 promoter switch, concomitantly with dynamic changes in chromatin architecture. In ESCs, the locus is partitioned to facilitate enhancer contacts with the distal Zdbf2 promoter. Relieving the partition enhances proximal Zdbf2 promoter activity, as observed during differentiation or with genetic mutants. Importantly, we show that 3D regulation occurs upstream of the polycomb and DNA methylation pathways. Our study reveals the importance of multi-layered regulatory frameworks to ensure proper spatio-temporal activation of developmentally important genes.
Collapse
Affiliation(s)
- Maxim Greenberg
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | | | - Marius Walter
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | - Daan Noordermeer
- Institute for Integrative Biology of the Cell (I2BC), Université Paris Sud, Université Paris-Saclay, CEA, CNRS, Paris, France
| | - Deborah Bourc'his
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| |
Collapse
|
233
|
Szabo Q, Bantignies F, Cavalli G. Principles of genome folding into topologically associating domains. SCIENCE ADVANCES 2019; 5:eaaw1668. [PMID: 30989119 PMCID: PMC6457944 DOI: 10.1126/sciadv.aaw1668] [Citation(s) in RCA: 362] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/20/2019] [Indexed: 05/12/2023]
Abstract
This review discusses the features of TADs across species, and their role in chromosome organization, genome function, and evolution.
Collapse
Affiliation(s)
- Quentin Szabo
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| | - Frédéric Bantignies
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| |
Collapse
|
234
|
Mateo LJ, Murphy SE, Hafner A, Cinquini IS, Walker CA, Boettiger AN. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 2019; 568:49-54. [PMID: 30886393 PMCID: PMC6556380 DOI: 10.1038/s41586-019-1035-4] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/25/2019] [Indexed: 01/09/2023]
Abstract
The establishment of cell types during development requires precise interactions between genes and distal regulatory sequences. We have a limited understanding of how these interactions look in three dimensions, vary across cell types in complex tissue, and relate to transcription. Here we describe optical reconstruction of chromatin architecture (ORCA), a method that can trace the DNA path in single cells with nanoscale accuracy and genomic resolution reaching two kilobases. We used ORCA to study a Hox gene cluster in cryosectioned Drosophila embryos and labelled around 30 RNA species in parallel. We identified cell-type-specific physical borders between active and Polycomb-repressed DNA, and unexpected Polycomb-independent borders. Deletion of Polycomb-independent borders led to ectopic enhancer-promoter contacts, aberrant gene expression, and developmental defects. Together, these results illustrate an approach for high-resolution, single-cell DNA domain analysis in vivo, identify domain structures that change with cell identity, and show that border elements contribute to the formation of physical domains in Drosophila.
Collapse
Affiliation(s)
- Leslie J Mateo
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Sedona E Murphy
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Antonina Hafner
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Isaac S Cinquini
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Carly A Walker
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
235
|
Off the Clock: From Circadian Disruption to Metabolic Disease. Int J Mol Sci 2019; 20:ijms20071597. [PMID: 30935034 PMCID: PMC6480015 DOI: 10.3390/ijms20071597] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Circadian timekeeping allows appropriate temporal regulation of an organism’s internal metabolism to anticipate and respond to recurrent daily changes in the environment. Evidence from animal genetic models and from humans under circadian misalignment (such as shift work or jet lag) shows that disruption of circadian rhythms contributes to the development of obesity and metabolic disease. Inappropriate timing of food intake and high-fat feeding also lead to disruptions of the temporal coordination of metabolism and physiology and subsequently promote its pathogenesis. This review illustrates the impact of genetically or environmentally induced molecular clock disruption (at the level of the brain and peripheral tissues) and the interplay between the circadian system and metabolic processes. Here, we discuss some mechanisms responsible for diet-induced circadian desynchrony and consider the impact of nutritional cues in inter-organ communication, with a particular focus on the communication between peripheral organs and brain. Finally, we discuss the relay of environmental information by signal-dependent transcription factors to adjust the timing of gene oscillations. Collectively, a better knowledge of the mechanisms by which the circadian clock function can be compromised will lead to novel preventive and therapeutic strategies for obesity and other metabolic disorders arising from circadian desynchrony.
Collapse
|
236
|
Ben-Yishay R, Shav-Tal Y. The dynamic lifecycle of mRNA in the nucleus. Curr Opin Cell Biol 2019; 58:69-75. [PMID: 30889416 DOI: 10.1016/j.ceb.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/16/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
The mRNA molecule roams through the nucleus on its way out to the cytoplasm. mRNA encounters and is bound by many protein factors, from the moment it begins to emerge from RNA polymerase II and during its travel in the nucleoplasm, where it will come upon chromatin and nuclear bodies. Some of the protein factors that engage with the mRNA can process it, until finally reaching a mature state fit for export through the nuclear pore complex (NPC). Examining the lifecycle of mRNAs in living cells using mRNA tagging techniques opens a window into our understanding of the rules that drive the dynamics of gene expression from transcription to mRNA export.
Collapse
Affiliation(s)
- Rakefet Ben-Yishay
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
237
|
Xing J, Tian XJ. Investigating epithelial-to-mesenchymal transition with integrated computational and experimental approaches. Phys Biol 2019; 16:031001. [PMID: 30665206 PMCID: PMC6609444 DOI: 10.1088/1478-3975/ab0032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The transition between epithelial and mesenchymal (EMT) is a fundamental cellular process that plays critical roles in development, cancer metastasis, and tissue wound healing. EMT is not a binary process but involves multiple partial EMT states that give rise to a high degree of cell state plasticity. Here, we first reviewed several studies on theoretical predictions and experimental verification of these intermediate states, the role of partial EMT on kidney fibrosis development, and how quantitative signaling information controls cell commitment to partial or full EMT upon transient signals. Next, we summarized existing knowledge and open questions on the coupling between EMT and other biological processes, such as the cell cycle, epigenetic regulation, stemness, and apoptosis. Taken together, EMT is a model system that has attracted increasing interests for quantitative experimental and theoretical studies.
Collapse
Affiliation(s)
- Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America. UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States of America. To whom correspondence should be addressed
| | | |
Collapse
|
238
|
Ma H, Tu LC, Chung YC, Naseri A, Grunwald D, Zhang S, Pederson T. Cell cycle- and genomic distance-dependent dynamics of a discrete chromosomal region. J Cell Biol 2019; 218:1467-1477. [PMID: 30846483 PMCID: PMC6504907 DOI: 10.1083/jcb.201807162] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/08/2018] [Accepted: 02/08/2019] [Indexed: 02/08/2023] Open
Abstract
In contrast to the well-studied condensation and folding of chromosomes during mitosis, their dynamics during interphase are less understood. We deployed a CRISPR-based DNA imaging system to track the dynamics of genomic loci situated kilobases to megabases apart on a single chromosome. Two distinct modes of dynamics were resolved: local movements as well as ones that might reflect translational movements of the entire domain within the nucleoplasmic space. The magnitude of both of these modes of movements increased from early to late G1, whereas the translational movements were reduced in early S phase. The local fluctuations decreased slightly in early S and more markedly in mid-late S. These newly observed movements and their cell cycle dependence suggest the existence of a hitherto unrecognized compaction-relaxation dynamic of the interphase chromosome fiber, operating concurrently with changes in the extent of overall movements of loci in the 4D genome.
Collapse
Affiliation(s)
- Hanhui Ma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Li-Chun Tu
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA
| | - Yu-Chieh Chung
- Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Japan
| | - Ardalan Naseri
- Department of Computer Science, University of Central Florida, Orlando, FL
| | - David Grunwald
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL
| | - Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
239
|
Zada D, Bronshtein I, Lerer-Goldshtein T, Garini Y, Appelbaum L. Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons. Nat Commun 2019; 10:895. [PMID: 30837464 PMCID: PMC6401120 DOI: 10.1038/s41467-019-08806-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/30/2019] [Indexed: 11/09/2022] Open
Abstract
Sleep is essential to all animals with a nervous system. Nevertheless, the core cellular function of sleep is unknown, and there is no conserved molecular marker to define sleep across phylogeny. Time-lapse imaging of chromosomal markers in single cells of live zebrafish revealed that sleep increases chromosome dynamics in individual neurons but not in two other cell types. Manipulation of sleep, chromosome dynamics, neuronal activity, and DNA double-strand breaks (DSBs) showed that chromosome dynamics are low and the number of DSBs accumulates during wakefulness. In turn, sleep increases chromosome dynamics, which are necessary to reduce the amount of DSBs. These results establish chromosome dynamics as a potential marker to define single sleeping cells, and propose that the restorative function of sleep is nuclear maintenance.
Collapse
Affiliation(s)
- D Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - I Bronshtein
- Department of Physics and the Institute for Nanotechnology, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - T Lerer-Goldshtein
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Y Garini
- Department of Physics and the Institute for Nanotechnology, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - L Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
240
|
Nagashima R, Hibino K, Ashwin SS, Babokhov M, Fujishiro S, Imai R, Nozaki T, Tamura S, Tani T, Kimura H, Shribak M, Kanemaki MT, Sasai M, Maeshima K. Single nucleosome imaging reveals loose genome chromatin networks via active RNA polymerase II. J Cell Biol 2019; 218:1511-1530. [PMID: 30824489 PMCID: PMC6504897 DOI: 10.1083/jcb.201811090] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 01/01/2023] Open
Abstract
When a gene is activated, chromatin in the transcribed region is thought to be more open and dynamic. However, Nagashima et al. found that this is not necessarily the case—inhibition of transcription globally increases chromatin motion, revealing the existence of loose genome chromatin networks via transcriptional machinery. Although chromatin organization and dynamics play a critical role in gene transcription, how they interplay remains unclear. To approach this issue, we investigated genome-wide chromatin behavior under various transcriptional conditions in living human cells using single-nucleosome imaging. While transcription by RNA polymerase II (RNAPII) is generally thought to need more open and dynamic chromatin, surprisingly, we found that active RNAPII globally constrains chromatin movements. RNAPII inhibition or its rapid depletion released the chromatin constraints and increased chromatin dynamics. Perturbation experiments of P-TEFb clusters, which are associated with active RNAPII, had similar results. Furthermore, chromatin mobility also increased in resting G0 cells and UV-irradiated cells, which are transcriptionally less active. Our results demonstrated that chromatin is globally stabilized by loose connections through active RNAPII, which is compatible with models of classical transcription factories or liquid droplet formation of transcription-related factors. Together with our computational modeling, we propose the existence of loose chromatin domain networks for various intra-/interchromosomal contacts via active RNAPII clusters/droplets.
Collapse
Affiliation(s)
- Ryosuke Nagashima
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
| | - Kayo Hibino
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
| | - S S Ashwin
- Department of Applied Physics, Nagoya University, Nagoya, Japan.,Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Michael Babokhov
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan
| | - Shin Fujishiro
- Department of Applied Physics, Nagoya University, Nagoya, Japan.,Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Ryosuke Imai
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
| | - Tadasu Nozaki
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan
| | - Tomomi Tani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Michael Shribak
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA
| | - Masato T Kanemaki
- Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan.,Molecular Cell Engineering Laboratory, National Institute of Genetics, ROIS, Mishima, Japan
| | - Masaki Sasai
- Department of Applied Physics, Nagoya University, Nagoya, Japan.,Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan .,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
| |
Collapse
|
241
|
Wu X, Mao S, Ying Y, Krueger CJ, Chen AK. Progress and Challenges for Live-cell Imaging of Genomic Loci Using CRISPR-based Platforms. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:119-128. [PMID: 30710789 PMCID: PMC6620262 DOI: 10.1016/j.gpb.2018.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022]
Abstract
Chromatin conformation, localization, and dynamics are crucial regulators of cellular behaviors. Although fluorescence in situ hybridization-based techniques have been widely utilized for investigating chromatin architectures in healthy and diseased states, the requirement for cell fixation precludes the comprehensive dynamic analysis necessary to fully understand chromatin activities. This has spurred the development and application of a variety of imaging methodologies for visualizing single chromosomal loci in the native cellular context. In this review, we describe currently-available approaches for imaging single genomic loci in cells, with special focus on clustered regularly interspaced short palindromic repeats (CRISPR)-based imaging approaches. In addition, we discuss some of the challenges that limit the application of CRISPR-based genomic imaging approaches, and potential solutions to address these challenges. We anticipate that, with continued refinement of CRISPR-based imaging techniques, significant understanding can be gained to help decipher chromatin activities and their relevance to cellular physiology and pathogenesis.
Collapse
Affiliation(s)
- Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China; Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
242
|
Abstract
Noncoding DNA sequences play crucial roles in gene regulation, including via three-dimensional genome organization where they define chromatin boundaries and segment the genome into a sequence of insulated neighborhoods. However, the relative importance of noncoding DNA elements, particularly in comparison with protein-coding DNA sequences, remains more poorly characterized. Here, we systematically test if chromatin boundary disruptions are under purifying selection. Our analyses uncover a genomewide depletion of structural variants that would have the potential to alter chromatin structure. This in turn has implications for predicting not only which variants are likely pathogenic in clinical genetics settings, but also which are likely key innovations in primate evolution, and argues for expanding the current gene-centric paradigm for interpreting structural variants. The potential impact of structural variants includes not only the duplication or deletion of coding sequences, but also the perturbation of noncoding DNA regulatory elements and structural chromatin features, including topological domains (TADs). Structural variants disrupting TAD boundaries have been implicated both in cancer and developmental disease; this likely occurs via “enhancer hijacking,” whereby removal of the TAD boundary exposes enhancers to new target transcription start sites (TSSs). With this functional role, we hypothesized that boundaries would display evidence for negative selection. Here we demonstrate that the chromatin landscape constrains structural variation both within healthy humans and across primate evolution. In contrast, in patients with developmental delay, variants occur remarkably uniformly across genomic features, suggesting a potentially broad role for enhancer hijacking in human disease.
Collapse
|
243
|
Gurumurthy A, Shen Y, Gunn E, Bungert J. Phase Separation and Transcription Regulation: Are Super-Enhancers and Locus Control Regions Primary Sites of Transcription Complex Assembly? Bioessays 2019; 41:e1800164. [PMID: 30500078 PMCID: PMC6484441 DOI: 10.1002/bies.201800164] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Indexed: 01/10/2023]
Abstract
It is proposed that the multiple enhancer elements associated with locus control regions and super-enhancers recruit RNA polymerase II and efficiently assemble elongation competent transcription complexes that are transferred to target genes by transcription termination and transient looping mechanisms. It is well established that transcription complexes are recruited not only to promoters but also to enhancers, where they generate enhancer RNAs. Transcription at enhancers is unstable and frequently aborted. Furthermore, the Integrator and WD-domain containing protein 82 mediate transcription termination at enhancers. Abortion and termination of transcription at the multiple enhancers of locus control regions and super-enhancers provide a large pool of elongation competent transcription complexes. These are efficiently captured by strong basal promoter elements at target genes during transient looping interactions.
Collapse
Affiliation(s)
- Aishwarya Gurumurthy
- Department of Biochemistry and Molecular Biology, College of Medicine,
UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center,
University of Florida, Gainesville, Florida, 32610, U.S.A., Phone: 352-273-8098,
Fax: 352-3f92-2953
| | - Yong Shen
- Department of Biochemistry and Molecular Biology, College of Medicine,
UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center,
University of Florida, Gainesville, Florida, 32610, U.S.A., Phone: 352-273-8098,
Fax: 352-3f92-2953
| | - Eliot Gunn
- Department of Biochemistry and Molecular Biology, College of Medicine,
UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center,
University of Florida, Gainesville, Florida, 32610, U.S.A., Phone: 352-273-8098,
Fax: 352-3f92-2953
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine,
UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center,
University of Florida, Gainesville, Florida, 32610, U.S.A., Phone: 352-273-8098,
Fax: 352-3f92-2953
| |
Collapse
|
244
|
Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Nat Genet 2018; 51:19-25. [DOI: 10.1038/s41588-018-0290-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 08/30/2018] [Indexed: 12/19/2022]
|
245
|
Abstract
Genome organization and subnuclear protein localization are essential for normal cellular function and have been implicated in the control of gene expression, DNA replication, and genomic stability. The coupling of chromatin conformation capture (3C), chromatin immunoprecipitation and sequencing, and related techniques have continuously improved our understanding of genome architecture. To profile site-specifically DNA-associated proteins in a high-throughput and unbiased manner, the RNA-programmable CRISPR-Cas9 platform has recently been combined with an enzymatic labeling system to allow proteomic landscapes at repetitive and nonrepetitive loci to be defined with unprecedented ease and resolution. In this chapter, we describe the dCas9-APEX2 experimental approach for specifically targeting a DNA sequence, enzymatically labeling local proteins with biotin, and quantitatively analyzing the labeled proteome. We also discuss the optimization and extension of this pipeline to facilitate its use in understanding nuclear and chromosome biology.
Collapse
Affiliation(s)
- Xin D Gao
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, United States
| | - Tomás C Rodríguez
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, United States
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
246
|
Efficient labeling and imaging of protein-coding genes in living cells using CRISPR-Tag. Nat Commun 2018; 9:5065. [PMID: 30498221 PMCID: PMC6265289 DOI: 10.1038/s41467-018-07498-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/01/2018] [Indexed: 12/23/2022] Open
Abstract
The lack of efficient tools to image non-repetitive genes in living cells has limited our ability to explore the functional impact of the spatiotemporal dynamics of such genes. Here, we addressed this issue by developing a CRISPR-Tag system using one to four highly active sgRNAs to specifically label protein-coding genes with a high signal-to-noise ratio for visualization by wide-field fluorescence microscopy. Our approach involves assembling a CRISPR-Tag within the intron region of a fluorescent protein and then integrating this cassette to N- or C-terminus of a specific gene, which enables simultaneous real-time imaging of protein and DNA of human protein-coding genes, such as HIST2H2BE, LMNA and HSPA8 in living cells. This CRISPR-Tag system, with a minimal size of ~250 bp DNA tag, represents an easily and broadly applicable technique to study the spatiotemporal organization of genomic elements in living cells.
Collapse
|
247
|
Production of Spliced Long Noncoding RNAs Specifies Regions with Increased Enhancer Activity. Cell Syst 2018; 7:537-547.e3. [PMID: 30447999 DOI: 10.1016/j.cels.2018.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/12/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022]
Abstract
Active enhancers in mammals produce enhancer RNAs (eRNAs) that are bidirectionally transcribed, unspliced, and unstable. Enhancer regions are also enriched with long noncoding RNA (lncRNA) transcripts, which are typically spliced and substantially more stable. In order to explore the relationship between these two classes of RNAs, we analyzed DNase hypersensitive sites with evidence of bidirectional transcription, which we termed eRNA-producing centers (EPCs). EPCs found very close to transcription start sites of lncRNAs exhibit attributes of both enhancers and promoters, including distinctive DNA motifs and a characteristic chromatin landscape. These EPCs are associated with higher enhancer activity, driven at least in part by the presence of conserved, directional splicing signals that promote lncRNA production, pointing at a causal role of lncRNA processing in enhancer activity. Together, our results suggest that the conserved ability of some enhancers to produce lncRNAs augments their activity in a manner likely mediated through lncRNA maturation.
Collapse
|
248
|
Duan J, Lu G, Hong Y, Hu Q, Mai X, Guo J, Si X, Wang F, Zhang Y. Live imaging and tracking of genome regions in CRISPR/dCas9 knock-in mice. Genome Biol 2018; 19:192. [PMID: 30409154 PMCID: PMC6225728 DOI: 10.1186/s13059-018-1530-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/09/2018] [Indexed: 12/23/2022] Open
Abstract
CRISPR/dCas9 is a versatile tool that can be used to recruit various effectors and fluorescent molecules to defined genome regions where it can modulate genetic and epigenetic markers, or track the chromatin dynamics in live cells. In vivo applications of CRISPR/dCas9 in animals have been challenged by delivery issues. We generate and characterize a mouse strain with dCas9-EGFP ubiquitously expressed in various tissues. Studying telomere dynamics in these animals reveals surprising results different from those observed in cultured cell lines. The CRISPR/dCas9 knock-in mice provide an important and versatile tool to mechanistically study genome functions in live animals.
Collapse
Affiliation(s)
- Jinzhi Duan
- Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Guangqing Lu
- Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Yu Hong
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, 100871, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Qingtao Hu
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xueying Mai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Jing Guo
- Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Xiaofang Si
- Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yu Zhang
- Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, 100871, China. .,National Institute of Biological Sciences, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
249
|
Tome JM, Tippens ND, Lis JT. Single-molecule nascent RNA sequencing identifies regulatory domain architecture at promoters and enhancers. Nat Genet 2018; 50:1533-1541. [PMID: 30349116 PMCID: PMC6422046 DOI: 10.1038/s41588-018-0234-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022]
Abstract
Eukaryotic RNA polymerase II (Pol II) has been found at both promoters and distal enhancers, suggesting additional functions beyond mRNA production. To understand this role, we sequenced nascent RNAs at single-molecule resolution to unravel the interplay between Pol II initiation, capping and pausing genome-wide. Our analyses identify two pause classes that are associated with different RNA capping profiles. More proximal pausing is associated with less complete capping, less elongation and a more enhancer-like complement of transcription factors than later pausing. Unexpectedly, transcription start sites (TSSs) are predominantly found in constellations composed of multiple divergent pairs. TSS clusters are intimately associated with precise arrays of nucleosomes and correspond with boundaries of transcription factor binding and chromatin modification at promoters and enhancers. TSS architecture is largely unchanged during the dramatic transcriptional changes induced by heat shock. Together, our results suggest that promoter- and enhancer-associated Pol II is a regulatory nexus for integrating information across TSS ensembles.
Collapse
Affiliation(s)
- Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nathaniel D Tippens
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Cornell University, Ithaca, NY, USA
- Department of Biological Statistics & Computational Biology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
- Tri-Institutional Training Program in Computational Biology and Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
250
|
Buckle A, Brackley CA, Boyle S, Marenduzzo D, Gilbert N. Polymer Simulations of Heteromorphic Chromatin Predict the 3D Folding of Complex Genomic Loci. Mol Cell 2018; 72:786-797.e11. [PMID: 30344096 PMCID: PMC6242782 DOI: 10.1016/j.molcel.2018.09.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/28/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023]
Abstract
Chromatin folded into 3D macromolecular structures is often analyzed by chromosome conformation capture (3C) and fluorescence in situ hybridization (FISH) techniques, but these frequently provide contradictory results. Chromatin can be modeled as a simple polymer composed of a connected chain of units. By embedding data for epigenetic marks (H3K27ac), chromatin accessibility (assay for transposase-accessible chromatin using sequencing [ATAC-seq]), and structural anchors (CCCTC-binding factor [CTCF]), we developed a highly predictive heteromorphic polymer (HiP-HoP) model, where the chromatin fiber varied along its length; combined with diffusing protein bridges and loop extrusion, this model predicted the 3D organization of genomic loci at a population and single-cell level. The model was validated at several gene loci, including the complex Pax6 gene, and was able to determine locus conformations across cell types with varying levels of transcriptional activity and explain different mechanisms of enhancer use. Minimal a priori knowledge of epigenetic marks is sufficient to recapitulate complex genomic loci in 3D and enable predictions of chromatin folding paths. HiP-HoP: highly predictive heteromorphic polymer model to analyze chromatin structure Polymer simulations use widely available epigenetic and protein binding data as input Validate HiP-HoP model at complex loci using 3D FISH and Capture-C Simulations uncover striking conformational variability in chromatin fiber folding
Collapse
Affiliation(s)
- Adam Buckle
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Nick Gilbert
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK.
| |
Collapse
|