201
|
Koizumi SI, Ishikawa H. Transcriptional Regulation of Differentiation and Functions of Effector T Regulatory Cells. Cells 2019; 8:E939. [PMID: 31434282 PMCID: PMC6721668 DOI: 10.3390/cells8080939] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Foxp3-expressing regulatory T (Treg) cells can suppress the activity of various types of immune cells and play key roles in the maintenance of self-tolerance and in the regulation of immune responses against pathogens and tumor cells. Treg cells consist of heterogeneous subsets that have distinct phenotypes and functions. Upon antigen stimulation, naïve-like thymus-derived Treg cells, which circulate in secondary lymphoid organs, can differentiate into effector Treg (eTreg) cells and migrate to and control immune homeostasis of peripheral tissues. eTreg cells are heterogeneous in terms of their ability to localize to specific tissues and suppress particular types of immune responses. Differentiation and function of diverse eTreg subsets are regulated by a variety of transcription factors that are activated by antigens and cytokines. In this article, we review the current understanding of the transcriptional regulation of differentiation and function of eTreg cells.
Collapse
Affiliation(s)
- Shin-Ichi Koizumi
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
202
|
Architecture of antimicrobial skin defense. Cytokine Growth Factor Rev 2019; 49:70-84. [PMID: 31473081 DOI: 10.1016/j.cytogfr.2019.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
The skin is the largest and the most exposed organ in the body and its defense is regulated at several anatomical levels. Here, we explore how skin layers, including the epidermis, dermis, adipose tissue, and skin appendages, as well as cutaneous microbiota, contribute to the function of skin antimicrobial defense. We highlight recent studies that reveal the differential and complementary responses of skin layers to bacterial, viral, and fungal infection. In particular, we focus on key soluble mediators in the layered skin defense, such as antimicrobial peptides, as well as on lipid antimicrobials, cytokines, chemokines, and barrier-maintaining molecules. We include our own evaluative analyses of transcriptomic datasets of human skin to map the involvement of antimicrobial peptides in skin protection under both steady state and infectious conditions. Furthermore, we explore the versatility of the mechanisms underlying skin defense by highlighting the role of the immune and nervous systems in their interaction with cutaneous microbes, and by illustrating the multifunctionality of selected antimicrobial peptides in skin protection.
Collapse
|
203
|
Placek K, Schultze JL, Aschenbrenner AC. Epigenetic reprogramming of immune cells in injury, repair, and resolution. J Clin Invest 2019; 129:2994-3005. [PMID: 31329166 DOI: 10.1172/jci124619] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immune cells are pivotal in the reaction to injury, whereupon, under ideal conditions, repair and resolution phases restore homeostasis following initial acute inflammation. Immune cell activation and reprogramming require transcriptional changes that can only be initiated if epigenetic alterations occur. Recently, accelerated deciphering of epigenetic mechanisms has extended knowledge of epigenetic regulation, including long-distance chromatin remodeling, DNA methylation, posttranslational histone modifications, and involvement of small and long noncoding RNAs. Epigenetic changes have been linked to aspects of immune cell development, activation, and differentiation. Furthermore, genome-wide epigenetic landscapes have been established for some immune cells, including tissue-resident macrophages, and blood-derived cells including T cells. The epigenetic mechanisms underlying developmental steps from hematopoietic stem cells to fully differentiated immune cells led to development of epigenetic technologies and insights into general rules of epigenetic regulation. Compared with more advanced research areas, epigenetic reprogramming of immune cells in injury remains in its infancy. While the early epigenetic mechanisms supporting activation of the immune response to injury have been studied, less is known about resolution and repair phases and cell type-specific changes. We review prominent recent findings concerning injury-mediated epigenetic reprogramming, particularly in stroke and myocardial infarction. Lastly, we illustrate how single-cell technologies will be crucial to understanding epigenetic reprogramming in the complex sequential processes following injury.
Collapse
Affiliation(s)
- Katarzyna Placek
- Immunology and Metabolism, LIMES Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany.,Genomics and Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Anna C Aschenbrenner
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
204
|
Matthias J, Zielinski CE. Shaping the diversity of Th2 cell responses in epithelial tissues and its potential for allergy treatment. Eur J Immunol 2019; 49:1321-1333. [PMID: 31274191 DOI: 10.1002/eji.201848011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022]
Abstract
Th2 cells have evolved to protect from large helminth infections and to exert tissue protective functions in response to nonmicrobial noxious stimuli. The initiation, maintenance, and execution of these functions depend on the integration of diverse polarizing cues by cellular sensors and molecular programs as well as the collaboration with cells that are coopted for signal exchange. The complexity of input signals and cellular collaboration generates tissue specific Th2 cell heterogeneity and specialization. In this review, we aim to discuss the advances and recent breakthroughs in our understanding of Th2 cell responses and highlight developmental and functional differences among T cells within the diversifying field of type 2 immunity. We will focus on factors provided by the tissue microenvironment and highlight factors with potential implications for the pathogenesis of allergic skin and lung diseases. Especially new insights into the role of immunometabolism, the microbiota and ionic signals enhance the complexity of Th2 cell regulation and warrant a critical evaluation. Finally, we will discuss how this ensemble of established knowledge and recent breakthroughs about Th2 immunobiology advance our understanding of the pathogenesis of allergic diseases and how this could be exploited for future immunotherapies.
Collapse
Affiliation(s)
- Julia Matthias
- Institute of Virology, Technical University of Munich, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Christina E Zielinski
- Institute of Virology, Technical University of Munich, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany.,TranslaTUM, Technical University of Munich, 81675, Munich, Germany
| |
Collapse
|
205
|
Krishnan S, Lawrence CB. Old Dog New Tricks; Revisiting How Stroke Modulates the Systemic Immune Landscape. Front Neurol 2019; 10:718. [PMID: 31312180 PMCID: PMC6614437 DOI: 10.3389/fneur.2019.00718] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
Infections in the post-acute phase of cerebral ischaemia impede optimal recovery by exacerbating morbidity and mortality. Our review aims to reconcile the increased infection susceptibility of patients post-stroke by consolidating our understanding of compartmentalised alterations to systemic immunity. Mounting evidence has catalogued alterations to numerous immune cell populations but an understanding of the mechanisms of long-range communication between the immune system, nervous system and other organs beyond the involvement of autonomic signalling is lacking. By taking our cues from established and emerging concepts of neuro-immune interactions, immune-mediated inter-organ cross-talk, innate immune training and the role of microbiota-derived signals in central nervous system (CNS) function we will explore mechanisms of how cerebral ischaemia could shape systemic immune function. In this context, we will also discuss a key question: how are immune requirements critical for mediating repair of the ischaemic insult balanced by the need for anti-microbial immunity post-stroke, given that they are mediated by mutually exclusive immune networks? Our reformed understanding of the immune landscape post-stroke and novel mechanisms at play could guide targeted therapeutic interventions and initiate a step-change in the clinical management of these infectious complications post-stroke.
Collapse
Affiliation(s)
- Siddharth Krishnan
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom.,Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
206
|
Saravia J, Chapman NM, Chi H. Helper T cell differentiation. Cell Mol Immunol 2019; 16:634-643. [PMID: 30867582 PMCID: PMC6804569 DOI: 10.1038/s41423-019-0220-6] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Abstract
CD4+ T helper cells are key regulators of host health and disease. In the original model, specialized subsets of T helper cells are generated following activation through lineage-specifying cytokines and transcriptional programs, but recent studies have revealed increasing complexities for CD4+ T-cell differentiation. Here, we first discuss CD4+ T-cell differentiation from a historical perspective by highlighting the major studies that defined the distinct subsets of T helper cells. We next describe the mechanisms underlying CD4+ T-cell differentiation, including cytokine-induced signaling and transcriptional networks. We then review current and emerging topics of differentiation, including the plasticity and heterogeneity of T cells, the tissue-specific effects, and the influence of cellular metabolism on cell fate decisions. Importantly, recent advances in cutting-edge approaches, especially systems biology tools, have contributed to new concepts and mechanisms underlying T-cell differentiation and will likely continue to advance this important research area of adaptive immunity.
Collapse
Affiliation(s)
- Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
207
|
Park SL, Gebhardt T, Mackay LK. Tissue-Resident Memory T Cells in Cancer Immunosurveillance. Trends Immunol 2019; 40:735-747. [PMID: 31255505 DOI: 10.1016/j.it.2019.06.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
Following their activation and expansion in response to foreign threats, many T cells are retained in peripheral tissues without recirculating in the blood. These tissue-resident CD8+ memory T (TRM) cells patrol barrier surfaces and nonlymphoid organs, where their critical role in protecting against viral and bacterial infections is well established. Recent evidence suggests that TRM cells also play a vital part in preventing the development and spread of solid tumors. Here, we discuss the emerging role of TRM cells in anticancer immunity. We highlight defining features of tumor-localizing TRM cells, examine the mechanisms through which they have recently been shown to suppress cancer growth, and explore their potential as future targets of cancer immunotherapy.
Collapse
Affiliation(s)
- Simone L Park
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Thomas Gebhardt
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Laura K Mackay
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
208
|
Affiliation(s)
- Adriana M Mujal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, CA 94143-0511, USA. .,ImmunoX Initiative, University of California, San Francisco, CA 94143-0511, USA
| |
Collapse
|
209
|
Natoli G, Ostuni R. Adaptation and memory in immune responses. Nat Immunol 2019; 20:783-792. [PMID: 31213714 DOI: 10.1038/s41590-019-0399-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
Abstract
Adaptation is the ability of cells, tissues and organisms to rapidly and reversibly modify their properties to maximize fitness in a changing environment. The activity of immune-system components unfolds in the remarkably heterogeneous milieus to which they are exposed in different tissues, during homeostasis or during various acute or chronic pathological states. Therefore, adaptation is essential for immune cells to tune their responses to a large variety of contexts and conditions. The adaptation of immune cells reflects the integration of multiple inputs acting simultaneously or in a temporal sequence, which eventually leads to transcriptional reprogramming and to various functional consequences, some of which extend beyond the duration of the stimulus. A range of adaptive responses have been observed in both adaptive immune cells and innate immune cells; these are referred to with terms such as 'plasticity', 'priming', 'training', 'exhaustion' and 'tolerance', among others, all of which can be useful for defining a certain immunological process or outcome but whose underlying molecular frameworks are often incompletely understood. Here we review and analyze mechanisms of adaptation and memory in immunity with the aim of providing basic concepts that rationalize the properties and molecular bases of these essential processes.
Collapse
Affiliation(s)
- Gioacchino Natoli
- Humanitas University, Pieve Emanuele, Milan, Italy. .,IRCCS Humanitas, Rozzano, Milan, Italy.
| | - Renato Ostuni
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
210
|
Mielke LA, Liao Y, Clemens EB, Firth MA, Duckworth B, Huang Q, Almeida FF, Chopin M, Koay HF, Bell CA, Hediyeh-Zadeh S, Park SL, Raghu D, Choi J, Putoczki TL, Hodgkin PD, Franks AE, Mackay LK, Godfrey DI, Davis MJ, Xue HH, Bryant VL, Kedzierska K, Shi W, Belz GT. TCF-1 limits the formation of Tc17 cells via repression of the MAF-RORγt axis. J Exp Med 2019; 216:1682-1699. [PMID: 31142588 PMCID: PMC6605755 DOI: 10.1084/jem.20181778] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/09/2019] [Accepted: 04/26/2019] [Indexed: 01/06/2023] Open
Abstract
Mielke et al. show that TCF-1 limits IL-17–producing CD8+ T (Tc17) cell development from double-positive thymocytes through the sequential suppression of MAF and RORγt, while cementing conventional CD8+ T cell fate. Interleukin (IL)-17–producing CD8+ T (Tc17) cells have emerged as key players in host-microbiota interactions, infection, and cancer. The factors that drive their development, in contrast to interferon (IFN)-γ–producing effector CD8+ T cells, are not clear. Here we demonstrate that the transcription factor TCF-1 (Tcf7) regulates CD8+ T cell fate decisions in double-positive (DP) thymocytes through the sequential suppression of MAF and RORγt, in parallel with TCF-1–driven modulation of chromatin state. Ablation of TCF-1 resulted in enhanced Tc17 cell development and exposed a gene set signature to drive tissue repair and lipid metabolism, which was distinct from other CD8+ T cell subsets. IL-17–producing CD8+ T cells isolated from healthy humans were also distinct from CD8+IL-17− T cells and enriched in pathways driven by MAF and RORγt. Overall, our study reveals how TCF-1 exerts central control of T cell differentiation in the thymus by normally repressing Tc17 differentiation and promoting an effector fate outcome.
Collapse
Affiliation(s)
- Lisa A Mielke
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Australia
| | - Yang Liao
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Ella Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Matthew A Firth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Brigette Duckworth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Qiutong Huang
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Francisca F Almeida
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Michael Chopin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Australia
| | - Carolyn A Bell
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Australia
| | | | - Simone L Park
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Dinesh Raghu
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Australia
| | - Jarny Choi
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Tracy L Putoczki
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Philip D Hodgkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Australia.,Centre for Future Landscapes, La Trobe University, Bundoora, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Australia
| | - Melissa J Davis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Vanessa L Bryant
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Clinical Immunology & Allergy, The Royal Melbourne Hospital, Parkville, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wei Shi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Computing and Information Systems, University of Melbourne, Parkville, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia .,Department of Medical Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
211
|
Sabat R, Wolk K, Loyal L, Döcke WD, Ghoreschi K. T cell pathology in skin inflammation. Semin Immunopathol 2019; 41:359-377. [PMID: 31028434 PMCID: PMC6505509 DOI: 10.1007/s00281-019-00742-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Abstract
Forming the outer body barrier, our skin is permanently exposed to pathogens and environmental hazards. Therefore, skin diseases are among the most common disorders. In many of them, the immune system plays a crucial pathogenetic role. For didactic and therapeutic reasons, classification of such immune-mediated skin diseases according to the underlying dominant immune mechanism rather than to their clinical manifestation appears to be reasonable. Immune-mediated skin diseases may be mediated mainly by T cells, by the humoral immune system, or by uncontrolled unspecific inflammation. According to the involved T cell subpopulation, T cell-mediated diseases may be further subdivided into T1 cell-dominated (e.g., vitiligo), T2 cell-dominated (e.g., acute atopic dermatitis), T17/T22 cell-dominated (e.g., psoriasis), and Treg cell-dominated (e.g., melanoma) responses. Moreover, T cell-dependent and -independent responses may occur simultaneously in selected diseases (e.g., hidradenitis suppurativa). The effector mechanisms of the respective T cell subpopulations determine the molecular changes in the local tissue cells, leading to specific microscopic and macroscopic skin alterations. In this article, we show how the increasing knowledge of the T cell biology has been comprehensively translated into the pathogenetic understanding of respective model skin diseases and, based thereon, has revolutionized their daily clinical management.
Collapse
Affiliation(s)
- Robert Sabat
- Psoriasis Research and Treatment Center, Department of Dermatology, Venereology and Allergology/Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Department of Dermatology, Venereology and Allergology/Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Lucie Loyal
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wolf-Dietrich Döcke
- SBU Oncology, Pharmaceuticals, Bayer AG, Berlin and Wuppertal, Müllerstraße 178, 13353, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
212
|
Patra V, Wagner K, Arulampalam V, Wolf P. Skin Microbiome Modulates the Effect of Ultraviolet Radiation on Cellular Response and Immune Function. iScience 2019; 15:211-222. [PMID: 31079025 PMCID: PMC6515114 DOI: 10.1016/j.isci.2019.04.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/18/2019] [Accepted: 04/19/2019] [Indexed: 12/26/2022] Open
Abstract
The skin is colonized by a diverse microbiome intricately involved in various molecular and cellular processes within the skin and beyond. UV radiation is known to induce profound changes in the skin and modulate the immune response. However, the role of the microbiome in UV-induced immune suppression has been overlooked. By employing the standard model of contact hypersensitivity (using germ-free mice) we found diminished UV-induced systemic immune suppression in the presence of microbiome. Upon UV exposure, we found enhanced epidermal hyperplasia and neutrophilic infiltration in the presence and enhanced numbers of mast cells and monocyte or macrophages in the absence of microbiome. Transcriptome analysis revealed a predominant expression of cytokine genes related to pro-inflammatory milieu in the presence versus immunosuppressive milieu (with increased interleukin-10) in the absence of microbiome. Collectively, microbiome abrogates the immunosuppressive response to UV by modulating gene expression and cellular microenvironment of the skin. Epidermal and immune response to UV is dependent on skin microbiome Increased neutrophilic infiltration and expression of IL-1β in SPF mice after UV-R Elevated macrophage infiltration and expression of IL-10 in GF mice after UV-R Skin microbiome diminishes UV-induced immune suppression to contact allergen DNFB
Collapse
Affiliation(s)
- VijayKumar Patra
- Center for Medical Research, Medical University of Graz, Graz, Austria; Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria; Core Facility for Germfree Research (CFGR), Department of Comparative Medicine and Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Karin Wagner
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Velmurugesan Arulampalam
- Core Facility for Germfree Research (CFGR), Department of Comparative Medicine and Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
213
|
Regulatory T cell adaptation in the intestine and skin. Nat Immunol 2019; 20:386-396. [PMID: 30890797 DOI: 10.1038/s41590-019-0351-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
The intestine and skin are distinct microenvironments with unique physiological functions and are continually exposed to diverse environmental challenges. Host adaptation at these sites is an active process that involves interaction between immune cells and tissue cells. Regulatory T cells (Treg cells) play a pivotal role in enforcing homeostasis at barrier surfaces, illustrated by the development of intestinal and skin inflammation in diseases caused by primary deficiency in Treg cells. Treg cells at barrier sites are phenotypically distinct from their lymphoid-organ counterparts, and these 'tissue' signatures often reflect their tissue-adapted function. We discuss current understanding of Treg cell adaptation in the intestine and skin, including unique phenotypes, functions and metabolic demands, and how increased knowledge of Treg cells at barrier sites might guide precision medicine therapies.
Collapse
|
214
|
Ariotti S, Veldhoen M. Immunology: Skin T Cells Switch Identity to Protect and Heal. Curr Biol 2019; 29:R220-R223. [PMID: 30889396 DOI: 10.1016/j.cub.2019.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Skin-resident T cells protect against invasive microorganisms. A new study reports that commensal-specific type-17 (but not type-1) T cells in the skin are poised to switch to a type-2 response upon tissue injury and contribute to wound repair.
Collapse
Affiliation(s)
- Silvia Ariotti
- Instituto de Medicina Molecular, João Lobo Atunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular, João Lobo Atunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal.
| |
Collapse
|
215
|
Zegarra-Ruiz DF, Diehl GE. Skin IL-17-Producing T Cells Support Repair 2! Trends Immunol 2019; 40:177-179. [PMID: 30718047 DOI: 10.1016/j.it.2019.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
Abstract
In a recent study, Harrison et al. (Science 2019;363;eaat6280) report that RORγt-expressing skin commensal-specific T cells rapidly respond to tissue wounding by producing type 2 T helper cell (Th2) cytokines in mice. The cells constitutively coexpress GATA-3 and type 2 cytokine mRNAs that are translated after injury. These T cells act as sentinels, linking T cell receptor (TCR) recognition of commensals, tissue damage, and wound repair.
Collapse
Affiliation(s)
- Daniel F Zegarra-Ruiz
- Alkek Center for Metagenomics and Microbiome Research, and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gretchen E Diehl
- Alkek Center for Metagenomics and Microbiome Research, and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
216
|
Bird L. Poised plasticity of skin T cells. Nat Rev Immunol 2019; 19:70-71. [PMID: 30610222 DOI: 10.1038/s41577-018-0116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
217
|
Abstract
Commensal-specific T cells dually possess type-2 and type-17 effector potential, allowing plasticity in orchestrating tissue immunity.
Collapse
Affiliation(s)
- Joshua M Moreau
- Department of Dermatology, University of California, San Francisco, CA 94143, USA.
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|