201
|
Callender LA, Carroll EC, Garrod-Ketchley C, Schroth J, Bystrom J, Berryman V, Pattrick M, Campbell-Richards D, Hood GA, Hitman GA, Finer S, Henson SM. Altered Nutrient Uptake Causes Mitochondrial Dysfunction in Senescent CD8 + EMRA T Cells During Type 2 Diabetes. FRONTIERS IN AGING 2022; 2:681428. [PMID: 35821991 PMCID: PMC9261431 DOI: 10.3389/fragi.2021.681428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023]
Abstract
Mitochondrial health and cellular metabolism can heavily influence the onset of senescence in T cells. CD8+ EMRA T cells exhibit mitochondrial dysfunction and alterations to oxidative phosphorylation, however, the metabolic properties of senescent CD8+ T cells from people living with type 2 diabetes (T2D) are not known. We show here that mitochondria from T2D CD8+ T cells had a higher oxidative capacity together with increased levels of mitochondrial reactive oxgen species (mtROS), compared to age-matched control cells. While fatty acid uptake was increased, fatty acid oxidation was impaired in T2D CD8+ EMRA T cells, which also showed an accumulation of lipid droplets and decreased AMPK activity. Increasing glucose and fatty acids in healthy CD8+ T cells resulted in increased p-p53 expression and a fragmented mitochondrial morphology, similar to that observed in T2D CD8+ EMRA T cells. The resulting mitochondrial changes are likely to have a profound effect on T cell function. Consequently, a better understanding of these metabolic abnormalities is crucial as metabolic manipulation of these cells may restore correct T cell function and help reduce the impact of T cell dysfunction in T2D.
Collapse
Affiliation(s)
- Lauren A Callender
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Elizabeth C Carroll
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Conor Garrod-Ketchley
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Johannes Schroth
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jonas Bystrom
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | | | | | - Gillian A Hood
- Institute of Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Graham A Hitman
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sarah Finer
- Barts Health NHS Trust, London, United Kingdom.,Institute of Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sian M Henson
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
202
|
Guerrero-Navarro L, Jansen-Dürr P, Cavinato M. Age-Related Lysosomal Dysfunctions. Cells 2022; 11:cells11121977. [PMID: 35741106 PMCID: PMC9221958 DOI: 10.3390/cells11121977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
Organismal aging is normally accompanied by an increase in the number of senescent cells, growth-arrested metabolic active cells that affect normal tissue function. These cells present a series of characteristics that have been studied over the last few decades. The damage in cellular organelles disbalances the cellular homeostatic processes, altering the behavior of these cells. Lysosomal dysfunction is emerging as an important factor that could regulate the production of inflammatory molecules, metabolic cellular state, or mitochondrial function.
Collapse
Affiliation(s)
- Lena Guerrero-Navarro
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria; (L.G.-N.); (P.J.-D.)
- Center for Molecular Biosciences Innsbruck, Innrain 58, 6020 Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria; (L.G.-N.); (P.J.-D.)
- Center for Molecular Biosciences Innsbruck, Innrain 58, 6020 Innsbruck, Austria
| | - Maria Cavinato
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria; (L.G.-N.); (P.J.-D.)
- Center for Molecular Biosciences Innsbruck, Innrain 58, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
203
|
Rivas M, Gupta G, Costanzo L, Ahmed H, Wyman AE, Geraghty P. Senescence: Pathogenic Driver in Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:817. [PMID: 35744080 PMCID: PMC9228143 DOI: 10.3390/medicina58060817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 01/10/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is recognized as a disease of accelerated lung aging. Over the past two decades, mounting evidence suggests an accumulation of senescent cells within the lungs of patients with COPD that contributes to dysregulated tissue repair and the secretion of multiple inflammatory proteins, termed the senescence-associated secretory phenotype (SASP). Cellular senescence in COPD is linked to telomere dysfunction, DNA damage, and oxidative stress. This review gives an overview of the mechanistic contributions and pathologic consequences of cellular senescence in COPD and discusses potential therapeutic approaches targeting senescence-associated signaling in COPD.
Collapse
Affiliation(s)
- Melissa Rivas
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Gayatri Gupta
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Louis Costanzo
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Huma Ahmed
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Anne E. Wyman
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| |
Collapse
|
204
|
Selective Elimination of Senescent Fibroblasts by Targeting the Cell Surface Protein ACKR3. Int J Mol Sci 2022; 23:ijms23126531. [PMID: 35742971 PMCID: PMC9223754 DOI: 10.3390/ijms23126531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/13/2023] Open
Abstract
The accumulation of senescent cells in aging tissues is associated with age-related diseases and functional decline. Thus, senolysis, a therapy aimed at rejuvenation by removing senescent cells from the body, is being developed. However, this therapy requires the identification of membrane surface antigens that are specifically expressed on senescent cells for their selective elimination. We showed that atypical chemokine receptor 3 (ACKR3), a receptor of the CXC motif chemokine 12 (CXCL12) implicated in cancer, inflammation, and cardiovascular disorders, is selectively expressed on the surface of senescent human fibroblasts but not on proliferating cells. Importantly, the differential presence of ACKR3 enabled the isolation of senescent cells by flow cytometry using anti-ACKR3 antibodies. Furthermore, antibody-dependent cellular cytotoxicity assays revealed that cell surface ACKR3 preferentially sensitizes senescent but not dividing fibroblasts to cell injury by natural killer cells. Conclusively, the selective expression of ACKR3 on the surface of senescent cells allows the preferential elimination of senescent cells. These results might contribute to the future development of novel senolysis approaches.
Collapse
|
205
|
Wang C, Hao X, Zhang R. Targeting cellular senescence to combat cancer and aging. Mol Oncol 2022; 16:3319-3332. [PMID: 35674055 PMCID: PMC9490146 DOI: 10.1002/1878-0261.13266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 01/10/2023] Open
Abstract
Senescence is a complex cellular process that is implicated in various physiological and pathological processes. It is characterized by a stable state of cell growth arrest and by a secretome of diverse pro‐inflammatory factors, chemokines and growth factors. In this review, we summarize the context‐dependent role of cellular senescence in ageing and in age‐related diseases, such as cancer. We discuss current approaches to targeting senescence to develop therapeutic strategies to combat cancer and to promote healthy ageing, and we outline our vision for future research directions for senescence‐based interventions in these fields.
Collapse
Affiliation(s)
- Chen Wang
- Immunology, Microenvironment & Metastasis Program The Wistar Institute Philadelphia, PA 19104 USA
| | - Xue Hao
- Immunology, Microenvironment & Metastasis Program The Wistar Institute Philadelphia, PA 19104 USA
| | - Rugang Zhang
- Immunology, Microenvironment & Metastasis Program The Wistar Institute Philadelphia, PA 19104 USA
| |
Collapse
|
206
|
Xu Z, Qu A, Zhang H, Wang W, Hao C, Lu M, Shi B, Xu L, Sun M, Xu C, Kuang H. Photoinduced elimination of senescent microglia cells in vivo by chiral gold nanoparticles. Chem Sci 2022; 13:6642-6654. [PMID: 35756519 PMCID: PMC9172567 DOI: 10.1039/d2sc01662a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease, and the removal of senescent cells has been proved to be beneficial for improving age-associated pathologies in neurodegeneration disease. In this study, chiral gold nanoparticles (NPs) with different helical directions were synthesized to selectively induce the apoptosis of senescent cells under light illumination. By modifying anti-B2MG and anti-DCR2 antibodies, senescent microglia cells could be cleared by chiral NPs without damaging the activities of normal cells under illumination. Notably, l-P+ NPs exhibited about a 2-fold higher elimination efficiency than d-P- NPs for senescent microglia cells. Mechanistic studies revealed that the clearance of senescent cells was mediated by the activation of the Fas signaling pathway. The in vivo injection of chiral NPs successfully confirmed that the elimination of senescent microglia cells in the brain could further alleviate the symptoms of PD mice in which the alpha-synuclein (α-syn) in cerebrospinal fluid (CFS) decreased from 83.83 ± 4.76 ng mL-1 to 8.66 ± 1.79 ng mL-1 after two months of treatment. Our findings suggest a potential strategy to selectively eliminate senescent cells using chiral nanomaterials and offer a promising strategy for alleviating PD.
Collapse
Affiliation(s)
- Zhuojia Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Hongyu Zhang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Weiwei Wang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Meiru Lu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Baimei Shi
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
207
|
Morales-Valencia J, David G. The origins of cancer cell dormancy. Curr Opin Genet Dev 2022; 74:101914. [PMID: 35500379 PMCID: PMC9156570 DOI: 10.1016/j.gde.2022.101914] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 01/10/2023]
Abstract
Cancer cell dormancy has emerged as an important nongenetic driver of drug resistance. Dormant cells are characterized by a reversible cell cycle exit. They represent a reservoir for eventual cancer relapse, and upon reactivation, can fuel metastatic disease. Although dormant cells were originally believed to emerge from a drug-resistant pre-existing cancer subpopulation, this notion has been recently challenged. Here, we review recent evidence indicating that dormancy represents an adaptive strategy employed by cancer cells to avoid the cytotoxic effects of antitumor therapy. Furthermore, we outline the molecular pathways engaged by cancer cells to enter dormancy upon drug exposure, with a focus on cellular senescence as a driver of dormancy.
Collapse
Affiliation(s)
- Jorge Morales-Valencia
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York University Langone Health, New York, New York.; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York University Langone Health, New York, New York
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York University Langone Health, New York, New York.; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York University Langone Health, New York, New York.; Department of Urology, NYU Grossman School of Medicine, New York University Langone Health, New York, New York..
| |
Collapse
|
208
|
Uchikado Y, Ikeda Y, Ohishi M. Current Understanding of the Pivotal Role of Mitochondrial Dynamics in Cardiovascular Diseases and Senescence. Front Cardiovasc Med 2022; 9:905072. [PMID: 35665261 PMCID: PMC9157625 DOI: 10.3389/fcvm.2022.905072] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 12/11/2022] Open
Abstract
The heart is dependent on ATP production in mitochondria, which is closely associated with cardiovascular disease because of the oxidative stress produced by mitochondria. Mitochondria are highly dynamic organelles that constantly change their morphology to elongated (fusion) or small and spherical (fission). These mitochondrial dynamics are regulated by various small GTPases, Drp1, Fis1, Mitofusin, and Opa1. Mitochondrial fission and fusion are essential to maintain a balance between mitochondrial biogenesis and mitochondrial turnover. Recent studies have demonstrated that mitochondrial dynamics play a crucial role in the development of cardiovascular diseases and senescence. Disruptions in mitochondrial dynamics affect mitochondrial dysfunction and cardiomyocyte survival leading to cardiac ischemia/reperfusion injury, cardiomyopathy, and heart failure. Mitochondrial dynamics and reactive oxygen species production have been associated with endothelial dysfunction, which in turn causes the development of atherosclerosis, hypertension, and even pulmonary hypertension, including pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Here, we review the association between cardiovascular diseases and mitochondrial dynamics, which may represent a potential therapeutic target.
Collapse
Affiliation(s)
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences Kagoshima University, Kagoshima, Japan
| | | |
Collapse
|
209
|
Kim C, Lee SG, Lim S, Jung M, Kwon SP, Hong J, Kang M, Sohn HS, Go S, Moon S, Lee SJ, Kim JS, Kim BS. A Senolytic-Eluting Coronary Stent for the Prevention of In-Stent Restenosis. ACS Biomater Sci Eng 2022; 8:1921-1929. [PMID: 35416659 DOI: 10.1021/acsbiomaterials.1c01611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The vast majority of drug-eluting stents (DES) elute either sirolimus or one of its analogues. While limus drugs stymie vascular smooth muscle cell (VSMC) proliferation to prevent in-stent restenosis, their antiproliferative nature is indiscriminate and limits healing of the endothelium in stented vessels, increasing the risk of late-stent thrombosis. Oxidative stress, which is associated with vascular injury from stent implantation, can induce VSMCs to undergo senescence, and senescent VSMCs can produce pro-inflammatory cytokines capable of inducing proliferation of neighboring nonsenescent VSMCs. We explored the potential of senolytic therapy, which involves the selective elimination of senescent cells, in the form of a senolytic-eluting stent (SES) for interventional cardiology. Oxidative stress was modeled in vitro by exposing VSMCs to H2O2, and H2O2-mediated senescence was evaluated by cytochemical staining of senescence-associated β-galactosidase activity and qRT-PCR. Quiescent VSMCs were then treated with the conditioned medium (CM) of H2O2-treated VSMCs. Proliferative effects of CM were analyzed by staining for proliferating cell nuclear antigen. Senolytic effects of the first-generation senolytic ABT263 were observed in vitro, and the effects of ABT263 on endothelial cells were also investigated through an in vitro re-endothelialization assay. SESs were prepared by dip coating. Iliofemoral arteries of hypercholesteremic rabbits were implanted with SES, everolimus-eluting stents (EESs), or bare-metal stents (BMSs), and the area of stenosis was measured 4 weeks post-implantation using optical coherence tomography. We found that a portion of H2O2-treated VSMCs underwent senescence, and that CM of H2O2-treated senescent VSMCs triggered the proliferation of quiescent VSMCs. ABT263 reverted H2O2-mediated senescence and the proliferative capacity of senescent VSMC CM. Unlike everolimus, ABT263 did not affect endothelial cell migration and/or proliferation. SES, but not EES, significantly reduced stenosis area in vivo compared with bare-metal stents (BMSs). This study shows the potential of SES as an alternative to current forms of DES.
Collapse
Affiliation(s)
- Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seul-Gee Lee
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Songhyun Lim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Pil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Jun Lee
- Cardiology Division, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung-Sun Kim
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Cardiology Division, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Chemical Processes, Institute of Engineering Research, and BioMAX, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
210
|
Tan H, Xu J, Liu Y. Ageing, cellular senescence and chronic kidney disease: experimental evidence. Curr Opin Nephrol Hypertens 2022; 31:235-243. [PMID: 35142744 PMCID: PMC9035037 DOI: 10.1097/mnh.0000000000000782] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is often viewed as an accelerated and premature ageing of the kidney, as they share common pathological features characterized by cellular senescence. In this review, we summarize the experimental evidence linking cellular senescence to the pathobiology of kidney ageing and CKD, and discuss the strategies for targeting senescent cells in developing therapeutics for ageing-related kidney disorders. RECENT FINDINGS Kidney ageing and CKD are featured with increased cellular senescence, an irreversible state of cell cycle arrest and the cessation of cell division. Senescent cells secrete a diverse array of proinflammatory and profibrotic factors known as senescence-associated secretory phenotype (SASP). Secondary senescence can be induced by primary senescent cells via a mechanism involving direct contact or the SASP. Various senolytic therapies aiming to selectively remove senescent cells in vivo have been developed. Senostatic approaches to suppress senescence or inhibit SASP, as well as nutrient signalling regulators are also validated in animal models of ageing. SUMMARY These recent studies provide experimental evidence supporting the notion that accumulation of senescent cells and their associated SASP is a main driver leading to structural and functional organ degeneration in CKD and other ageing-related disorder.
Collapse
Affiliation(s)
- Huishi Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
211
|
Pyrroloquinoline quinone (PQQ) protects mitochondrial function of HEI-OC1 cells under premature senescence. NPJ AGING 2022; 8:3. [PMID: 35927260 PMCID: PMC9158787 DOI: 10.1038/s41514-022-00083-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the effects of pyrroloquinoline quinone (PQQ), an oxidoreductase cofactor, on the H2O2-induced premature senescence model in HEI-OC1 auditory cells and to elucidate its mechanism of action in vitro. Cells were treated with PQQ for 1 day before H2O2 (100 μM) exposure. Mitochondrial respiratory capacity was damaged in this premature senescence model but was restored in cells pretreated with PQQ (0.1 nM or 1.0 nM). A decrease in mitochondrial potential, the promotion of mitochondrial fusion and the accelerated movement of mitochondria were all observed in PQQ-pretreated cells. The protein expression of sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) were significantly decreased under H2O2 exposure while they were increased with PQQ pretreatment, and PGC-1α acetylation was significantly decreased. In conclusion, PQQ has a protective effect on the premature senescence model of HEI-OC1 auditory cells and is associated with the SIRT1/PGC-1α signaling pathway, mitochondrial structure, and mitochondrial respiratory capacity.
Collapse
|
212
|
Ohtani N. The roles and mechanisms of senescence-associated secretory phenotype (SASP): can it be controlled by senolysis? Inflamm Regen 2022; 42:11. [PMID: 35365245 PMCID: PMC8976373 DOI: 10.1186/s41232-022-00197-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/16/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that can be induced by a variety of potentially oncogenic stimuli, including DNA damage. Hence, senescence has long been considered to suppress tumorigenesis, acting as a guardian of homeostasis. However, recent studies have revealed that senescent cells exhibit the secretion of a series of inflammatory cytokines, chemokines, growth factors, and matrix remodeling factors that alter the local tissue environment and contribute to chronic inflammation and cancer. This senescence phenotype is termed as senescence-associated secretory phenotype (SASP) and is observed not only in cultured cells in vitro but also in vivo. Recently, the physiological and pathological roles of SASP have been increasingly clarified. Notably, several studies have reported that the intrinsic mechanism of SASP factor production is predominantly mediated through the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway by aberrantly accumulated DNA fragments from the nucleus of senescent cells. In contrast, various extrinsic triggers of SASP also exist in vivo, for example, the SASP induction in hepatic stellate cells in the tumor microenvironment of obesity-associated liver cancer by the translocated gut microbial metabolites. Recently, the strategy for the elimination of senescent cells (senolysis) has attracted increasing attention. Thus, the role of SASP and the effects and outcomes of senolysis in vivo will be also discussed in this review.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, 1-4-3, Abeno-ku, Osaka, Japan.
| |
Collapse
|
213
|
Murakami T, Inagaki N, Kondoh H. Cellular Senescence in Diabetes Mellitus: Distinct Senotherapeutic Strategies for Adipose Tissue and Pancreatic β Cells. Front Endocrinol (Lausanne) 2022; 13:869414. [PMID: 35432205 PMCID: PMC9009089 DOI: 10.3389/fendo.2022.869414] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Increased insulin resistance and impaired insulin secretion are significant characteristics manifested by patients with type 2 diabetes mellitus (T2DM). The degree and extent of these two features in T2DM vary among races and individuals. Insulin resistance is accelerated by obesity and is accompanied by accumulation of dysfunctional adipose tissues. In addition, dysfunction of pancreatic β-cells impairs insulin secretion. T2DM is significantly affected by aging, as the β-cell mass diminishes with age. Moreover, both obesity and hyperglycemia-related metabolic changes in developing diabetes are associated with accumulation of senescent cells in multiple organs, that is, organismal aging. Cellular senescence is defined as a state of irreversible cell cycle arrest with concomitant functional decline. It is caused by telomere shortening or senescence-inducing stress. Senescent cells secrete proinflammatory cytokines and chemokines, which is designated as the senescence-associated secretory phenotype (SASP), and this has a negative impact on adipose tissues and pancreatic β-cells. Recent advances in aging research have suggested that senolysis, the removal of senescent cells, can be a promising therapeutic approach to prevent or improve aging-related diseases, including diabetes. The attenuation of a SASP may be beneficial, although the pathophysiological involvement of cellular senescence in diabetes is not fully understood. In the clinical application of senotherapy, tissue-context-dependent senescent cells are increasingly being recognized as an issue to be solved. Recent studies have observed highly heterogenic and complex senescent cell populations that serve distinct roles among tissues, various stages of disease, and different ages. For example, in high-fat-diet induced diabetes with obesity, mouse adipose tissues display accumulation of p21Cip1-highly-expressing (p21high) cells in the early stage, followed by increases in both p21high and p16INK4a-highly-expressing (p16high) cells in the late stage. Interestingly, elimination of p21high cells in visceral adipose tissue can prevent or improve insulin resistance in mice with obesity, while p16high cell clearance is less effective in alleviating insulin resistance. Importantly, in immune-deficient mice transplanted with fat from obese patients, dasatinib plus quercetin, a senolytic cocktail that reduces the number of both p21high and p16high cells, improves both glucose tolerance and insulin resistance. On the other hand, in pancreatic β cells, p16high cells become increasingly predominant with age and development of diabetes. Consistently, elimination of p16high cells in mice improves both glucose tolerance and glucose-induced insulin secretion. Moreover, a senolytic compound, the anti-Bcl-2 inhibitor ABT263 reduces p16INK4a expression in islets and restores glucose tolerance in mice when combined with insulin receptor antagonist S961 treatment. In addition, efficacy of senotherapy in targeting mouse pancreatic β cells has been validated not only in T2DM, but also in type 1 diabetes mellitus. Indeed, in non-obese diabetic mice, treatment with anti-Bcl-2 inhibitors, such as ABT199, eliminates senescent pancreatic β cells, resulting in prevention of diabetes mellitus. These findings clearly indicate that features of diabetes are partly determined by which or where senescent cells reside in vivo, as adipose tissues and pancreatic β cells are responsible for insulin resistance and insulin secretion, respectively. In this review, we summarize recent advances in understanding cellular senescence in adipose tissues and pancreatic β cells in diabetes. We review the different potential molecular targets and distinctive senotherapeutic strategies in adipose tissues and pancreatic β cells. We propose the novel concept of a dual-target tailored approach in senotherapy against diabetes.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Kondoh
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
214
|
Gemcitabine Cooperates with Everolimus to Inhibit the Growth of and Sensitize Malignant Meningioma Cells to Apoptosis Induced by Navitoclax, an Inhibitor of Anti-Apoptotic BCL-2 Family Proteins. Cancers (Basel) 2022; 14:cancers14071706. [PMID: 35406478 PMCID: PMC8997110 DOI: 10.3390/cancers14071706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Meningioma is the most common intracranial neoplasm derived from the arachnoid cap cells of the leptomeninges. Malignant meningioma is generally more aggressive than other meningioma and frequently recurs even after surgery and radiation therapy. Clinical trials have been performed on candidate drugs, including everolimus, an inhibitor of mammalian target of rapamycin. However, an effective standard systemic therapy has not yet been established and the prognosis of patients with malignant meningioma is still poor. We recently reported the radiosensitization effects of gemcitabine in malignant meningioma cells, which suggests its potential to enhance the efficacy of candidate drugs for meningioma. In the present study, we demonstrated that gemcitabine enhanced the therapeutic effects of everolimus in malignant meningioma cells, and these effects were further augmented by navitoclax, an inhibitor of anti-apoptotic BCL-2 family proteins, both in vitro and in vivo. The present results provide support for the clinical application of gemcitabine and navitoclax in combination with everolimus to the treatment of patients with malignant meningioma. Abstract Despite several clinical trials with encouraging findings, effective standard systemic therapies have yet to be established for malignant meningioma and the prognosis of these patients remains poor. Accumulating preclinical and clinical evidence suggests that gemcitabine is effective against malignant meningioma. To identify drugs with therapeutic effects that may be enhanced in combination with gemcitabine, we screened drugs that have been tested in preclinical and clinical trials for meningioma. In IOMM-Lee and HKBMM malignant meningioma cells, gemcitabine enhanced the growth inhibitory effects of the mTOR inhibitor everolimus, the clinical benefits of which have been demonstrated in patients with meningioma. The synergistic growth inhibitory effects of this combination were accompanied by cellular senescence characterized by an increase in senescence-associated β-galactosidase activity. To enhance the effects of this combination, we screened senolytic drugs that selectively kill senescent cells, and found that navitoclax, an inhibitor of anti-apoptotic BCL-2 family proteins, effectively reduced the number of viable malignant meningioma cells in combination with everolimus and gemcitabine by inducing apoptotic cell death. The suppression of tumor growth in vivo by the combination of everolimus with gemcitabine was significantly stronger than that by either treatment alone. Moreover, navitoclax, in combination with everolimus and gemcitabine, significantly reduced tumor sizes with an increase in the number of cleaved caspase-3-positive apoptotic cells. The present results suggest that the addition of gemcitabine with or without navitoclax to everolimus is a promising strategy that warrants further evaluation in future clinical trials for malignant meningioma.
Collapse
|
215
|
Metabolic Alterations in Cellular Senescence: The Role of Citrate in Ageing and Age-Related Disease. Int J Mol Sci 2022; 23:ijms23073652. [PMID: 35409012 PMCID: PMC8998297 DOI: 10.3390/ijms23073652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Recent mouse model experiments support an instrumental role for senescent cells in age-related diseases and senescent cells may be causal to certain age-related pathologies. A strongly supported hypothesis is that extranuclear chromatin is recognized by the cyclic GMP–AMP synthase-stimulator of interferon genes pathway, which in turn leads to the induction of several inflammatory cytokines as part of the senescence-associated secretory phenotype. This sterile inflammation increases with chronological age and age-associated disease. More recently, several intracellular and extracellular metabolic changes have been described in senescent cells but it is not clear whether any of them have functional significance. In this review, we highlight the potential effect of dietary and age-related metabolites in the modulation of the senescent phenotype in addition to discussing how experimental conditions may influence senescent cell metabolism, especially that of energy regulation. Finally, as extracellular citrate accumulates following certain types of senescence, we focus on the recently reported role of extracellular citrate in aging and age-related pathologies. We propose that citrate may be an active component of the senescence-associated secretory phenotype and via its intake through the diet may even contribute to the cause of age-related disease.
Collapse
|
216
|
Abstract
Pulmonary hypertension is an enigmatic, deleterious disease driven by multiple heterogeneous causes with a burgeoning proportion of older patients with complex, chronic comorbidities without adequate treatment options. The underlying endothelial pathophenotypes that direct vasoconstriction and panvascular remodeling remain both controversial and incompletely defined. This review discusses emerging concepts centered on endothelial senescence in pulmonary vascular disease. This principle proposes a more heterogeneous, dynamic pulmonary endothelium in disease; it provides a potentially unifying feature of endothelial dysfunction in pulmonary hypertension irrespective of cause; and it supports a clinically relevant link between aging and pulmonary hypertension like other chronic illnesses. Thus, taking cues from studies on aging and age-related diseases, we present possible opportunities and barriers to diagnostic and therapeutic targeting of senescence in pulmonary hypertension.
Collapse
Affiliation(s)
- Miranda K Culley
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| |
Collapse
|
217
|
Brauning A, Rae M, Zhu G, Fulton E, Admasu TD, Stolzing A, Sharma A. Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells 2022; 11:cells11061017. [PMID: 35326467 PMCID: PMC8947539 DOI: 10.3390/cells11061017] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is the greatest risk factor for nearly all major chronic diseases, including cardiovascular diseases, cancer, Alzheimer’s and other neurodegenerative diseases of aging. Age-related impairment of immune function (immunosenescence) is one important cause of age-related morbidity and mortality, which may extend beyond its role in infectious disease. One aspect of immunosenescence that has received less attention is age-related natural killer (NK) cell dysfunction, characterized by reduced cytokine secretion and decreased target cell cytotoxicity, accompanied by and despite an increase in NK cell numbers with age. Moreover, recent studies have revealed that NK cells are the central actors in the immunosurveillance of senescent cells, whose age-related accumulation is itself a probable contributor to the chronic sterile low-grade inflammation developed with aging (“inflammaging”). NK cell dysfunction is therefore implicated in the increasing burden of infection, malignancy, inflammatory disorders, and senescent cells with age. This review will focus on recent advances and open questions in understanding the interplay between systemic inflammation, senescence burden, and NK cell dysfunction in the context of aging. Understanding the factors driving and enforcing NK cell aging may potentially lead to therapies countering age-related diseases and underlying drivers of the biological aging process itself.
Collapse
Affiliation(s)
- Ashley Brauning
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Michael Rae
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Gina Zhu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Elena Fulton
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Tesfahun Dessale Admasu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Alexandra Stolzing
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Centre for Biological Engineering, Wolfson School of Electrical, Material and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence: (A.S.); (A.S.)
| | - Amit Sharma
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Correspondence: (A.S.); (A.S.)
| |
Collapse
|
218
|
Yoshikawa S, Nagao M, Toh R, Shinohara M, Iino T, Irino Y, Nishimori M, Tanaka H, Satomi-Kobayashi S, Ishida T, Hirata KI. Inhibition of glutaminase 1-mediated glutaminolysis improves pathological cardiac remodeling. Am J Physiol Heart Circ Physiol 2022; 322:H749-H761. [PMID: 35275762 DOI: 10.1152/ajpheart.00692.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alterations in cardiac metabolism are strongly associated with the pathogenesis of heart failure (HF). We recently reported that glutamine-dependent anaplerosis, termed glutaminolysis, was activated by H2O2 stimulation in rat cardiomyocytes, which seemed to be an adaptive response by which cardiomyocytes survive acute stress. However, the molecular mechanisms and fundamental roles of glutaminolysis in the pathophysiology of the failing heart are still unknown. Here, we treated wild-type mice (C57BL/6J) and rat neonatal cardiomyocytes (RNCMs) and fibroblasts (RNCFs) with angiotensin II (Ang II) to induce pathological cardiac remodeling. Glutaminase 1 (GLS1), a rate-limiting glutaminolysis enzyme, was significantly increased in Ang II-induced mouse hearts, RNCMs and RNCFs. Unexpectedly, a GLS1 inhibitor attenuated Ang II-induced left ventricular hypertrophy and fibrosis in the mice, and gene knockdown and pharmacological perturbation of GLS1 suppressed hypertrophy and the proliferation of RNCMs and RNCFs, respectively. Using mass spectrometry (MS)-based stable isotope tracing with 13C-labeled glutamine, we observed glutamine metabolic flux in Ang II-treated RNCMs and RNCFs. The incorporation of 13C atoms into tricarboxylic acid (TCA) cycle intermediates and their derivatives was markedly enhanced in both cell types, indicating the activation of glutaminolysis in hypertrophied heart. Notably, GLS1 inhibition reduced the production of glutamine-derived aspartate and citrate, which are required for the biosynthesis of nucleic acids and lipids, possibly contributing to the suppression of cardiac hypertrophy and fibrosis. The findings of the present study reveal that GLS1-mediated upregulation of glutaminolysis leads to maladaptive cardiac remodeling. Inhibition of this anaplerotic pathway could be a novel therapeutic approach for HF.
Collapse
Affiliation(s)
- Sachiko Yoshikawa
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Kobe, Hyogo, Japan
| | - Manabu Nagao
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Kobe, Hyogo, Japan
| | - Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Kobe, Hyogo, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan; The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuya Iino
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Kobe, Hyogo, Japan
| | - Yasuhiro Irino
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Nishimori
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hidekazu Tanaka
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Seimi Satomi-Kobayashi
- Division of Cardiovascular Medicine, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Kobe, Hyogo, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Kobe, Hyogo, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, kobe, Japan
| |
Collapse
|
219
|
Wang C, Zhou Z, Song W, Cai Z, Ding Z, Chen D, Xia F, He Y. Inhibition of IKKβ/NF-κB signaling facilitates tendinopathy healing by rejuvenating inflamm-aging induced tendon-derived stem/progenitor cell senescence. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:562-576. [PMID: 35036066 PMCID: PMC8738957 DOI: 10.1016/j.omtn.2021.12.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023]
Abstract
Degenerative rotator cuff tendinopathy (RCT) is a chronic tendon disease caused by degeneration and inflammation, which often affects the elderly population. Mesenchymal stem cell senescence is generally recognized as an important pathophysiological mechanism in many age-related skeletal diseases. Herein, we collected human tendon-derived stem/progenitor cells (TSPCs) from degenerative supraspinatus tendons and found that TSPC senescence is closely related to RCT. We further identified that nuclear factor κB (NF-κB) pathway activation is involved in age-related inflammation (inflamm-aging) of degenerative RCT. Moreover, whole genome RNA sequencing revealed that in vitro inhibition of the I kappa B kinase β (IKKβ)/NF-κB signaling pathway could reverse the aged TSPC phenotype with decreased TSPC senescence and increased tenogenic potential. To achieve effective in vivo inhibition of IKKβ/NF-κB signaling, we fabricated IKKβ small interfering RNA (siRNA)-loaded gold nanoclusters (AuNC-siRNA) for efficient and convenient intra-articular delivery of IKKβ siRNA. We found that AuNC-siRNA prevented inflamm-aging-induced TSPC senescence and dysfunction in a degenerative RCT aged rat model. Together, these data show that inflamm-aging causes degenerative RCT through inducing TSPC senescence, which can be reversed by blocking the IKKβ/NF-κB pathway in vivo. Thus, our study provides a promising therapeutic strategy for degenerative RCT via intra-articular delivery of IKKβ siRNA using AuNCs.
Collapse
Affiliation(s)
- Chongyang Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Zhekun Zhou
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Wei Song
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Zhuochang Cai
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Zhenyu Ding
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Daoyun Chen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Fangfang Xia
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yaohua He
- Department of Orthopaedics, Jinshan Branch of Shanghai Sixth People's Hospital affiliated to Shanghai University of Medicine & Health Sciences, 147 Jiankang Road, Shanghai 201503, China
| |
Collapse
|
220
|
Hu L, Li H, Zi M, Li W, Liu J, Yang Y, Zhou D, Kong QP, Zhang Y, He Y. Why Senescent Cells Are Resistant to Apoptosis: An Insight for Senolytic Development. Front Cell Dev Biol 2022; 10:822816. [PMID: 35252191 PMCID: PMC8890612 DOI: 10.3389/fcell.2022.822816] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a process that leads to a state of irreversible cell growth arrest induced by a variety of intrinsic and extrinsic stresses. Senescent cells (SnCs) accumulate with age and have been implicated in various age-related diseases in part via expressing the senescence-associated secretory phenotype. Elimination of SnCs has the potential to delay aging, treat age-related diseases and extend healthspan. However, once cells becoming senescent, they are more resistant to apoptotic stimuli. Senolytics can selectively eliminate SnCs by targeting the SnC anti-apoptotic pathways (SCAPs). They have been developed as a novel pharmacological strategy to treat various age-related diseases. However, the heterogeneity of the SnCs indicates that SnCs depend on different proteins or pathways for their survival. Thus, a better understanding of the underlying mechanisms for apoptotic resistance of SnCs will provide new molecular targets for the development of cell-specific or broad-spectrum therapeutics to clear SnCs. In this review, we discussed the latest research progresses and challenge in senolytic development, described the significance of regulation of senescence and apoptosis in aging, and systematically summarized the SCAPs involved in the apoptotic resistance in SnCs.
Collapse
Affiliation(s)
- Li Hu
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,College of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Huiqin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meiting Zi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen Li
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Jing Liu
- Lab of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yang Yang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yunxia Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.,College of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
221
|
Neurons undergo pathogenic metabolic reprogramming in models of familial ALS. Mol Metab 2022; 60:101468. [PMID: 35248787 PMCID: PMC8958550 DOI: 10.1016/j.molmet.2022.101468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Objectives Methods Results Conclusions Our work is the first to perform a comprehensive and quantitative analysis of intermediary metabolism in neurons in the setting of fALS causing gene products. Because the cardinal feature of ALS is death of motor neurons, these new studies are directly relevant to the pathogenesis of ALS. Our functional interrogations begin to unpack how metabolic re-wiring is induced by fALS genes and it will be very interesting, in the future, to gain insight in amino acid fueling of the TCA cycle. We suspect pleiotropic effects of amino acid fueling, and this may lead to very targeted therapeutic interventions.
Collapse
|
222
|
Wang F, Li Z, Chen L, Yang T, Liang B, Zhang Z, Shao J, Xu X, Yin G, Wang S, Ding H, Zhang F, Zheng S. Inhibition of ASCT2 induces hepatic stellate cell senescence with modified proinflammatory secretome through an IL-1α/NF-κB feedback pathway to inhibit liver fibrosis. Acta Pharm Sin B 2022; 12:3618-3638. [PMID: 36176909 PMCID: PMC9513497 DOI: 10.1016/j.apsb.2022.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
Senescence of activated hepatic stellate cells (aHSCs) is a stable growth arrest that is implicated in liver fibrosis regression. Senescent cells often accompanied by a multi-faceted senescence-associated secretory phenotype (SASP). But little is known about how alanine-serine-cysteine transporter type-2 (ASCT2), a high affinity glutamine transporter, affects HSC senescence and SASP during liver fibrosis. Here, we identified ASCT2 is mainly elevated in aHSCs and positively correlated with liver fibrosis in human and mouse fibrotic livers. We first discovered ASCT2 inhibition induced HSCs to senescence in vitro and in vivo. The proinflammatory SASP were restricted by ASCT2 inhibition at senescence initiation to prevent paracrine migration. Mechanically, ASCT2 was a direct target of glutaminolysis-dependent proinflammatory SASP, interfering IL-1α/NF-κB feedback loop via interacting with precursor IL-1α at Lys82. From a translational perspective, atractylenolide III is identified as ASCT2 inhibitor through directly bound to Asn230 of ASCT2. The presence of –OH group in atractylenolide III is suggested to be favorable for the inhibition of ASCT2. Importantly, atractylenolide III could be utilized to treat liver fibrosis mice. Taken together, ASCT2 controlled HSC senescence while modifying the proinflammatory SASP. Targeting ASCT2 by atractylenolide III could be a therapeutic candidate for liver fibrosis.
Collapse
Affiliation(s)
- Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhanghao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Baoyu Liang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guoping Yin
- Department of Anesthesiology, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250035, China
| | - Hai Ding
- Department of General Surgery, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Corresponding authors.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Corresponding authors.
| |
Collapse
|
223
|
Chen R, Skutella T. Synergistic Anti-Ageing through Senescent Cells Specific Reprogramming. Cells 2022; 11:830. [PMID: 35269453 PMCID: PMC8909644 DOI: 10.3390/cells11050830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/13/2022] [Accepted: 02/24/2022] [Indexed: 01/02/2023] Open
Abstract
In this review, we seek a novel strategy for establishing a rejuvenating microenvironment through senescent cells specific reprogramming. We suggest that partial reprogramming can produce a secretory phenotype that facilitates cellular rejuvenation. This strategy is desired for specific partial reprogramming under control to avoid tumour risk and organ failure due to loss of cellular identity. It also alleviates the chronic inflammatory state associated with ageing and secondary senescence in adjacent cells by improving the senescence-associated secretory phenotype. This manuscript also hopes to explore whether intervening in cellular senescence can improve ageing and promote damage repair, in general, to increase people's healthy lifespan and reduce frailty. Feasible and safe clinical translational protocols are critical in rejuvenation by controlled reprogramming advances. This review discusses the limitations and controversies of these advances' application (while organizing the manuscript according to potential clinical translation schemes) to explore directions and hypotheses that have translational value for subsequent research.
Collapse
Affiliation(s)
| | - Thomas Skutella
- Group for Regeneration and Reprogramming, Medical Faculty, Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
224
|
Chan M, Yuan H, Soifer I, Maile TM, Wang RY, Ireland A, O'Brien JJ, Goudeau J, Chan LJ, Vijay T, Freund A, Kenyon C, Bennett BD, McAllister FE, Kelley DR, Roy M, Cohen RL, Levinson AD, Botstein D, Hendrickson DG. Novel insights from a multiomics dissection of the hayflick limit. eLife 2022; 11:70283. [PMID: 35119359 PMCID: PMC8933007 DOI: 10.7554/elife.70283] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
The process wherein dividing cells exhaust proliferative capacity and enter into replicative senescence has become a prominent model for cellular aging in vitro. Despite decades of study, this cellular state is not fully understood in culture and even much less so during aging. Here, we revisit Leonard Hayflick’s original observation of replicative senescence in WI-38 human lung fibroblasts equipped with a battery of modern techniques including RNA-seq, single-cell RNA-seq, proteomics, metabolomics, and ATAC-seq. We find evidence that the transition to a senescent state manifests early, increases gradually, and corresponds to a concomitant global increase in DNA accessibility in nucleolar and lamin associated domains. Furthermore, we demonstrate that senescent WI-38 cells acquire a striking resemblance to myofibroblasts in a process similar to the epithelial to mesenchymal transition (EMT) that is regulated by t YAP1/TEAD1 and TGF-β2. Lastly, we show that verteporfin inhibition of YAP1/TEAD1 activity in aged WI-38 cells robustly attenuates this gene expression program.
Collapse
Affiliation(s)
- Michelle Chan
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Han Yuan
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Ilya Soifer
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Tobias M Maile
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Rebecca Y Wang
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Andrea Ireland
- Calico Life Sciences, LLC, South San Francisco, United States
| | | | - Jérôme Goudeau
- Calico Life Sciences LLC, South San Francisco, United States
| | - Leanne Jg Chan
- Calico Life Sciences LLC, South San Francisco, United States
| | - Twaritha Vijay
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Adam Freund
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Cynthia Kenyon
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - David R Kelley
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Margaret Roy
- Calico Life Sciences LLC, South San Francisco, United States
| | - Robert L Cohen
- Calico Life Sciences, LLC, South San Francisco, United States
| | | | - David Botstein
- Calico Life Sciences, LLC, South San Francisco, United States
| | | |
Collapse
|
225
|
Takahashi S, Mashima K. Neuroprotection and Disease Modification by Astrocytes and Microglia in Parkinson Disease. Antioxidants (Basel) 2022; 11:antiox11010170. [PMID: 35052674 PMCID: PMC8773262 DOI: 10.3390/antiox11010170] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress and neuroinflammation are common bases for disease onset and progression in many neurodegenerative diseases. In Parkinson disease, which is characterized by the degeneration of dopaminergic neurons resulting in dopamine depletion, the pathogenesis differs between hereditary and solitary disease forms and is often unclear. In addition to the pathogenicity of alpha-synuclein as a pathological disease marker, the involvement of dopamine itself and its interactions with glial cells (astrocyte or microglia) have attracted attention. Pacemaking activity, which is a hallmark of dopaminergic neurons, is essential for the homeostatic maintenance of adequate dopamine concentrations in the synaptic cleft, but it imposes a burden on mitochondrial oxidative glucose metabolism, leading to reactive oxygen species production. Astrocytes provide endogenous neuroprotection to the brain by producing and releasing antioxidants in response to oxidative stress. Additionally, the protective function of astrocytes can be modified by microglia. Some types of microglia themselves are thought to exacerbate Parkinson disease by releasing pro-inflammatory factors (M1 microglia). Although these inflammatory microglia may further trigger the inflammatory conversion of astrocytes, microglia may induce astrocytic neuroprotective effects (A2 astrocytes) simultaneously. Interestingly, both astrocytes and microglia express dopamine receptors, which are upregulated in the presence of neuroinflammation. The anti-inflammatory effects of dopamine receptor stimulation are also attracting attention because the functions of astrocytes and microglia are greatly affected by both dopamine depletion and therapeutic dopamine replacement in Parkinson disease. In this review article, we will focus on the antioxidative and anti-inflammatory effects of astrocytes and their synergism with microglia and dopamine.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi 350-1298, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Correspondence: ; Tel.: +81-42-984-4111 (ext. 7412); Fax: +81-42-984-0664
| | - Kyoko Mashima
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Department of Neurology, Tokyo Saiseikai Central Hospital, 1-4-17 Mita, Minato-ku, Tokyo 108-0073, Japan
| |
Collapse
|
226
|
Xu P, Wang M, Song WM, Wang Q, Yuan GC, Sudmant PH, Zare H, Tu Z, Orr ME, Zhang B. The landscape of human tissue and cell type specific expression and co-regulation of senescence genes. Mol Neurodegener 2022; 17:5. [PMID: 35000600 PMCID: PMC8744330 DOI: 10.1186/s13024-021-00507-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cellular senescence is a complex stress response that impacts cellular function and organismal health. Multiple developmental and environmental factors, such as intrinsic cellular cues, radiation, oxidative stress, oncogenes, and protein accumulation, activate genes and pathways that can lead to senescence. Enormous efforts have been made to identify and characterize senescence genes (SnGs) in stress and disease systems. However, the prevalence of senescent cells in healthy human tissues and the global SnG expression signature in different cell types are poorly understood. METHODS This study performed an integrative gene network analysis of bulk and single-cell RNA-seq data in non-diseased human tissues to investigate SnG co-expression signatures and their cell-type specificity. RESULTS Through a comprehensive transcriptomic network analysis of 50 human tissues in the Genotype-Tissue Expression Project (GTEx) cohort, we identified SnG-enriched gene modules, characterized SnG co-expression patterns, and constructed aggregated SnG networks across primary tissues of the human body. Our network approaches identified 51 SnGs highly conserved across the human tissues, including CDKN1A (p21)-centered regulators that control cell cycle progression and the senescence-associated secretory phenotype (SASP). The SnG-enriched modules showed remarkable cell-type specificity, especially in fibroblasts, endothelial cells, and immune cells. Further analyses of single-cell RNA-seq and spatial transcriptomic data independently validated the cell-type specific SnG signatures predicted by the network analysis. CONCLUSIONS This study systematically revealed the co-regulated organizations and cell type specificity of SnGs in major human tissues, which can serve as a blueprint for future studies to map senescent cells and their cellular interactions in human tissues.
Collapse
Affiliation(s)
- Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Institute for Precision Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Peter H. Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720 USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA 94720 USA
| | - Habil Zare
- Department of Cell Systems & Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229 USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX 78229 USA
| | - Zhidong Tu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Miranda E. Orr
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Salisbury VA Medical Center, Salisbury, NC 28144 USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| |
Collapse
|
227
|
Jiao D, Qi L, Hu L, Hu D, Li X, Li G, Li Z, Liu S, Zhao C, Wu H. Changes in aging-induced kidney dysfunction in mice based on a metabolomics analysis. Front Endocrinol (Lausanne) 2022; 13:959311. [PMID: 36157455 PMCID: PMC9492839 DOI: 10.3389/fendo.2022.959311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney dysfunction is particularly important in systemic organ injuries caused by aging. Metabolomics are utilized in this study to explore the mechanism of kidney dysfunction during aging by the identification of metabolites and the characterization of metabolic pathways. We analyzed the serum biochemistry and kidney histopathology of male Kunming mice aged 3 months and 24 months and found that the aged mice had inflammatory lesions, aggravated fibrosis, and functional impairment. A high-resolution untargeted metabolomics analysis revealed that the endogenous metabolites in the kidneys and urine of the mice were significantly changed by 25 and 20 metabolites, respectively. A pathway analysis of these differential metabolites revealed six key signaling pathways, namely, D-glutamine and D-glutamate metabolism, purine metabolism, the citrate cycle [tricarboxylic acid (TCA) cycle], histidine metabolism, pyruvate metabolism, and glyoxylate and dicarboxylate metabolism. These pathways are involved in amino acid metabolism, carbohydrate metabolism, and nucleotide metabolism, and these can lead to immune regulation, inflammatory responses, oxidative stress damage, cellular dysfunction, and bioenergy disorders, and they are closely associated with aging and kidney insufficiency. We also screened nine types of sensitive metabolites in the urine as potential biomarkers of kidney dysfunction during the aging process to confirm their therapeutic targets in senior-induced kidney dysfunction and to improve the level of risk assessment for senile kidney injury.
Collapse
Affiliation(s)
- Danli Jiao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Hu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guona Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheying Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shimin Liu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Chen Zhao, ; Huangan Wu,
| | - Huangan Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Chen Zhao, ; Huangan Wu,
| |
Collapse
|
228
|
Song Y, Li X, Shi D, Sun T, Liu W, Li X, Qiao S, Chen X, Guo Y, Li J. A senolysis-based theragnostic prodrug strategy towards chronic renal failure. Chem Sci 2022; 13:11738-11745. [PMID: 36320912 PMCID: PMC9580481 DOI: 10.1039/d2sc03525a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Selective elimination of senescent cells (senolysis) has become a promising therapeutic strategy for the management of chronic renal failure (CRF), but the senolytic molecular pathways towards CRF therapy are limited. Here, we present for the first time a senescence-associated β-galactosidase (SA-β-gal) activatable theragnostic prodrug strategy to pertinently and effectively treat CRF in mice with the aid of fluorescence-guided senolysis. The signs of premature senescence, including the overexpression of β-gal, have been found in kidneys of mice with CRF, making this enzyme particularly suitable as a trigger of prodrugs for CRF therapy. With this unique design, our pioneering prodrug TSPD achieved the activation of a fluorophore for tracking and the specific release of the parent drug, gemcitabine, in β-gal-enriched cells after activation with SA-β-gal. In mice with CRF, abdominal administration of TSPD was effective for improvement of the kidney functions, supporting the feasibility of the SA-β-gal-dependent senolysis therapy towards CRF. Here, we report a senescence-associated β-galactosidase activatable theragnostic prodrug to pertinently treat chronic renal failure (CRF) in mice with the aid of fluorescence-guided senolysis, providing a creative molecular approach to CRF therapy.![]()
Collapse
Affiliation(s)
- Yihe Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinming Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Donglei Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Tianyue Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, Hainan, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Sicong Qiao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, Hainan, China
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali 671000, China
| |
Collapse
|
229
|
Nayeri Rad A, Shams G, Avelar RA, Morowvat MH, Ghasemi Y. Potential senotherapeutic candidates and their combinations derived from transcriptional connectivity and network measures. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
230
|
Ji C, Tang Y, Zhang Y, Li C, Liang H, Ding L, Xia X, Xiong L, Qi XR, Zheng JC. Microglial glutaminase 1 deficiency mitigates neuroinflammation associated depression. Brain Behav Immun 2022; 99:231-245. [PMID: 34678461 DOI: 10.1016/j.bbi.2021.10.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Glutaminase 1 (GLS1) has recently been reported to be expressed in microglia and plays a crucial role in neuroinflamation. Significantly increased level of GLS1 mRNA expression together with neuroinflammation pathway were observed in postmortem prefrontal cortex from depressed patients. To find out the function of microglial GLS1 in depression and neuroinflammation, we generated transgenic mice (GLS1 cKO), postnatally losing GLS1 in microglia, to detect changes in the lipopolysaccharide (LPS)-induced depression model. LPS-induced anxiety/depression-like behavior was attenuated in GLS1 cKO mice, paralleled by a significant reduction in pro-inflammatory cytokines and an abnormal microglia morphological phenotype in the prefrontal cortex. Reduced neuroinflammation by GLS1 deficient microglia was a result of less reactive astrocytes, as GLS1 deficiency enhanced miR-666-3p and miR-7115-3p levels in extracellular vesicles released from microglia, thus suppressing astrocyte activation via inhibiting Serpina3n expression. Together, our data reveal a novel mechanism of GLS1 in neuroinflammation and targeting GLS1 in microglia may be a novel strategy to alleviate neuroinflammation-related depression and other disease.
Collapse
Affiliation(s)
- Chenhui Ji
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yalin Tang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yanyan Zhang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Congcong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Huazheng Liang
- Department of Anaesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200070, China; Translational Research Institute of Brain and Brain-Like Intelligence Affiliated to Tongji University School of Medicine, Shanghai 200070, China
| | - Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Lize Xiong
- Department of Anaesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200070, China; Translational Research Institute of Brain and Brain-Like Intelligence Affiliated to Tongji University School of Medicine, Shanghai 200070, China
| | - Xin-Rui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
231
|
Liao CM, Luo T, von der Ohe J, de Juan Mora B, Schmitt R, Hass R. Human MSC-Derived Exosomes Reduce Cellular Senescence in Renal Epithelial Cells. Int J Mol Sci 2021; 22:13562. [PMID: 34948355 PMCID: PMC8709122 DOI: 10.3390/ijms222413562] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence of renal tubular cells is associated with chronic diseases and age-related kidney disorders. Therapies to antagonize senescence are, therefore, explored as novel approaches in nephropathy. Exosomes derived from human mesenchymal stroma-/stem-like cells (MSC) entail the transfer of multiple bioactive molecules, exhibiting profound regenerative potential in various tissues, including therapeutic effects in kidney diseases. Here, we first demonstrate that exosomes promote proliferation and reduce senescence in aged MSC cultures. For potential therapeutic perspectives in organ rejuvenation, we used MSC-derived exosomes to antagonize senescence in murine kidney primary tubular epithelial cells (PTEC). Exosome treatment efficiently reduced senescence while diminishing the transcription of senescence markers and senescence-associated secretory phenotype (SASP) factors. Concomitantly, we observed less DNA damage foci and more proliferating cells. These data provide new information regarding the therapeutic property of MSC exosomes in the development of renal senescence, suggesting a contribution to a new chapter of regenerative vehicles in senotherapy.
Collapse
Affiliation(s)
- Chieh Ming Liao
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany; (C.M.L.); (B.d.J.M.); (R.S.)
| | - Tianjiao Luo
- Biochemistry and Tumor Biology Lab, Department of Gynecology and Obstetrics, Hannover Medical School, 30625 Hannover, Germany; (T.L.); (J.v.d.O.)
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Gynecology and Obstetrics, Hannover Medical School, 30625 Hannover, Germany; (T.L.); (J.v.d.O.)
| | - Blanca de Juan Mora
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany; (C.M.L.); (B.d.J.M.); (R.S.)
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany; (C.M.L.); (B.d.J.M.); (R.S.)
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Gynecology and Obstetrics, Hannover Medical School, 30625 Hannover, Germany; (T.L.); (J.v.d.O.)
| |
Collapse
|
232
|
Vijiaratnam N, Foltynie T. Disease modifying therapies III: Novel targets. Neuropharmacology 2021; 201:108839. [PMID: 34656651 DOI: 10.1016/j.neuropharm.2021.108839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Despite significant research advances, treatment of Parkinson's disease (PD) remains confined to symptomatic therapies. Approaches aiming to halt or reverse disease progression remain an important but unmet goal. A growing understanding of disease pathogenesis and the identification of novel pathways contributing to initiation of neurodegeneration and subsequent progression has highlighted a range of potential novel targets for intervention that may influence the rate of progression of the disease process. Exploiting techniques to stratify patients according to these targets alongside using them as biomarkers to measure target engagement will likely improve patient selection and preliminary outcome measurements in clinical trials. In this review, we summarize a number of PD-related mechanisms that have recently gained interest such as neuroinflammation, lysosomal dysfunction and insulin resistance, while also exploring the potential for targeting peripheral interfaces such as the gastrointestinal tract and its ecosystem to achieve disease modification. We explore the rationale for these approaches based on preclinical studies, while also highlighting the status of relevant clinical trials as well as the promising role biomarkers may play in current and future studies.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
233
|
Abstract
SUMMARY Skin aging is an outward manifestation of other cellular and molecular aging processes occurring elsewhere in the body. These processes are known collectively as the "hallmarks" of aging, which are a series of basic health maintenance mechanisms that fail over time. Cellular senescence is one of the most studied of the hallmarks of aging; senescent cells accumulate over time and are major drives of the aging process. Here, we discuss the impact of cellular senescence in the context of skin aging, and discuss the emerging landscape of interventions designed for their selective removal by targeted cell death (senolytics) or rejuvenation (senomorphics). We discuss the serotherapeutic strategies that are currently under investigation for systemic aging, which may bring eventual benefits for skin health. Next, we discuss a newly discovered hallmark of aging, dysregulated mRNA processing, which can be targeted for the senomorphic effect. Finally, we highlight a new modality for manipulation of disrupted mRNA processing, oligonucleotide therapeutics. The emerging field of senotherapeutics is set to revolutionize how we view and treat skin aging, and senotherapies are now poised to become a new class of skincare interventions.
Collapse
|
234
|
Liao Z, Yeo HL, Wong SW, Zhao Y. Cellular Senescence: Mechanisms and Therapeutic Potential. Biomedicines 2021; 9:1769. [PMID: 34944585 PMCID: PMC8698401 DOI: 10.3390/biomedicines9121769] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is a complex and multistep biological process which cells can undergo in response to different stresses. Referring to a highly stable cell cycle arrest, cellular senescence can influence a multitude of biological processes-both physiologically and pathologically. While phenotypically diverse, characteristics of senescence include the expression of the senescence-associated secretory phenotype, cell cycle arrest factors, senescence-associated β-galactosidase, morphogenesis, and chromatin remodelling. Persistent senescence is associated with pathologies such as aging, while transient senescence is associated with beneficial programmes, such as limb patterning. With these implications, senescence-based translational studies, namely senotherapy and pro-senescence therapy, are well underway to find the cure to complicated diseases such as cancer and atherosclerosis. Being a subject of major interest only in the recent decades, much remains to be studied, such as regarding the identification of unique biomarkers of senescent cells. This review attempts to provide a comprehensive understanding of the diverse literature on senescence, and discuss the knowledge we have on senescence thus far.
Collapse
Affiliation(s)
- Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden
| | - Han Lin Yeo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Siaw Wen Wong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| |
Collapse
|
235
|
Urate S, Wakui H, Azushima K, Yamaji T, Suzuki T, Abe E, Tanaka S, Taguchi S, Tsukamoto S, Kinguchi S, Uneda K, Kanaoka T, Atobe Y, Funakoshi K, Yamashita A, Tamura K. Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice. Int J Mol Sci 2021; 22:ijms222212432. [PMID: 34830314 PMCID: PMC8618437 DOI: 10.3390/ijms222212432] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
The kidney is one of the most susceptible organs to age-related impairments. Generally, renal aging is accompanied by renal fibrosis, which is the final common pathway of chronic kidney diseases. Aristolochic acid (AA), a nephrotoxic agent, causes AA nephropathy (AAN), which is characterized by progressive renal fibrosis and functional decline. Although renal fibrosis is associated with renal aging, whether AA induces renal aging remains unclear. The aim of the present study is to investigate the potential use of AAN as a model of renal aging. Here, we examined senescence-related factors in AAN models by chronically administering AA to C57BL/6 mice. Compared with controls, the AA group demonstrated aging kidney phenotypes, such as renal atrophy, renal functional decline, and tubulointerstitial fibrosis. Additionally, AA promoted cellular senescence specifically in the kidneys, and increased renal p16 mRNA expression and senescence-associated β-galactosidase activity. Furthermore, AA-treated mice exhibited proximal tubular mitochondrial abnormalities, as well as reactive oxygen species accumulation. Klotho, an antiaging gene, was also significantly decreased in the kidneys of AA-treated mice. Collectively, the results of the present study indicate that AA alters senescence-related factors, and that renal fibrosis is closely related to renal aging.
Collapse
MESH Headings
- Aging/drug effects
- Aging/genetics
- Animals
- Aristolochic Acids/pharmacology
- Collagen/agonists
- Collagen/genetics
- Collagen/metabolism
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Disease Models, Animal
- Fibrosis
- Gene Expression Regulation
- Humans
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Klotho Proteins/genetics
- Klotho Proteins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/pathology
- Nephritis, Interstitial/chemically induced
- Nephritis, Interstitial/genetics
- Nephritis, Interstitial/metabolism
- Nephritis, Interstitial/pathology
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Transforming Growth Factor beta/agonists
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Shingo Urate
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
- Correspondence: ; Tel.: +81-45-787-2635
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Takahiro Yamaji
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - Toru Suzuki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Eriko Abe
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Shohei Tanaka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Shinya Taguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Tomohiko Kanaoka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| | - Yoshitoshi Atobe
- Department of Neuroanatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (Y.A.); (K.F.)
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (Y.A.); (K.F.)
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Okinawa 903-0215, Japan;
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (S.U.); (K.A.); (T.S.); (E.A.); (S.T.); (S.T.); (S.T.); (S.K.); (K.U.); (T.K.); (K.T.)
| |
Collapse
|
236
|
Banerjee P, Kotla S, Reddy Velatooru L, Abe RJ, Davis EA, Cooke JP, Schadler K, Deswal A, Herrmann J, Lin SH, Abe JI, Le NT. Senescence-Associated Secretory Phenotype as a Hinge Between Cardiovascular Diseases and Cancer. Front Cardiovasc Med 2021; 8:763930. [PMID: 34746270 PMCID: PMC8563837 DOI: 10.3389/fcvm.2021.763930] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Overlapping risks for cancer and cardiovascular diseases (CVD), the two leading causes of mortality worldwide, suggest a shared biology between these diseases. The role of senescence in the development of cancer and CVD has been established. However, its role as the intersection between these diseases remains unclear. Senescence was originally characterized by an irreversible cell cycle arrest after a high number of divisions, namely replicative senescence (RS). However, it is becoming clear that senescence can also be instigated by cellular stress, so-called stress-induced premature senescence (SIPS). Telomere shortening is a hallmark of RS. The contribution of telomere DNA damage and subsequent DNA damage response/repair to SIPS has also been suggested. Although cellular senescence can mediate cell cycle arrest, senescent cells can also remain metabolically active and secrete cytokines, chemokines, growth factors, and reactive oxygen species (ROS), so-called senescence-associated secretory phenotype (SASP). The involvement of SASP in both cancer and CVD has been established. In patients with cancer or CVD, SASP is induced by various stressors including cancer treatments, pro-inflammatory cytokines, and ROS. Therefore, SASP can be the intersection between cancer and CVD. Importantly, the conventional concept of senescence as the mediator of cell cycle arrest has been challenged, as it was recently reported that chemotherapy-induced senescence can reprogram senescent cancer cells to acquire “stemness” (SAS: senescence-associated stemness). SAS allows senescent cancer cells to escape cell cycle arrest with strongly enhanced clonogenic growth capacity. SAS supports senescent cells to promote both cancer and CVD, particularly in highly stressful conditions such as cancer treatments, myocardial infarction, and heart failure. As therapeutic advances have increased overlapping risk factors for cancer and CVD, to further understand their interaction may provide better prevention, earlier detection, and safer treatment. Thus, it is critical to study the mechanisms by which these senescence pathways (SAS/SASP) are induced and regulated in both cancer and CVD.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Loka Reddy Velatooru
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Rei J Abe
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Elizabeth A Davis
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P Cooke
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Keri Schadler
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joerg Herrmann
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
237
|
Wu J, Li S, Li C, Cui L, Ma J, Hui Y. The non-canonical effects of heme oxygenase-1, a classical fighter against oxidative stress. Redox Biol 2021; 47:102170. [PMID: 34688156 PMCID: PMC8577501 DOI: 10.1016/j.redox.2021.102170] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022] Open
Abstract
The role of heme oxygenase-1 in resisting oxidative stress and cell protection has always been a hot research topic. With the continuous deepening of research, in addition to directly regulating redox by catalyzing the degradation of heme, HO-1 protein also participates in the gene expression level in a great diversity of methods, thereby initiating cell defense. Particularly the non-canonical nuclear-localized HO-1 and HO-1 protein interactions play the role of a warrior against oxidative stress. Besides, HO-1 may be a promising marker for disease prediction and detection in many clinical trials. Especially for malignant diseases, there may be new advances in the treatment of HO-1 by regulating abnormal ROS and metabolic signaling. The purpose of this review is to systematically sort out and describe several aspects of research to facilitate further detailed mechanism research and clinical application promotion in the future. The different subcellular localizations ofHO-1 implies that it has special functions. Nuclear HO-1 plays an indispensable role in gene regulation and other aspects. The interactions between HO-1 and others provide the possibility to participate in vital physiological processes. HO-1 may become a potential disease assessment marker.
Collapse
Affiliation(s)
- Jiajia Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Siyu Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Cheng Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Liying Cui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiajia Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China.
| |
Collapse
|
238
|
Pils V, Ring N, Valdivieso K, Lämmermann I, Gruber F, Schosserer M, Grillari J, Ogrodnik M. Promises and challenges of senolytics in skin regeneration, pathology and ageing. Mech Ageing Dev 2021; 200:111588. [PMID: 34678388 DOI: 10.1016/j.mad.2021.111588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
The research of the last two decades has defined a crucial role of cellular senescence in both the physiology and pathology of skin, and senescent cells have been detected in conditions including development, regeneration, aging, and disease. The pathophysiology of cellular senescence in skin is complex as the phenotype of senescence pertains to several different cell types including fibroblasts, keratinocytes and melanocytes, among others. Paradoxically, the transient presence of senescent cells is believed to be beneficial in the context of development and wound healing, while the chronic presence of senescent cells is detrimental in the context of aging, diseases, and chronic wounds, which afflict predominantly the elderly. Identifying strategies to prevent senescence induction or reduce senescent burden in the skin could broadly benefit the aging population. Senolytics, drugs known to specifically eliminate senescent cells while preserving non-senescent cells, are being intensively studied for use in the clinical setting. Here, we review recent research on skin senescence, on the methods for the detection of senescent cells and describe promises and challenges related to the application of senolytic drugs. This article is part of the Special Issue - Senolytics - Edited by Joao Passos and Diana Jurk.
Collapse
Affiliation(s)
- Vera Pils
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nadja Ring
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Karla Valdivieso
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ingo Lämmermann
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Florian Gruber
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannnes Grillari
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
239
|
Tian J, Shi D, Zhang Y, Li X, Li X, Teng H, James TD, Li J, Guo Y. Stress response decay with aging visualized using a dual-channel logic-based fluorescent probe. Chem Sci 2021; 12:13483-13491. [PMID: 34777768 PMCID: PMC8528035 DOI: 10.1039/d1sc04162b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Diagnosing aging for preventative intervention generally relies on the tracking of aging biomarkers in the resting state. However, the static marker levels are insufficient to fully evaluate aging, particularly given that the stress response capacity (SRC) decay is currently viewed as a critical feature of aging. Therefore, we have developed a dual-channel fluorescent probe ROKS capable of the logic-based visualization of thiophenol (stressor) and HOCl (thiophenol-activated stress response product) in vivo, which provides a new strategy from the time dimension to precisely assess the SRC of individuals under stress using the dual-channel fluorescence ratio. Using ROKS we observed that the SRC of live cells decayed with senescence, and that a higher SRC was found for young vs. aged Caenorhabditis elegans. As such, our study offers a promising strategy for the fluorescence-guided diagnosis of aging and paves the way for accurate evaluation of the efficacy of anti-aging drugs. Rather than tracking aging using the resting state, ROKS, an optical probe, was developed for evaluating the degree of aging dynamically by precisely monitoring the stress response of individuals under stress.![]()
Collapse
Affiliation(s)
- Jingye Tian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| | - Donglei Shi
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology 130 Mei Long Road Shanghai 200237 China
| | - Yanhui Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology 130 Mei Long Road Shanghai 200237 China
| | - Xinming Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology 130 Mei Long Road Shanghai 200237 China
| | - Hao Teng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology 130 Mei Long Road Shanghai 200237 China
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| |
Collapse
|
240
|
Ahmed R, Reza HM, Shinohara K, Nakahata Y. Cellular Senescence and its Impact on the Circadian Clock. J Biochem 2021; 171:493-500. [PMID: 34668549 DOI: 10.1093/jb/mvab115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023] Open
Abstract
Aging is one of the greatest risk factors for chronic non-communicable diseases, and cellular senescence is one of the major causes of aging and age-related diseases. The persistent presence of senescent cells in late life seems to cause disarray in a tissue-specific manner. Aging disrupts the circadian clock system, which results in the development of many age-related diseases such as metabolic syndrome, cancer, cardiac diseases, and sleep disorders and an increased susceptibility to infections. In this review, we first discuss cellular senescence and some of its basic characteristics and detrimental roles. Then, we discuss a relatively unexplored topic on the link between cellular senescence and the circadian clock and attempt to determine whether cellular senescence could be the underlying factor for circadian clock disruption.
Collapse
Affiliation(s)
- Rezwana Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Kazuyuki Shinohara
- Department of Neurobiology & Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 Japan
| | - Yasukazu Nakahata
- Department of Neurobiology & Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 Japan
| |
Collapse
|
241
|
Ruhland MK, Alspach E. Senescence and Immunoregulation in the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:754069. [PMID: 34692707 PMCID: PMC8529213 DOI: 10.3389/fcell.2021.754069] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 01/10/2023] Open
Abstract
Immunotherapies have revolutionized cancer treatment, but despite the many lives that have been extended by these therapies many patients do not respond for reasons that are not well understood. The tumor microenvironment (TME) is comprised of heterogeneous cells that regulate tumor immune responses and likely influence immunotherapy response. Senescent (e.g., aged) stroma within the TME, and its expression of the senescence-associated secretory phenotype induces chronic inflammation that encourages tumor development and disease progression. Senescent environments also regulate the function of immune cells in ways that are decidedly protumorigenic. Here we discuss recent developments in senescence biology and the immunoregulatory functions of senescent stroma. Understanding the multitude of cell types present in the TME, including senescent stroma, will aid in the development of combinatorial therapeutic strategies to increase immunotherapy efficacy.
Collapse
Affiliation(s)
- Megan K. Ruhland
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Elise Alspach
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
242
|
Yin Y, Chen H, Wang Y, Zhang L, Wang X. Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J Extracell Vesicles 2021; 10:e12154. [PMID: 34609061 PMCID: PMC8491204 DOI: 10.1002/jev2.12154] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double-edged sword effect: they can be physiologically beneficial for tissue repair, organ growth, and body homeostasis, and they can be pathologically harmful in age-related diseases. Among the hallmarks of senescence, the SASP, especially SASP-related extracellular vesicle (EV) signalling, plays the leading role in aging transmission via paracrine and endocrine mechanisms. EVs are successful in intercellular and interorgan communication in the aging microenvironment and age-related diseases. They have detrimental effects on downstream targets at the levels of immunity, inflammation, gene expression, and metabolism. Furthermore, EVs obtained from different donors are also promising materials and tools for antiaging treatments and are used for regeneration and rejuvenation in cell-free systems. Here, we describe the characteristics of cellular senescence and the aging microenvironment, concentrating on the production and function of EVs in age-related diseases, and provide new ideas for antiaging therapy with EVs.
Collapse
Affiliation(s)
- Yujia Yin
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huihui Chen
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yizhi Wang
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological SciencesChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Xipeng Wang
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
243
|
Wiley CD, Campisi J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab 2021; 3:1290-1301. [PMID: 34663974 PMCID: PMC8889622 DOI: 10.1038/s42255-021-00483-8] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Cellular senescence entails a permanent proliferative arrest, coupled to multiple phenotypic changes. Among these changes is the release of numerous biologically active molecules collectively known as the senescence-associated secretory phenotype, or SASP. A growing body of literature indicates that both senescence and the SASP are sensitive to cellular and organismal metabolic states, which in turn can drive phenotypes associated with metabolic dysfunction. Here, we review the current literature linking senescence and metabolism, with an eye toward findings at the cellular level, including both metabolic inducers of senescence and alterations in cellular metabolism associated with senescence. Additionally, we consider how interventions that target either metabolism or senescent cells might influence each other and mitigate some of the pro-aging effects of cellular senescence. We conclude that the most effective interventions will likely break a degenerative feedback cycle by which cellular senescence promotes metabolic diseases, which in turn promote senescence.
Collapse
Affiliation(s)
- Christopher D Wiley
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, CA, USA.
- Buck Institute for Research on Aging, Novato, CA, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
244
|
Gasek NS, Kuchel GA, Kirkland JL, Xu M. Strategies for Targeting Senescent Cells in Human Disease. NATURE AGING 2021; 1:870-879. [PMID: 34841261 PMCID: PMC8612694 DOI: 10.1038/s43587-021-00121-8] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022]
Abstract
Cellular senescence represents a distinct cell fate characterized by replicative arrest in response to a host of extrinsic and intrinsic stresses. Senescence provides programming during development and wound healing, while limiting tumorigenesis. However, pathologic accumulation of senescent cells is implicated in a range of diseases and age-associated morbidities across organ systems. Senescent cells produce distinct paracrine and endocrine signals, causing local tissue dysfunction and exerting deleterious systemic effects. Senescent cell removal by apoptosis-inducing "senolytic" agents or therapies that inhibit the senescence-associated secretory phenotype, SASP inhibitors, have demonstrated benefit in both pre-clinical and clinical models of geriatric decline and chronic diseases, suggesting senescent cells represent a pharmacologic target for alleviating effects of fundamental aging processes. However, senescent cell populations are heterogeneous in form, function, tissue distribution, and even differ among species, possibly explaining issues of bench-to-bedside translation in current clinical trials. Here, we review features of senescent cells and strategies for targeting them, including immunologic approaches, as well as key intracellular signaling pathways. Additionally, we survey current senolytic therapies in human trials. Collectively, there is demand for research to develop targeted senotherapeutics that address the needs of the aging and chronically-ill.
Collapse
Affiliation(s)
- Nathan S. Gasek
- UConn Center on Aging, UConn Health, Farmington, CT
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| | | | | | - Ming Xu
- UConn Center on Aging, UConn Health, Farmington, CT
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| |
Collapse
|
245
|
Saito Y, Chikenji TS. Diverse Roles of Cellular Senescence in Skeletal Muscle Inflammation, Regeneration, and Therapeutics. Front Pharmacol 2021; 12:739510. [PMID: 34552495 PMCID: PMC8450382 DOI: 10.3389/fphar.2021.739510] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle undergoes vigorous tissue remodeling after injury. However, aging, chronic inflammatory diseases, sarcopenia, and neuromuscular disorders cause muscle loss and degeneration, resulting in muscular dysfunction. Cellular senescence, a state of irreversible cell cycle arrest, acts during normal embryonic development and remodeling after tissue damage; when these processes are complete, the senescent cells are eliminated. However, the accumulation of senescent cells is a hallmark of aging tissues or pathological contexts and may lead to progressive tissue degeneration. The mechanisms responsible for the effects of senescent cells have not been fully elucidated. Here, we review current knowledge about the beneficial and detrimental effects of senescent cells in tissue repair, regeneration, aging, and age-related disease, especially in skeletal muscle. We also discuss how senescence of muscle stem cells and muscle-resident fibro-adipogenic progenitors affects muscle pathologies or regeneration, and consider the possibility that immunosenescence leads to muscle pathogenesis. Finally, we explore senotherapy, the therapeutic targeting of senescence to treat age-related disease, from the standpoint of improving muscle regeneration.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako S Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Health Sciences, School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
246
|
Qi X, Li Q, Che X, Wang Q, Wu G. The Uniqueness of Clear Cell Renal Cell Carcinoma: Summary of the Process and Abnormality of Glucose Metabolism and Lipid Metabolism in ccRCC. Front Oncol 2021; 11:727778. [PMID: 34604067 PMCID: PMC8479096 DOI: 10.3389/fonc.2021.727778] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Kidney cancer is a cancer with an increasing incidence in recent years. Clear cell renal cell carcinoma (ccRCC) accounts for up to 80% of all kidney cancers. The understanding of the pathogenesis, tumor progression, and metastasis of renal carcinoma is not yet perfect. Kidney cancer has some characteristics that distinguish it from other cancers, and the metabolic aspect is the most obvious. The specificity of glucose and lipid metabolism in kidney cancer cells has also led to its being studied as a metabolic disease. As the most common type of kidney cancer, ccRCC has many characteristics that represent the specificity of kidney cancer. There are features that we are very concerned about, including the presence of lipid droplets in cells and the obesity paradox. These two points are closely related to glucose metabolism and lipid metabolism. Therefore, we hope to explore whether metabolic changes affect the occurrence and development of kidney cancer by looking for evidence of changes on expression at the genomic and protein levels in glucose metabolism and lipid metabolism in ccRCC. We begin with the representative phenomenon of abnormal cancer metabolism: the Warburg effect, through the collection of popular metabolic pathways and related genes in the last decade, as well as some research hotspots, including the role of ferroptosis and glutamine in cancer, systematically elaborated the factors affecting the incidence and metastasis of kidney cancer. This review also identifies the similarities and differences between kidney cancer and other cancers in order to lay a theoretical foundation and provide a valid hypothesis for future research.
Collapse
Affiliation(s)
| | | | | | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
247
|
Admasu TD, Rae MJ, Stolzing A. Dissecting primary and secondary senescence to enable new senotherapeutic strategies. Ageing Res Rev 2021; 70:101412. [PMID: 34302996 DOI: 10.1016/j.arr.2021.101412] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable cell cycle arrest that is known to be elicited in response to different stresses or forms of damage. Senescence limits the replication of old, damaged, and precancerous cells in the short-term but is implicated in diseases and debilities of aging due to loss of regenerative reserve and secretion of a complex combination of factors called the senescence-associated secretory phenotype (SASP). More recently, investigators have discovered that senescent cells induced by these methods (what we term "primary senescent cells") are also capable of inducing other non-senescent cells to undergo senescence - a phenomenon we call "secondary senescence." Secondary senescence has been demonstrated to occur via two broad types of mechanisms. First, factors in the SASP have been shown to be involved in spreading senescence; we call this phenomenon "paracrine senescence." Second, primary senescent cells can induce senescence via an additional group of mechanisms involving cell-to-cell contacts of different types; we term this phenomenon "juxtacrine senescence." "Secondary senescence" in our definition is thus the overarching term for both paracrine and juxtacrine senescence together. By allowing cells that are inherently small in number and incapable of replication to increase in number and possibly spread to anatomically distant locations, secondary senescence allows an initially small number of senescent cells to contribute further to age-related pathologies. We propose that understanding how primary and secondary senescent cells differ from each other and the mechanisms of their spread will enable the development of new rejuvenation therapies to target different senescent cell populations and interrupt their spread, extending human health- and potentially lifespan.
Collapse
|
248
|
Burtscher J, Syed MMK, Keller MA, Lashuel HA, Millet GP. Fatal attraction - The role of hypoxia when alpha-synuclein gets intimate with mitochondria. Neurobiol Aging 2021; 107:128-141. [PMID: 34428721 DOI: 10.1016/j.neurobiolaging.2021.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Alpha-synuclein aggregation and mitochondrial dysfunction are main pathological hallmarks of Parkinson's disease (PD) and several other neurodegenerative diseases, collectively known as synucleinopathies. However, increasing evidence suggests that they may not be sufficient to cause PD. Here we propose the role of hypoxia as a missing link that connects the complex interplay between alpha-synuclein biochemistry and pathology, mitochondrial dysfunctions and neurodegeneration in PD. We review the partly conflicting literature on alpha-synuclein binding to membranes and mitochondria and its impact on mitochondrial functions. From there, we focus on adverse changes in cellular environments, revolving around hypoxic stress, that may trigger or facilitate PD progression. Inter-dependent structural re-arrangements of mitochondrial membranes, including increased cytoplasmic exposure of mitochondrial cardiolipins and changes in alpha-synuclein localization and conformation are discussed consequences of such conditions. Enhancing cellular resilience could be an integral part of future combination-based therapies of PD. This may be achieved by boosting the capacity of cellular and specifically mitochondrial processes to regulate and adapt to altered proteostasis, redox, and inflammatory conditions and by inducing protective molecular and tissue re-modelling.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
249
|
Glutamine Linked to Cell Senescence and Aging. Am J Med Genet A 2021; 185:1352-1353. [PMID: 33835687 DOI: 10.1002/ajmg.a.61670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
250
|
Guerrero A, De Strooper B, Arancibia-Cárcamo IL. Cellular senescence at the crossroads of inflammation and Alzheimer's disease. Trends Neurosci 2021; 44:714-727. [PMID: 34366147 DOI: 10.1016/j.tins.2021.06.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Aging is a key risk factor for Alzheimer's disease (AD), but the reasons for this association are not well understood. Senescent cells accumulate in aged tissues and have been shown to play causal roles in age-related pathologies through their proinflammatory secretome. The question arises whether senescence-induced inflammation might contribute to AD and bridge the gap between aging and AD. Here, we highlight the role of cellular senescence as a driver of the aging phenotype, and discuss the current evidence that connects senescence with AD and neurodegeneration.
Collapse
Affiliation(s)
- Ana Guerrero
- UK Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Bart De Strooper
- UK Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK; The Francis Crick Institute, London NW1 1AT, UK; Department of Neurosciences, Leuven Brain Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Centre for Brain and Disease Research, Leuven, Belgium
| | - I Lorena Arancibia-Cárcamo
- UK Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK; The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|