201
|
Abstract
Archaea share many similarities with eukarya in their information processing pathways and have proven to be a useful model for studies of DNA replication and transcription, but DNA repair pathways are not well understood in archaea. Nucleotide Excision Repair (NER) deals with many bulky DNA lesions and involves over 30 proteins in eukarya. Archaeal NER has not been characterized biochemically, but homologues of the human repair nucleases XPF and XPG have been identified by homology searches. Crenarchaeal XPF proteins have a simplified domain structure, consisting of the C-terminal nuclease domain conserved in XPF and Mus81 but lacking the N-terminal 'helicase' domain that is found in eukaryal and euryarchaeal sequences. Unexpectedly, Sulfolobus XPF is only active in the presence of the sliding clamp PCNA, which is a heterotrimer in this organism. Interactions with two of the three subunits of PCNA are mediated via a C-terminal interaction motif. The PCNA-XPF complex acts as a structure-specific nuclease on a similar range of DNA flap, bubble and junction substrates as the human protein, suggesting a fundamental conservation through billions of years of evolution.
Collapse
Affiliation(s)
- J A Roberts
- Centre for Biomolecular Science, St Andrews University, North Haugh, St Andrews, Fife KY16 9ST, UK
| | | | | |
Collapse
|
202
|
Odagiri N, Seki M, Onoda F, Yoshimura A, Watanabe S, Enomoto T. Budding yeast mms4 is epistatic with rad52 and the function of Mms4 can be replaced by a bacterial Holliday junction resolvase. DNA Repair (Amst) 2003; 2:347-58. [PMID: 12547397 DOI: 10.1016/s1568-7864(02)00234-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MMS4 of Saccharomyces cerevisiae was originally identified as the gene responsible for one of the collection of methyl methanesulfonate (MMS)-sensitive mutants, mms4. Recently it was identified as a synthetic lethal gene with an SGS1 mutation. Epistatic analyses revealed that MMS4 is involved in a pathway leading to homologous recombination requiring Rad52 or in the recombination itself, in which SGS1 is also involved. MMS sensitivity of mms4 but not sgs1, was suppressed by introducing a bacterial Holliday junction (HJ) resolvase, RusA. The frequencies of spontaneously occurring unequal sister chromatid recombination (SCR) and loss of marker in the rDNA in haploid mms4 cells and interchromosomal recombination between heteroalleles in diploid mms4 cells were essentially the same as those of wild-type cells. Although UV- and MMS-induced interchromosomal recombination was defective in sgs1 diploid cells, hyper-induction of interchromosomal recombination was observed in diploid mms4 cells, indicating that the function of Mms4 is dispensable for this type of recombination.
Collapse
Affiliation(s)
- Nao Odagiri
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
203
|
Whitby MC, Osman F, Dixon J. Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4. J Biol Chem 2003; 278:6928-35. [PMID: 12473680 DOI: 10.1074/jbc.m210006200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The blockage of replication forks can result in the disassembly of the replicative apparatus and reversal of the fork to form a DNA junction that must be processed in order for replication to restart and sister chromatids to segregate at mitosis. Fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4 are endonucleases that have been implicated in the processing of aberrant DNA junctions formed at stalled replication forks. Here we have investigated the activity of purified Mus81-Eme1 and Mus81-Mms4 on substrates that resemble DNA junctions that are expected to form when a replication fork reverses. Both enzymes cleave Holliday junctions and substrates that resemble normal replication forks poorly or not at all. However, forks where the equivalents of either both the leading and lagging strands or just the lagging strand are juxtaposed at the junction point, or where either the leading or lagging strand has been unwound to produce a fork with a single-stranded tail, are cleaved well. Cleavage sites map predominantly between 3 and 6 bp 5' of the junction point. For most substrates the leading strand template is cleaved. The sole exception is a fork with a 5' single-stranded tail, which is cleaved in the lagging strand template.
Collapse
Affiliation(s)
- Matthew C Whitby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
204
|
Kanoh J, Francesconi S, Collura A, Schramke V, Ishikawa F, Baldacci G, Géli V. The fission yeast spSet1p is a histone H3-K4 methyltransferase that functions in telomere maintenance and DNA repair in an ATM kinase Rad3-dependent pathway. J Mol Biol 2003; 326:1081-94. [PMID: 12589755 DOI: 10.1016/s0022-2836(03)00030-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have characterized spSet1p, the Schizosaccharomyces pombe ortholog of the budding yeast histone H3 methyltransferase Set1p. SpSet1p catalyzes methylation of H3 at K4, in vivo and in vitro. Deleting spset1 partially affects telomeric and centromeric silencing. Strikingly, lack of spSet1p causes elongation of telomeres in wild-type cells and in most DNA damage checkpoint rad mutant cells, but not in cells lacking the ATM kinase Rad3 or its associated protein Rad26. Interestingly, spset1 deletion specifically causes a reduction in sensitivity to ultraviolet radiation of the PCNA-like checkpoint mutants hus1 and rad1, but not of cells devoid of Rad3. This partial suppression was not due to restoration of checkpoint function or to transcriptional induction of DNA repair genes. Moreover, spset1 allows recovery specifically of the crb2 checkpoint mutant upon treatment with the replication inhibitor hydroxyurea but not upon UV irradiation. Nevertheless, the pathway induced in spset1 cells cannot substitute for the Mus81/Rqh1 DNA damage tolerance pathway. Our results suggest that SpSet1p and the ATM kinase Rad3 function in a common genetic pathway linking chromatin to telomere length regulation and DNA repair.
Collapse
Affiliation(s)
- Junko Kanoh
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
205
|
Bashkirov VI, Bashkirova EV, Haghnazari E, Heyer WD. Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinase. Mol Cell Biol 2003; 23:1441-52. [PMID: 12556502 PMCID: PMC141154 DOI: 10.1128/mcb.23.4.1441-1452.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2002] [Accepted: 10/31/2002] [Indexed: 11/20/2022] Open
Abstract
The serine-threonine kinase Dun1 contains a forkhead-associated (FHA) domain and functions in the DNA damage checkpoint pathway of Saccharomyces cerevisiae. It belongs to the Chk2 family of checkpoint kinases, which includes S. cerevisiae Rad53 and Mek1, Schizosaccharomyces pombe Cds1, and human Chk2. Dun1 is required for DNA damage-induced transcription of certain target genes, transient G(2)/M arrest after DNA damage, and DNA damage-induced phosphorylation of the DNA repair protein Rad55. Here we report that the FHA phosphoprotein recognition domain of Dun1 is required for direct phosphorylation of Dun1 by Rad53 kinase in vitro and in vivo. trans phosphorylation by Rad53 does not require the Dun1 kinase activity and is likely to involve only a transient interaction between the two kinases. The checkpoint functions of Dun1 kinase in DNA damage-induced transcription, G(2)/M cell cycle arrest, and Rad55 phosphorylation are severely compromised in an FHA domain mutant of Dun1. As a consequence, the Dun1 FHA domain mutant displays enhanced sensitivity to genotoxic stress induced by UV, methyl methanesulfonate, and the replication inhibitor hydroxyurea. We show that the Dun1 FHA domain is critical for direct kinase-to-kinase signaling from Rad53 to Dun1 in the DNA damage checkpoint pathway.
Collapse
Affiliation(s)
- Vladimir I Bashkirov
- Section of Microbiology and Center for Genetics and Development, Division of Biological Sciences, University of California, Davis, Davis, California 95616-8665, USA
| | | | | | | |
Collapse
|
206
|
Chang M, Bellaoui M, Boone C, Brown GW. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proc Natl Acad Sci U S A 2002; 99:16934-9. [PMID: 12482937 PMCID: PMC139247 DOI: 10.1073/pnas.262669299] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We performed a systematic screen of the set of approximately 5,000 viable Saccharomyces cerevisiae haploid gene deletion mutants and have identified 103 genes whose deletion causes sensitivity to the DNA-damaging agent methyl methanesulfonate (MMS). In total, 40 previously uncharacterized alkylation damage response genes were identified. Comparison with the set of genes known to be transcriptionally induced in response to MMS revealed surprisingly little overlap with those required for MMS resistance, indicating that transcriptional regulation plays little, if any, role in the response to MMS damage. Clustering of the MMS response genes on the basis of their cross-sensitivities to hydroxyurea, UV radiation, and ionizing radiation revealed a DNA damage core of genes required for responses to a broad range of DNA-damaging agents. Of particular significance, we identified a subset of genes that show a specific MMS response, displaying defects in S phase progression only in the presence of MMS. These genes may promote replication fork stability or processivity during encounters between replication forks and DNA damage.
Collapse
Affiliation(s)
- Michael Chang
- Departments of Biochemistry and Medical Genetics and Microbiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | | | | | |
Collapse
|
207
|
Fabre F, Chan A, Heyer WD, Gangloff S. Alternate pathways involving Sgs1/Top3, Mus81/ Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc Natl Acad Sci U S A 2002; 99:16887-92. [PMID: 12475932 PMCID: PMC139239 DOI: 10.1073/pnas.252652399] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toxic recombination events are detected in vegetative Saccharomyces cerevisiae cells through negative growth interactions between certain combinations of mutations. For example, mutations affecting both the Srs2 and Sgs1 helicases result in extremely poor growth, a phenotype suppressed by mutations in genes that govern early stages of recombination. Here, we identify a similar interaction involving double mutations affecting Sgs1 or Top3 and Mus81 or Mms4. We also find that the primary DNA structures that initiate these toxic recombination events cannot be double-strand breaks and thus are likely to be single-stranded DNA. We interpret our results in the context of the idea that replication stalling leaves single-stranded DNA, which can then be processed by two competing mechanisms: recombination and nonrecombination gap-filling. Functions involved in preventing toxic recombination would either avoid replicative defects or act on recombination intermediates. Our results suggest that Srs2 channels recombination intermediates back into the gap-filling route, whereas Sgs1Top3 and Mus81Mms4 are involved in recombination andor in replication to allow replication restart.
Collapse
Affiliation(s)
- Francis Fabre
- Unité Mixte de Recherche 217, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique. Département de Radiobiologie et Radiopathologie BP6, 92265 Fontenay-aux-Roses, France.
| | | | | | | |
Collapse
|
208
|
Nishino T, Morikawa K. Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors. Oncogene 2002; 21:9022-32. [PMID: 12483517 DOI: 10.1038/sj.onc.1206135] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA nucleases catalyze the cleavage of phosphodiester bonds. These enzymes play crucial roles in various DNA repair processes, which involve DNA replication, base excision repair, nucleotide excision repair, mismatch repair, and double strand break repair. In recent years, new nucleases involved in various DNA repair processes have been reported, including the Mus81 : Mms4 (Eme1) complex, which functions during the meiotic phase and the Artemis : DNA-PK complex, which processes a V(D)J recombination intermediate. Defects of these nucleases cause genetic instability or severe immunodeficiency. Thus, structural biology on various nuclease actions is essential for the elucidation of the molecular mechanism of complex DNA repair machinery. Three-dimensional structural information of nucleases is also rapidly accumulating, thus providing important insights into the molecular architectures, as well as the DNA recognition and cleavage mechanisms. This review focuses on the three-dimensional structure-function relationships of nucleases crucial for DNA repair processes.
Collapse
Affiliation(s)
- Tatsuya Nishino
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | |
Collapse
|
209
|
Abstract
Checkpoint proteins were initially identified because their loss of function resulted in defects in cell cycle arrest in response to genotoxic treatments. Initially, the analysis of checkpoint pathways concentrated on their function as signal transducers and how the checkpoint signals were communicated to the core cell cycle machinery and transcriptional apparatus. Although some of the early genetic analysis indicated a complex relationship between DNA replication, DNA repair and the checkpoint pathways, it is only now becoming apparent that checkpoint proteins regulate multiple DNA repair and replication functions. Furthermore, recent data suggest that some checkpoint proteins may participate directly in DNA repair events. In this review I summarise the current models for DNA structure-dependent checkpoint activation and review the evidence linking checkpoint proteins both directly and indirectly to DNA repair.
Collapse
Affiliation(s)
- Antony M Carr
- Genome Damage and Stability Centre, University of Sussex, Falmer, Sussex BN1 9RQ, UK.
| |
Collapse
|
210
|
Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002; 66:630-70, table of contents. [PMID: 12456786 PMCID: PMC134659 DOI: 10.1128/mmbr.66.4.630-670.2002] [Citation(s) in RCA: 804] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.
Collapse
Affiliation(s)
- Lorraine S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
211
|
Abstract
The faithful replication of the genome is essential for the survival of all organisms. It is not surprising therefore that numerous mechanisms have evolved to ensure that duplication of the genome occurs with only minimal risk of mutation induction. One mechanism of genome destabilization is replication fork demise, which can occur when a translocating fork meets a lesion or adduct in the template. Indeed, the collapse of replication forks has been suggested to occur in every replicative cell cycle making this a potentially significant problem for all proliferating cells. The RecQ helicases, which are essential for the maintenance of genome stability, are thought to function during DNA replication. In particular, RecQ helicase mutants display replication defects and have phenotypes consistent with an inability to efficiently reinitiate replication following replication fork demise. Here, we review some current models for how replication fork repair might be effected, and discuss potential roles for RecQ helicases in this process.
Collapse
Affiliation(s)
- Leonard Wu
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | | |
Collapse
|
212
|
Abstract
To ensure the fidelity of DNA replication, cells activate a stress-response pathway when DNA replication is perturbed. This pathway regulates not only progress through the cell cycle but also transcription, apoptosis, DNA repair/recombination and DNA replication itself. Mounting evidence has suggested that this pathway is important for the maintenance of genomic integrity. Here, we discuss recent findings about how this pathway is activated by replication stress and how it regulates the DNA-replication machinery to alleviate the stress.
Collapse
Affiliation(s)
- Alexander J Osborn
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, TX 77030, USA
| | | | | |
Collapse
|
213
|
McGlynn P, Lloyd RG. Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol 2002; 3:859-70. [PMID: 12415303 DOI: 10.1038/nrm951] [Citation(s) in RCA: 330] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genome duplication necessarily involves the replication of imperfect DNA templates and, if left to their own devices, replication complexes regularly run into problems. The details of how cells overcome these replicative 'hiccups' are beginning to emerge, revealing a complex interplay between DNA replication, recombination and repair that ensures faithful passage of the genetic material from one generation to the next.
Collapse
Affiliation(s)
- Peter McGlynn
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
214
|
Constantinou A, Chen XB, McGowan CH, West SC. Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities. EMBO J 2002; 21:5577-85. [PMID: 12374758 PMCID: PMC129086 DOI: 10.1093/emboj/cdf554] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Revised: 08/19/2002] [Accepted: 08/30/2002] [Indexed: 11/14/2022] Open
Abstract
Enzymatic activities that cleave Holliday junctions are required for the resolution of recombination intermediates and for the restart of stalled replication forks. Here we show that human cell-free extracts possess two distinct endonucleases that can cleave Holliday junctions. The first cleaves Holliday junctions in a structure- and sequence-specific manner, and associates with an ATP-dependent branch migration activity. Together, these activities promote branch migration/resolution reactions similar to those catalysed by the Escherichia coli RuvABC resolvasome. Like RuvC-mediated resolution, the products can be religated. The second, containing Mus81 protein, cuts Holliday junctions but the products are mostly non-ligatable. Each nuclease has a defined substrate specificity: the branch migration-associated resolvase is highly specific for Holliday junctions, whereas the Mus81-associated endonuclease is one order of magnitude more active upon replication fork and 3'-flap structures. Thus, both nucleases are capable of cutting Holliday junctions formed during recombination or through the regression of stalled replication forks. However, the Mus81-associated endonuclease may play a more direct role in replication fork collapse by catalysing the cleavage of stalled fork structures.
Collapse
Affiliation(s)
| | - Xiao-Bo Chen
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK and
Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA Corresponding author e-mail:
| | - Clare H. McGowan
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK and
Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA Corresponding author e-mail:
| | - Stephen C. West
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK and
Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA Corresponding author e-mail:
| |
Collapse
|
215
|
Williams DR, McIntosh JR. mcl1+, the Schizosaccharomyces pombe homologue of CTF4, is important for chromosome replication, cohesion, and segregation. EUKARYOTIC CELL 2002; 1:758-73. [PMID: 12455694 PMCID: PMC126746 DOI: 10.1128/ec.1.5.758-773.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Accepted: 06/26/2002] [Indexed: 11/20/2022]
Abstract
The fission yeast minichromosome loss mutant mcl1-1 was identified in a screen for mutants defective in chromosome segregation. Missegregation of the chromosomes in mcl1-1 mutant cells results from decreased centromeric cohesion between sister chromatids. mcl1+ encodes a beta-transducin-like protein with similarity to a family of eukaryotic proteins that includes Ctf4p from Saccharomyces cerevisiae, sepB from Aspergillus nidulans, and AND-1 from humans. The previously identified fungal members of this protein family also have chromosome segregation defects, but they primarily affect DNA metabolism. Chromosomes from mcl1-1 cells were heterogeneous in size or structure on pulsed-field electrophoresis gels and had elongated heterogeneous telomeres. mcl1-1 was lethal in combination with the DNA checkpoint mutations rad3delta and rad26delta, demonstrating that loss of Mcl1p function leads to DNA damage. mcl1-1 showed an acute sensitivity to DNA damage that affects S-phase progression. It interacts genetically with replication components and causes an S-phase delay when overexpressed. We propose that Mcl1p, like Ctf4p, has a role in regulating DNA replication complexes.
Collapse
Affiliation(s)
- Dewight R Williams
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| | | |
Collapse
|
216
|
Doe CL, Ahn JS, Dixon J, Whitby MC. Mus81-Eme1 and Rqh1 involvement in processing stalled and collapsed replication forks. J Biol Chem 2002; 277:32753-9. [PMID: 12084712 DOI: 10.1074/jbc.m202120200] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The processing of stalled replication forks and the repair of collapsed replication forks are essential functions in all organisms. In fission yeast DNA junctions at stalled replication forks appear to be processed by either the Rqh1 DNA helicase or Mus81-Eme1 endonuclease. Accordingly, we show that the hypersensitivity to agents that cause replication fork stalling of mus81, eme1, and rqh1 mutants is suppressed by a Holliday junction resolvase (RusA), as is the synthetic lethality of a mus81(-) rqh1(-) double mutant. Recombinant Mus81-Eme1, purified from Escherichia coli, readily cleaves replication fork structures but cleaves synthetic Holliday junctions relatively poorly in vitro. From these data we propose that Mus81-Eme1 can process stalled replication forks before they have regressed to form a Holliday junction. We also implicate Mus81-Eme1 and Rqh1 in the repair of collapsed replication forks. Here Mus81-Eme1 and Rqh1 seem to function on different substrates because RusA can substitute for Mus81-Eme1 but not Rqh1.
Collapse
Affiliation(s)
- Claudette L Doe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
217
|
Komori K, Fujikane R, Shinagawa H, Ishino Y. Novel endonuclease in Archaea cleaving DNA with various branched structure. Genes Genet Syst 2002; 77:227-41. [PMID: 12419895 DOI: 10.1266/ggs.77.227] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We identified a novel structure-specific endonuclease in Pyrococcus furiosus. This nuclease contains two distinct domains, which are similar to the DEAH helicase family at the N-terminal two-third and the XPF endonuclease superfamily at the C-terminal one-third of the protein, respectively. The C-terminal domain has an endonuclease activity cleaving the DNA strand at the 5'-side of nicked or flapped positions in the duplex DNA. The nuclease also incises in the proximity of the 5'-side of a branch point in the template strand for leading synthesis in the fork-structured DNA. The N-terminal helicase may work cooperatively to change the fork structure suitable for cleavage by the C-terminal endonuclease. This protein, designated as Hef (helicase-associated endonuclease for fork-structured DNA), may be a prototypical enzyme for resolving stalled forks during DNA replication, as well as working at nucleotide excision repair.
Collapse
Affiliation(s)
- Kayoko Komori
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
218
|
Abstract
Two new studies help to clarify the relationship between checkpoint proteins, recombination, and replication fork integrity.
Collapse
Affiliation(s)
- Antony M Carr
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK.
| |
Collapse
|
219
|
Abstract
Together, DNA repair and checkpoint responses ensure the integrity of the genome. Coordination of cell cycle checkpoints and DNA repair are especially important following genotoxic radiation or chemotherapy, during which unusually high loads of DNA damage are sustained. In mammalian cells, the checkpoint kinase, Cds1 (also known as Chk2) is activated by ATM in response to DNA damage. The role of Cds1 as a checkpoint kinase depends on its ability to phosphorylate cell cycle regulators such p53, Cdc25 and Brca1. A role for Cds1 in repair is suggested by the finding that it interacts with the Holliday junction resolving activity Mus81. This review focuses on the many questions generated by recent progress in understanding the function and regulation of human Cds1.
Collapse
Affiliation(s)
- Clare H McGowan
- Department of Molecular Biology, The Scripps Research Institute, 10550, Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
220
|
O'Neill T, Giarratani L, Chen P, Iyer L, Lee CH, Bobiak M, Kanai F, Zhou BB, Chung JH, Rathbun GA. Determination of substrate motifs for human Chk1 and hCds1/Chk2 by the oriented peptide library approach. J Biol Chem 2002; 277:16102-15. [PMID: 11821419 DOI: 10.1074/jbc.m111705200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian Chk1 and Chk2 are two Ser/Thr effector kinases that play critical roles in DNA damage-activated cell cycle checkpoint signaling pathways downstream of ataxia telangiectasia-mutated and ataxia telangiectasia-related. Endogenous substrates have been identified for human hCds1/Chk2 and Chk1; however, the sequences surrounding the substrate residues appear unrelated, and consensus substrate motifs for the two Ser/Thr kinases remain unknown. We have utilized peptide library analyses to develop specific, highly preferred substrate motifs for hCds1/Chk2 and Chk1. The optimal motifs are similar for both kinases and most closely resemble the previously identified Chk1 and hCds1/Chk2 substrate target sequences in Cdc25C and Cdc25A, the regulation of which plays an important role in S and G(2)M arrest. Essential residues required for the definition of the optimal motifs were also identified. Utilization of the peptides to assay the substrate specificities and catalytic activities of Chk1 and hCds1/Chk2 revealed substantial differences between the two Ser/Thr kinases. Structural modeling analyses of the peptides into the Chk1 catalytic cleft were consistent with Chk1 kinase assays defining substrate suitability. The library-derived substrate preferences were applied in a genome-wide search program, revealing novel targets that might serve as substrates for hCds1/Chk2 or Chk1 kinase activity.
Collapse
Affiliation(s)
- Ted O'Neill
- Center for Blood Research, Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Oakley TJ, Hickson ID. Defending genome integrity during S-phase: putative roles for RecQ helicases and topoisomerase III. DNA Repair (Amst) 2002; 1:175-207. [PMID: 12509252 DOI: 10.1016/s1568-7864(02)00002-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The maintenance of genome stability is important not only for cell viability, but also for the suppression of neoplastic transformation in higher eukaryotes. It has long been recognised that a common feature of cancer cells is genomic instability. Although the so-called three 'Rs' of genome maintenance, DNA replication, recombination and repair, have historically been studied in isolation, a wealth of recent evidence indicates that these processes are intimately interrelated and interdependent. In this article, we will focus on challenges to the maintenance of genome integrity that arise during the S-phase of the cell cycle, and the possible roles that RecQ helicases and topoisomerase III play in the maintenance of genome integrity during the process of DNA replication.
Collapse
Affiliation(s)
- Thomas J Oakley
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | | |
Collapse
|
222
|
Osman F, Tsaneva IR, Whitby MC, Doe CL. UV irradiation causes the loss of viable mitotic recombinants in Schizosaccharomyces pombe cells lacking the G(2)/M DNA damage checkpoint. Genetics 2002; 160:891-908. [PMID: 11901109 PMCID: PMC1462011 DOI: 10.1093/genetics/160.3.891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Elevated mitotic recombination and cell cycle delays are two of the cellular responses to UV-induced DNA damage. Cell cycle delays in response to DNA damage are mediated via checkpoint proteins. Two distinct DNA damage checkpoints have been characterized in Schizosaccharomyces pombe: an intra-S-phase checkpoint slows replication and a G(2)/M checkpoint stops cells passing from G(2) into mitosis. In this study we have sought to determine whether UV damage-induced mitotic intrachromosomal recombination relies on damage-induced cell cycle delays. The spontaneous and UV-induced recombination phenotypes were determined for checkpoint mutants lacking the intra-S and/or the G(2)/M checkpoint. Spontaneous mitotic recombinants are thought to arise due to endogenous DNA damage and/or intrinsic stalling of replication forks. Cells lacking only the intra-S checkpoint exhibited no UV-induced increase in the frequency of recombinants above spontaneous levels. Mutants lacking the G(2)/M checkpoint exhibited a novel phenotype; following UV irradiation the recombinant frequency fell below the frequency of spontaneous recombinants. This implies that, as well as UV-induced recombinants, spontaneous recombinants are also lost in G(2)/M mutants after UV irradiation. Therefore, as well as lack of time for DNA repair, loss of spontaneous and damage-induced recombinants also contributes to cell death in UV-irradiated G(2)/M checkpoint mutants.
Collapse
Affiliation(s)
- Fekret Osman
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | |
Collapse
|
223
|
Abstract
Endonucleolytic cleavage of Holliday junctions is important in recombination and replication. Mus81 proteins in yeasts and humans appear to have many, but not all, of the expected properties of eukaryotic Holliday junction resolvases, with intriguing connections to DNA replication checkpoints.
Collapse
Affiliation(s)
- J E Haber
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02254, USA
| | | |
Collapse
|
224
|
Boddy MN, Gaillard PHL, McDonald WH, Shanahan P, Yates JR, Russell P. Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 2001; 107:537-48. [PMID: 11719193 DOI: 10.1016/s0092-8674(01)00536-0] [Citation(s) in RCA: 425] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mus81, a fission yeast protein related to the XPF subunit of ERCC1-XPF nucleotide excision repair endonuclease, is essential for meiosis and important for coping with stalled replication forks. These processes require resolution of X-shaped DNA structures known as Holliday junctions. We report that Mus81 and an associated protein Eme1 are components of an endonuclease that resolves Holliday junctions into linear duplex products. Mus81 and Eme1 are required during meiosis at a late step of meiotic recombination. The mus81 meiotic defect is rescued by expression of a bacterial Holliday junction resolvase. These findings constitute strong evidence that Mus81 and Eme1 are subunits of a nuclear Holliday junction resolvase.
Collapse
Affiliation(s)
- M N Boddy
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
225
|
Chen XB, Melchionna R, Denis CM, Gaillard PHL, Blasina A, Van de Weyer I, Boddy MN, Russell P, Vialard J, McGowan CH. Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol Cell 2001; 8:1117-27. [PMID: 11741546 DOI: 10.1016/s1097-2765(01)00375-6] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mus81, a protein with homology to the XPF subunit of the ERCC1-XPF endonuclease, is important for replicational stress tolerance in both budding and fission yeast. Human Mus81 has associated endonuclease activity against structure-specific oligonucleotide substrates, including synthetic Holliday junctions. Mus81-associated endonuclease resolves Holliday junctions into linear duplexes by cutting across the junction exclusively on strands of like polarity. In addition, Mus81 protein abundance increases in cells following exposure to agents that block DNA replication. Taken together, these findings suggest a role for Mus81 in resolving Holliday junctions that arise when DNA replication is blocked by damage or by nucleotide depletion. Mus81 is not related by sequence to previously characterized Holliday junction resolving enzymes, and it has distinct enzymatic properties that suggest it uses a novel enzymatic strategy to cleave Holliday junctions.
Collapse
Affiliation(s)
- X B Chen
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Tanaka K, Russell P. Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1. Nat Cell Biol 2001; 3:966-72. [PMID: 11715017 DOI: 10.1038/ncb1101-966] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Checkpoint responses change as cells proceed through the cell cycle. Here we describe a novel checkpoint gene in fission yeast, mrc1 (mediator of replication checkpoint), that confers activation of the checkpoint kinase Cds1 to DNA synthesis (S) phase. Mrc1 associates with Cds1 and is required for regulation of Cds1 by the checkpoint kinase Rad3. Mrc1 is regulated by the cell cycle, with the appearance of Mrc1 mRNA and protein coinciding with S phase. We propose that coordinated expression of Mrc1 with replication control proteins helps to ensure activation of the appropriate checkpoint response during DNA replication.
Collapse
Affiliation(s)
- K Tanaka
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
227
|
Kaliraman V, Mullen JR, Fricke WM, Bastin-Shanower SA, Brill SJ. Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease. Genes Dev 2001; 15:2730-40. [PMID: 11641278 PMCID: PMC312806 DOI: 10.1101/gad.932201] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The RecQ DNA helicases, human BLM and yeast Sgs1, form a complex with topoisomerase III (Top3) and are thought to act during DNA replication to restart forks that have paused due to DNA damage or topological stress. We have shown previously that yeast cells lacking SGS1 or TOP3 require MMS4 and MUS81 for viability. Here we show that Mms4 and Mus81 form a heterodimeric structure-specific endonuclease that cleaves branched DNA. Both subunits are required for optimal expression, substrate binding, and nuclease activity. Mms4 and Mus81 are conserved proteins related to the Rad1-Rad10 (XPF/ERCC1) endonuclease required for nucleotide excision repair (NER). However, the Mms4-Mus81 endonuclease is 25 times more active on branched duplex DNA and replication fork substrates than simple Y-forms, the preferred substrate for the NER complexes. We also present genetic data that indicate a novel role for Mms4-Mus81 in meiotic recombination. Our results suggest that stalled replication forks are substrates for Mms4-Mus81 cleavage-particularly in the absence of Sgs1 or BLM. Repair of this double-strand break (DSB) by homologous recombination may be responsible for the elevated levels of sister chromatid exchange (SCE) found in BLM(-/-) cells.
Collapse
Affiliation(s)
- V Kaliraman
- Department of Molecular Biology and Biochemistry Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
228
|
Abstract
The S-phase DNA damage checkpoint seems to provide a twist on the checkpoint theme. Instead of delaying replication and allowing repair as a consequence, it may activate repair and delay replication as a consequence.
Collapse
Affiliation(s)
- N Rhind
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|