201
|
Abstract
Using a newly developed dissociation procedure, we isolated the specialized rhabdomeral membranes from Drosophila retinal photoreceptors. From these membranes, we have recorded spontaneous active currents in excised patch, voltage-clamp recordings. We observed rapid opening events that closely resembled those ascribed to one class of light-activated channels, TRP. All activity exhibited Ba(2+) permeability, little voltage dependence, and sensitivity to La(3+) block. Mutational analysis indicated that the spontaneous activity present in these membranes was TRP-dependent. Excised patches from wild-type rhabdomeral membranes exhibited a wide range of conductance amplitudes. In addition, large conductance events exhibited many conductance levels in the open state. Block of activity by La(3+) both developed and recovered in a stepwise manner. Our results indicate that TRP-dependent channels have a small unitary conductance and that many channels can be gated coordinately.
Collapse
|
202
|
Juusola M, Hardie RC. Light adaptation in Drosophila photoreceptors: I. Response dynamics and signaling efficiency at 25 degrees C. J Gen Physiol 2001; 117:3-25. [PMID: 11134228 PMCID: PMC2232468 DOI: 10.1085/jgp.117.1.3] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Besides the physical limits imposed on photon absorption, the coprocessing of visual information by the phototransduction cascade and photoreceptor membrane determines the fidelity of photoreceptor signaling. We investigated the response dynamics and signaling efficiency of Drosophila photoreceptors to natural-like fluctuating light contrast stimulation and intracellular current injection when the cells were adapted over a 4-log unit light intensity range at 25 degrees C. This dual stimulation allowed us to characterize how an increase in the mean light intensity causes the phototransduction cascade and photoreceptor membrane to produce larger, faster and increasingly accurate voltage responses to a given contrast. Using signal and noise analysis, this appears to be associated with an increased summation of smaller and faster elementary responses (i.e., bumps), whose latency distribution stays relatively unchanged at different mean light intensity levels. As the phototransduction cascade increases, the size and speed of the signals (light current) at higher adapting backgrounds and, in conjunction with the photoreceptor membrane, reduces the light-induced voltage noise, and the photoreceptor signal-to-noise ratio improves and extends to a higher bandwidth. Because the voltage responses to light contrasts are much slower than those evoked by current injection, the photoreceptor membrane does not limit the speed of the phototransduction cascade, but it does filter the associated high frequency noise. The photoreceptor information capacity increases with light adaptation and starts to saturate at approximately 200 bits/s as the speed of the chemical reactions inside a fixed number of transduction units, possibly microvilli, is approaching its maximum.
Collapse
Affiliation(s)
- M Juusola
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom.
| | | |
Collapse
|
203
|
Nix SL, Chishti AH, Anderson JM, Walther Z. hCASK and hDlg associate in epithelia, and their src homology 3 and guanylate kinase domains participate in both intramolecular and intermolecular interactions. J Biol Chem 2000; 275:41192-200. [PMID: 10993877 DOI: 10.1074/jbc.m002078200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Membrane-associated guanylate kinase (MAGUK) proteins act as molecular scaffolds organizing multiprotein complexes at specialized regions of the plasma membrane. All MAGUKs contain a Src homology 3 (SH3) domain and a region homologous to yeast guanylate kinase (GUK). We showed previously that one MAGUK protein, human CASK (hCASK), is widely expressed and associated with epithelial basolateral plasma membranes. We now report that hCASK binds another MAGUK, human discs large (hDlg). Immunofluorescence microscopy demonstrates that hCASK and hDlg colocalize at basolateral membranes of epithelial cells in small and large intestine. These proteins co-precipitate from lysates of an intestinal cell line, Caco-2. The GUK domain of hCASK binds the SH3 domain of hDlg in both yeast two-hybrid and fusion protein binding assays, and it is required for interaction with hDlg in transfected HEK293 cells. In addition, the SH3 and GUK domains of each protein participate in intramolecular binding that in vitro predominates over intermolecular binding. The SH3 and GUK domains of human p55 display the same interactions in yeast two-hybrid assays as those of hCASK. Not all SH3-GUK interactions among these MAGUKs are permissible, however, implying specificity to SH3-GUK interactions in vivo. These results suggest MAGUK scaffold assembly may be regulated through effects on intramolecular SH3-GUK binding.
Collapse
Affiliation(s)
- S L Nix
- Departments of Internal Medicine, Cell Biology, and Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
204
|
Huber A, Belusic G, Da Silva N, Bähner M, Gerdon G, Draslar K, Paulsen R. The Calliphora rpa mutant lacks the PDZ domain-assembled INAD signalling complex. Eur J Neurosci 2000; 12:3909-18. [PMID: 11069586 DOI: 10.1046/j.1460-9568.2000.00276.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The visual transduction cascade of fly photoreceptors is a G protein-coupled phospholipase C-signalling pathway which is assembled into a supramolecular signalling complex by the PDZ (postsynaptic density protein-95, discs large, Z0-1) domain protein INAD (inactivation no afterpotential D). The norpA-encoded phospholipase Cbeta, the light-activated transient receptor potential (TRP) Ca2+ channel and an eye-specific protein kinase C are bound to INAD and together form the core of the signalling complex. In the present study we show that the Calliphora rpa mutant, which has previously been hypothesized to represent an equivalent of Drosophila norpA mutants, has normal amounts of norpA mRNA but fails to express inaD mRNA. Electrophysiological recordings from the eyes of the rpa mutant reveal that the electroretinogram is reduced (about 12% of wild type) but not completely absent, and that it exhibits markedly prolonged deactivation kinetics. Furthermore, rpa mutants display a slow, light-dependent degeneration of the photoreceptor cells. With respect to the INAD signalling complex, the rpa mutant is similar to the Drosophila inaD null mutant: not only INAD itself, but also the other core components of the INAD signalling complex, are reduced or absent in photoreceptor membranes of rpa flies. Residual TRP is localized throughout the plasma membrane of the photoreceptor cell, rather than being restricted to the microvillar photoreceptor membrane. [35S]methionine-labelling of newly synthesized retinal proteins reveals that TRP is synthesized in the rpa mutant at wild-type level, but is transported to or incorporated into the microvillar photoreceptor membrane at a much lower rate. We thus suggest, that the formation of the INAD signalling complex is required for specifically targeting its components to the photoreceptor membrane.
Collapse
Affiliation(s)
- A Huber
- Institute of Zoology, Department of Cell Biology and Neurobiology, University of Karlsruhe, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany.
| | | | | | | | | | | | | |
Collapse
|
205
|
Phenotypes of trpl mutants and interactions between the transient receptor potential (TRP) and TRP-like channels in Drosophila. J Neurosci 2000. [PMID: 10995823 DOI: 10.1523/jneurosci.20-18-06797.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The trp and trpl genes are thought to encode two classes of light-activated ion channels in Drosophila. A previous report indicated that a null trpl mutant does not display any mutant phenotype. This lack of detectable mutant phenotypes made it difficult to suggest functions for the transient receptor potential-like (TRPL) channel in photoreceptor responses. Here, the properties of trpl photoreceptor responses were studied by using electroretinogram (ERG) and intracellular recording techniques in combination with light stimuli of relatively long durations. Distinct mutant phenotypes were detectable under these conditions. These consisted of a reduced sustained component, oscillations superimposed on the response, a poststimulus hyperpolarization, and altered adaptation properties to dim background light. Comparison of photoreceptor responses obtained from wild type, trp, and trpl showed that the responses obtained from the trp and trpl null mutants did not sum up to that of the wild-type response. To explain the nonlinear summation at the peak of the response, Reuss et al. (1997) proposed that Ca(2+) ions entering through the TRP channel modulate TRP and TRPL channel activities differentially. However, nonlinear summation was present not only at the peak but throughout the duration of response. Two lines of evidence are presented to suggest that, in addition to the interaction proposed by Reuss et al. (1997), there are other forms of interactions between TRP and TRPL channels, probably involving the channel proteins themselves.
Collapse
|
206
|
Li HS, Montell C. TRP and the PDZ protein, INAD, form the core complex required for retention of the signalplex in Drosophila photoreceptor cells. J Cell Biol 2000; 150:1411-22. [PMID: 10995445 PMCID: PMC2150714 DOI: 10.1083/jcb.150.6.1411] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2000] [Accepted: 08/07/2000] [Indexed: 12/02/2022] Open
Abstract
The light response in Drosophila photoreceptor cells is mediated by a series of proteins that assemble into a macromolecular complex referred to as the signalplex. The central player in the signalplex is inactivation no afterpotential D (INAD), a protein consisting of a tandem array of five PDZ domains. At least seven proteins bind INAD, including the transient receptor potential (TRP) channel, which depends on INAD for localization to the phototransducing organelle, the rhabdomere. However, the determinants required for localization of INAD are not known. In this work, we showed that INAD was required for retention rather than targeting of TRP to the rhabdomeres. In addition, we demonstrated that TRP bound to INAD through the COOH terminus, and this interaction was required for localization of INAD. Other proteins that depend on INAD for localization, phospholipase C and protein kinase C, also mislocalized. However, elimination of any other member of the signalplex had no impact on the spatial distribution of INAD. A direct interaction between TRP and INAD did not appear to have a role in the photoresponse independent of localization of multiple signaling components. Rather, the primary function of the TRP/ INAD complex is to form the core unit required for localization of the signalplex to the rhabdomeres.
Collapse
Affiliation(s)
- H S Li
- Department of Biological Chemistry and Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
207
|
van Rossum DB, Patterson RL, Ma HT, Gill DL. Ca2+ entry mediated by store depletion, S-nitrosylation, and TRP3 channels. Comparison of coupling and function. J Biol Chem 2000; 275:28562-8. [PMID: 10878007 DOI: 10.1074/jbc.m003147200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism for coupling between Ca(2+) stores and store-operated channels (SOCs) is an important but unresolved question. SOC-mediated Ca(2+) entry is complex and may reflect more than one type of channel and coupling mechanism. To assess such possible divergence the function and coupling of SOCs was compared with two other distinct yet related Ca(2+) entry mechanisms. SOC coupling in DDT(1)MF-2 smooth muscle cells was prevented by the permeant inositol 1,4,5-trisphosphate (InsP(3)) receptor blockers, 2-aminoethoxydiphenyl borate (2-APB) and xestospongin C. In contrast, Ca(2+) entry induced by S-nitrosylation and potentiated by store depletion (Ma, H-T., Favre, C. J., Patterson, R. L., Stone, M. R., and Gill, D. L. (1999) J. Biol. Chem. 274, 35318-35324) was unaffected by 2-APB, suggesting that this entry mechanism is independent of InsP(3) receptors. The cycloalkyl lactamimide, MDL-12, 330A (MDL), prevented SOC activation (IC(50) 10 micrometer) and similarly completely blocked S-nitrosylation-mediated Ca(2+) entry. Ca(2+) entry mediated by the TRP3 channel stably expressed in HEK293 cells was activated by phospholipase C-coupled receptors but independent of Ca(2+) store depletion (Ma, H.-T., Patterson, R. L., van Rossum, D. B., Birnbaumer, L., Mikoshiba, K., and Gill, D. L. (2000) Science 287, 1647-1651). Receptor-induced TRP3 activation was 2-APB-sensitive and fully blocked by MDL. Direct stimulation of TRP3 channels by the permeant diacylglycerol derivative, 1-oleoyl-2-acetyl-sn-glycerol, was not blocked by 2-APB, but was again prevented by MDL. The results indicate that although the activation and coupling processes for each of the three entry mechanisms are distinct, sensitivity to MDL is a feature shared by all three mechanisms, suggesting there may be a common structural feature in the channels themselves or an associated regulatory component.
Collapse
Affiliation(s)
- D B van Rossum
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
208
|
|
209
|
Webel R, Menon I, O'Tousa JE, Colley NJ. Role of asparagine-linked oligosaccharides in rhodopsin maturation and association with its molecular chaperone, NinaA. J Biol Chem 2000; 275:24752-9. [PMID: 10811808 DOI: 10.1074/jbc.m002668200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many proteins require N-linked glycosylation for conformational maturation and interaction with their molecular chaperones. In Drosophila, rhodopsin (Rh1), the most abundant rhodopsin, is glycosylated in the endoplasmic reticulum (ER) and requires its molecular chaperone, NinaA, for exit from the ER and transport through the secretory pathway. Studies of vertebrate rhodopsins have generated several conflicting proposals regarding the role of glycosylation in rhodopsin maturation. We investigated the role of Rh1 glycosylation and Rh1/NinaA interactions under in vivo conditions by analyzing transgenic flies expressing Rh1 with isoleucine substitutions at each of the two consensus sites for N-linked glycosylation (N20I and N196I). We show that Asn(20) is the sole site for glycosylation. The Rh1(N20I) protein is retained within the secretory pathway, causing an accumulation of ER cisternae and dilation of the Golgi complex. NinaA associates with nonglycosylated Rh1(N20I); therefore, retention of nonglycosylated rhodopsin within the ER is not due to the lack of Rh1(N20I)/NinaA interaction. We further show that Rh1(N20I) interferes with wild type Rh1 maturation and triggers a dominant form of retinal degeneration. We conclude that during maturation Rh1 is present in protein complexes containing NinaA and that Rh1 glycosylation is required for transport of the complexes through the secretory pathway. Failure of this transport process leads to retinal degeneration.
Collapse
Affiliation(s)
- R Webel
- Department of Ophthalmology & Visual Science and the Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
210
|
Oberwinkler J, Stavenga DG. Calcium imaging demonstrates colocalization of calcium influx and extrusion in fly photoreceptors. Proc Natl Acad Sci U S A 2000; 97:8578-83. [PMID: 10900015 PMCID: PMC26990 DOI: 10.1073/pnas.97.15.8578] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During illumination, Ca(2+) enters fly photoreceptor cells through light-activated channels that are located in the rhabdomere, the compartment specialized for phototransduction. From the rhabdomere, Ca(2+) diffuses into the cell body. We visualize this process by rapidly imaging the fluorescence in a cross section of a photoreceptor cell injected with a fluorescent Ca(2+) indicator in vivo. The free Ca(2+) concentration in the rhabdomere shows a very fast and large transient shortly after light onset. The free Ca(2+) concentration in the cell body rises more slowly and displays a much smaller transient. After approximately 400 ms of light stimulation, the Ca(2+) concentration in both compartments reaches a steady state, indicating that thereafter an amount of Ca(2+), equivalent to the amount of Ca(2+) flowing into the cell, is extruded. Quantitative analysis demonstrates that during the steady state, the free Ca(2+) concentration in the rhabdomere and throughout the cell body is the same. This shows that Ca(2+) extrusion takes place very close to the location of Ca(2+) influx, the rhabdomere, because otherwise gradients in the steady-state distribution of Ca(2+) should be measured. The close colocalization of Ca(2+) influx and Ca(2+) extrusion ensures that, after turning off the light, Ca(2+) removal from the rhabdomere is faster than from the cell body. This is functionally significant because it ensures rapid dark adaptation.
Collapse
Affiliation(s)
- J Oberwinkler
- Department of Neurobiophysics, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | |
Collapse
|
211
|
Xu XZ, Chien F, Butler A, Salkoff L, Montell C. TRPgamma, a drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 2000; 26:647-57. [PMID: 10896160 DOI: 10.1016/s0896-6273(00)81201-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
TRP and TRPL are two light-sensitive cation channel subunits required for the Drosophila photoresponse; however, our understanding of the identities, subunit composition, and function of the light-responsive channels is incomplete. To explain the residual photoresponse that remains in the trp mutant, a third TRP-related subunit has previously been proposed to function with TRPL. Here, we identify such a subunit, TRPgamma. We show that TRPgamma is highly enriched in photoreceptor cells and preferentially heteromultimerizes with TRPL in vitro and in vivo. The N-terminal domain of TRPgamma dominantly suppressed the TRPL-dependent photoresponse, indicating that TRPgamma-TRPL heteromultimers contribute to the photoresponse. While TRPL and TRPgamma homomultimers are constitutively active, we demonstrate that TRPL-TRPgamma heteromultimers form a regulated phospholipase C- (PLC-) stimulated channel.
Collapse
Affiliation(s)
- X Z Xu
- Department of Biological Chemistry and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
212
|
Raghu P, Colley NJ, Webel R, James T, Hasan G, Danin M, Selinger Z, Hardie RC. Normal phototransduction in Drosophila photoreceptors lacking an InsP(3) receptor gene. Mol Cell Neurosci 2000; 15:429-45. [PMID: 10833300 DOI: 10.1006/mcne.2000.0846] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Drosophila light-sensitive channels TRP and TRPL are prototypical members of an ion channel family responsible for a variety of receptor-mediated Ca(2+) influx phenomena, including store-operated calcium influx. While phospholipase Cbeta is essential, downstream events leading to TRP and TRPL activation remain unclear. We investigated the role of the InsP(3) receptor (InsP(3)R) by generating mosaic eyes homozygous for a deficiency of the only known InsP(3)R gene in Drosophila. Absence of gene product was confirmed by RT-PCR, Western analysis, and immunocytochemistry. Mutant photoreceptors underwent late onset retinal degeneration; however, whole-cell recordings from young flies demonstrated that phototransduction was unaffected, quantum bumps, macroscopic responses in the presence and absence of external Ca(2+), light adaptation, and Ca(2+) release from internal stores all being normal. Using the specific TRP channel blocker La(3+) we demonstrated that both TRP and TRPL channel functions were unaffected. These results indicate that InsP(3)R-mediated store depletion does not underlie TRP and TRPL activation in Drosophila photoreceptors.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Drosophila melanogaster/physiology
- Gene Deletion
- Homozygote
- Immunohistochemistry
- Inositol 1,4,5-Trisphosphate Receptors
- Light
- Microscopy, Electron
- Microscopy, Electron, Scanning
- Mutation/physiology
- Photoreceptor Cells, Invertebrate/physiology
- Photoreceptor Cells, Invertebrate/radiation effects
- Photoreceptor Cells, Invertebrate/ultrastructure
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Reference Values
- Tissue Distribution
- Vision, Ocular/physiology
Collapse
Affiliation(s)
- P Raghu
- Department of Anatomy, Cambridge University, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Mollereau B, Wernet MF, Beaufils P, Killian D, Pichaud F, Kühnlein R, Desplan C. A green fluorescent protein enhancer trap screen in Drosophila photoreceptor cells. Mech Dev 2000; 93:151-60. [PMID: 10781948 DOI: 10.1016/s0925-4773(00)00287-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The Drosophila ommatidia contain two classes of photoreceptor cells (PR's), the outer and the inner PR's. We performed an enhancer trap screen in order to target genes specifically expressed in PR's. Using the UAS/GAL4 method with enhanced green fluorescent protein (eGFP) as a vital marker, we screened 180000 flies. Out of 2730 lines exhibiting new eGFP patterns, we focused on 16 lines expressing eGFP in particular subsets of PR's. In particular, we describe three lines inserted near the spalt major, m-spondin and furrowed genes, whose respective expression patterns resemble those genes. These genes had not been reported to be expressed in the adult eye. These examples clearly show the ability of our screen to target genes expressed in the adult Drosophila eye.
Collapse
Affiliation(s)
- B Mollereau
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | |
Collapse
|
214
|
|
215
|
Henderson SR, Reuss H, Hardie RC. Single photon responses in Drosophila photoreceptors and their regulation by Ca2+. J Physiol 2000; 524 Pt 1:179-94. [PMID: 10747191 PMCID: PMC2269851 DOI: 10.1111/j.1469-7793.2000.00179.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Discrete events (quantum bumps) elicited by dim light were analysed in whole-cell voltage clamp of photoreceptors from dissociated Drosophila ommatidia. Bumps were automatically detected and analysed for amplitude, rise and decay times, and latency. 2. The bump interval and amplitude distributions, and the 'frequency of seeing' curve conformed to Poisson predictions for the absorption of single photons. 3. At resting potential (-70 mV), bumps averaged 10 pA in peak amplitude with a half-width of ca 20 ms, representing simultaneous activation of ca 15 channels. 4. The macroscopic response to flashes containing up to at least 750 photons were predicted by the linear summation of quantum bumps convolved with their latency dispersion. 5. Bump duration was unaffected by lowering the extracellular Ca2+ concentration ([Ca2+]o) from 1.5 to 0.5 mM, but increased >10-fold between 0.5 mM Ca2+ and 0 Ca2+. Bump amplitude was constant over the range 1.5-100 microM, but decreased ca 5- to 10-fold at lower Ca2+ concentrations. Bump latency increased by ca 50 % between 1.5 mM and 100 microM Ca2+o but returned to near control levels in Ca2+-free solutions. At intermediate [Ca2+]o bumps were biphasic with a slow rising phase followed by rapid amplification and inactivation. This behaviour was mimicked in high [Ca2+]o by internal buffering with BAPTA, but not EGTA. This suggests that Ca2+ influx through the light-sensitive channels must first raise cytosolic Ca2+ to a threshold level before initiating a cycle of positive and negative feedback mediated by molecular targets within the same microvillus. Quantum bumps in trp mutants lacking the major class of light-sensitive channel were reduced in size (mean 3.5 pA) representing simultaneous activation of only one or two channels; however, a second rarer (10 %) class of large bump had an amplitude similar to wild-type (WT) bumps. Bumps in trpl mutants lacking the second class of light-sensitive channel were very similar to WT bumps, but with slightly slower decay times. In InaDP215 mutants, in which the association of the TRP channels with the INAD scaffolding molecule is disrupted, bumps showed a defect in quantum bump termination, but their amplitudes and latencies were near normal.
Collapse
Affiliation(s)
- S R Henderson
- Cambridge University, Department of Anatomy, Downing Street, Cambridge CB2 3DY, UK
| | | | | |
Collapse
|
216
|
Ma HT, Patterson RL, van Rossum DB, Birnbaumer L, Mikoshiba K, Gill DL. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 2000; 287:1647-51. [PMID: 10698739 DOI: 10.1126/science.287.5458.1647] [Citation(s) in RCA: 489] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The coupling mechanism between endoplasmic reticulum (ER) calcium ion (Ca2+) stores and plasma membrane (PM) store-operated channels (SOCs) is crucial to Ca2+ signaling but has eluded detection. SOCs may be functionally related to the TRP family of receptor-operated channels. Direct comparison of endogenous SOCs with stably expressed TRP3 channels in human embryonic kidney (HEK293) cells revealed that TRP3 channels differ in being store independent. However, condensed cortical F-actin prevented activation of both SOC and TRP3 channels, which suggests that ER-PM interactions underlie coupling of both channels. A cell-permeant inhibitor of inositol trisphosphate receptor (InsP3R) function, 2-aminoethoxydiphenyl borate, prevented both receptor-induced TRP3 activation and store-induced SOC activation. It is concluded that InsP3Rs mediate both SOC and TRP channel opening and that the InsP3R is essential for maintaining coupling between store emptying and physiological activation of SOCs.
Collapse
Affiliation(s)
- H T Ma
- Department of Biochemistry and Molecular Biology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
217
|
Abstract
To date, fourteen classes of unconventional myosins have been identified. Recent reports have implicated a number of these myosins in organelle transport, and in the formation, maintenance and/or dynamics of actin-rich structures involved in a variety of cellular processes including endocytosis, cell migration, and sensory transduction. Characterizations of organelle dynamics in pigment cells and neurons have further defined the contributions made by unconventional myosins and microtubule motors to the transport and distribution of organelles. Several studies have provided evidence of complexes through which cooperative organelle transport may be coordinated. Finally, the myosin superfamily has been shown to contain at least one processive motor and one backwards motor.
Collapse
Affiliation(s)
- X Wu
- Laboratory of Cell Biology, Section on Molecular Cell Biology, National Institutes of Health, Bethesda, 20892-0301, USA
| | | | | |
Collapse
|
218
|
Chapter 10 Modeling primary visual processes in insect photoreceptors. HANDBOOK OF BIOLOGICAL PHYSICS 2000. [DOI: 10.1016/s1383-8121(00)80013-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
219
|
Abstract
Nonvoltage-gated cation currents, which are activated following stimulation of phospholipase C (PLC), appear to be major modes for Ca2+ and Na+ entry in mammalian cells. The TRPC channels may mediate some of these conductances since their expression in vitro leads to PLC-dependent cation influx. We found that the TRPC3 protein was highly enriched in neurons of the central nervous system (CNS). The temporal and spatial distribution of TRPC3 paralleled that of the neurotrophin receptor TrkB. Activation of TrkB by brain-derived nerve growth factor (BDNF) led to production of a PLC-dependent, nonselective cation conductance in pontine neurons. Evidence is provided that TRPC3 contributes to this current in vivo. Thus, activation of TrkB and PLC leads to a TRPC3-dependent cation influx in CNS neurons.
Collapse
Affiliation(s)
- H S Li
- Department of Biological Chemistry and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|