201
|
Manzanera M, Aranda-Olmedo I, Ramos JL, Marqués S. Molecular characterization of Pseudomonas putida KT2440 rpoH gene regulation. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1323-1330. [PMID: 11320135 DOI: 10.1099/00221287-147-5-1323] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The rpoH gene of Pseudomonas putida KT2440 encoding the heat-shock sigma factor sigma(32) was cloned and sequenced, and the translated gene product was predicted to be a protein of 32.5 kDa. The unambiguous role of the gene as a sigma factor was confirmed because the cloned P. putida gene complemented the growth defect, at 37 and 42 degrees C, of an Escherichia coli rpoH mutant strain. Primer extension analysis showed that in P. putida the rpoH gene is expressed from three promoters in cells growing at 30 degrees C. Two of them, P1 and P3, share homology with the sigma(70)-dependent promoters, while the third one, P2, shows a typical sigma(24)-consensus sequence. The pattern of transcription initiation of the rpoH gene did not change in response to different stresses, i.e. a sudden heat shock or the addition of aromatic compounds. However, the predicted secondary structure of the 5' region of the mRNA derived from the three different promoters suggests regulation at the level of translation efficiency and/or mRNA half-life. An inverted repeat sequence located 20 bp downstream of the rpoH stop codon was shown to function as a terminator in vivo in P. putida growing at temperatures from 18 to 42 degrees C.
Collapse
Affiliation(s)
- Maximino Manzanera
- Estación Experimental del Zaidı́n, CSIC, Departamento de Bioquı́mica y Biologı́a Molecular y Celular de Plantas, Apartado 419, E-18080 Granada, Spain1
| | - Isabel Aranda-Olmedo
- Estación Experimental del Zaidı́n, CSIC, Departamento de Bioquı́mica y Biologı́a Molecular y Celular de Plantas, Apartado 419, E-18080 Granada, Spain1
| | - Juan L Ramos
- Estación Experimental del Zaidı́n, CSIC, Departamento de Bioquı́mica y Biologı́a Molecular y Celular de Plantas, Apartado 419, E-18080 Granada, Spain1
| | - Silvia Marqués
- Estación Experimental del Zaidı́n, CSIC, Departamento de Bioquı́mica y Biologı́a Molecular y Celular de Plantas, Apartado 419, E-18080 Granada, Spain1
| |
Collapse
|
202
|
Cases I, de Lorenzo V. The limits to genomic predictions: role of sigma(N) in environmental stress survival of Pseudomonas putida. FEMS Microbiol Ecol 2001; 35:217-221. [PMID: 11295461 DOI: 10.1111/j.1574-6941.2001.tb00806.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Based on genomic data and on the phenotypes of an FlhF mutant of Pseudomonas putida, the alternative sigma factor sigma(N) (sigma(54)) has been proposed to play a key role in survival to various nutritional and environmental stresses in this bacterium. Quite in contrast, we show that unlike sigma(S) (sigma(38)) the loss of sigma(N) does not impair to any significant extent the ability of P. putida to survive long-term starvation. rpoN mutants (lacking sigma(N)) are indistinguishable from the wild-type with respect to solvent tolerance, resistance to heat shock or sensitivity to hydrogen peroxide. These data suggest that while sigma(N) is a key component of expression of alternative biodegradative pathways for unusual carbon sources (i.e. m-xylene or dimethylphenols), its loss does not compromise bacterial endurance to gross types of environmental stress. Moreover, these results point out the limitations, if not the deception, of genomic predictions when confronted with experimental data.
Collapse
Affiliation(s)
- I Cases
- Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049, Madrid, Spain
| | | |
Collapse
|
203
|
Cox M, Gerritse G, Dankmeyer L, Quax WJ. Characterization of the promoter and upstream activating sequence from the Pseudomonas alcaligenes lipase gene. J Biotechnol 2001; 86:9-17. [PMID: 11223140 DOI: 10.1016/s0168-1656(00)00397-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas alcaligenes secretes a lipase with a high pH optimum, which has interesting properties for application in detergents. The expression of the lipase is strongly dependent on the presence of lipids in the growth medium such as soybean oil. The promoter of the gene was characterized and found to have resemblance to sigma54 controlled promoters, which are known to be tightly regulated. The transcription start was mapped precisely downstream of a sequence with close similarity to the -12/-24 consensus sequence of sigma54 controlled promoters. Interestingly, a hyperproducer mutant strain was isolated and found to have a C to T mutation in the -12/-24 promoter consensus region. In addition an Upstream Activating Sequence (UAS) with homology to sigma54 UAS consensus sequences was identified. It was demonstrated that an increase of the distance from the UAS to the transcription start or the deletion of the UAS results in significantly lower expression levels of lipase. A systematic mutational analysis of the UAS sequence has resulted in a variant with an increased lipase expression.
Collapse
Affiliation(s)
- M Cox
- Protein Sciences Corporation, Meriden, CT 06450-7159, USA
| | | | | | | |
Collapse
|
204
|
Ruiz R, Ramos JL, Egan SM. Interactions of the XylS regulators with the C-terminal domain of the RNA polymerase alpha subunit influence the expression level from the cognate Pm promoter. FEBS Lett 2001; 491:207-11. [PMID: 11240128 DOI: 10.1016/s0014-5793(01)02192-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Pseudomonas putida meta-cleavage operon encodes the enzymes for the catabolism of alkylbenzoates. Activation of meta-operon transcription is mediated by the XylS protein which, upon activation by effectors, binds two sites between -70 and -35 with respect to the main transcription initiation point at the Pm promoter. Two naturally occurring regulators, XylS and XylS1, that differ by only five amino acids, have been analyzed with regard to potential interactions of these positive regulators with the C-terminal domain of the alpha subunit of RNA polymerase (alpha-CTD). For these studies we expressed a derivative of alpha deprived of the entire C-terminal domain (alpha-Delta235) and found that expression from Pm with XylS or XylS1 was significantly decreased. To discern whether alpha-CTD activation depended on interactions with DNA and/or XylS proteins we tested a large collection of alanine substitutions within alpha-CTD. Most substitutions that had an effect on XylS and XylS1-dependent transcription were located in or adjacent to helix 1 and 4, which are known to be involved in alpha-CTD interactions with DNA. Two alanine substitutions in helix 3 (residues 287 and 291) identified a putative region of alpha-CTD/XylS regulator interactions.
Collapse
Affiliation(s)
- R Ruiz
- Consejo Superior de Investigaciones Cientificas, Estación Experimental del Zaidín, Department of Plant Biochemistry, Albareda, Granada, Spain
| | | | | |
Collapse
|
205
|
Cases I, Lopez JA, Albar JP, De Lorenzo V. Evidence of multiple regulatory functions for the PtsN (IIA(Ntr)) protein of Pseudomonas putida. J Bacteriol 2001; 183:1032-7. [PMID: 11208802 PMCID: PMC94971 DOI: 10.1128/jb.183.3.1032-1037.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ptsN gene of Pseudomonas putida encodes IIA(Ntr), a protein of the phosphoenol pyruvate:sugar phosphotransferase (PTS) system which is required for the C source inhibition of the sigma(54)-dependent promoter Pu of the TOL (toluate degradation) plasmid pWW0. Using two-dimensional gel electrophoresis, we have examined the effect of ptsN disruption on the general expression pattern of P. putida. To this end, cells were grown in the presence or absence of glucose, and a 1,117-spot subset of the P. putida proteome was used as a reference for comparisons. Among all gene products whose expression was lowered by this carbon source (247 spots [about 22%]), only 6 behaved as Pu (i.e., were depressed in the ptsN background). This evidenced only a minor role for IIA(Ntr) in the extensive inhibition of gene expression in P. putida caused by glucose. However, the same experiments revealed a large incidence of glucose-independent effects brought about by the ptsN mutation. As many as 108 spots (ca. 9% of the cell products analyzed) were influenced, positively or negatively, by the loss of IIA(Ntr). By matching this pattern with that of an rpoN::OmegaKm strain of P. putida, which lacks the sigma(54) protein, we judge that most proteins whose expression was affected by ptsN were unrelated to the alternative sigma factor. These data suggest a role of IIA(Ntr) as a general regulator, independent of the presence of repressive carbon sources and not limited to sigma(54)-dependent genes.
Collapse
Affiliation(s)
- I Cases
- Centro Nacional de Biotecnología CSIC, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
206
|
Cebolla A, Sousa C, de Lorenzo V. Rational design of a bacterial transcriptional cascade for amplifying gene expression capacity. Nucleic Acids Res 2001; 29:759-66. [PMID: 11160899 PMCID: PMC30378 DOI: 10.1093/nar/29.3.759] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cascade regulatory circuits have been described that control numerous cell processes, and may provide models for the design of artificial circuits with novel properties. Here we describe the design of a transcriptional regulatory cascade to amplify the cell response to a given signal. We used the salicylate-responsive activators of Pseudomonas putida NahR of the naphthalene degradation plasmid NAH7 and XylS2, a mutant regulator of the TOL plasmid for catabolism of m-xylene and their respective cognate promoters Psal and PM: Control of the expression of xylS2 with the nahR/Psal system permitted either their selective activation with specific effectors for each protein or the simultaneous activation of both of them with salicylate. When cells face the common effector of the two regulators, both the increase in XylS2 concentration and the stimulation of its activity act synergistically on the PM: promoter, amplifying the gene expression capacity by at least one order of magnitude with respect to the individual systems. By changing the hierarchy of regulators, we showed that the specific features of the downstream regulator were crucial for the amplification effect. Directed changes in the effector profile of the regulators allowed the extension of the amplifying system to other molecular signals.
Collapse
Affiliation(s)
- A Cebolla
- Departamento de Genética and Departamento de Microbiología y Parasitología, Universidad de Sevilla, 41080 Seville, Spain.
| | | | | |
Collapse
|
207
|
Cases I, de Lorenzo V. The black cat/white cat principle of signal integration in bacterial promoters. EMBO J 2001; 20:1-11. [PMID: 11226149 PMCID: PMC140184 DOI: 10.1093/emboj/20.1.1] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Revised: 10/30/2000] [Accepted: 11/08/2000] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Víctor de Lorenzo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
Corresponding author e-mail:
| |
Collapse
|
208
|
Jaspers MC, Schmid A, Sturme MH, Goslings DA, Kohler HP, Roelof Van Der Meer J. Transcriptional organization and dynamic expression of the hbpCAD genes, which encode the first three enzymes for 2-hydroxybiphenyl degradation in Pseudomonas azelaica HBP1. J Bacteriol 2001; 183:270-9. [PMID: 11114926 PMCID: PMC94875 DOI: 10.1128/jb.183-1.270-279.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas azelaica HBP1 degrades the toxic substance 2-hydroxybiphenyl (2-HBP) by means of three enzymes that are encoded by structural genes hbpC, hbpA, and hbpD. These three genes form a small noncontiguous cluster. Their expression is activated by the product of regulatory gene hbpR, which is located directly upstream of the hbpCAD genes. The HbpR protein is a transcription activator and belongs to the so-called XylR/DmpR subclass within the NtrC family of transcriptional activators. Transcriptional fusions between the different hbp intergenic regions and the luxAB genes of Vibrio harveyi in P. azelaica and in Escherichia coli revealed the existence of two HbpR-regulated promoters; one is located in front of hbpC, and the other one is located in front of hbpD. Northern analysis confirmed that the hbpC and hbpA genes are cotranscribed, whereas the hbpD gene is transcribed separately. No transcripts comprising the entire hbpCAD cluster were detected, indicating that transcription from P(hbpC) is terminated after the hbpA gene. E. coli mutant strains lacking the structural genes for the RNA polymerase sigma(54) subunit or for the integration host factor failed to express bioluminescence from P(hbpC)- and P(hbpD)-luxAB fusions when a functional hbpR gene was provided in trans. This pointed to the active role of sigma(54) and integration host factor in transcriptional activation from these promoters. Primer extension analysis revealed that both P(hbpC) and P(hbpD) contain the typical motifs at position -24 (GG) and -12 (GC) found in sigma(54)-dependent promoters. Analysis of changes in the synthesis of the hbp mRNAs, in activities of the 2-HBP pathway enzymes, and in concentrations of 2-HBP intermediates during the first 4 h after induction of continuously grown P. azelaica cells with 2-HBP demonstrated that the specific transcriptional organization of the hbp genes ensured smooth pathway expression.
Collapse
Affiliation(s)
- M C Jaspers
- Swiss Federal Institute for Environmental Science and Technology and Swiss Federal Institute of Technology, CH-8600 Dübendorf, Switzerland
| | | | | | | | | | | |
Collapse
|
209
|
Garmendia J, de Lorenzo V. The role of the interdomain B linker in the activation of the XylR protein of Pseudomonas putida. Mol Microbiol 2000; 38:401-10. [PMID: 11069665 DOI: 10.1046/j.1365-2958.2000.02139.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the presence of toluene and other structural analogues, the enhancer binding protein XylR activates the sigma54 promoter Pu of the TOL (toluene degradation) plasmid pWW0 of Pseudomonas putida. Introduction of amino acid changes Val-219Asp and Ala-220Pro, which enter a proline kink at the interdomain region (B linker) between the A (signal reception) module and the central portion of XylR, originated a protein with unforeseen properties. These included a minor ability to activate Pu in the absence of aromatic effectors, a much higher responsiveness to m-xylene and a significant response to a large collection of aromatic inducers. Such changes could not be attributed to variations in XylR expression levels or to the fortuitous creation of a novel promoter, but to a genuine change in the properties of the activator. Structural predictions suggested that the mutation entirely disrupted an otherwise probable coiled-coil structure. A second directed mutant within the same region consisting of a major replacement of amino acids A220-N221 by the peptide HHHR produced an even more exacerbated phenotype. These data support a model in which the linker B region influences the effector profile by modifying at a distance the operative shape of the effector pocket and fixing the protein in an intermediate step of the activation process.
Collapse
Affiliation(s)
- J Garmendia
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
210
|
Bhende PM, Egan SM. Genetic evidence that transcription activation by RhaS involves specific amino acid contacts with sigma 70. J Bacteriol 2000; 182:4959-69. [PMID: 10940041 PMCID: PMC111377 DOI: 10.1128/jb.182.17.4959-4969.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2000] [Accepted: 06/09/2000] [Indexed: 11/20/2022] Open
Abstract
RhaS activates transcription of the Escherichia coli rhaBAD and rhaT operons in response to L-rhamnose and is a member of the AraC/XylS family of transcription activators. We wished to determine whether sigma(70) might be an activation target for RhaS. We found that sigma(70) K593 and R599 appear to be important for RhaS activation at both rhaBAD and rhaT, but only at truncated promoters lacking the binding site for the second activator, CRP. To determine whether these positively charged sigma(70) residues might contact RhaS, we constructed alanine substitutions at negatively charged residues in the C-terminal domain of RhaS. Substitutions at four RhaS residues, E181A, D182A, D186A, and D241A, were defective at both truncated promoters. Finally, we assayed combinations of the RhaS and sigma(70) substitutions and found that RhaS D241 and sigma(70) R599 met the criteria for interacting residues at both promoters. Molecular modeling suggests that sigma(70) R599 is located in very close proximity to RhaS D241; hence, this work provides the first evidence for a specific residue within an AraC/XylS family protein that may contact sigma(70). More than 50% of AraC/XylS family members have Asp or Glu at the position of RhaS D241, suggesting that this interaction with sigma(70) may be conserved.
Collapse
Affiliation(s)
- P M Bhende
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
211
|
Carmona M, Rodríguez MJ, Martínez-Costa O, De Lorenzo V. In vivo and in vitro effects of (p)ppGpp on the sigma(54) promoter Pu of the TOL plasmid of Pseudomonas putida. J Bacteriol 2000; 182:4711-8. [PMID: 10940009 PMCID: PMC111345 DOI: 10.1128/jb.182.17.4711-4718.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The connection between the physiological control of the sigma(54)-dependent Pu promoter of the TOL plasmid pWW0 of Pseudomonas putida and the stringent response mediated by the alarmone (p)ppGpp has been examined in vivo an in vitro. To this end, the key regulatory elements of the system were faithfully reproduced in an Escherichia coli strain and assayed as lacZ fusions in various genetic backgrounds lacking (p)ppGpp or overexpressing relA. Neither the responsiveness of Pu to 3-methyl benzylalcohol mediated by its cognate activator XylR nor the down-regulation of the promoter by rapid growth were affected in relA/spoT strains to an extent which could account for the known physiological control that governs this promoter. Overexpression of the relA gene [predicted to increase intracellullar (p)ppGpp levels] did, however, cause a significant gain in Pu activity. Since such a gain might be the result of indirect effects, we resorted to an in vitro transcription system to assay directly the effect of ppGpp on the transcriptional machinery. Although we did observe a significant increase in Pu performance through a range of sigma(54)-RNAP concentrations, such an increase never exceeded twofold. The difference between these results and the behavior of the related Po promoter of the phenol degradation plasmid pVI150 could be traced to the different promoter sequences, which may dictate the type of metabolic signals recruited for the physiological control of sigma(54)-systems.
Collapse
Affiliation(s)
- M Carmona
- Department of Environment, Universidad Europea CEES, Villaviciosa de Odón, 28670 Madrid, Spain
| | | | | | | |
Collapse
|
212
|
Manzanera M, Marqués S, Ramos JL. Mutational analysis of the highly conserved C-terminal residues of the XylS protein, a member of the AraC family of transcriptional regulators. FEBS Lett 2000; 476:312-7. [PMID: 10913634 DOI: 10.1016/s0014-5793(00)01749-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The XylS protein of the TOL plasmid of Pseudomonas putida belongs to the so-called AraC/XylS family of regulators, that includes more than 100 different bacterial proteins. A conserved stretch of about 100 amino acids is present at the C-terminal end. This conserved region is believed to contain seven alpha-helices, including two helix-turn-helix (HTH) DNA binding motifs (alpha(2)-T-alpha(3) and alpha(5)-Talpha-(6)), connected by a linker alpha-helix (alpha(4)), and two flanking alpha-helices (alpha(1) and alpha(7)). The second HTH motif is the region with the highest homology in the proteins of the family, with certain residues showing almost 90% identity. We have constructed XylS single mutants in the most conserved residues and have analysed their ability to stimulate transcription from its cognate promoter, Pm, fused to 'lacZ. The analysis revealed that mutations in the alpha(5)-helix conserved residues had little effect on the XylS transcriptional activity, whereas the distribution of polarity in the alpha(6)-helix was important for the activity. The strongest effect of the mutations was observed in conserved residues located outside the DNA binding domain, namely, Gly-290 in the turn between the two helices, Pro-309 located downstream of alpha(6), and Leu-313, in the small last helix alpha(7), that seems to play an important role in the activation of RNA-polymerase. Our analysis shows that conservation of amino acids in the family reflects structural requirements rather than functionality in specific DNA interactions.
Collapse
Affiliation(s)
- M Manzanera
- CSIC, Estación Experimental del Zaidín, Departamento de Bioquímica y Biología Molecular y Celular de Plantas, Apdo. 419, 18080, Granada, Spain
| | | | | |
Collapse
|
213
|
Sentchilo VS, Perebituk AN, Zehnder AJ, van der Meer JR. Molecular diversity of plasmids bearing genes that encode toluene and xylene metabolism in Pseudomonas strains isolated from different contaminated sites in Belarus. Appl Environ Microbiol 2000; 66:2842-52. [PMID: 10877777 PMCID: PMC92082 DOI: 10.1128/aem.66.7.2842-2852.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twenty different Pseudomonas strains utilizing m-toluate were isolated from oil-contaminated soil samples near Minsk, Belarus. Seventeen of these isolates carried plasmids ranging in size from 78 to about 200 kb (assigned pSVS plasmids) and encoding the meta cleavage pathway for toluene metabolism. Most plasmids were conjugative but of unknown incompatibility groups, except for one, which belonged to the IncP9 group. The organization of the genes for toluene catabolism was determined by restriction analysis and hybridization with xyl gene probes of pWW0. The majority of the plasmids carried xyl-type genes highly homologous to those of pWW53 and organized in a similar manner (M. T. Gallegos, P. A. Williams, and J. L. Ramos, J. Bacteriol. 179:5024-5029, 1997), with two distinguishable meta pathway operons, one upper pathway operon, and three xylS-homologous regions. All of these plasmids also possessed large areas of homologous DNA outside the catabolic genes, suggesting a common ancestry. Two other pSVS plasmids carried only one meta pathway operon, one upper pathway operon, and one copy each of xylS and xylR. The backbones of these two plasmids differed greatly from those of the others. Whereas these parts of the plasmids, carrying the xyl genes, were mostly conserved between plasmids of each group, the noncatabolic parts had undergone intensive DNA rearrangements. DNA sequencing of specific regions near and within the xylTE and xylA genes of the pSVS plasmids confirmed the strong homologies to the xyl genes of pWW53 and pWW0. However, several recombinations were discovered within the upper pathway operons of the pSVS plasmids and pWW0. The main genetic mechanisms which are thought to have resulted in the present-day configuration of the xyl operons are discussed in light of the diversity analysis carried out on the pSVS plasmids.
Collapse
Affiliation(s)
- V S Sentchilo
- Swiss Federal Institute for Environmental Science and Technology, CH-8600 Dübendorf, Switzerland.
| | | | | | | |
Collapse
|
214
|
Valls M, Atrian S, de Lorenzo V, Fernández LA. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 2000; 18:661-5. [PMID: 10835606 DOI: 10.1038/76516] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we describe targeting of the mouse metallothionein I (MT) protein to the cell surface of the heavy metal-tolerant Ralstonia eutropha (formerly Alcaligenes eutrophus) CH34 strain, which is adapted to thrive in soils highly polluted with metal ions. DNA sequences encoding MT were fused to the autotransporter beta-domain of the IgA protease of Neisseria gonorrhoeae, which targeted the hybrid protein toward the bacterial outer membrane. The translocation, surface display, and functionality of the chimeric MTbeta protein was initially demonstrated in Escherichia coli before the transfer of its encoding gene (mtb) to R. eutropha. The resulting bacterial strain, named R. eutropha MTB, was found to have an enhanced ability for immobilizing Cd2+ ions from the external media. Furthermore, the inoculation of Cd2+-polluted soil with R. eutropha MTB decreased significantly the toxic effects of the heavy metal on the growth of tobacco plants (Nicotiana bentamiana).
Collapse
Affiliation(s)
- M Valls
- Departament de Genètica, Facultat de Biologia, Av. Diagonal 645, Universitat de Barcelona, 08028-Barcelona, Spain
| | | | | | | |
Collapse
|
215
|
Skärfstad E, O'Neill E, Garmendia J, Shingler V. Identification of an effector specificity subregion within the aromatic-responsive regulators DmpR and XylR by DNA shuffling. J Bacteriol 2000; 182:3008-16. [PMID: 10809676 PMCID: PMC94483 DOI: 10.1128/jb.182.11.3008-3016.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pseudomonas derived sigma(54)-dependent regulators DmpR and XylR control the expression of genes involved in catabolism of aromatic compounds. Binding to distinct, nonoverlapping groups of aromatic effectors controls the activities of these transcriptional activators. Previous work has derived a common mechanistic model for these two regulators in which effector binding by the N-terminal 210 residues (the A-domain) of the protein relieves repression of an intrinsic ATPase activity essential for its transcription-promoting property and allows productive interaction with the transcriptional apparatus. Here we dissect the A-domains of DmpR and XylR by DNA shuffling to identify the region(s) that mediates the differences in the effector specificity profiles. Analysis of in vivo transcription in response to multiple aromatic effectors and the in vitro phenol-binding abilities of regulator derivatives with hybrid DmpR/XylR A-domains reveals that residues 110 to 186 are key determinants that distinguish the effector profiles of DmpR and XylR. Moreover, the properties of some mosaic DmpR/XylR derivatives reveal that high-affinity aromatic effector binding can be completely uncoupled from the ability to promote transcription. Hence, novel aromatic binding properties will only be translated into functional transcriptional activation if effector binding also triggers release of interdomain repression.
Collapse
Affiliation(s)
- E Skärfstad
- Department of Cell and Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
216
|
Bühler B, Schmid A, Hauer B, Witholt B. Xylene monooxygenase catalyzes the multistep oxygenation of toluene and pseudocumene to corresponding alcohols, aldehydes, and acids in Escherichia coli JM101. J Biol Chem 2000; 275:10085-92. [PMID: 10744688 DOI: 10.1074/jbc.275.14.10085] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Xylene monooxygenase of Pseudomonas putida mt-2 catalyzes the methylgroup hydroxylation of toluene and xylenes. To investigate the potential of xylene monooxygenase to catalyze multistep oxidations of one methyl group, we tested recombinant Escherichia coli expressing the monooxygenase genes xylM and xylA under the control of the alk regulatory system of Pseudomonas oleovorans Gpo1. Expression of xylene monooxygenase genes could efficiently be controlled by n-octane and dicyclopropylketone. Xylene monooxygenase was found to catalyze the oxygenation of toluene, pseudocumene, the corresponding alcohols, and the corresponding aldehydes. For all three transformations (18)O incorporation provided stong evidence for a monooxygenation type of reaction, with gem-diols as the most likely reaction intermediates during the oxygenation of benzyl alcohols to benzaldehydes. To investigate the role of benzyl alcohol dehydrogenase (XylB) in the formation of benzaldehydes, xylB was cloned behind and expressed in concert with xylMA. In comparison to E. coli expressing only xylMA, the presence of xylB lowered product formation rates and resulted in back formation of benzyl alcohol from benzaldehyde. In P. putida mt-2 XylB may prevent the formation of high concentrations of the particularly reactive benzaldehydes. In the case of high fluxes through the degradation pathways and low aldehyde concentrations, XylB may contribute to benzaldehyde formation via the energetically favorable dehydrogenation of benzyl alcohols. The results presented here characterize XylMA as an enzyme able to catalyze the multistep oxygenation of toluenes.
Collapse
Affiliation(s)
- B Bühler
- Institute of Biotechnology, Swiss Federal Institute of Technology Zurich, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
217
|
Winther-Larsen HC, Blatny JM, Valand B, Brautaset T, Valla S. Pm promoter expression mutants and their use in broad-host-range RK2 plasmid vectors. Metab Eng 2000; 2:92-103. [PMID: 10935725 DOI: 10.1006/mben.1999.0143] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By coupling the Pm/xylS promoter system to minimal replicons of the broad-host-range plasmid RK2 we recently showed that such vectors are useful for both high- and low-level inducible expression of cloned genes in gram-negative bacteria. In this report, we extend this potential by identifying point mutations in or near the -10 transcriptional region of Pm. Point mutations leading to gene-independent enhancements of expression levels of the induced state or reduced background expression levels were identified using Escherichia coli as a host. By combining these mutations an additive effect in expression levels from the constructed Pm was observed. The highest induced expression level was obtained by inserting an E. coli consensus sigma70 - 10 recognition region. Most of the remaining activities in the reduced-background mutations appeared to originate from a transcriptional start site other than Pm. The effects of some of these mutations were also analyzed in Pseudomonas aeruginosa and were found to act similarly, but less pronounced in this host.
Collapse
Affiliation(s)
- H C Winther-Larsen
- UNIGEN Center for Molecular Biology and Department of Biotechnology, Norwegian University of Science and Technology, Trondheim
| | | | | | | | | |
Collapse
|
218
|
Winther-Larsen HC, Josefsen KD, Brautaset T, Valla S. Parameters affecting gene expression from the Pm promoter in gram-negative bacteria. Metab Eng 2000; 2:79-91. [PMID: 10935724 DOI: 10.1006/mben.1999.0142] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Pm promoter inserted chromosomally or in broad-host-range replicons based on plasmid RSF1010 or RK2 are useful systems for both high- and low-level expression of cloned genes in several gram-negative bacterial species. The positive Pm regulator XylS is activated by certain substituted benzoic acid derivatives, and here we show that these effectors induce expression of Pm at similar relative ranking levels in both Escherichia coli and Pseudomonas aeruginosa However, the kinetics of expression was not the same in the two organisms. Different carbon sources and dissolved oxygen levels displayed limited effects on expression, but surprisingly the pH of the growth medium was found to be of major importance. By combining the effects of genetic and environmental parameters, expression from Pm could be varied over a ten-thousand- to a hundred-thousand-fold continuous range, and as an example of its applications we showed that Pm can be used to control the xanthan biosynthesis in Xanthomonas campestris.
Collapse
Affiliation(s)
- H C Winther-Larsen
- UNIGEN Center for Molecular Biology and Department of Biotechnology, Norwegian University of Science and Technology, Trondheim
| | | | | | | |
Collapse
|
219
|
Kahng HY, Byrne AM, Olsen RH, Kukor JJ. Characterization and role of tbuX in utilization of toluene by Ralstonia pickettii PKO1. J Bacteriol 2000; 182:1232-42. [PMID: 10671442 PMCID: PMC94407 DOI: 10.1128/jb.182.5.1232-1242.2000] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tbu regulon of Ralstonia pickettii PKO1 encodes enzymes involved in the catabolism of toluene, benzene, and related alkylaromatic hydrocarbons. The first operon in this regulon contains genes that encode the tbu pathway's initial catabolic enzyme, toluene-3-monooxygenase, as well as TbuT, the NtrC-like transcriptional activator for the entire regulon. It has been previously shown that the organization of tbuT, which is located immediately downstream of tbuA1UBVA2C, and the associated promoter (PtbuA1) is unique in that it results in a cascade type of up-regulation of tbuT in response to a variety of effector compounds. In our efforts to further characterize this unusual mode of gene regulation, we discovered another open reading frame, encoded on the strand opposite that of tbuT, 63 bp downstream of the tbuT stop codon. The 1,374-bp open reading frame, encoding a 458-amino-acid peptide, was designated tbuX. The predicted amino acid sequence of TbuX exhibited significant similarity to several putative outer membrane proteins from aromatic hydrocarbon-degrading bacteria, as well as to FadL, an outer membrane protein needed for uptake of long-chain fatty acids in Escherichia coli. Based on sequence analysis, transcriptional and expression studies, and deletion analysis, TbuX seems to play an important role in the catabolism of toluene in R. pickettii PKO1. In addition, the expression of tbuX appears to be regulated in a manner such that low levels of TbuX are always present within the cell, whereas upon toluene exposure these levels dramatically increase, even more than those of toluene-3-monooxygenase. This expression pattern may relate to the possible role of TbuX as a facilitator of toluene entry into the cell.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Base Sequence
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Gram-Negative Aerobic Rods and Cocci/chemistry
- Gram-Negative Aerobic Rods and Cocci/genetics
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- Regulatory Sequences, Nucleic Acid
- Regulon/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Toluene/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- H Y Kahng
- Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | | | | | | |
Collapse
|
220
|
Canosa I, Sánchez-Romero JM, Yuste L, Rojo F. A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. Mol Microbiol 2000; 35:791-9. [PMID: 10692156 DOI: 10.1046/j.1365-2958.2000.01751.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The AlkS regulator, encoded by the alkS gene of the Pseudomonas oleovorans OCT plasmid, activates the expression of a set of enzymes that allow assimilation of alkanes. We show that the AlkS protein regulates, both negatively and positively, the expression of its own gene. In the absence of alkanes, alkS is expressed from promoter PalkS1, which is recognized by sigmaS-RNA polymerase, and whose activity is very low in the exponential phase of growth and considerably higher in stationary phase. AlkS was found to downregulate this promoter, limiting expression of alkS in stationary phase when alkanes were absent. In the presence of alkanes, AlkS repressed PalkS1 more strongly and simultaneously activated a second promoter for alkS, named PalkS2, located 38 bp downstream from PalkS1. Activation of PalkS2 allowed efficient transcription of alkS when alkanes were present. Transcription from PalkS2 was modulated by catabolite repression when cells were provided with a preferred carbon source. We propose that the expression of alkS is regulated by a positive feedback mechanism, which leads to a rapid increase in alkS transcription when alkanes are present. This mechanism should allow a rapid induction of the pathway, as well as a fast switch-off when alkanes are depleted. An improved model for the regulation of the pathway is proposed.
Collapse
Affiliation(s)
- I Canosa
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 - Madrid, Spain
| | | | | | | |
Collapse
|
221
|
Cases I, de Lorenzo V. Genetic evidence of distinct physiological regulation mechanisms in the sigma(54) Pu promoter of Pseudomonas putida. J Bacteriol 2000; 182:956-60. [PMID: 10648520 PMCID: PMC94370 DOI: 10.1128/jb.182.4.956-960.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activity of the toluene-responsive sigma(54) Pu promoter of the pWW0 TOL plasmid of Pseudomonas putida is down-regulated in vivo during exponential growth in rich medium and also by the presence of glucose in the culture. Although the Pu promoter already performs poorly during log growth in minimal medium when amended with casamino acids, the addition of glucose further decreased by two- to threefold the accumulation of beta-galactosidase in a Pu-lacZ reporter P. putida strain. Since Pu was still down-regulated during exponential growth regardless of glucose addition, it appeared that the carbohydrate separately influenced promoter activity. This notion was supported by the growth-dependent induction pattern of Pu in a ptsN mutant of P. putida, the loss of which makes Pu no longer responsive to repression by glucose. On the other hand, overexpression of the sigma factor sigma(54), known to partially alleviate the exponential silencing of the promoter, did not affect glucose inhibition of Pu. These data indicated that exponential silencing and carbon source-dependent repression are two overlapping but genetically distinguishable mechanisms that adapt Pu to the physiological status of the cells and nutrient availability.
Collapse
Affiliation(s)
- I Cases
- Centro Nacional de Biotecnología CSIC, 28049 Madrid, Spain
| | | |
Collapse
|
222
|
Kaldalu N, Toots U, de Lorenzo V, Ustav M. Functional domains of the TOL plasmid transcription factor XylS. J Bacteriol 2000; 182:1118-26. [PMID: 10648539 PMCID: PMC94389 DOI: 10.1128/jb.182.4.1118-1126.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alkylbenzoate degradation genes of Pseudomonas putida TOL plasmid are positively regulated by XylS, an AraC family protein, in a benzoate-dependent manner. In this study, we used deletion mutants and hybrid proteins to identify which parts of XylS are responsible for the DNA binding, transcriptional activation, and benzoate inducibility. We found that a 112-residue C-terminal fragment of XylS binds specifically to the Pm operator in vitro, protects this sequence from DNase I digestion identically to the wild-type (wt) protein, and activates the Pm promoter in vivo. When overexpressed, that C-terminal fragment could activate transcription as efficiently as wt XylS. All the truncations, which incorporated these 112 C-terminal residues, were able to activate transcription at least to some extent when overproduced. Intactness of the 210-residue N-terminal portion was found to be necessary for benzoate responsiveness of XylS. Deletions in the N-terminal and central regions seriously reduced the activity of XylS and caused the loss of effector control, whereas insertions into the putative interdomain region did not change the basic features of the XylS protein. Our results confirm that XylS consists of two parts which probably interact with each other. The C-terminal domain carries DNA-binding and transcriptional activation abilities, while the N-terminal region carries effector-binding and regulatory functions.
Collapse
Affiliation(s)
- N Kaldalu
- Department of Microbiology and Virology, Institute of Molecular and Cell Biology, Tartu University, Estonian Biocentre, 51010 Tartu, Estonia
| | | | | | | |
Collapse
|
223
|
Wise AA, Kuske CR. Generation of novel bacterial regulatory proteins that detect priority pollutant phenols. Appl Environ Microbiol 2000; 66:163-9. [PMID: 10618218 PMCID: PMC91800 DOI: 10.1128/aem.66.1.163-169.2000] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic systems of bacteria that have the ability to use organic pollutants as carbon and energy sources can be adapted to create bacterial biosensors for the detection of industrial pollution. The creation of bacterial biosensors is hampered by a lack of information about the genetic systems that control production of bacterial enzymes that metabolize pollutants. We have attempted to overcome this problem through modification of DmpR, a regulatory protein for the phenol degradation pathway of Pseudomonas sp. strain CF600. The phenol detection capacity of DmpR was altered by using mutagenic PCR targeted to the DmpR sensor domain. DmpR mutants were identified that both increased sensitivity to the phenolic effectors of wild-type DmpR and increased the range of molecules detected. The phenol detection characteristics of seven DmpR mutants were demonstrated through their ability to activate transcription of a lacZ reporter gene. Effectors of the DmpR derivatives included phenol, 2-chlorophenol, 2,4-dichlorophenol, 4-chloro-3-methylphenol, 2,4-dimethylphenol, 2-nitrophenol, and 4-nitrophenol.
Collapse
Affiliation(s)
- A A Wise
- Environmental Molecular Biology Group, Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|
224
|
Meckenstock RU, Morasch B, Warthmann R, Schink B, Annweiler E, Michaelis W, Richnow HH. 13C/12C isotope fractionation of aromatic hydrocarbons during microbial degradation. Environ Microbiol 1999; 1:409-14. [PMID: 11207760 DOI: 10.1046/j.1462-2920.1999.00050.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influence of microbial degradation on the 13C/12C isotope composition of aromatic hydrocarbons is presented using toluene as a model compound. Four different toluene-degrading bacterial strains grown in batch culture with oxygen, nitrate, ferric iron or sulphate as electron acceptors were studied as representatives of different environmental redox conditions potentially prevailing in contaminated aquifers. The biological degradation induced isotope shifts in the residual, non-degraded toluene fraction and the kinetic isotope fractionation factors alphaC for toluene degradation by Pseudomonas putida (1.0026 +/- 0.00017), Thauera aromatica (1.0017 +/- 0.00015), Geobacter metallireducens (1.0018 +/- 0.00029) and the sulphate-reducing strain TRM1 (1.0017 +/- 0.00016) were in the same range for all four species, although they use at least two different degradation pathways. A similar 13C/12C isotope fractionation factor (alphaC = 1.0015 +/- 0.00015) was observed in situ in a non-sterile soil column in which toluene was degraded under sulphate-reducing conditions. No carbon isotope shifts resulting from soil-hydrocarbon interactions were observed in a non-degrading soil column control with aquifer material under the same conditions. The results imply that microbial degradation of toluene can produce a 13C/12C isotope fractionation in the residual hydrocarbon fraction under different environmental conditions.
Collapse
Affiliation(s)
- R U Meckenstock
- University of Konstanz, Department of Microbial Ecology, Germany. rainer.meckenstock.uni-konstanz.de
| | | | | | | | | | | | | |
Collapse
|
225
|
Panke, Meyer, Huber, Witholt, Wubbolts. An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol 1999; 65:2324-32. [PMID: 10347009 PMCID: PMC91344 DOI: 10.1128/aem.65.6.2324-2332.1999] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/1999] [Accepted: 03/23/1999] [Indexed: 11/20/2022] Open
Abstract
Membrane-located monooxygenase systems, such as the Pseudomonas putida mt-2-derived xylene oxygenase, are attractive for challenging transformations of apolar compounds, including enantiospecific epoxidations, but are difficult to synthesize at levels that are useful for application to biotechnological processes. In order to construct efficient biocatalysis strains, we utilized the alkane-responsive regulatory system of the OCT plasmid-located alk genes of Pseudomonas oleovorans GPo1, a very attractive system for recombinant biotransformation processes. Determination of the nucleotide sequence of alkS, whose activated gene product positively regulates the transcription of the structural genes alkBFGHJKL, on a 3.7-kb SalI-HpaI OCT plasmid fragment was completed, and the N-terminal amino acid sequence of an AlkS-LacZ fusion protein was found to be consistent with the predicted DNA sequence. The alkS gene and the alkBp promoter were assembled into a convenient alkane-responsive genetic expression cassette which allowed expression of the xylene oxygenase genes in a recombinant Escherichia coli strain at a specific activity of 91 U per g (dry weight) of cells when styrene was the substrate. This biocatalyst was used to produce (S)-styrene oxide in two-liquid-phase cultures. Volumetric productivities of more than 2 g of styrene oxide per h per liter of aqueous phase were obtained; these values represented a fivefold improvement compared with previous results.
Collapse
Affiliation(s)
- Panke
- Institute of Biotechnology, Swiss Federal Institute of Technology Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
226
|
Cases I, Pérez-Martín J, de Lorenzo V. The IIANtr (PtsN) protein of Pseudomonas putida mediates the C source inhibition of the sigma54-dependent Pu promoter of the TOL plasmid. J Biol Chem 1999; 274:15562-8. [PMID: 10336451 DOI: 10.1074/jbc.274.22.15562] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene cluster adjacent to the sequence of rpoN (encoding sigma factor sigma54) of Pseudomonas putida has been studied with respect to the C source regulation of the Pu promoter of the upper TOL (toluene catabolism) operon. The region includes four open reading frames (ORFs), two of which (named ptsN and ptsO genes) encode proteins similar to components of the phosphoenolpyruvate:sugar phosphotransferase system. Each of the four genes was disrupted with a nonpolar insertion, and the effects in the inhibition caused by glucose on Pu activity were inspected with a lacZ reporter system. Although cells lacking ORF102, ORF284, and ptsO did not display any evident phenotype under the conditions tested, the loss of ptsN, which encodes the IIANtr protein, made Pu unresponsive to repression by glucose. The ptsN mutant had rates of glucose/gluconate consumption identical to those of the wild type, thus ruling out indirect effects mediated by the transport of the carbohydrate. A site-directed ptsN mutant in which the conserved phospho-acceptor site His68 of IIANtr was replaced by an aspartic acid residue made Pu blind to the presence or absence of glucose, thus supporting the notion that phosphorylation of IIANtr mediates the C source inhibition of the promoter. These data substantiate the existence of a molecular pathway for co-regulation of some sigma54 promoters in which IIANtr is a key protein intermediate.
Collapse
Affiliation(s)
- I Cases
- Centro Nacional de Biotecnología del Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | | | | |
Collapse
|
227
|
Abstract
Although many environmental pollutants are efficiently degraded by microorganisms, others persist and constitute a severe health hazard. In some instances, persistence is a consequence of the inadequate catabolic potential of the available microorganisms. Gene technology, combined with a solid knowledge of catabolic pathways and microbial physiology, enables the experimental evolution of new or improved catabolic activities for such pollutants.
Collapse
Affiliation(s)
- K N Timmis
- Division of Microbiology, GBF - National Research Centre for Biotechnology, Braunschweig, Germany.
| | | |
Collapse
|
228
|
González-Pérez MM, Ramos JL, Gallegos MT, Marqués S. Critical nucleotides in the upstream region of the XylS-dependent TOL meta-cleavage pathway operon promoter as deduced from analysis of mutants. J Biol Chem 1999; 274:2286-90. [PMID: 9890992 DOI: 10.1074/jbc.274.4.2286] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pm promoter, dependent on TOL plasmid XylS regulator, which is activated by benzoate effectors, drives transcription of the meta-cleavage pathway for the metabolism of alkylbenzoates. This promoter is unique in that in vivo transcription is mediated by RNA-polymerase with different sigma factors. In vivo footprinting analysis shows that XylS interacted with nucleotides in the -40 to -70 region. In vivo and in vitro methylation of Pm shows extensive methylation of T at position -42 in the bottom strand, suggesting that it represents a key distortion point that may favor XylS/RNA polymerase interactions. Methylation of T-42 was highest in cells bearing XylS and in the presence of an effector. Gs in the -47 to -61 region appeared to be more protected in cells harboring XylS in the presence than in the absence of the effector. Almost 100 mutants in the Pm region between -41 and -78 were generated; transcriptional analysis of these mutants defined the XylS target as two direct repeats with the sequence TGCAN6GGNCA. These motifs cover the -70 to -56 and the -49 to -35 regions. Single point mutations revealed that nucleotides located at -49 to -46 and at -59, -60, -62, and -70 are the most critical for appropriate XylS-Pm interactions.
Collapse
Affiliation(s)
- M M González-Pérez
- Department of Biochemistry, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado de Correos 419, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
229
|
Carmona M, de Lorenzo V. Involvement of the FtsH (HflB) protease in the activity of sigma 54 promoters. Mol Microbiol 1999; 31:261-70. [PMID: 9987127 DOI: 10.1046/j.1365-2958.1999.01169.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of FtsH, an essential inner membrane-bound protease, in the regulation of the sigma 54-dependent Pu promoter has been examined in vivo. Escherichia coli cells lacking FtsH failed to activate a Pu-lacZ fusion in response to the cognate enhancer-binding protein XylR. However, the intracellular concentrations of XylR and sigma 54, as well as their apparent physical integrity were the same regardless of the presence or absence of the protease. The loss of Pu activity in FtsH-minus cells was not due to the imbalance between sigma factors caused by the lack of the protease. ftsH mutants could not grow in media with glutamine as the only nitrogen source and failed also to induce the sigma 54 promoters PnifH by NifA and PpspA by PspF. These lesions were fully complemented by a ftsH+ plasmid. Therefore, part of the pleiotropic phenotype of FtsH-less cells corresponded to the lack of sigma 54 activity. Overproduction of sigma 54, however, restored both transcriptional activity of Pu and growth in glutamine of a ftsH strain. These observations suggested that the activity of sigma 54 is checked in vivo by an interplay of factors that ultimately determine the performance of cognate promoters under given physiological conditions.
Collapse
Affiliation(s)
- M Carmona
- Centro Nacional de Biotecnología CSIC, Madrid, Spain
| | | |
Collapse
|
230
|
Laurie AD, Lloyd-Jones G. The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 1999; 181:531-40. [PMID: 9882667 PMCID: PMC93407 DOI: 10.1128/jb.181.2.531-540.1999] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cloning and molecular ecological studies have underestimated the diversity of polycyclic aromatic hydrocarbon (PAH) catabolic genes by emphasizing classical nah-like (nah, ndo, pah, and dox) sequences. Here we report the description of a divergent set of PAH catabolic genes, the phn genes, which although isofunctional to the classical nah-like genes, show very low homology. This phn locus, which contains nine open reading frames (ORFs), was isolated on an 11.5-kb HindIII fragment from phenanthrene-degrading Burkholderia sp. strain RP007. The phn genes are significantly different in sequence and gene order from previously characterized genes for PAH degradation. They are transcribed by RP007 when grown at the expense of either naphthalene or phenanthrene, while in Escherichia coli the recombinant phn enzymes have been shown to be capable of oxidizing both naphthalene and phenanthrene to predicted metabolites. The locus encodes iron sulfur protein alpha and beta subunits of a PAH initial dioxygenase but lacks the ferredoxin and reductase components. The dihydrodiol dehydrogenase of the RP007 pathway, PhnB, shows greater similarity to analogous dehydrogenases from described biphenyl pathways than to those characterized from naphthalene/phenanthrene pathways. An unusual extradiol dioxygenase, PhnC, shows no similarity to other extradiol dioxygenases for naphthalene or biphenyl oxidation but is the first member of the recently proposed class III extradiol dioxygenases that is specific for polycyclic arene diols. Upstream of the phn catabolic genes are two putative regulatory genes, phnR and phnS. Sequence homology suggests that phnS is a LysR-type transcriptional activator and that phnR, which is divergently transcribed with respect to phnSFECDAcAdB, is a member of the sigma54-dependent family of positive transcriptional regulators. Reverse transcriptase PCR experiments suggest that this gene cluster is coordinately expressed and is under regulatory control which may involve PhnR and PhnS.
Collapse
Affiliation(s)
- A D Laurie
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | | |
Collapse
|
231
|
Ramos-Díaz MA, Ramos JL. Combined physical and genetic map of the Pseudomonas putida KT2440 chromosome. J Bacteriol 1998; 180:6352-63. [PMID: 9829947 PMCID: PMC107723 DOI: 10.1128/jb.180.23.6352-6363.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/1998] [Accepted: 09/23/1998] [Indexed: 11/20/2022] Open
Abstract
A combined physical and genetic map of the Pseudomonas putida KT2440 genome was constructed from data obtained by pulsed-field gel electrophoresis techniques (PFGE) and Southern hybridization. Circular genome size was estimated at 6.0 Mb by adding the sizes of 19 SwaI, 9 PmeI, 6 PacI, and 6 I-CeuI fragments. A complete physical map was achieved by combining the results of (i) analysis of PFGE of the DNA fragments resulting from digestion of the whole genome with PmeI, SwaI, I-CeuI, and PacI as well as double digestion with combinations of these enzymes and (ii) Southern hybridization analysis of the whole wild-type genome digested with different enzymes and hybridized against a series of probes obtained as cloned genes from different pseudomonads of rRNA group I and Escherichia coli, as P. putida DNA obtained by PCR amplification based on sequences deposited at the GenBank database, and by labeling of macrorestriction fragments of the P. putida genome eluted from agarose gels. As an alternative, 10 random mini-Tn5-Km mutants of P. putida KT2440 were used as a source of DNA, and the band carrying the mini-Tn5 in each mutant was identified after PFGE of a series of complete chromosomal digestions and hybridization with the kanamycin resistance gene of the mini-Tn5 as a probe. We established a circular genome map with an average resolution of 160 kb. Among the 63 genes located on the genetic map were key markers such as oriC, 6 rrn loci (rnnA to -F), recA, ftsZ, rpoS, rpoD, rpoN, and gyrB; auxotrophic markers; and catabolic genes for the metabolism of aromatic compounds. The genetic map of P. putida KT2440 was compared to those of Pseudomonas aeruginosa PAO1 and Pseudomonas fluorescens SBW25. The chromosomal backbone revealed some similarity in gene clustering among the three pseudomonads but differences in physical organization, probably as a result of intraspecific rearrangements.
Collapse
Affiliation(s)
- M A Ramos-Díaz
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | | |
Collapse
|
232
|
Bertoni G, Fujita N, Ishihama A, de Lorenzo V. Active recruitment of sigma54-RNA polymerase to the Pu promoter of Pseudomonas putida: role of IHF and alphaCTD. EMBO J 1998; 17:5120-8. [PMID: 9724648 PMCID: PMC1170840 DOI: 10.1093/emboj/17.17.5120] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The sequence elements determining the binding of the sigma54-containing RNA polymerase (sigma54-RNAP) to the Pu promoter of Pseudomonas putida have been examined. Contrary to previous results in related systems, we show that the integration host factor (IHF) binding stimulates the recruitment of the enzyme to the -12/-24 sequence motifs. Such a recruitment, which is fully independent of the activator of the system, XylR, requires the interaction of the C-terminal domain of the alpha subunit of RNAP with specific DNA sequences upstream of the IHF site which are reminiscent of the UP elements in sigma70 promoters. Our data show that this interaction is mainly brought about by the distinct geometry of the promoter region caused by IHF binding and the ensuing DNA bending. These results support the view that binding of sigma54-RNAP to a promoter is a step that can be subjected to regulation by factors (e.g. IHF) other than the sole intrinsic affinity of sigma54-RNAP for the -12/-24 site.
Collapse
Affiliation(s)
- G Bertoni
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
233
|
Marqués S, Gallegos MT, Manzanera M, Holtel A, Timmis KN, Ramos JL. Activation and repression of transcription at the double tandem divergent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida. J Bacteriol 1998; 180:2889-94. [PMID: 9603877 PMCID: PMC107254 DOI: 10.1128/jb.180.11.2889-2894.1998] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The xylR and xylS genes are divergent and control transcription of the TOL plasmid catabolic pathways for toluene metabolism. Four promoters are found in the 300-bp intergenic region: Pr1 and Pr2 are constitutive sigma70-dependent tandem promoters that drive expression of xylR, while expression of the xylS gene is driven from Ps2, a constitutive sigma70-dependent promoter, and by the regulatable sigma54 class Ps1 promoter. In Ps1 the XylR targets (upstream activator sequences [UASs]) overlap the Pr promoters, and two sites for integration host factor (IHF) binding are located at the region from positions -2 to -30 (-2/-30 region) and the -137/-156 region, the latter overlapping the Pr promoters. When the XylR protein binds to the UASs in the absence of effector, it represses expression from Pr promoters. In the XylR-plus background and in the absence of an effector, the level of expression from Ps1 is low, although detectable, whereas Ps2 is active. In this background and in the presence of an effector, XylR increases autorepression. In a sigma54-deficient Pseudomonas putida background, no expression occurred from Ps1 regardless of the presence of an effector. However, in the presence of an effector, the amount of RNA produced from Pr promoters was almost undetectable. This finding suggests that when no transcription occurred at the Ps1 promoter, clearance of XylR from the UASs was almost negligible. In this background, expression from Ps2 was very high regardless of the presence of an effector; this finding suggests that RNA polymerase containing sigma54 modulates expression from the downstream Ps2 sigma70-dependent promoter. In a P. putida IHF-minus background and in the presence of effector, Ps1 expression was the highest found; in contrast, the basal levels of this promoter were the lowest observed. This finding suggests that IHF acts in vivo as a repressor of the sigma54-dependent Ps1 promoter. In an IHF-deficient host background, expression from Ps2 in the presence of effector was negligible. Thus, binding of RNA polymerase containing sigma54 at the upstream promoter may modulate expression from the Ps2 promoter.
Collapse
Affiliation(s)
- S Marqués
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Biochemistry, E-18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
234
|
Construction of an efficient biologically contained pseudomonas putida strain and its survival in outdoor assays. Appl Environ Microbiol 1998; 64:2072-8. [PMID: 9603816 PMCID: PMC106280 DOI: 10.1128/aem.64.6.2072-2078.1998] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Active biological containment systems consist of two components, a killing element designed to induce cell death and a control element which modulates the expression of the killing function. We constructed a mini-Tn5 transposon bearing a fusion of the Plac promoter to the gef killing gene and a fusion of the Pm promoter to the lacI gene plus the positive regulator of the Pm promoter, the xylS gene. This mini-Tn5 transposon was transferred to the chromosome of Pseudomonas putida CMC4, and in culture this strain survived in the presence of 3-methylbenzoate (an XylS effector) and committed suicide in the absence of this aromatic compound. The rate of killing escape was on the order of 10(-8) per cell and per generation. This contained strain and an uncontained control strain were used in outdoor tests performed in the spring-summer and autumn-winter periods to determine their survival in planted and unplanted soils with and without 3-methylbenzoate. In unplanted soils the numbers of both the contained strain and the uncontained strain per gram of soil tended to decrease, but the numbers of the contained strain decreased faster in soils without 3-methylbenzoate. The decrease in the number of CFU per gram of soil was faster in the spring-summer period than in the autumn-winter period. In planted soils survival in the rhizosphere and survival in bulk soil were studied. In the rhizosphere the uncontained control strain tended to become established at levels on the order of 10(5) to 10(6) CFU/g of soil regardless of the presence of 3-methylbenzoate. In the bulk soil the numbers of bacterial cells were 2 to 3 orders of magnitude lower. In planted soils the contained strain tended to disappear, but this tendency was more pronounced in the absence of 3-methylbenzoate and occurred faster in the summer assay than in the winter assay. We found no evidence of dispersal of the test strains outside the experimental plots.
Collapse
|
235
|
Duetz WA, Wind B, van Andel JG, Barnes MR, Williams PA, Rutgers M. Biodegradation kinetics of toluene, m-xylene, p-xylene and their intermediates through the upper TOL pathway in Pseudomonas putida (pWWO). Microbiology (Reading) 1998; 144:1669-1675. [DOI: 10.1099/00221287-144-6-1669] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas putida mt-2, harbouring TOL plasmid pWWO, is capable of degrading toluene and a range of di- and tri-alkylbenzenes. In this study, chemostat-grown cells (D = 0.05 h-1, toluene or m-xylene limitation) of this strain were used to assess the kinetics of the degradation of toluene, m-xylene, p-xylene, and a number of their pathway intermediates. The conversion kinetics for the three hydrocarbons showed significant differences: the maximal conversion rates were rather similar [11-14 mmol h-1 (g dry wt)-1] but the specific affinity (the slope of the v vs s curve near the origin) of the cells for toluene [1300 I (g dry wt)-1 h-1] was only 5% and 14% of those found for m-xylene and p-xylene, respectively. Consumption kinetics of mixtures of the hydrocarbons confirmed that xylenes are strongly preferred over toluene at low substrate concentrations. The maximum flux rates of pathway intermediates through the various steps of the TOL pathway as far as ring cleavage were also determined. Supply of 0-5 mM 3-methylbenzyl alcohol or 3-methylbenzaidehyde to fully induced cells led to the transient accumulation of 3-methylbenzoate. Accumulation of the corresponding carboxylic acid (benzoate) was also observed after pulses of benzyl alcohol and benzaldehyde, which are intermediates in toluene catabolism. Analysis of consumption and accumulation rates for the various intermediates showed that the maximal rates at which the initial monooxygenation step and the conversion of the carboxylic acids by toluate 1,2-dioxygenase may occur are two- to threefold lower than those measured for the two intermediate dehydrogenation steps.
Collapse
Affiliation(s)
- Wouter A. Duetz
- Institut für Biotechnologie, ETH Hönggerberg, HPT, CH 8093 Zürich, Switzerland
| | - Bea Wind
- Laboratory of Ecotoxicology, National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Johan G. van Andel
- Laboratory of Ecotoxicology, National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Michael R. Barnes
- School of Biological Sciences, University of Wales, Bangor, Gwynedd LL57 2UW, UK
| | - Peter A. Williams
- School of Biological Sciences, University of Wales, Bangor, Gwynedd LL57 2UW, UK
| | - Michiel Rutgers
- Laboratory of Ecotoxicology, National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
236
|
Salto R, Delgado A, Michán C, Marqués S, Ramos JL. Modulation of the function of the signal receptor domain of XylR, a member of a family of prokaryotic enhancer-like positive regulators. J Bacteriol 1998; 180:600-4. [PMID: 9457863 PMCID: PMC106927 DOI: 10.1128/jb.180.3.600-604.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The XylR protein controls expression from the Pseudomonas putida TOL plasmid upper pathway operon promoter (Pu) in response to aromatic effectors. XylR-dependent stimulation of transcription from a Pu::lacZ fusion shows different induction kinetics with different effectors. With toluene, activation followed a hyperbolic curve with an apparent K of 0.95 mM and a maximum beta-galactosidase activity of 2,550 Miller units. With o-nitrotoluene, in contrast, activation followed a sigmoidal curve with an apparent K of 0.55 mM and a Hill coefficient of 2.65. m-Nitrotoluene kept the XylR regulator in an inactive transcriptional form. Therefore, upon binding of an effector, the substituent on the aromatic ring leads to productive or unproductive XylR forms. The different transcriptional states of the XylR regulator are substantiated by XylR mutants. XylRE172K is a mutant regulator that is able to stimulate transcription from the Pu promoter in the presence of m-nitrotoluene; however, its response to m-aminotoluene was negligible, in contrast with the wild-type regulator. These results illustrate the importance of the electrostatic interactions in effector recognition and in the stabilization of productive and unproductive forms by the regulator upon aromatic binding. XylRD135N and XylRD135Q are mutant regulators that are able to stimulate transcription from Pu in the absence of effectors, whereas substitution of Glu for Asp135 in XylRD135E resulted in a mutant whose ability to recognize effectors was severely impaired. Therefore, the conformation of mutant XylRD135Q as well as XylRD135N seemed to mimic that of the wild-type regulator when effector binding occurred, whereas mutant XylRD135E seemed to be blocked in a conformation similar to that of wild-type XylR and XylRE172K upon binding to an inhibitor molecule such as m-nitrotoluene or m-aminotoluene.
Collapse
Affiliation(s)
- R Salto
- Department of Biochemistry, Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| | | | | | | | | |
Collapse
|
237
|
Bertoni G, Marqués S, de Lorenzo V. Activation of the toluene-responsive regulator XylR causes a transcriptional switch between sigma54 and sigma70 promoters at the divergent Pr/Ps region of the TOL plasmid. Mol Microbiol 1998; 27:651-9. [PMID: 9489676 DOI: 10.1046/j.1365-2958.1998.00715.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanism by which XylR, the toluene-responsive activator of the sigma54-dependent Pu and Ps promoters of the Pseudomonas TOL plasmid pWW0, downregulates its own sigma70 promoter Prhas been examined. An in vitro transcription system was developed in order to reproduce the repression of Probserved in cells of P. putida (pWW0) both in the presence and in the absence of the XylR inducer, benzyl alcohol. DNA templates bearing the two sigma70-RNA polymerase (RNAP) binding sites of Pr, which overlap the upstream activating sequences (UAS) for XylR in the divergent sigma54 promoter Ps, were transcribed in the presence of a constitutively active XylR variant deleted of its N-terminal domain (XylRdeltaA). The addition of ATP, known to trigger multimerization of the regulator at the UAS, enhanced the repression of Pr by XylR. Furthermore, we observed activation of the divergent sigma54 promoter Ps during Pr downregulation by XylRdeltaA. These results support the notion that activation of XylR by aromatic inducers in vivo triggers a transcriptional switch between Pr and Ps. Such a switch is apparently caused by the ATP-dependent multimerization and strong DNA binding of the protein required for activation of the sigma54 promoter. This device could reset the level of XylR expression during activation of the sigma54 Pu and Ps promoters of the TOL plasmid.
Collapse
Affiliation(s)
- G Bertoni
- Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|