201
|
Borgers JSW, Haanen JBAG. Cellular Therapy and Cytokine Treatments for Melanoma. Hematol Oncol Clin North Am 2021; 35:129-144. [PMID: 33759770 DOI: 10.1016/j.hoc.2020.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer immunotherapy plays an important role in the treatment of patients with advanced stage melanoma. Recombinant cytokines were the first tested and approved treatments; however, due to disappointing response rates and severe toxicities, their use has significantly decreased. More recently, adoptive cell transfer therapies have shown to be a promising new treatment strategy able to induce complete and durable remissions in patients with melanoma progressive on first-line treatment. This review provides an overview of the cellular therapies (tumor-infiltrating lymphocytes, T-cell receptor T cells, chimeric antigen receptor T cells) and cytokine treatments (interleukin-2 [IL-2], IL-15, IL-7, IL-10, IL-21, interferon alpha, granulocyte-macrophage colony-stimulating factor) for melanoma.
Collapse
Affiliation(s)
- Jessica S W Borgers
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - John B A G Haanen
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands.
| |
Collapse
|
202
|
Martínez Bedoya D, Dutoit V, Migliorini D. Allogeneic CAR T Cells: An Alternative to Overcome Challenges of CAR T Cell Therapy in Glioblastoma. Front Immunol 2021; 12:640082. [PMID: 33746981 PMCID: PMC7966522 DOI: 10.3389/fimmu.2021.640082] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as one of the major breakthroughs in cancer immunotherapy in the last decade. Outstanding results in hematological malignancies and encouraging pre-clinical anti-tumor activity against a wide range of solid tumors have made CAR T cells one of the most promising fields for cancer therapies. CAR T cell therapy is currently being investigated in solid tumors including glioblastoma (GBM), a tumor for which survival has only modestly improved over the past decades. CAR T cells targeting EGFRvIII, Her2, or IL-13Rα2 have been tested in GBM, but the first clinical trials have shown modest results, potentially due to GBM heterogeneity and to the presence of an immunosuppressive microenvironment. Until now, the use of autologous T cells to manufacture CAR products has been the norm, but this approach has several disadvantages regarding production time, cost, manufacturing delay and dependence on functional fitness of patient T cells, often reduced by the disease or previous therapies. Universal “off-the-shelf,” or allogeneic, CAR T cells is an alternative that can potentially overcome these issues, and allow for multiple modifications and CAR combinations to target multiple tumor antigens and avoid tumor escape. Advances in genome editing tools, especially via CRISPR/Cas9, might allow overcoming the two main limitations of allogeneic CAR T cells product, i.e., graft-vs.-host disease and host allorejection. Here, we will discuss how allogeneic CAR T cells could allow for multivalent approaches and alteration of the tumor microenvironment, potentially allowing the development of next generation therapies for the treatment of patients with GBM.
Collapse
Affiliation(s)
- Darel Martínez Bedoya
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Léman, Lausanne, Switzerland.,Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Léman, Lausanne, Switzerland.,Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Denis Migliorini
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Léman, Lausanne, Switzerland.,Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
203
|
Wiebking V, Lee CM, Mostrel N, Lahiri P, Bak R, Bao G, Roncarolo MG, Bertaina A, Porteus MH. Genome editing of donor-derived T-cells to generate allogenic chimeric antigen receptor-modified T cells: Optimizing αβ T cell-depleted haploidentical hematopoietic stem cell transplantation. Haematologica 2021; 106:847-858. [PMID: 32241852 PMCID: PMC7928014 DOI: 10.3324/haematol.2019.233882] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is an effective therapy for high-risk leukemias. In children, graft manipulation based on the selective removal of αβT cells and B cells has been shown to reduce the risk of acute and chronic graft-versus-host disease, thus allowing the use of haploidentical donors which expands the population of recipients in whom allogeneic hematopoietic stem cell transplantation can be used. Leukemic relapse, however, remains a challenge. T cells expressing chimeric antigen receptors can potently eliminate leukemia, including those in the central nervous system. We hypothesized that by engineering the donor αβT cells that are removed from the graft by genome editing to express a CD19-specific chimeric antigen receptor, while simultaneously inactivating the T-cell receptor, we could create a therapy that enhances the anti-leukemic efficacy of the stem cell transplant without increasing the risk of graft-versus-host disease. Using genome editing with Cas9 ribonucleoprotein and adeno-associated virus serotype 6, we integrated a CD19-specific chimeric antigen receptor inframe into the TRAC locus. More than 90% of cells lost T-cell receptor expression, while >75% expressed the chimeric antigen receptor. The initial product was further purified with less than 0.05% T-cell receptorpositive cells remaining. In vitro, the chimeric antigen receptor T cells efficiently eliminated target cells and produced high cytokine levels when challenged with CD19+ leukemia cells. In vivo, the gene-modified T cells eliminated leukemia without causing graft-versus-host disease in a xenograft model. Gene editing was highly specific with no evidence of off-target effects. These data support the concept that the addition of αβ T-cell-derived, genome-edited T cells expressing CD19-specific chimeric antigen receptors could enhance the anti-leukemic efficacy of αβT-celldepleted haploidentical hematopoietic stem cell transplantation without increasing the risk of graft-versus-host disease.
Collapse
Affiliation(s)
- Volker Wiebking
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ciaran M Lee
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Nathalie Mostrel
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Premanjali Lahiri
- Laboratory for Cell and Gene Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rasmus Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Alice Bertaina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
204
|
Mo F, Mamonkin M, Brenner MK, Heslop HE. Taking T-Cell Oncotherapy Off-the-Shelf. Trends Immunol 2021; 42:261-272. [PMID: 33536140 PMCID: PMC7914205 DOI: 10.1016/j.it.2021.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Abstract
Banked allogeneic or 'off-the-shelf' (OTS) T cells from healthy human donors are being developed to address the limitations of autologous cell therapies. Potential challenges of OTS T cell therapies are associated with their allogeneic origin and the possibility of graft-versus-host disease (GvHD) and host-versus-graft immune reactions. While the risk of GvHD from OTS T cells has been proved to be manageable in clinical studies, approaches to prevent immune rejection of OTS cells are at an earlier stage of development. We provide an overview of strategies to generate OTS cell therapies and mitigate alloreactivity-associated adverse events, with a focus on recent advances for preventing immune rejection.
Collapse
Affiliation(s)
- Feiyan Mo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
205
|
Dasgupta I, Flotte TR, Keeler AM. CRISPR/Cas-Dependent and Nuclease-Free In Vivo Therapeutic Gene Editing. Hum Gene Ther 2021; 32:275-293. [PMID: 33750221 PMCID: PMC7987363 DOI: 10.1089/hum.2021.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022] Open
Abstract
Precise gene manipulation by gene editing approaches facilitates the potential to cure several debilitating genetic disorders. Gene modification stimulated by engineered nucleases induces a double-stranded break (DSB) in the target genomic locus, thereby activating DNA repair mechanisms. DSBs triggered by nucleases are repaired either by the nonhomologous end-joining or the homology-directed repair pathway, enabling efficient gene editing. While there are several ongoing ex vivo genome editing clinical trials, current research underscores the therapeutic potential of CRISPR/Cas-based (clustered regularly interspaced short palindrome repeats-associated Cas nuclease) in vivo gene editing. In this review, we provide an overview of the CRISPR/Cas-mediated in vivo genome therapy applications and explore their prospective clinical translatability to treat human monogenic disorders. In addition, we discuss the various challenges associated with in vivo genome editing technologies and strategies used to circumvent them. Despite the robust and precise nuclease-mediated gene editing, a promoterless, nuclease-independent gene targeting strategy has been utilized to evade the drawbacks of the nuclease-dependent system, such as off-target effects, immunogenicity, and cytotoxicity. Thus, the rapidly evolving paradigm of gene editing technologies will continue to foster the progress of gene therapy applications.
Collapse
Affiliation(s)
- Ishani Dasgupta
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Terence R. Flotte
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Allison M. Keeler
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| |
Collapse
|
206
|
Abstract
ABSTRACT Banked chimeric antigen receptor (CAR) T cells immediately available for off-the-shelf (OTS) application can solve key limitations of patient-specific CAR T-cell products while retaining their potency. The allogeneic nature of OTS cell therapies requires additional measures to minimize graft-versus-host disease and host-versus-graft immune rejection in immunocompetent recipients. In this review, we discuss engineering and manufacturing strategies aimed at minimizing unwanted interactions between allogeneic CAR T cells and the host. Overcoming these limitations will improve safety and antitumor potency of OTS CAR T cells and facilitate their wider use in cancer therapy.
Collapse
Affiliation(s)
- Norihiro Watanabe
- From the Center for Cell and Gene Therapy, Baylor College of Medicine; Houston Methodist Hospital; and Texas Children's Hospital, Houston, TX
| | | |
Collapse
|
207
|
Hu Y, Zhou Y, Zhang M, Ge W, Li Y, Yang L, Wei G, Han L, Wang H, Yu S, Chen Y, Wang Y, He X, Zhang X, Gao M, Yang J, Li X, Ren J, Huang H. CRISPR/Cas9-Engineered Universal CD19/CD22 Dual-Targeted CAR-T Cell Therapy for Relapsed/Refractory B-cell Acute Lymphoblastic Leukemia. Clin Cancer Res 2021; 27:2764-2772. [PMID: 33627493 DOI: 10.1158/1078-0432.ccr-20-3863] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/03/2020] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Autologous chimeric antigen receptor T (CAR-T) cell therapy is an effective treatment for relapsed/refractory acute lymphoblastic leukemia (r/r ALL). However, certain characteristics of autologous CAR-T cells can delay treatment availability. Relapse caused by antigen escape after single-targeted CAR-T therapy is another issue. Therefore, we aim to develop CRISPR-edited universal off-the-shelf CD19/CD22 dual-targeted CAR-T cells as a novel therapy for r/r ALL. PATIENTS AND METHODS In this open-label dose-escalation phase I study, universal CD19/CD22-targeting CAR-T cells (CTA101) with a CRISPR/Cas9-disrupted TRAC region and CD52 gene to avoid host immune-mediated rejection were infused in patients with r/r ALL. Safety, efficacy, and CTA101 cellular kinetics were evaluated. RESULTS CRISPR/Cas9 technology mediated highly efficient, high-fidelity gene editing and production of universal CAR-T cells. No gene editing-associated genotoxicity or chromosomal translocation was observed. Six patients received CTA101 infusions at doses of 1 (3 patients) and 3 (3 patients) × 106 CAR+ T cells/kg body weight. Cytokine release syndrome occurred in all patients. No dose-limiting toxicity, GvHD, neurotoxicity, or genome editing-associated adverse events have occurred to date. The complete remission (CR) rate was 83.3% on day 28 after CTA101 infusion. With a median follow-up of 4.3 months, 3 of the 5 patients who achieved CR or CR with incomplete hematologic recovery (CR/CRi) remained minimal residual disease (MRD) negative. CONCLUSIONS CRISPR/Cas9-engineered universal CD19/CD22 CAR-T cells exhibited a manageable safety profile and prominent antileukemia activity. Universal dual-targeted CAR-T cell therapy may offer an alternative therapy for patients with r/r ALL.
Collapse
Affiliation(s)
- Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.,Institute of Hematology, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, P.R. China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, P.R. China
| | - Yali Zhou
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.,Institute of Hematology, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, P.R. China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, P.R. China
| | - Wengang Ge
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.,Institute of Hematology, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, P.R. China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, P.R. China
| | - Li Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.,Institute of Hematology, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, P.R. China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, P.R. China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.,Institute of Hematology, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, P.R. China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, P.R. China
| | - Lu Han
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Hao Wang
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Shuhui Yu
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Yi Chen
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Yanbin Wang
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Xiaohong He
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | | | - Ming Gao
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Jingjing Yang
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Xiuju Li
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Jiangtao Ren
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China. .,Institute of Hematology, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, P.R. China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, P.R. China
| |
Collapse
|
208
|
A Review of Clinical Outcomes of CAR T-Cell Therapies for B-Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:ijms22042150. [PMID: 33670075 PMCID: PMC7926700 DOI: 10.3390/ijms22042150] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction: Treatment of relapsed and refractory (R/R) B acute lymphoblastic leukemia (B-ALL) represents an unmet medical need in children and adults. Adoptive T cells engineered to express a chimeric antigen receptor (CAR-T) is emerging as an effective technique for treating these patients. Areas covered: Efficacy and safety of CAR-T therapy in R/R B-ALL patients. Expert opinion: CD19 CAR-T infusion induce high CR rates in patients with poor prognosis and few therapeutic options, while real-life data demonstrate similar results with an interestingly lower incidence of grade 3/4 toxicity. Nevertheless, despite impressive in-depth responses, more than half of patients will experience a relapse. Therefore, rather than using CAR-T cell therapy as a stand-alone option, consolidation with allogeneic stem-cell transplant (Allo-SCT) after CAR-T treatment might increase long-term outcome. Moreover, CD19 is one target, but several other targets are being examined, such as CD20 and CD22 and dual-targeting CARs or combination therapy. Another issue is the time consuming process of CAR-T engineering. New platforms have shortened the CAR-T cell manufacturing process, and studies are underway to evaluate the effectiveness. Another way to mitigate waiting is the development of allogeneic “off the shelf” therapy. In conclusion, CD19-targeted CAR-modified T-cell therapy has shown unprecedented results in patients without curative options. Future work focusing on target identification, toxicity management and reducing manufacturing time will broaden the clinical applicability and bring this exciting therapy to more patients, with longer-term remissions without additional Allo-SCT.
Collapse
|
209
|
Randhawa S. CRISPR-Cas9 in cancer therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:129-163. [PMID: 34127191 DOI: 10.1016/bs.pmbts.2021.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a disease mainly caused by an accumulation of mutations in cells. Consequently, correcting those genetic aberrations could be a potential treatment strategy. The traditional route for cancer drug development is tedious, laborious, and time-consuming. Due to target identification, drug formulation, pre-clinical testing, clinical testing, and regulatory hurdles, on average, it takes 10-15 years for a cancer drug to go from target discovery to a marketable oncology drug. The advent of CRISPR-Cas9 technology has greatly expedited this procedure. CRISPR-Cas9 has single-handedly accelerated target identification and pre-clinical testing. Furthermore, CRISPR-Cas9 has also been used in ex vivo editing of T-cells to specifically target tumor cells. In this chapter, we will discuss the various ways in which CRISPR-Cas9 has been used for the betterment of the cancer drug development process. Additionally, we will discuss various ways in which it is currently being used as therapy and the drawbacks which restrict the use of this groundbreaking technology as direct therapy.
Collapse
|
210
|
Current State of the Art of Allogeneic CAR Approaches - Pile 'Em High and Sell 'Em Cheap. J Pharm Sci 2021; 110:1909-1914. [PMID: 33577827 DOI: 10.1016/j.xphs.2021.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
The advent and rapid propagation of Chimeric Antigen Receptor (CAR)-based therapeutics in recent years has taken the oncology field by storm and delivered considerable benefit to cancer patients, many of whom previously had no other treatment options available to them. CAR-based therapies are now a bona fide therapeutic modality in the fight against cancer, along with more "traditional" treatments, such as small molecule and antibody drugs. For the technology to take the next step and reach much larger numbers of patients in need, it will be necessary for those treatments to become "off-the-shelf" offering patients a standardised, consistent, and cost-effective product. This article offers an overview of the evolution and development options for off-the-shelf CAR-based treatments, the advantages and disadvantages of the various approaches, along with key optimisation parameters that must be considered.
Collapse
|
211
|
Abstract
Cancer is a major burden on the healthcare system, and new therapies are needed. Recently, the development of immunotherapies, which aim to boost or use the immune system, or its constituents, as a tool to fight malignant cells, has provided a major new tool in the arsenal of clinicians and has revolutionized the treatment of many cancers.Cellular immunotherapies are based on the administration of living cells to patients and have developed hugely, especially since 2010 when Sipuleucel-T (Provenge), a DC vaccine, was the first cellular immunotherapy to be approved by the FDA. The ensuing years have seen two further cellular immunotherapies gain FDA approval: tisagenlecleucel (Kymriah) and axicabtagene ciloleucel (Yescarta).This review will give an overview of the principles of immunotherapies before focusing on the major forms of cellular immunotherapies individually, T cell-based, natural killer (NK) cell-based and dendritic cell (DC)-based, as well as detailing some of the clinical trials relevant to each therapy.
Collapse
Affiliation(s)
- Conall Hayes
- School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
212
|
Mosti L, Langner LM, Chmielewski KO, Arbuthnot P, Alzubi J, Cathomen T. Targeted multi-epitope switching enables straightforward positive/negative selection of CAR T cells. Gene Ther 2021; 28:602-612. [PMID: 33526841 PMCID: PMC8455323 DOI: 10.1038/s41434-021-00220-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/11/2020] [Accepted: 01/15/2021] [Indexed: 12/27/2022]
Abstract
Chimeric antigen receptor (CAR) T cell technology has enabled successfully novel concepts to treat cancer patients, with substantial remission rates in lymphoid malignancies. This cell therapy is based on autologous T lymphocytes that are genetically modified to express a CAR that recognizes tumor-associated antigens and mediates the elimination of the respective tumor cells. Current limitations include laborious manufacturing procedures as well as severe immunological side effects upon administration of CAR T cells. To address these limitations, we integrated RQR8, a multi-epitope molecule harboring a CD34 epitope and two CD20 mimotopes, alongside a CD19-targeting CAR, into the CD52 locus. Using CRISPR-Cas9 and adeno-associated virus-based donor vectors, some 60% of genome-edited T cells were CAR+/CD20+/CD34+/CD52− without further selection. This could be increased to >95% purity after CD34 tag-based positive selection. These epitope-switched CAR T cells retained cell killing competence against CD19+ tumor cells, and were resistant to alemtuzumab (anti-CD52) but sensitive to rituximab (anti-CD20) in complement-dependent cytotoxicity assays. In conclusion, gene editing-based multiple epitope switching represents a promising development with the potential to improve both the manufacturing procedure as well as the clinical safety of CAR T cells.
Collapse
Affiliation(s)
- Laura Mosti
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany.,Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lukas M Langner
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany.,M.D. Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kay O Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany.,Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jamal Alzubi
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany. .,Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
213
|
Kamali E, Rahbarizadeh F, Hojati Z, Frödin M. CRISPR/Cas9-mediated knockout of clinically relevant alloantigenes in human primary T cells. BMC Biotechnol 2021; 21:9. [PMID: 33514392 PMCID: PMC7844963 DOI: 10.1186/s12896-020-00665-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
Background The ability of CRISPR/Cas9 to mutate any desired genomic locus is being increasingly explored in the emerging area of cancer immunotherapy. In this respect, current efforts are mostly focused on the use of autologous (i.e. patient-derived) T cells. The autologous approach, however, has drawbacks in terms of manufacturing time, cost, feasibility and scalability that can affect therapeutic outcome or wider clinical application. The use of allogeneic T cells from healthy donors may overcome these limitations. For this strategy to work, the endogenous T cell receptor (TCR) needs to be knocked out in order to reduce off-tumor, graft-versus-host-disease (GvHD). Furthermore, CD52 may be knocked out in the donor T cells, since this leaves them resistant to the commonly used anti-CD52 monoclonal antibody lymphodepletion regimen aiming to suppress rejection of the infused T cells by the recipient. Despite the great prospect, genetic manipulation of human T cells remains challenging, in particular how to deliver the engineering reagents: virus-mediated delivery entails the inherent risk of altering cancer gene expression by the genomically integrated CRISPR/Cas9. This is avoided by delivery of CRISPR/Cas9 as ribonucleoproteins, which, however, are fragile and technically demanding to produce. Electroporation of CRISPR/Cas9 expression plasmids would bypass the above issues, as this approach is simple, the reagents are robust and easily produced and delivery is transient. Results Here, we tested knockout of either TCR or CD52 in human primary T cells, using electroporation of CRISPR/Cas9 plasmids. After validating the CRISPR/Cas9 constructs in human 293 T cells by Tracking of Indels by Decomposition (TIDE) and Indel Detection by Amplicon Analysis (IDAA) on-target genomic analysis, we evaluated their efficacy in primary T cells. Four days after electroporation with the constructs, genomic analysis revealed a knockout rate of 12–14% for the two genes, which translated into 7–8% of cells showing complete loss of surface expression of TCR and CD52 proteins, as determined by flow cytometry analysis. Conclusion Our results demonstrate that genomic knockout by electroporation of plasmids encoding CRISPR/Cas9 is technically feasible in human primary T cells, albeit at low efficiency.
Collapse
Affiliation(s)
- Elahe Kamali
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Zohreh Hojati
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Morten Frödin
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
214
|
Hoerster K, Uhrberg M, Wiek C, Horn PA, Hanenberg H, Heinrichs S. HLA Class I Knockout Converts Allogeneic Primary NK Cells Into Suitable Effectors for "Off-the-Shelf" Immunotherapy. Front Immunol 2021; 11:586168. [PMID: 33584651 PMCID: PMC7878547 DOI: 10.3389/fimmu.2020.586168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Cellular immunotherapy using chimeric antigen receptors (CARs) so far has almost exclusively used autologous peripheral blood-derived T cells as immune effector cells. However, harvesting sufficient numbers of T cells is often challenging in heavily pre-treated patients with malignancies and perturbed hematopoiesis and perturbed hematopoiesis. Also, such a CAR product will always be specific for the individual patient. In contrast, NK cell infusions can be performed in non-HLA-matched settings due to the absence of alloreactivity of these innate immune cells. Still, the infused NK cells are subject to recognition and rejection by the patient's immune system, thereby limiting their life-span in vivo and undermining the possibility for multiple infusions. Here, we designed genome editing and advanced lentiviral transduction protocols to render primary human NK cells unsusceptible/resistant to an allogeneic response by the recipient's CD8+ T cells. After knocking-out surface expression of HLA class I molecules by targeting the B2M gene via CRISPR/Cas9, we also co-expressed a single-chain HLA-E molecule, thereby preventing NK cell fratricide of B2M-knockout (KO) cells via "missing self"-induced lysis. Importantly, these genetically engineered NK cells were functionally indistinguishable from their unmodified counterparts with regard to their phenotype and their natural cytotoxicity towards different AML cell lines. In co-culture assays, B2M-KO NK cells neither induced immune responses of allogeneic T cells nor re-activated allogeneic T cells which had been expanded/primed using irradiated PBMNCs of the respective NK cell donor. Our study demonstrates the feasibility of genome editing in primary allogeneic NK cells to diminish their recognition and killing by mismatched T cells and is an important prerequisite for using non-HLA-matched primary human NK cells as readily available, "off-the-shelf" immune effectors for a variety of immunotherapy indications in human cancer.
Collapse
Affiliation(s)
- Keven Hoerster
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology & Head/Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Essen, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology & Head/Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Pediatrics III, University Children’s Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
215
|
Mukherjee S, Reddy O, Panch S, Stroncek D. Establishment of a cell processing laboratory to support hematopoietic stem cell transplantation and chimeric antigen receptor (CAR)-T cell therapy. Transfus Apher Sci 2021; 60:103066. [PMID: 33472742 DOI: 10.1016/j.transci.2021.103066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cell processing laboratories are an important part of cancer treatment centers. Cell processing laboratories began by supporting hematopoietic stem cell (HSC) transplantation programs. These laboratories adapted closed bag systems, centrifuges, sterile connecting devices and other equipment used in transfusion services/blood banks to remove red blood cells and plasma from marrow and peripheral blood stem cells products. The success of cellular cancer immunotherapies such as Chimeric Antigen Receptor (CAR) T-cells has increased the importance of cell processing laboratories. Since many of the diseases successfully treated by CAR T-cell therapy are also treated by HSC transplantation and since HSC transplantation teams are well suited to manage patients treated with CAR T-cells, many cell processing laboratories have begun to produce CAR T-cells. The methods that have been used to process HSCs have been modified for T-cell enrichment, culture, stimulation, transduction and expansion for CAR T-cell production. While processing laboratories are well suited to manufacture CAR T-cells and other cellular therapies, producing these therapies is challenging. The manufacture of cellular therapies requires specialized facilities which are costly to build and maintain. The supplies and reagents, especially vectors, can also be expensive. Finally, highly skilled staff are required. The use of automated equipment for cell production may reduce labor requirements and the cost of facilities. The steps used to produce CAR T-cells are reviewed, as well as various strategies for establishing a laboratory to manufacture these cells.
Collapse
Affiliation(s)
- Somnath Mukherjee
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA; Department of Transfusion Medicine, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odisha, India
| | - Opal Reddy
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Sandhya Panch
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - David Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA.
| |
Collapse
|
216
|
Heslop HE, Sharma S, Rooney CM. Adoptive T-Cell Therapy for Epstein-Barr Virus-Related Lymphomas. J Clin Oncol 2021; 39:514-524. [PMID: 33434061 DOI: 10.1200/jco.20.01709] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
| | - Sandhya Sharma
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
| |
Collapse
|
217
|
Caldwell KJ, Gottschalk S, Talleur AC. Allogeneic CAR Cell Therapy-More Than a Pipe Dream. Front Immunol 2021; 11:618427. [PMID: 33488631 PMCID: PMC7821739 DOI: 10.3389/fimmu.2020.618427] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) has shown promise, particularly for the treatment of hematological malignancies. To date, the majority of clinically evaluated CAR cell products have been derived from autologous immune cells. While this strategy can be effective it also imposes several constraints regarding logistics. This includes i) availability of center to perform leukapheresis, ii) necessity for shipment to and from processing centers, and iii) time requirements for product manufacture and clinical release testing. In addition, previous cytotoxic therapies can negatively impact the effector function of autologous immune cells, which may then affect efficacy and/or durability of resultant CAR products. The use of allogeneic CAR cell products generated using cells from healthy donors has the potential to overcome many of these limitations, including through generation of “off the shelf” products. However, allogeneic CAR cell products come with their own challenges, including potential to induce graft-versus-host-disease, as well as risk of immune-mediated rejection by the host. Here we will review promises and challenges of allogeneic CAR immunotherapies, including those being investigated in preclinical models and/or early phase clinical studies.
Collapse
Affiliation(s)
- Kenneth J Caldwell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Aimee C Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
218
|
Base-edited CAR T cells for combinational therapy against T cell malignancies. Leukemia 2021; 35:3466-3481. [PMID: 34035409 PMCID: PMC8632682 DOI: 10.1038/s41375-021-01282-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/20/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
Targeting T cell malignancies using chimeric antigen receptor (CAR) T cells is hindered by 'T v T' fratricide against shared antigens such as CD3 and CD7. Base editing offers the possibility of seamless disruption of gene expression of problematic antigens through creation of stop codons or elimination of splice sites. We describe the generation of fratricide-resistant T cells by orderly removal of TCR/CD3 and CD7 ahead of lentiviral-mediated expression of CARs specific for CD3 or CD7. Molecular interrogation of base-edited cells confirmed elimination of chromosomal translocations detected in conventional Cas9 treated cells. Interestingly, 3CAR/7CAR co-culture resulted in 'self-enrichment' yielding populations 99.6% TCR-/CD3-/CD7-. 3CAR or 7CAR cells were able to exert specific cytotoxicity against leukaemia lines with defined CD3 and/or CD7 expression as well as primary T-ALL cells. Co-cultured 3CAR/7CAR cells exhibited highest cytotoxicity against CD3 + CD7 + T-ALL targets in vitro and an in vivo human:murine chimeric model. While APOBEC editors can reportedly exhibit guide-independent deamination of both DNA and RNA, we found no problematic 'off-target' activity or promiscuous base conversion affecting CAR antigen-specific binding regions, which may otherwise redirect T cell specificity. Combinational infusion of fratricide-resistant anti-T CAR T cells may enable enhanced molecular remission ahead of allo-HSCT for T cell malignancies.
Collapse
|
219
|
Automated generation of gene-edited CAR T cells at clinical scale. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 20:379-388. [PMID: 33575430 PMCID: PMC7848723 DOI: 10.1016/j.omtm.2020.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
The potential of adoptive cell therapy can be extended when combined with genome editing. However, variation in the quality of the starting material and the different manufacturing steps are associated with production failure and product contamination. Here, we present an automated T cell engineering process to produce off-the-shelf chimeric antigen receptor (CAR) T cells on an extended CliniMACS Prodigy platform containing an in-line electroporation unit. This setup was used to combine lentiviral delivery of a CD19-targeting CAR with transfer of mRNA encoding a TRAC locus-targeting transcription activator-like effector nuclease (TALEN). In three runs at clinical scale, the T cell receptor (TCR) alpha chain encoding TRAC locus was disrupted in >35% of cells with high cell viability (>90%) and no detectable off-target activity. A final negative selection step allowed the generation of TCRα/β-free CAR T cells with >99.5% purity. These CAR T cells proliferated well, maintained a T cell memory phenotype, eliminated CD19-positive tumor cells, and released the expected cytokines when exposed to B cell leukemia cells. In conclusion, we established an automated, good manufacturing practice (GMP)-compliant process that integrates lentiviral transduction with electroporation of TALEN mRNA to produce functional TCRα/β-free CAR19 T cells at clinical scale.
Collapse
|
220
|
Abstract
Multiple myeloma remains an incurable disease despite great advances in its therapeutic landscape. Increasing evidence supports the belief that immune dysfunction plays an important role in the disease pathogenesis, progression, and drug resistance. Recent efforts have focused on harnessing the immune system to exert anti-myeloma effects with encouraging outcomes. First-in-class anti-CD38 monoclonal antibody, daratumumab, now forms part of standard treatment regimens in relapsed and refractory settings and is shifting to front-line treatments. However, a non-negligible number of patients will progress and be triple refractory from the first line of treatment. Antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptors (CAR) are being developed in a heavily pretreated setting with outstanding results. Belantamab mafodotin-blmf has already received approval and other anti-B-cell maturation antigen (BCMA) therapies (CARs and bispecific antibodies are expected to be integrated in therapeutic options against myeloma soon. Nonetheless, immunotherapy faces different challenges in terms of efficacy and safety, and manufacturing and economic drawbacks associated with such a line of therapy pose additional obstacles to broadening its use. In this review, we described the most important clinical data on immunotherapeutic agents, delineated the limitations that lie in immunotherapy, and provided potential insights to overcome such issues.
Collapse
|
221
|
Abstract
PURPOSE OF REVIEW A number of clinical trials are currently testing chimeric antigen receptor (CAR) and T cell receptor (TCR) engineered T cells for the treatment of haematologic malignancies and selected solid tumours, and CD19-CAR-T cells have produced impressive clinical responses in B-cell malignancies. Here, we summarize the current state of the field, highlighting the key aspects required for the optimal application of CAR and TCR-engineered T cells for cancer immunotherapy. RECENT FINDINGS Toxicities, treatment failure and disease recurrence have been observed at different rates and kinetics. Several strategies have been designed to overcome these hurdles: the identification and combination of known and new antigens, together with the combination of immunotherapeutic and classical approaches may overcome cancer immune evasion. New protocols for genetic modification and T cell culture may improve the overall fitness of cellular products and their resistance to hostile tumour immunomodulatory signals. Finally, the schedules of T cell administration and toxicity management have been adapted to improve the safety of this transformative therapeutic approach. SUMMARY In order to develop effective adoptive T cell treatments for cancer, therapeutic optimization of engineered CAR and TCR T cells is crucial, by simultaneously focusing on intrinsic and extrinsic factors. This review focuses on the innovative approaches designed and tested to overcome the hurdles encountered so far in the clinical practice, with new excitement on novel laboratory insights and ongoing clinical investigations.
Collapse
|
222
|
Benjamin R, Graham C, Yallop D, Jozwik A, Mirci-Danicar OC, Lucchini G, Pinner D, Jain N, Kantarjian H, Boissel N, Maus MV, Frigault MJ, Baruchel A, Mohty M, Gianella-Borradori A, Binlich F, Balandraud S, Vitry F, Thomas E, Philippe A, Fouliard S, Dupouy S, Marchiq I, Almena-Carrasco M, Ferry N, Arnould S, Konto C, Veys P, Qasim W. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet 2020; 396:1885-1894. [PMID: 33308471 PMCID: PMC11773457 DOI: 10.1016/s0140-6736(20)32334-5] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Genome-edited donor-derived allogeneic anti-CD19 chimeric antigen receptor (CAR) T cells offer a novel form of CAR-T-cell product that is available for immediate clinical use, thereby broadening access and applicability. UCART19 is one such product investigated in children and adults with relapsed or refractory B-cell acute lymphoblastic leukaemia. Two multicentre phase 1 studies aimed to investigate the feasibility, safety, and antileukaemic activity of UCART19 in children and adults with relapsed or refractory B-cell acute lymphoblastic leukaemia. METHODS We enrolled paediatric or adult patients in two ongoing, multicentre, phase 1 clinical trials to evaluate the safety and antileukaemic activity of UCART19. All patients underwent lymphodepletion with fludarabine and cyclophosphamide with or without alemtuzumab, then children received UCART19 at 1·1-2·3 × 106 cells per kg and adults received UCART19 doses of 6 × 106 cells, 6-8 × 107 cells, or 1·8-2·4 × 108 cells in a dose-escalation study. The primary outcome measure was adverse events in the period between first infusion and data cutoff. These studies were registered at ClinicalTrials.gov, NCT02808442 and NCT02746952. FINDINGS Between June 3, 2016, and Oct 23, 2018, seven children and 14 adults were enrolled in the two studies and received UCART19. Cytokine release syndrome was the most common adverse event and was observed in 19 patients (91%); three (14%) had grade 3-4 cytokine release syndrome. Other adverse events were grade 1 or 2 neurotoxicity in eight patients (38%), grade 1 acute skin graft-versus-host disease in two patients (10%), and grade 4 prolonged cytopenia in six patients (32%). Two treatment-related deaths occurred; one caused by neutropenic sepsis in a patient with concurrent cytokine release syndrome and one from pulmonary haemorrhage in a patient with persistent cytopenia. 14 (67%) of 21 patients had a complete response or complete response with incomplete haematological recovery 28 days after infusion. Patients not receiving alemtuzumab (n=4) showed no UCART19 expansion or antileukaemic activity. The median duration of response was 4·1 months with ten (71%) of 14 responders proceeding to a subsequent allogeneic stem-cell transplant. Progression-free survival at 6 months was 27%, and overall survival was 55%. INTERPRETATION These two studies show, for the first time, the feasibility of using allogeneic, genome-edited CAR T cells to treat patients with aggressive leukaemia. UCART19 exhibited in-vivo expansion and antileukaemic activity with a manageable safety profile in heavily pretreated paediatric and adult patients with relapsed or refractory B-cell acute lymphoblastic leukaemia. The results this study are an encouraging step forward for the field of allogeneic CAR T cells, and UCART19 offers the opportunity to treat patients with rapidly progressive disease and where autologous CAR-T-cell therapy is unavailable. FUNDING Servier.
Collapse
Affiliation(s)
- Reuben Benjamin
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK; School of Cancer and Pharmaceutical Sciences, Kings College London, London, UK.
| | - Charlotte Graham
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK; School of Cancer and Pharmaceutical Sciences, Kings College London, London, UK
| | - Deborah Yallop
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Agnieszka Jozwik
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK; School of Cancer and Pharmaceutical Sciences, Kings College London, London, UK
| | - Oana C Mirci-Danicar
- Infection, Immunity & Inflammation Department, Great Ormond Street Hospital, London, UK
| | - Giovanna Lucchini
- Infection, Immunity & Inflammation Department, Great Ormond Street Hospital, London, UK
| | - Danielle Pinner
- Infection, Immunity & Inflammation Department, Great Ormond Street Hospital, London, UK
| | - Nitin Jain
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicolas Boissel
- Department of Hematology, Hôpital Saint Louis, Paris, France
| | - Marcela V Maus
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew J Frigault
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - André Baruchel
- Department of Pediatric Hematology, K Hôpital Universitaire Robert Debré, Paris, France
| | - Mohamad Mohty
- INSERM UMRS 938, Sorbonne University, Saint-Antoine Hospital, Paris, France
| | | | - Florence Binlich
- Institut de Recherches Internationales Servier, Suresnes, France
| | | | - Fabien Vitry
- Institut de Recherches Internationales Servier, Suresnes, France; Laboratoires Davolterra, Paris, France
| | - Elisabeth Thomas
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Anne Philippe
- Institut de Recherches Internationales Servier, Suresnes, France; Pfizer, Paris, France
| | - Sylvain Fouliard
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Sandra Dupouy
- Institut de Recherches Internationales Servier, Suresnes, France
| | | | | | - Nicolas Ferry
- Institut de Recherches Internationales Servier, Suresnes, France
| | | | - Cyril Konto
- Allogene Therapeutics, South San Francisco, CA, USA
| | - Paul Veys
- Infection, Immunity & Inflammation Department, Great Ormond Street Hospital, London, UK
| | - Waseem Qasim
- Infection, Immunity & Inflammation Department, Great Ormond Street Hospital, London, UK
| |
Collapse
|
223
|
Preece R, Pavesi A, Gkazi SA, Stegmann KA, Georgiadis C, Tan ZM, Aw JYJ, Maini MK, Bertoletti A, Qasim W. CRISPR-Mediated Base Conversion Allows Discriminatory Depletion of Endogenous T Cell Receptors for Enhanced Synthetic Immunity. Mol Ther Methods Clin Dev 2020; 19:149-161. [PMID: 33102612 PMCID: PMC7549055 DOI: 10.1016/j.omtm.2020.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Emerging base editing technology exploits CRISPR RNA-guided DNA modification effects for highly specific C > T conversion, which has been used to efficiently disrupt gene expression. These tools can enhance synthetic T cell immunity by restricting specificity, addressing histocompatibility leukocyte antigen (HLA) barriers, and promoting persistence. We report lentiviral delivery of a hepatitis B-virus (HBV)-specific recombinant T cell receptor (rTCR) and a linked CRISPR single-guide RNA for simultaneous disruption of endogenous TCRs (eTCRs) when combined with transient cytosine deamination. Discriminatory depletion of eTCR and coupled expression of rTCR resulted in enrichment of HBV-specific populations from 55% (SEM, ±2.4%) to 95% (SEM, ±0.5%). Intensity of rTCR expression increased 1.8- to 2.9-fold compared to that in cells retaining their competing eTCR, and increased cytokine production and killing of HBV antigen-expressing hepatoma cells in a 3D microfluidic model were exhibited. Molecular signatures confirmed that seamless conversion of C > T (G > A) had created a premature stop codon in TCR beta constant 1/2 loci, with no notable activity at predicted off-target sites. Thus, targeted disruption of eTCR by cytosine deamination and discriminatory enrichment of antigen-specific T cells offers the prospect of enhanced, more specific T cell therapies against HBV-associated hepatocellular carcinoma (HCC) as well as other viral and tumor antigens.
Collapse
Affiliation(s)
- Roland Preece
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR) 61 Biopolis Drive, Singapore 138673, Singapore
| | - Soragia Athina Gkazi
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Kerstin A. Stegmann
- UCL Division of Infection and Immunity, The Rayne Building, 5 University Street, London WC1E 6EJ, UK
| | - Christos Georgiadis
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Zhi Ming Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR) 61 Biopolis Drive, Singapore 138673, Singapore
| | - Jia Ying Joey Aw
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR) 61 Biopolis Drive, Singapore 138673, Singapore
| | - Mala K. Maini
- UCL Division of Infection and Immunity, The Rayne Building, 5 University Street, London WC1E 6EJ, UK
| | - Antonio Bertoletti
- Program Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Singapore Immunology Network (SigN), Agency of Science Technology and Research (A∗STAR), Singapore, Singapore
| | - Waseem Qasim
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
224
|
Zhang Y, Li P, Fang H, Wang G, Zeng X. Paving the Way Towards Universal Chimeric Antigen Receptor Therapy in Cancer Treatment: Current Landscape and Progress. Front Immunol 2020; 11:604915. [PMID: 33362790 PMCID: PMC7758418 DOI: 10.3389/fimmu.2020.604915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor (CAR) therapy has been proved effective in a stream of clinical trials, especially in hematologic malignancies. However, current CAR therapy is highly personalized as cells used are derived from patients themselves, which can be costly, time-consuming, and sometimes fails to achieve optimal therapeutic results due to poor quality/quantity of patient-derived cells. On the contrary, universal CAR therapy, which is based on healthy individuals’ cells, circumvents several limitations of current autologous CAR therapy. To achieve the universality of CAR therapy, the allogeneic cell transplantation related issues, such as graft-versus-host disease (GVHD) and host-versus-graft activities (HVGA), must be addressed. In this review, we focus on current progress regarding GVHD and HVGA in the universal CAR therapy, followed by a universal CAR design that may be applied to allogeneic cells and a summary of key clinical trials in this field. This review may provide valuable insights into the future design of universal CAR products.
Collapse
Affiliation(s)
- Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyu Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guocan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
225
|
Gaissmaier L, Christopoulos P. Immune Modulation in Lung Cancer: Current Concepts and Future Strategies. Respiration 2020; 99:1-27. [PMID: 33291116 DOI: 10.1159/000510385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy represents the most dynamic field of biomedical research currently, with thoracic immuno-oncology as a forerunner. PD-(L)1 inhibitors are already part of standard first-line treatment for both non-small-cell and small-cell lung cancer, while unprecedented 5-year survival rates of 15-25% have been achieved in pretreated patients with metastatic disease. Evolving strategies are mainly aiming for improvement of T-cell function, increase of immune activation in the tumor microenvironment (TME), and supply of tumor-reactive lymphocytes. Several novel therapeutics have demonstrated preclinical efficacy and are increasingly used in rational combinations within clinical trials. Two overarching trends dominate: extension of immunotherapy to earlier disease stages, mainly as neoadjuvant treatment, and a shift of focus towards multivalent, individualized, mutatome-based antigen-specific modalities, mainly adoptive cell therapies and cancer vaccines. The former ensures ample availability of treated and untreated patient samples, the latter facilitates deeper mechanistic insights, and both in combination build an overwhelming force that is accelerating progress and driving the greatest revolution cancer medicine has seen so far. Today, immune modulation represents the most potent therapeutic modality in oncology, the most important topic in clinical and translational cancer research, and arguably our greatest, meanwhile justified hope for achieving cure of pulmonary neoplasms and other malignancies in the next future.
Collapse
Affiliation(s)
- Lena Gaissmaier
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany,
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany,
| |
Collapse
|
226
|
Berdeja JG. Practical aspects of building a new immunotherapy program: the future of cell therapy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:579-584. [PMID: 33275680 PMCID: PMC7727545 DOI: 10.1182/hematology.2020000144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cellular-redirecting therapies, including bispecific T-cell engagers and chimeric antigen receptor (CAR) T cells, are rapidly changing the treatment landscape of hematologic malignancies and solid tumor malignancies. I will discuss the unique safety profile and logistical aspects that pose challenges and opportunities for the safe and successful delivery of these therapies. Close interaction, communication, and established partnerships between the primary oncologist, the disease specialist, and the immune effector cell provider will be needed to provide optimal care longitudinally for any patient. I will discuss practical ways for any program to deliver these therapies and how future advances may widen availability beyond just a few centers.
Collapse
|
227
|
Feucht J, Sadelain M. Function and evolution of the prototypic CD28ζ and 4-1BBζ chimeric antigen receptors. ACTA ACUST UNITED AC 2020; 8:2-11. [PMID: 35757562 PMCID: PMC9216534 DOI: 10.1016/j.iotech.2020.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T cells engineered to express chimeric antigen receptors (CARs) specific for CD19 have yielded remarkable clinical outcomes in patients with refractory B-cell malignancies. The first CARs to be approved by the US Food and Drug Administration and the European Medicines Agency are CD19 CARs that comprise either CD28/CD3ζ or 4-1BB/CD3ζ dual-signalling domains. While their efficacy and safety profiles in patients with B-cell malignancies are comparable overall, the functional properties these two CAR designs impart upon engineered T cells differ significantly. Remarkably, alternative costimulatory domains have not, to date, superseded these foundational designs. Rather, recent CAR advances have focused on perfecting the original CD28- and 4-1BB-based CD19 CARs by calibrating strength of activation, pre-empting T-cell exhaustion and increasing the functional persistence of CAR T cells. This article reviews the essential biological properties of these first-in-class prototypes and their recent evolution. CD19 chimeric antigen receptor (CAR) therapy has shown remarkable success against B-cell malignancies. The prototypic CD19 CARs comprise either CD28/CD3ζ or 4-1BB/CD3ζ signalling domains. Both CD19 CARs yield similar efficacy but impart distinct T-cell functionalities. Novel CAR designs aim to enhance the persistence or effector potency of T cells. Genome editing averts variegated CAR expression and sustains T-cell function.
Collapse
Affiliation(s)
| | - M. Sadelain
- Correspondence to: Michel Sadelain, Director, Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. Tel: 212-639-6190
| |
Collapse
|
228
|
Li Z, Fei T. Improving Cancer Immunotherapy with CRISPR-Based Technology. ACTA ACUST UNITED AC 2020; 4:e1900253. [PMID: 33245213 DOI: 10.1002/adbi.201900253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/29/2019] [Indexed: 12/19/2022]
Abstract
The rapidly evolving field of immunotherapy has attracted great attention in the field of cancer research and already revolutionized the clinical practice standard for treating cancer. Genetically engineered T cells expressing either T cell receptors or chimeric antigen receptors represent novel treatment modalities and are considered powerful weapons to fight cancer. The immune checkpoint blockade, which harnesses the negative control signaling behind the anti-tumor immune response with therapeutic antibodies by blocking cytotoxic T lymphocyte-associated protein 4 or the programmed cell death 1 pathways are another mainstream direction for cancer immunotherapy. In addition to cytotoxic T cells, other immune cell types such as nature killer cells and macrophages also possess the ability to eradicate cancer cells, which may serve as the basis to develop novel cancer immunotherapies. The advent of cutting-edge genome editing technology, especially clustered regularly interspaced palindromic repeats (CRISPR)-based tools, has greatly expedited many biomedical research areas, including cancer immunology and immunotherapy. In this review, the contribution of current CRISPR techniques to basic and translational cancer immunology research is discussed, and the future for cancer immunotherapy in the age of CRISPR is predicted.
Collapse
Affiliation(s)
- Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China.,Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, P. R. China
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China.,Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, P. R. China
| |
Collapse
|
229
|
CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering. Cells 2020; 9:cells9112518. [PMID: 33233344 PMCID: PMC7700487 DOI: 10.3390/cells9112518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
The identification of the robust clustered regularly interspersed short palindromic repeats (CRISPR) associated endonuclease (Cas9) system gene-editing tool has opened up a wide range of potential therapeutic applications that were restricted by more complex tools, including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Nevertheless, the high frequency of CRISPR system off-target activity still limits its applications, and, thus, advanced strategies for highly specific CRISPR/Cas9-mediated genome editing are continuously under development including CRISPR–FokI dead Cas9 (fdCas9). fdCas9 system is derived from linking a FokI endonuclease catalytic domain to an inactive Cas9 protein and requires a pair of guide sgRNAs that bind to the sense and antisense strands of the DNA in a protospacer adjacent motif (PAM)-out orientation, with a defined spacer sequence range around the target site. The dimerization of FokI domains generates DNA double-strand breaks, which activates the DNA repair machinery and results in genomic edit. So far, all the engineered fdCas9 variants have shown promising gene-editing activities in human cells when compared to other platforms. Herein, we review the advantages of all published variants of fdCas9 and their current applications in genome engineering.
Collapse
|
230
|
Kotowski M, Sharma S. CRISPR-Based Editing Techniques for Genetic Manipulation of Primary T Cells. Methods Protoc 2020; 3:mps3040079. [PMID: 33217926 PMCID: PMC7720142 DOI: 10.3390/mps3040079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022] Open
Abstract
While clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing techniques have been widely adapted for use in immortalised immune cells, efficient manipulation of primary T cells has proved to be more challenging. Nonetheless, the rapid expansion of the CRISPR toolbox accompanied by the development of techniques for delivery of CRISPR components into primary T cells now affords the possibility to genetically manipulate primary T cells both with precision and at scale. Here, we review the key features of the techniques for primary T cell editing and discuss how the new generation of CRISPR-based tools may advance genetic engineering of these immune cells. This improved ability to genetically manipulate primary T cells will further enhance our fundamental understanding of cellular signalling and transcriptional networks in T cells and more importantly has the potential to revolutionise T cell-based therapies.
Collapse
|
231
|
Lissandrello CA, Santos JA, Hsi P, Welch M, Mott VL, Kim ES, Chesin J, Haroutunian NJ, Stoddard AG, Czarnecki A, Coppeta JR, Freeman DK, Flusberg DA, Balestrini JL, Tandon V. High-throughput continuous-flow microfluidic electroporation of mRNA into primary human T cells for applications in cellular therapy manufacturing. Sci Rep 2020; 10:18045. [PMID: 33093518 PMCID: PMC7582186 DOI: 10.1038/s41598-020-73755-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
Implementation of gene editing technologies such as CRISPR/Cas9 in the manufacture of novel cell-based therapeutics has the potential to enable highly-targeted, stable, and persistent genome modifications without the use of viral vectors. Electroporation has emerged as a preferred method for delivering gene-editing machinery to target cells, but a major challenge remaining is that most commercial electroporation machines are built for research and process development rather than for large-scale, automated cellular therapy manufacturing. Here we present a microfluidic continuous-flow electrotransfection device designed for precise, consistent, and high-throughput genetic modification of target cells in cellular therapy manufacturing applications. We optimized our device for delivery of mRNA into primary human T cells and demonstrated up to 95% transfection efficiency with minimum impact on cell viability and expansion potential. We additionally demonstrated processing of samples comprising up to 500 million T cells at a rate of 20 million cells/min. We anticipate that our device will help to streamline the production of autologous therapies requiring on the order of 10[Formula: see text]-10[Formula: see text] cells, and that it is well-suited to scale for production of trillions of cells to support emerging allogeneic therapies.
Collapse
Affiliation(s)
| | - Jose A Santos
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Peter Hsi
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Michaela Welch
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Vienna L Mott
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Ernest S Kim
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Jordan Chesin
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | | | - Aaron G Stoddard
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Andrew Czarnecki
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | | | - Daniel K Freeman
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | | | | | - Vishal Tandon
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
| |
Collapse
|
232
|
Wang X, Cabrera FG, Sharp KL, Spencer DM, Foster AE, Bayle JH. Engineering Tolerance toward Allogeneic CAR-T Cells by Regulation of MHC Surface Expression with Human Herpes Virus-8 Proteins. Mol Ther 2020; 29:718-733. [PMID: 33554868 DOI: 10.1016/j.ymthe.2020.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/09/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Allogeneic, off-the-shelf (OTS) chimeric antigen receptor (CAR) cell therapies have the potential to reduce manufacturing costs and variability while providing broader accessibility to cancer patients and those with other diseases. However, host-versus-graft reactivity can limit the durability and efficacy of OTS cell therapies requiring new strategies to evade adaptive and innate-immune responses. Human herpes virus-8 (HHV8) maintains infection, in part, by evading host T and natural killer (NK) cell attack. The viral K3 gene encodes a membrane-tethered E3 ubiquitin ligase that discretely targets major histocompatibility complex (MHC) class I components, whereas K5 encodes a similar E3 ligase with broader specificity, including MHC-II and the MHC-like MHC class I polypeptide-related sequence A (MIC-A)- and sequence B (MIC-B)-activating ligands of NK cells. We created γ-retroviruses encoding K3 and/or K5 transgenes that efficiently transduce primary human T cells. Expression of K3 or K5 resulted in dramatic downregulation of MHC-IA (human leukocyte antigen [HLA]-A, -B, and -C) and MHC class II (HLA-DR) cell-surface expression. K3 expression was sufficient for T cells to resist exogenously loaded peptide-MHC-specific cytotoxicity, as well as recognition in one-way allogeneic mixed lymphocyte reactions. Further, in immunodeficient mice engrafted with allogeneic T cells, K3-transduced T cells selectively expanded in vivo. Ectopic K5 expression in MHC class I-, MIC-A+/B+ K562 cells also reduced targeting by primary NK cells. Coexpression of K3 in prostate stem cell antigen (PSCA)-directed, inducible MyD88/CD40 (iMC)-enhanced CAR-T cells did not impact cytotoxicity, T cell growth, or cytokine production against HPAC pancreatic tumor target cells, whereas K5-expressing cells showed a modest reduction in interleukin (IL)-2 production without effect on cytotoxicity. Together, these results support application of these E3 ligases to advance development of OTS CAR-T cell products.
Collapse
Affiliation(s)
- Xiaomei Wang
- Research and Development, Bellicum Pharmaceuticals, 2710 Reed Road, Suite 160, Houston, TX 77030, USA
| | - Fabricio G Cabrera
- Research and Development, Bellicum Pharmaceuticals, 2710 Reed Road, Suite 160, Houston, TX 77030, USA
| | - Kelly L Sharp
- Research and Development, Bellicum Pharmaceuticals, 2710 Reed Road, Suite 160, Houston, TX 77030, USA
| | - David M Spencer
- Research and Development, Bellicum Pharmaceuticals, 2710 Reed Road, Suite 160, Houston, TX 77030, USA
| | - Aaron E Foster
- Research and Development, Bellicum Pharmaceuticals, 2710 Reed Road, Suite 160, Houston, TX 77030, USA.
| | - J Henri Bayle
- Research and Development, Bellicum Pharmaceuticals, 2710 Reed Road, Suite 160, Houston, TX 77030, USA.
| |
Collapse
|
233
|
Lee J, Sheen JH, Lim O, Lee Y, Ryu J, Shin D, Kim YY, Kim M. Abrogation of HLA surface expression using CRISPR/Cas9 genome editing: a step toward universal T cell therapy. Sci Rep 2020; 10:17753. [PMID: 33082438 PMCID: PMC7576162 DOI: 10.1038/s41598-020-74772-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
As recent advancements in the chimeric antigen receptor-T cells have revolutionized the way blood cancers are handled, potential benefits from producing off-the-shelf, standardized immune cells entail the need for development of allogeneic immune cell therapy. However, host rejection driven by HLA disparity in adoptively transferred allogeneic T cells remains a key obstacle to the universal donor T cell therapy. To evade donor HLA-mediated immune rejection, we attempted to eliminate T cell’s HLA through the CRISPR/Cas9 gene editing system. First, we screened 60 gRNAs targeting B2M and multiple sets of gRNA each targeting α chains of HLA-II (DPA, DQA and DRA, respectively) using web-based design tools, and identified specific gRNA sequences highly efficient for target deletion without carrying off-target effects. Multiplex genome editing of primary human T cells achieved by the newly discovered gRNAs yielded HLA-I- or HLA-I/II-deficient T cells that were phenotypically unaltered and functionally intact. The overnight mixed lymphocyte reactions demonstrated the HLA-I-negative cells induced decreased production of IFN-γ and TNF-α in alloreactive T cells, and deficiency of HLA-I/II in T cells further dampened the inflammatory responses. Taken together, our approach will provide an efficacious pathway toward the universal donor cell generation by manipulating HLA expression in therapeutic T cells.
Collapse
Affiliation(s)
- Jeewon Lee
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Joong Hyuk Sheen
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Okjae Lim
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Yunjung Lee
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Jihye Ryu
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Duckhyang Shin
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Yu Young Kim
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Munkyung Kim
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea.
| |
Collapse
|
234
|
Facts and Challenges in Immunotherapy for T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21207685. [PMID: 33081391 PMCID: PMC7589289 DOI: 10.3390/ijms21207685] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), a T-cell malignant disease that mainly affects children, is still a medical challenge, especially for refractory patients for whom therapeutic options are scarce. Recent advances in immunotherapy for B-cell malignancies based on increasingly efficacious monoclonal antibodies (mAbs) and chimeric antigen receptors (CARs) have been encouraging for non-responding or relapsing patients suffering from other aggressive cancers like T-ALL. However, secondary life-threatening T-cell immunodeficiency due to shared expression of targeted antigens by healthy and malignant T cells is a main drawback of mAb—or CAR-based immunotherapies for T-ALL and other T-cell malignancies. This review provides a comprehensive update on the different immunotherapeutic strategies that are being currently applied to T-ALL. We highlight recent progress on the identification of new potential targets showing promising preclinical results and discuss current challenges and opportunities for developing novel safe and efficacious immunotherapies for T-ALL.
Collapse
|
235
|
Li LZ, Zhang Z, Bhoj VG. Conventional T cell therapies pave the way for novel Treg therapeutics. Cell Immunol 2020; 359:104234. [PMID: 33153708 DOI: 10.1016/j.cellimm.2020.104234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/27/2022]
Abstract
Approaches to harness the immune system to alleviate disease have become remarkably sophisticated since the crude, yet impressively-effective, attempts using live bacteria in the late 1800s. Recent evidence that engineered T cell therapy can deliver durable results in patients with cancer has spurred frenzied development in the field of T cell therapy. The myriad approaches include an innumerable variety of synthetic transgenes, multiplex gene-editing, and broader application to diseases beyond cancer. In this article, we review the preclinical studies and over a decade of clinical experience with engineered conventional T cells that have paved the way for translating engineered regulatory T cell therapies.
Collapse
Affiliation(s)
- Lucy Z Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Orthopedics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Vijay G Bhoj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
236
|
Strategies for having a more effective and less toxic CAR T-cell therapy for acute lymphoblastic leukemia. Med Oncol 2020; 37:100. [PMID: 33047234 PMCID: PMC7549730 DOI: 10.1007/s12032-020-01416-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
In the recent years, using genetically modified T cells has been known as a rapid developing therapeutic approach due to the heartwarming results of clinical trials with patients suffering from relapsed or refractory (R/R) hematologic malignancies such as R/R Acute Lymphoblastic Leukemia (R/R ALL). One of these renowned approaches is Chimeric antigen receptors (CARs). CARs are synthetic receptors with the ability to be expressed on the surface of T lymphocytes and are specifically designed to target a tumor-associated antigen (TAA) of interest. CAR-expressing T cells have the capability of proliferating and maintaining their immunological functionality in the recipient body but like any other therapeutic approach, the safety, effectiveness, and specificity enhancement of CAR T cells still lingers in the ambiguity arena. Genetic manipulation methods, expansion protocols, infusion dosage, and conditioning regimens are all among crucial factors which can affect the efficacy of CAR T cell-based cancer therapy. In this article, we discuss the studies that have focused on various aspects that affect the efficacy and persistence of CAR T-cell therapy for ALL treatment and provide a widespread overview regarding the practical approaches capable of elevating the effectiveness and lessening the relative toxicities attributed to it.
Collapse
|
237
|
Abstract
Adoptive T cell therapy has proven effective against hematologic malignancies and demonstrated efficacy against a variety of solid tumors in preclinical studies and clinical trials. Nonetheless, antitumor responses against solid tumors remain modest, highlighting the need to enhance the effectiveness of this therapy. Genetic modification of T cells with RNA has been explored to enhance T-cell antigen specificity, effector function, and migration to tumor sites, thereby potentiating antitumor immunity. This review describes the rationale for RNA-electroporated T cell modifications and provides an overview of their applications in preclinical and clinical investigations for the treatment of hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Fernanda Pohl-Guimarães
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Lan B Hoang-Minh
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Duane A Mitchell
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
238
|
Mehravar M, Roshandel E, Salimi M, Chegeni R, Gholizadeh M, Mohammadi MH, Hajifathali A. Utilization of CRISPR/Cas9 gene editing in cellular therapies for lymphoid malignancies. Immunol Lett 2020; 226:71-82. [DOI: 10.1016/j.imlet.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
239
|
Yu AM, Choi YH, Tu MJ. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Pharmacol Rev 2020; 72:862-898. [PMID: 32929000 PMCID: PMC7495341 DOI: 10.1124/pr.120.019554] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA-based therapies, including RNA molecules as drugs and RNA-targeted small molecules, offer unique opportunities to expand the range of therapeutic targets. Various forms of RNAs may be used to selectively act on proteins, transcripts, and genes that cannot be targeted by conventional small molecules or proteins. Although development of RNA drugs faces unparalleled challenges, many strategies have been developed to improve RNA metabolic stability and intracellular delivery. A number of RNA drugs have been approved for medical use, including aptamers (e.g., pegaptanib) that mechanistically act on protein target and small interfering RNAs (e.g., patisiran and givosiran) and antisense oligonucleotides (e.g., inotersen and golodirsen) that directly interfere with RNA targets. Furthermore, guide RNAs are essential components of novel gene editing modalities, and mRNA therapeutics are under development for protein replacement therapy or vaccination, including those against unprecedented severe acute respiratory syndrome coronavirus pandemic. Moreover, functional RNAs or RNA motifs are highly structured to form binding pockets or clefts that are accessible by small molecules. Many natural, semisynthetic, or synthetic antibiotics (e.g., aminoglycosides, tetracyclines, macrolides, oxazolidinones, and phenicols) can directly bind to ribosomal RNAs to achieve the inhibition of bacterial infections. Therefore, there is growing interest in developing RNA-targeted small-molecule drugs amenable to oral administration, and some (e.g., risdiplam and branaplam) have entered clinical trials. Here, we review the pharmacology of novel RNA drugs and RNA-targeted small-molecule medications, with a focus on recent progresses and strategies. Challenges in the development of novel druggable RNA entities and identification of viable RNA targets and selective small-molecule binders are discussed. SIGNIFICANCE STATEMENT: With the understanding of RNA functions and critical roles in diseases, as well as the development of RNA-related technologies, there is growing interest in developing novel RNA-based therapeutics. This comprehensive review presents pharmacology of both RNA drugs and RNA-targeted small-molecule medications, focusing on novel mechanisms of action, the most recent progress, and existing challenges.
Collapse
MESH Headings
- Aptamers, Nucleotide/pharmacology
- Aptamers, Nucleotide/therapeutic use
- Betacoronavirus
- COVID-19
- Chemistry Techniques, Analytical/methods
- Chemistry Techniques, Analytical/standards
- Clustered Regularly Interspaced Short Palindromic Repeats
- Coronavirus Infections/drug therapy
- Drug Delivery Systems/methods
- Drug Development/organization & administration
- Drug Discovery
- Humans
- MicroRNAs/pharmacology
- MicroRNAs/therapeutic use
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/therapeutic use
- Pandemics
- Pneumonia, Viral/drug therapy
- RNA/adverse effects
- RNA/drug effects
- RNA/pharmacology
- RNA, Antisense/pharmacology
- RNA, Antisense/therapeutic use
- RNA, Messenger/drug effects
- RNA, Messenger/pharmacology
- RNA, Ribosomal/drug effects
- RNA, Ribosomal/pharmacology
- RNA, Small Interfering/pharmacology
- RNA, Small Interfering/therapeutic use
- RNA, Viral/drug effects
- Ribonucleases/metabolism
- Riboswitch/drug effects
- SARS-CoV-2
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| | - Young Hee Choi
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| |
Collapse
|
240
|
Azangou-Khyavy M, Ghasemi M, Khanali J, Boroomand-Saboor M, Jamalkhah M, Soleimani M, Kiani J. CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Front Immunol 2020; 11:2062. [PMID: 33117331 PMCID: PMC7553049 DOI: 10.3389/fimmu.2020.02062] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats system has demonstrated considerable advantages over other nuclease-based genome editing tools due to its high accuracy, efficiency, and strong specificity. Given that cancer is caused by an excessive accumulation of mutations that lead to the activation of oncogenes and inactivation of tumor suppressor genes, the CRISPR/Cas9 system is a therapy of choice for tumor genome editing and treatment. In defining its superior use, we have reviewed the novel applications of the CRISPR genome editing tool in discovering, sorting, and prioritizing targets for subsequent interventions, and passing different hurdles of cancer treatment such as epigenetic alterations and drug resistance. Moreover, we have reviewed the breakthroughs precipitated by the CRISPR system in the field of cancer immunotherapy, such as identification of immune system-tumor interplay, production of universal Chimeric Antigen Receptor T cells, inhibition of immune checkpoint inhibitors, and Oncolytic Virotherapy. The existing challenges and limitations, as well as the prospects of CRISPR based systems, are also discussed.
Collapse
Affiliation(s)
| | - Mobina Ghasemi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Khanali
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Monire Jamalkhah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
241
|
Pavlovic K, Tristán-Manzano M, Maldonado-Pérez N, Cortijo-Gutierrez M, Sánchez-Hernández S, Justicia-Lirio P, Carmona MD, Herrera C, Martin F, Benabdellah K. Using Gene Editing Approaches to Fine-Tune the Immune System. Front Immunol 2020; 11:570672. [PMID: 33117361 PMCID: PMC7553077 DOI: 10.3389/fimmu.2020.570672] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
Genome editing technologies not only provide unprecedented opportunities to study basic cellular system functionality but also improve the outcomes of several clinical applications. In this review, we analyze various gene editing techniques used to fine-tune immune systems from a basic research and clinical perspective. We discuss recent advances in the development of programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-associated nucleases. We also discuss the use of programmable nucleases and their derivative reagents such as base editing tools to engineer immune cells via gene disruption, insertion, and rewriting of T cells and other immune components, such natural killers (NKs) and hematopoietic stem and progenitor cells (HSPCs). In addition, with regard to chimeric antigen receptors (CARs), we describe how different gene editing tools enable healthy donor cells to be used in CAR T therapy instead of autologous cells without risking graft-versus-host disease or rejection, leading to reduced adoptive cell therapy costs and instant treatment availability for patients. We pay particular attention to the delivery of therapeutic transgenes, such as CARs, to endogenous loci which prevents collateral damage and increases therapeutic effectiveness. Finally, we review creative innovations, including immune system repurposing, that facilitate safe and efficient genome surgery within the framework of clinical cancer immunotherapies.
Collapse
Affiliation(s)
- Kristina Pavlovic
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cellular Therapy Unit, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - María Tristán-Manzano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Noelia Maldonado-Pérez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Marina Cortijo-Gutierrez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Sabina Sánchez-Hernández
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Pedro Justicia-Lirio
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
- LentiStem Biotech, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - M. Dolores Carmona
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cellular Therapy Unit, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cellular Therapy Unit, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
- Department of Hematology, Reina Sofía University Hospital, Córdoba, Spain
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Karim Benabdellah
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| |
Collapse
|
242
|
Jung M, Yang Y, McCloskey JE, Zaman M, Vedvyas Y, Zhang X, Stefanova D, Gray KD, Min IM, Zarnegar R, Choi YY, Cheong JH, Noh SH, Rha SY, Chung HC, Jin MM. Chimeric Antigen Receptor T Cell Therapy Targeting ICAM-1 in Gastric Cancer. Mol Ther Oncolytics 2020; 18:587-601. [PMID: 32995483 PMCID: PMC7501410 DOI: 10.1016/j.omto.2020.08.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer therapy utilizing adoptive transfer of chimeric antigen receptor (CAR) T cells has demonstrated remarkable clinical outcomes in hematologic malignancies. However, CAR T cell application to solid tumors has had limited success, partly due to the lack of tumor-specific antigens and an immune-suppressive tumor microenvironment. From the tumor tissues of gastric cancer patients, we found that intercellular adhesion molecule 1 (ICAM-1) expression is significantly associated with advanced stage and shorter survival. In this study, we report a proof-of-concept study using ICAM-1-targeting CAR T cells against gastric cancer. The efficacy of ICAM-1 CAR T cells showed a significant correlation with the level of ICAM-1 expression in target cells in vitro. In animal models of human gastric cancer, ICAM-1-targeting CAR T cells potently eliminated tumors that developed in the lungs, while their efficacy was more limited against the tumors in the peritoneum. To augment CAR T cell activity against intraperitoneal tumors, combinations with paclitaxel or CAR activation-dependent interleukin (IL)-12 release were explored and found to significantly increase anti-tumor activity and survival benefit. Collectively, ICAM-1-targeting CAR T cells alone or in combination with chemotherapy represent a promising strategy to treat patients with ICAM-1+ advanced gastric cancer.
Collapse
Affiliation(s)
- Minkyu Jung
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Yanping Yang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Marjan Zaman
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yogindra Vedvyas
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Xianglan Zhang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
- Department of Pathology, Yanbian University Hospital, Yanji City, China
| | | | | | - Irene M. Min
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Raza Zarnegar
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Yoon Young Choi
- Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Hoon Noh
- Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Cheol Chung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Moonsoo M. Jin
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
243
|
Schepisi G, Conteduca V, Casadei C, Gurioli G, Rossi L, Gallà V, Cursano MC, Brighi N, Lolli C, Menna C, Farolfi A, Burgio SL, Altavilla A, Martinelli G, De Giorgi U. Potential Application of Chimeric Antigen Receptor (CAR)-T Cell Therapy in Renal Cell Tumors. Front Oncol 2020; 10:565857. [PMID: 33072597 PMCID: PMC7538692 DOI: 10.3389/fonc.2020.565857] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Currently, renal cell carcinoma is characterized by encouraging benefits from immunotherapy that have led to significant results in treatment outcome. The approval of nivolumab primarily as second-line monotherapy and, more recently, the approval of new combination therapies as first-line treatment have confirmed the importance of immunotherapy in this type of tumor. In this context, the chimeric antigen receptor (CAR)-T represents a further step forward in the field of immunotherapy. Initially tested on hematological malignancies, this new therapeutic approach is also becoming a topic of great interest for solid tumors. Although the treatment has several advantages over previous T-cell receptor-dependent immunotherapy, it is facing some obstacles in solid tumors such as a hostile tumor microenvironment and on-tumor/off-tumor toxicities. Several strategies are under investigation to overcome these problems, but the approval of CAR-T cell therapy is still some way off. In renal cancer, the significant advantages obtained from immune checkpoint inhibitors represent a good starting point, but the potential nephrological toxicity of CAR-T cell therapy represents an important risk. In this review, we provide the rationale and preliminary results of CAR-T cell therapy in renal cell malignancies.
Collapse
Affiliation(s)
- Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Vincenza Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Giorgia Gurioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Lorena Rossi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Valentina Gallà
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | | | - Nicole Brighi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Cristian Lolli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Cecilia Menna
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Alberto Farolfi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Salvatore Luca Burgio
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Amelia Altavilla
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Giovanni Martinelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| |
Collapse
|
244
|
Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. J Clin Med 2020; 9:E2967. [PMID: 32937961 PMCID: PMC7564553 DOI: 10.3390/jcm9092967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the understanding of immune function and the interactions with tumour cells have led to the development of various cancer immunotherapies and strategies for specific cancer types. However, despite some stunning successes with some malignancies such as melanomas and lung cancer, most patients receive little or no benefit from immunotherapy, which has been attributed to the tumour microenvironment and immune evasion. Although the US Food and Drug Administration have approved immunotherapies for some cancers, to date, only the anti-angiogenic antibody bevacizumab is approved for the treatment of epithelial ovarian cancer. Immunotherapeutic strategies for ovarian cancer are still under development and being tested in numerous clinical trials. A detailed understanding of the interactions between cancer and the immune system is vital for optimisation of immunotherapies either alone or when combined with chemotherapy and other therapies. This article, in two main parts, provides an overview of: (1) components of the normal immune system and current knowledge regarding tumour immunology, biology and their interactions; (2) strategies, and targets, together with challenges and potential innovative approaches for cancer immunotherapy, with attention given to epithelial ovarian cancer.
Collapse
Affiliation(s)
- Anne M. Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Simon C. Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia;
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
245
|
Ernst MPT, Broeders M, Herrero-Hernandez P, Oussoren E, van der Ploeg AT, Pijnappel WWMP. Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Mol Ther Methods Clin Dev 2020; 18:532-557. [PMID: 32775490 PMCID: PMC7393410 DOI: 10.1016/j.omtm.2020.06.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present an overview of clinical trials involving gene editing using clustered interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), or zinc finger nucleases (ZFNs) and discuss the underlying mechanisms. In cancer immunotherapy, gene editing is applied ex vivo in T cells, transgenic T cell receptor (tTCR)-T cells, or chimeric antigen receptor (CAR)-T cells to improve adoptive cell therapy for multiple cancer types. This involves knockouts of immune checkpoint regulators such as PD-1, components of the endogenous TCR and histocompatibility leukocyte antigen (HLA) complex to generate universal allogeneic CAR-T cells, and CD7 to prevent self-destruction in adoptive cell therapy. In cervix carcinoma caused by human papillomavirus (HPV), E6 and E7 genes are disrupted using topically applied gene editing machinery. In HIV infection, the CCR5 co-receptor is disrupted ex vivo to generate HIV-resistant T cells, CAR-T cells, or hematopoietic stem cells. In β-thalassemia and sickle cell disease, hematopoietic stem cells are engineered ex vivo to induce the production of fetal hemoglobin. AAV-mediated in vivo gene editing is applied to exploit the liver for systemic production of therapeutic proteins in hemophilia and mucopolysaccharidoses, and in the eye to restore splicing of the CEP920 gene in Leber's congenital amaurosis. Close consideration of safety aspects and education of stakeholders will be essential for a successful implementation of gene editing technology in the clinic.
Collapse
Affiliation(s)
- Martijn P T Ernst
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Mike Broeders
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Pablo Herrero-Hernandez
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Esmee Oussoren
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| |
Collapse
|
246
|
Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, Ciceri F, Bonini C, Ruggiero E. TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Front Immunol 2020; 11:1689. [PMID: 33013822 PMCID: PMC7494743 DOI: 10.3389/fimmu.2020.01689] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adoptive T cell therapy (ACT) is a rapidly evolving therapeutic approach designed to harness T cell specificity and function to fight diseases. Based on the evidence that T lymphocytes can mediate a potent anti-tumor response, initially ACT solely relied on the isolation, in vitro expansion, and infusion of tumor-infiltrating or circulating tumor-specific T cells. Although effective in a subset of cases, in the first ACT clinical trials several patients experienced disease progression, in some cases after temporary disease control. This evidence prompted researchers to improve ACT products by taking advantage of the continuously evolving gene engineering field and by improving manufacturing protocols, to enable the generation of effective and long-term persisting tumor-specific T cell products. Despite recent advances, several challenges, including prioritization of antigen targets, identification, and optimization of tumor-specific T cell receptors, in the development of tools enabling T cells to counteract the immunosuppressive tumor microenvironment, still need to be faced. This review aims at summarizing the major achievements, hurdles and possible solutions designed to improve the ACT efficacy and safety profile in the context of liquid and solid tumors.
Collapse
Affiliation(s)
- Francesco Manfredi
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatrice Claudia Cianciotti
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Fondazione Centro San Raffaele, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine and Surgery, University of Milano – Bicocca, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Biondi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
247
|
Harris E, Elmer JJ. Optimization of electroporation and other non-viral gene delivery strategies for T cells. Biotechnol Prog 2020; 37:e3066. [PMID: 32808434 DOI: 10.1002/btpr.3066] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
CAR-T therapy is a particularly effective treatment for some types of cancer that uses retroviruses to deliver the gene for a chimeric antigen receptor (CAR) to a patient's T cells ex vivo. The CAR enables the T cells to bind and eradicate cells with a specific surface marker (e.g., CD19+ B cells) after they are transfused back into the patient. This treatment was proven to be particularly effective in treating non-Hodgkin's lymphoma (NHL) and acute lymphoblastic leukemia (ALL), but the current CAR-T cell manufacturing process has a few significant drawbacks. For example, while lentiviral and gammaretroviral transduction are both relatively effective, the process of producing viral vectors is time-consuming and costly. Additionally, patients must undergo follow up appointments for several years to monitor them for any unanticipated side effects associated with the virus. Therefore, several studies have endeavored to find alternative non-viral gene delivery methods that are less expensive, more precise, simple, and safe. This review focuses on the current state of the most promising non-viral gene delivery techniques, including electroporation and transfection with cationic polymers or lipids.
Collapse
Affiliation(s)
- Emily Harris
- Villanova University, Department of Chemical & Biological Engineering, Villanova, Pennsylvania, USA
| | - Jacob J Elmer
- Villanova University, Department of Chemical & Biological Engineering, Villanova, Pennsylvania, USA
| |
Collapse
|
248
|
Greenbaum U, Mahadeo KM, Kebriaei P, Shpall EJ, Saini NY. Chimeric Antigen Receptor T-Cells in B-Acute Lymphoblastic Leukemia: State of the Art and Future Directions. Front Oncol 2020; 10:1594. [PMID: 32984022 PMCID: PMC7480185 DOI: 10.3389/fonc.2020.01594] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Use of adoptive T-cell therapy modified with chimeric antigen receptor (CAR-T) has revolutionized treatment of patients with relapsed/refractory (r/r) B-cell acute lymphoblastic leukemia (B-ALL). CAR-T cells directed against CD19 antigen have produced response rates as high as 90% in clinical trials for r/r B-ALL. Despite high rates of complete remissions, the durability of responses has been sub-optimal with frequent relapses, especially in adult B-ALL population. Systemic toxicities from CAR-T therapy and standardization of toxicities grading and management is another major hurdle in the development of CAR-T field. In this review, we discuss the latest evidence of CAR-T therapy in B-ALL, potential mechanisms of relapse and barriers to CAR-T cell therapy in B-ALL. We also debate the role of allogeneic hematopoietic stem cell transplant (allo-HCT) post CAR-T therapy.
Collapse
Affiliation(s)
- Uri Greenbaum
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kris Michael Mahadeo
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Neeraj Y Saini
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
249
|
Rodríguez-Lobato LG, Ganzetti M, Fernández de Larrea C, Hudecek M, Einsele H, Danhof S. CAR T-Cells in Multiple Myeloma: State of the Art and Future Directions. Front Oncol 2020; 10:1243. [PMID: 32850376 PMCID: PMC7399644 DOI: 10.3389/fonc.2020.01243] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/16/2020] [Indexed: 01/24/2023] Open
Abstract
Despite recent therapeutic advances, the prognosis of multiple myeloma (MM) patients remains poor. Thus, new strategies to improve outcomes are imperative. Chimeric antigen receptor (CAR) T-cell therapy has changed the treatment landscape of B-cell malignancies, providing a potentially curative option for patients who are refractory to standard treatment. Long-term remissions achieved in patients with acute lymphoblastic leukemia and Non-Hodgkin Lymphoma encouraged its further development in MM. B-cell maturation antigen (BCMA)-targeted CAR T-cells have established outstanding results in heavily pre-treated patients. However, several other antigens such as SLAMF7 and CD44v6 are currently under investigation with promising results. Idecabtagene vicleucel is expected to be approved soon for clinical use. Unfortunately, relapses after CAR T-cell infusion have been reported. Hence, understanding the underlying mechanisms of resistance is essential to promote prevention strategies and to enhance CAR T-cell efficacy. In this review we provide an update of the most recent clinical and pre-clinical data and we elucidate both, the potential and the challenges of CAR T-cell therapy in the future.
Collapse
Affiliation(s)
- Luis Gerardo Rodríguez-Lobato
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
- Amyloidosis and Multiple Myeloma Unit, Department of Hematology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maya Ganzetti
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlos Fernández de Larrea
- Amyloidosis and Multiple Myeloma Unit, Department of Hematology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michael Hudecek
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Sophia Danhof
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
250
|
Mohseni YR, Tung SL, Dudreuilh C, Lechler RI, Fruhwirth GO, Lombardi G. The Future of Regulatory T Cell Therapy: Promises and Challenges of Implementing CAR Technology. Front Immunol 2020; 11:1608. [PMID: 32793236 PMCID: PMC7393941 DOI: 10.3389/fimmu.2020.01608] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Cell therapy with polyclonal regulatory T cells (Tregs) has been translated into the clinic and is currently being tested in transplant recipients and patients suffering from autoimmune diseases. Moreover, building on animal models, it has been widely reported that antigen-specific Tregs are functionally superior to polyclonal Tregs. Among various options to confer target specificity to Tregs, genetic engineering is a particularly timely one as has been demonstrated in the treatment of hematological malignancies where it is in routine clinical use. Genetic engineering can be exploited to express chimeric antigen receptors (CAR) in Tregs, and this has been successfully demonstrated to be robust in preclinical studies across various animal disease models. However, there are several caveats and a number of strategies should be considered to further improve on targeting, efficacy and to understand the in vivo distribution and fate of CAR-Tregs. Here, we review the differing approaches to confer antigen specificity to Tregs with emphasis on CAR-Tregs. This includes an overview and discussion of the various approaches to improve CAR-Treg specificity and therapeutic efficacy as well as addressing potential safety concerns. We also discuss different imaging approaches to understand the in vivo biodistribution of administered Tregs. Preclinical research as well as suitability of methodologies for clinical translation are discussed.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Bioengineering
- Humans
- Immunomodulation
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Cell Antigen Receptor Specificity
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Yasmin R. Mohseni
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Sim L. Tung
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Caroline Dudreuilh
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Robert I. Lechler
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Gilbert O. Fruhwirth
- Imaging Therapies and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| |
Collapse
|