201
|
Hurst R, Brewer DS, Gihawi A, Wain J, Cooper CS. Cancer invasion and anaerobic bacteria: new insights into mechanisms. J Med Microbiol 2024; 73:001817. [PMID: 38535967 PMCID: PMC10995961 DOI: 10.1099/jmm.0.001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
There is growing evidence that altered microbiota abundance of a range of specific anaerobic bacteria are associated with cancer, including Peptoniphilus spp., Porphyromonas spp., Fusobacterium spp., Fenollaria spp., Prevotella spp., Sneathia spp., Veillonella spp. and Anaerococcus spp. linked to multiple cancer types. In this review we explore these pathogenic associations. The mechanisms by which bacteria are known or predicted to interact with human cells are reviewed and we present an overview of the interlinked mechanisms and hypotheses of how multiple intracellular anaerobic bacterial pathogens may act together to cause host cell and tissue microenvironment changes associated with carcinogenesis and cancer cell invasion. These include combined effects on changes in cell signalling, DNA damage, cellular metabolism and immune evasion. Strategies for early detection and eradication of anaerobic cancer-associated bacterial pathogens that may prevent cancer progression are proposed.
Collapse
Affiliation(s)
- Rachel Hurst
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Abraham Gihawi
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Quadram Institute Biosciences, Colney Lane, Norwich, Norfolk, NR4 7UQ, UK
| | - Colin S. Cooper
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
202
|
Zou L, Mo S, Jia C, Pang J, Chang X, Chen J. The tumoral microbiome of pancreatic intraductal papillary mucinous neoplasm: A single-center retrospective cohort study. J Gastroenterol Hepatol 2024; 39:496-505. [PMID: 38111357 DOI: 10.1111/jgh.16437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND AND AIM Pancreatic intraductal papillary mucinous neoplasm (IPMN) is one of the most common precancerous lesions of pancreatic carcinoma. Studies have found that the tumoral microbiome has an important influence on pancreatic carcinoma. However, the tumoral microbiome of IPMNs has rarely been explored. METHODS Tumoral microbiome gene sequencing was carried out using 16 specimens of IPMN and 45 specimens of IPMN with associated invasive carcinoma (IPMN-IC) by 2bRAD sequencing for microbiome. The profile of the tumoral microbiome was summarized. Associations of the tumoral microbiome with disease grade, histological subtype, and prognosis were analyzed. RESULTS A total of 598 species of microbes were identified, comprising 228 genera, 109 families, 60 orders, 29 classes, 14 phyla, and 2 kingdoms. The genus Pseudomonas was detected more frequently and had higher relative abundance in IPMN-ICs; Alcaligenes faecalis was detected with higher relative abundance in IPMNs. Bifidobacterium pseudolongum had a higher relative abundance in the IPMN-IC group, regardless of histological subtype. Moreover, among patients with IPMN-ICs, those with a high relative abundance of B. pseudolongum had better overall survival than those with a low relative abundance. Patients who were positive for Staphylococcus aureus or Mycolicibacillus koreensis had shorter survival. The presence of S. aureus was an independent risk factor for poor prognosis. CONCLUSIONS There are enriching tumoral microbes in IPMN. The tumoral microbiome of IPMN is different from that of IPMN-IC.
Collapse
Affiliation(s)
- Long Zou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengwei Mo
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congwei Jia
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyi Pang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
203
|
Chung IY, Kim J, Koh A. The Microbiome Matters: Its Impact on Cancer Development and Therapeutic Responses. J Microbiol 2024; 62:137-152. [PMID: 38587593 DOI: 10.1007/s12275-024-00110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 04/09/2024]
Abstract
In the evolving landscape of cancer research, the human microbiome emerges as a pivotal determinant reshaping our understanding of tumorigenesis and therapeutic responses. Advanced sequencing technologies have uncovered a vibrant microbial community not confined to the gut but thriving within tumor tissues. Comprising bacteria, viruses, and fungi, this diverse microbiota displays distinct signatures across various cancers, with most research primarily focusing on bacteria. The correlations between specific microbial taxa within different cancer types underscore their pivotal roles in driving tumorigenesis and influencing therapeutic responses, particularly in chemotherapy and immunotherapy. This review amalgamates recent discoveries, emphasizing the translocation of the oral microbiome to the gut as a potential marker for microbiome dysbiosis across diverse cancer types and delves into potential mechanisms contributing to cancer promotion. Furthermore, it highlights the adverse effects of the microbiome on cancer development while exploring its potential in fortifying strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Jihyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
204
|
Mishra Y, Ranjan A, Mishra V, Chattaraj A, Aljabali AAA, El-Tanani M, Hromić-Jahjefendić A, Uversky VN, Tambuwala MM. The role of the gut microbiome in gastrointestinal cancers. Cell Signal 2024; 115:111013. [PMID: 38113978 DOI: 10.1016/j.cellsig.2023.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The gut microbiota present in the human digestive system is incredibly varied and is home to trillions of microorganisms. The gut microbiome is shaped at birth, while numerous genetic, dietary, and environmental variables primarily influence the microbiome composition. The importance of gut microbiota on host health is becoming more widely acknowledged. Digestion, intestinal permeability, and immunological and metabolism responses can all be affected by changes in the composition and function of the gut microbiota. There is mounting evidence that the microbial population's complex traits are important biomarkers and indicators of patient outcomes in cancer and its therapies. Numerous studies have demonstrated that changed commensal gut microorganisms contribute to the development and spread of cancer through various routes. Despite the ongoing controversy surrounding the gut microbiome and gastrointestinal cancer, accumulating evidence points to a potentially far more intricate connection than a simple cause-and-effect relationship. SIMPLE SUMMARY: Due to their high frequency and fatality rate, gastrointestinal cancers are regarded as a severe public health issue with complex medical and economic burdens. The gut microbiota may directly or indirectly interact with existing therapies like immunotherapy and chemotherapy, affecting how well a treatment works. The gut microbiome influences the immune response's activity, function, and development. Generally, certain gut bacteria impact the antitumor actions during cancer by creating particular metabolites or triggering T-cell responses. Yet, certain bacterial species have been found to promote cellular proliferation and metastasis in cancer, and comprehending these interactions in the context of cancer may help identify possible treatment targets. Notwithstanding the improvements in the field, additional research is still required to comprehend the underlying processes, examine the effects on existing therapies, and pinpoint certain bacteria and immune cells that can cause this interaction.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Abhigyan Ranjan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Alaa A A Aljabali
- Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Alkhama Medical and Health Sciences University, United Arab Emirates
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, England, United Kingdom.
| |
Collapse
|
205
|
Abe S, Masuda A, Matsumoto T, Inoue J, Toyama H, Sakai A, Kobayashi T, Tanaka T, Tsujimae M, Yamakawa K, Gonda M, Masuda S, Uemura H, Kohashi S, Inomata N, Nagao K, Harada Y, Miki M, Irie Y, Juri N, Ko T, Yokotani Y, Oka Y, Ota S, Kanzawa M, Itoh T, Imai T, Fukumoto T, Hara E, Kodama Y. Impact of intratumoral microbiome on tumor immunity and prognosis in human pancreatic ductal adenocarcinoma. J Gastroenterol 2024; 59:250-262. [PMID: 38242997 PMCID: PMC10904450 DOI: 10.1007/s00535-023-02069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/17/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Recent evidence suggests that the presence of microbiome within human pancreatic ductal adenocarcinoma (PDAC) tissue potentially influences cancer progression and prognosis. However, the significance of tumor-resident microbiome remains unclear. We aimed to elucidate the impact of intratumoral bacteria on the pathophysiology and prognosis of human PDAC. METHODS The presence of intratumoral bacteria was assessed in 162 surgically resected PDACs using quantitative polymerase chain reaction (qPCR) and in situ hybridization (ISH) targeting 16S rRNA. The intratumoral microbiome was explored by 16S metagenome sequencing using DNA extracted from formalin-fixed paraffin-embedded tissues. The profile of intratumoral bacteria was compared with clinical information, pathological findings including tumor-infiltrating T cells, tumor-associated macrophage, fibrosis, and alterations in four main driver genes (KRAS, TP53, CDKN2A/p16, SMAD4) in tumor genomes. RESULTS The presence of intratumoral bacteria was confirmed in 52 tumors (32%) using both qPCR and ISH. The 16S metagenome sequencing revealed characteristic bacterial profiles within these tumors, including phyla such as Proteobacteria and Firmicutes. Comparison of bacterial profiles between cases with good and poor prognosis revealed a significant positive correlation between a shorter survival time and the presence of anaerobic bacteria such as Bacteroides, Lactobacillus, and Peptoniphilus. The abundance of these bacteria was correlated with a decrease in the number of tumor-infiltrating T cells positive for CD4, CD8, and CD45RO. CONCLUSIONS Intratumoral infection of anaerobic bacteria such as Bacteroides, Lactobacillus, and Peptoniphilus is correlated with the suppressed anti-PDAC immunity and poor prognosis.
Collapse
Affiliation(s)
- Shohei Abe
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Atsuhiro Masuda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
| | - Tomonori Matsumoto
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Jun Inoue
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Hirochika Toyama
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Arata Sakai
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Takashi Kobayashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Takeshi Tanaka
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Masahiro Tsujimae
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kohei Yamakawa
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Masanori Gonda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Shigeto Masuda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Hisahiro Uemura
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Kohashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Noriko Inomata
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kae Nagao
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yoshiyuki Harada
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Mika Miki
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yosuke Irie
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Noriko Juri
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Testuhisa Ko
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yusuke Yokotani
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yuki Oka
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Shogo Ota
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Maki Kanzawa
- Division of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tomoo Itoh
- Division of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Toshio Imai
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Eiji Hara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
206
|
Li L, Li Z, Feng X, Yang Z, Jin N, Zhu L, Zang X, Xing L, Ren Y, Zhang H. Predictive value of systemic inflammatory response-related indices for survival in tongue cancer. Oral Dis 2024; 30:187-194. [PMID: 35989554 DOI: 10.1111/odi.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We assessed the potential prognostic significance of the preoperative systemic inflammation index, platelet-to-lymphocyte ratio, and neutrophil-to-lymphocyte ratio in patients who underwent surgical resection. SUBJECTS AND METHODS This retrospective study included 224 patients with clinicopathologically confirmed squamous carcinoma of the tongue who underwent surgery between August 2009 and December 2017. The optimal cut-off values for the indices were determined by receiver operating characteristic curves. Correlations between the indices and clinicopathological variables were determined by Pearson chi-square or Fisher exact tests. The Kaplan-Meier test was used to compare overall survival between groups (high and low values); the log-rank or Breslow test was used to assess differences in survival. Univariate and multivariate Cox regression models were used to analyze predictive values of the indices as independent indicators of overall survival. Bilateral p values of <0.05 were considered statistically significant. RESULTS Significant association was found between the indices and sex, tissue grade, tumor location, and lymph nodes metastases (p < 0.05). On Kaplan-Meier analysis, patients with lower values of the indices had longer overall survival (p < 0.05). Univariate and multivariate Cox regression models identified age, lymph node metastases, and neutrophil-to-lymphocyte ratio as independent predictors of overall survival. CONCLUSION The studied indices have potential prognostic significance in patients with squamous tongue cancer.
Collapse
Affiliation(s)
- Liangbo Li
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhanbo Li
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Xuanqi Feng
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhao Yang
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Nenghao Jin
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Liang Zhu
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xiaoyi Zang
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Lejun Xing
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Yipeng Ren
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Haizhong Zhang
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
207
|
Halle-Smith JM, Pearce H, Nicol S, Hall LA, Powell-Brett SF, Beggs AD, Iqbal T, Moss P, Roberts KJ. Involvement of the Gut Microbiome in the Local and Systemic Immune Response to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:996. [PMID: 38473357 DOI: 10.3390/cancers16050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The systemic and local immunosuppression exhibited by pancreatic ductal adenocarcinoma (PDAC) contributes significantly to its aggressive nature. There is a need for a greater understanding of the mechanisms behind this profound immune evasion, which makes it one of the most challenging malignancies to treat and thus one of the leading causes of cancer death worldwide. The gut microbiome is now thought to be the largest immune organ in the body and has been shown to play an important role in multiple immune-mediated diseases. By summarizing the current literature, this review examines the mechanisms by which the gut microbiome may modulate the immune response to PDAC. Evidence suggests that the gut microbiome can alter immune cell populations both in the peripheral blood and within the tumour itself in PDAC patients. In addition, evidence suggests that the gut microbiome influences the composition of the PDAC tumour microbiome, which exerts a local effect on PDAC tumour immune infiltration. Put together, this promotes the gut microbiome as a promising route for future therapies to improve immune responses in PDAC patients.
Collapse
Affiliation(s)
- James M Halle-Smith
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Samantha Nicol
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Lewis A Hall
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Sarah F Powell-Brett
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Tariq Iqbal
- Department of Gastroenterology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Microbiome Treatment Centre, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research Birmingham Biomedical Research Centre, Birmingham B15 2TT, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Keith J Roberts
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
208
|
Ammer-Herrmenau C, Antweiler KL, Asendorf T, Beyer G, Buchholz SM, Cameron S, Capurso G, Damm M, Dang L, Frost F, Gomes A, Hamm J, Henker R, Hoffmeister A, Meinhardt C, Nawacki L, Nunes V, Panyko A, Pardo C, Phillip V, Pukitis A, Rasch S, Riekstina D, Rinja E, Ruiz-Rebollo ML, Sirtl S, Weingarten M, Sandru V, Woitalla J, Ellenrieder V, Neesse A. Gut microbiota predicts severity and reveals novel metabolic signatures in acute pancreatitis. Gut 2024; 73:485-495. [PMID: 38129103 PMCID: PMC10894816 DOI: 10.1136/gutjnl-2023-330987] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Early disease prediction is challenging in acute pancreatitis (AP). Here, we prospectively investigate whether the microbiome predicts severity of AP (Pancreatitis-Microbiome As Predictor of Severity; P-MAPS) early at hospital admission. DESIGN Buccal and rectal microbial swabs were collected from 424 patients with AP within 72 hours of hospital admission in 15 European centres. All samples were sequenced by full-length 16S rRNA and metagenomic sequencing using Oxford Nanopore Technologies. Primary endpoint was the association of the orointestinal microbiome with the revised Atlanta classification (RAC). Secondary endpoints were mortality, length of hospital stay and severity (organ failure >48 hours and/or occurrence of pancreatic collections requiring intervention) as post hoc analysis. Multivariate analysis was conducted from normalised microbial and corresponding clinical data to build classifiers for predicting severity. For functional profiling, gene set enrichment analysis (GSEA) was performed and normalised enrichment scores calculated. RESULTS After data processing, 411 buccal and 391 rectal samples were analysed. The intestinal microbiome significantly differed for the RAC (Bray-Curtis, p value=0.009), mortality (Bray-Curtis, p value 0.006), length of hospital stay (Bray-Curtis, p=0.009) and severity (Bray-Curtis, p value=0.008). A classifier for severity with 16 different species and systemic inflammatory response syndrome achieved an area under the receiving operating characteristic (AUROC) of 85%, a positive predictive value of 67% and a negative predictive value of 94% outperforming established severity scores. GSEA revealed functional pathway units suggesting elevated short-chain fatty acid (SCFA) production in severe AP. CONCLUSIONS The orointestinal microbiome predicts clinical hallmark features of AP, and SCFAs may be used for future diagnostic and therapeutic concepts. TRIAL REGISTRATION NUMBER NCT04777812.
Collapse
Affiliation(s)
- Christoph Ammer-Herrmenau
- Department of Gastroenterology, gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Goettingen, Germany
| | - Kai L Antweiler
- Department of Medical Statistics, University Medical Centre Goettingen, Goettingen, Germany
| | - Thomas Asendorf
- Department of Medical Statistics, University Medical Centre Goettingen, Goettingen, Germany
| | - Georg Beyer
- Department of Medicine II, Ludwig Maximilians University Hospital, Munich, Germany
| | - Soeren M Buchholz
- Department of Gastroenterology, gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Goettingen, Germany
| | - Silke Cameron
- Department of Gastroenterology, gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Goettingen, Germany
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Centre, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy
| | - Marko Damm
- Internal Medicine I, University Hospital Halle, Halle, Germany
| | - Linh Dang
- Department Medical Bioinformatics, University Medical Centre Goettingen, Goettingen, Germany
| | - Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Antonio Gomes
- Department of General Surgery, Hospital Professor Doctor Fernando Fonseca, Amadora, Amadora, Portugal
| | - Jacob Hamm
- Department of Gastroenterology, gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Goettingen, Germany
| | - Robert Henker
- Medical Department II, Division of Gastroenterology, University Hospital Leipzig, Leipzig, Germany
| | - Albrecht Hoffmeister
- Medical Department II, Division of Gastroenterology, University Hospital Leipzig, Leipzig, Germany
| | - Christian Meinhardt
- University Clinic of Internal Medicine - Gastroenterology, University Hospital Oldenburg, Oldenburg, Germany
| | - Lukasz Nawacki
- Collegium Medicum, The Jan Kochanowski University in Kielce, Kielce, Poland
| | - Vitor Nunes
- Department of General Surgery, Hospital Professor Doctor Fernando Fonseca, Amadora, Amadora, Portugal
| | - Arpad Panyko
- 4th Department of Surgery, University Hospital Bratislava, Bratislava, Slovakia
| | - Cesareo Pardo
- Servicio de Aparato Digestivo, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Veit Phillip
- Department of Internal Medicine II, University Hospital rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aldis Pukitis
- Center of Gastroenterology, Hepatology and Nutrition, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Sebastian Rasch
- Department of Internal Medicine II, University Hospital rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Diana Riekstina
- Center of Gastroenterology, Hepatology and Nutrition, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Ecaterina Rinja
- Clinical Emergency Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Simon Sirtl
- Department of Medicine II, Ludwig Maximilians University Hospital, Munich, Germany
| | - Mark Weingarten
- Department of Gastroenterology, gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Goettingen, Germany
| | - Vasile Sandru
- Clinical Emergency Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Julia Woitalla
- Department of Medicine II, University Hospital of Rostock, Rostock, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Goettingen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Goettingen, Germany
| |
Collapse
|
209
|
Li Y, Chang RB, Stone ML, Delman D, Markowitz K, Xue Y, Coho H, Herrera VM, Li JH, Zhang L, Choi-Bose S, Giannone M, Shin SM, Coyne EM, Hernandez A, Gross NE, Charmsaz S, Ho WJ, Lee JW, Beatty GL. Multimodal immune phenotyping reveals microbial-T cell interactions that shape pancreatic cancer. Cell Rep Med 2024; 5:101397. [PMID: 38307029 PMCID: PMC10897543 DOI: 10.1016/j.xcrm.2024.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Microbes are an integral component of the tumor microenvironment. However, determinants of microbial presence remain ill-defined. Here, using spatial-profiling technologies, we show that bacterial and immune cell heterogeneity are spatially coupled. Mouse models of pancreatic cancer recapitulate the immune-microbial spatial coupling seen in humans. Distinct intra-tumoral niches are defined by T cells, with T cell-enriched and T cell-poor regions displaying unique bacterial communities that are associated with immunologically active and quiescent phenotypes, respectively, but are independent of the gut microbiome. Depletion of intra-tumoral bacteria slows tumor growth in T cell-poor tumors and alters the phenotype and presence of myeloid and B cells in T cell-enriched tumors but does not affect T cell infiltration. In contrast, T cell depletion disrupts the immunological state of tumors and reduces intra-tumoral bacteria. Our results establish a coupling between microbes and T cells in cancer wherein spatially defined immune-microbial communities differentially influence tumor biology.
Collapse
Affiliation(s)
- Yan Li
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renee B Chang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meredith L Stone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Devora Delman
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Markowitz
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuqing Xue
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather Coho
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veronica M Herrera
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joey H Li
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liti Zhang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shaanti Choi-Bose
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Giannone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah M Shin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Erin M Coyne
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Alexei Hernandez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole E Gross
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Soren Charmsaz
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Mass Cytometry Facility, Johns Hopkins University, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jae W Lee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
210
|
Hu R, Yang T, Ai Q, Shi Y, Ji Y, Sun Q, Tong B, Chen J, Wang Z. Autoinducer-2 promotes the colonization of Lactobacillus rhamnosus GG to improve the intestinal barrier function in a neonatal mouse model of antibiotic-induced intestinal dysbiosis. J Transl Med 2024; 22:177. [PMID: 38369503 PMCID: PMC10874557 DOI: 10.1186/s12967-024-04991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Human health is seriously threatened by antibiotic-induced intestinal disorders. Herein, we aimed to determine the effects of Autoinducer-2 (AI-2) combined with Lactobacillus rhamnosus GG (LGG) on the intestinal barrier function of antibiotic-induced intestinal dysbiosis neonatal mice. METHODS An antibiotic-induced intestinal dysbiosis neonatal mouse model was created using antibiotic cocktails, and the model mice were randomized into the control, AI-2, LGG, and LGG + AI-2 groups. Intestinal short-chain fatty acids and AI-2 concentrations were detected by mass spectrometry and chemiluminescence, respectively. The community composition of the gut microbiota was analyzed using 16S rDNA sequencing, and biofilm thickness and bacterial adhesion in the colon were assessed using scanning electron microscopy. Transcriptome RNA sequencing of intestinal tissues was performed, and the mRNA and protein levels of HCAR2 (hydroxycarboxylic acid receptor 2), claudin3, and claudin4 in intestinal tissues were determined using quantitative real-time reverse transcription PCR and western blotting. The levels of inflammatory factors in intestinal tissues were evaluated using enzyme-linked immunosorbent assays (ELISAs). D-ribose, an inhibitor of AI-2, was used to treat Caco-2 cells in vitro. RESULTS Compared with the control, AI-2, and LGG groups, the LGG + AI-2 group showed increased levels of intestinal AI-2 and proportions of Firmicutes and Lacticaseibacillus, but a reduced fraction of Proteobacteria. Specifically, the LGG + AI-2 group had considerably more biofilms and LGG on the colon surface than those of other three groups. Meanwhile, the combination of AI-2 and LGG markedly increased the concentration of butyric acid and promoted Hcar2, claudin3 and claudin4 expression levels compared with supplementation with LGG or AI-2 alone. The ELISAs revealed a significantly higher tumor necrosis factor alpha (TNF-α) level in the control group than in the LGG and LGG + AI-2 groups, whereas the interleukin 10 (IL-10) level was significantly higher in the LGG + AI-2 group than in the other three groups. In vitro, D-ribose treatment dramatically suppressed the increased levels of Hcar2, claudin3, and claudin4 in Caco-2 cells induced by AI-2 + LGG. CONCLUSIONS AI-2 promotes the colonization of LGG and biofilm formation to improve intestinal barrier function in an antibiotic-induced intestinal dysbiosis neonatal mouse model.
Collapse
Affiliation(s)
- Riqiang Hu
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting Yang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Qing Ai
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanchun Ji
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Sun
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bei Tong
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Jie Chen
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
| | - Zhengli Wang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Jiangxi Hospital Affiliated Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
211
|
Roy R, Singh SK. The Microbiome Modulates the Immune System to Influence Cancer Therapy. Cancers (Basel) 2024; 16:779. [PMID: 38398170 PMCID: PMC10886470 DOI: 10.3390/cancers16040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The gut microbiota composition can affect the tumor microenvironment and its interaction with the immune system, thereby having implications for treatment predictions. This article reviews the studies available to better understand how the gut microbiome helps the immune system fight cancer. To describe this fact, different mechanisms and approaches utilizing probiotics to improve advancements in cancer treatment will be discussed. Moreover, not only calorie intake but also the variety and quality of diet can influence cancer patients' immunotherapy treatment because dietary patterns can impair immunological activities either by stimulating or suppressing innate and adaptive immunity. Therefore, it is interesting and critical to understand gut microbiome composition as a biomarker to predict cancer immunotherapy outcomes and responses. Here, more emphasis will be given to the recent development in immunotherapies utilizing microbiota to improve cancer therapies, which is beneficial for cancer patients.
Collapse
Affiliation(s)
- Ruchi Roy
- UICentre for Drug Discovery, The University of Illinois, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
212
|
Wang J, Gai J, Zhang T, Niu N, Qi H, Thomas DL, Li K, Xia T, Rodriguez C, Parkinson R, Durham J, McPhaul T, Narang AK, Anders RA, Osipov A, Wang H, He J, Laheru DA, Herman JM, Lee V, Jaffee EM, Thompson ED, Zhu Q, Zheng L. Neoadjuvant radioimmunotherapy in pancreatic cancer enhances effector T cell infiltration and shortens their distances to tumor cells. SCIENCE ADVANCES 2024; 10:eadk1827. [PMID: 38324679 PMCID: PMC10849596 DOI: 10.1126/sciadv.adk1827] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Radiotherapy is hypothesized to have an immune-modulating effect on the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) to sensitize it to anti-PD-1 antibody (a-PD-1) treatment. We collected paired pre- and posttreatment specimens from a clinical trial evaluating combination treatment with GVAX vaccine, a-PD-1, and stereotactic body radiation (SBRT) following chemotherapy for locally advanced PDACs (LAPC). With resected PDACs following different neoadjuvant therapies as comparisons, effector cells in PDACs were found to skew toward a more exhausted status in LAPCs following chemotherapy. The combination of GVAX/a-PD-1/SBRT drives TME to favor antitumor immune response including increased densities of GZMB+CD8+ T cells, TH1, and TH17, which are associated with longer survival, however increases immunosuppressive M2-like tumor-associated macrophages (TAMs). Adding SBRT to GVAX/a-PD-1 shortens the distances from PD-1+CD8+ T cells to tumor cells and to PD-L1+ myeloid cells, which portends prolonged survival. These findings have guided the design of next radioimmunotherapy studies by targeting M2-like TAM in PDACs.
Collapse
Affiliation(s)
- Junke Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jessica Gai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tengyi Zhang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nan Niu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hanfei Qi
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dwayne L. Thomas
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Keyu Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tao Xia
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christina Rodriguez
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rose Parkinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jennifer Durham
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Thomas McPhaul
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amol K. Narang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert A. Anders
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Arsen Osipov
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Hao Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jin He
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel A. Laheru
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joseph M. Herman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Northwell Health System, New Hyde Park, NY, 11042, USA
| | - Valerie Lee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth M. Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth D. Thompson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qingfeng Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
213
|
Liu X, Li K, Yang Y, Cao D, Xu X, He Z, Wu W. Gut resistome profiling reveals high diversity and fluctuations in pancreatic cancer cohorts. Front Cell Infect Microbiol 2024; 14:1354234. [PMID: 38384305 PMCID: PMC10879602 DOI: 10.3389/fcimb.2024.1354234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Background Pancreatic cancer is one of the deadliest cancer, with a 5-year overall survival rate of 11%. Unfortunately, most patients are diagnosed with advanced stage by the time they present with symptoms. In the past decade, microbiome studies have explored the association of pancreatic cancer with the human oral and gut microbiomes. However, the gut microbial antibiotic resistance genes profiling of pancreatic cancer patients was never reported compared to that of the healthy cohort. Results In this study, we addressed the gut microbial antibiotic resistance genes profile using the metagenomic data from two online public pancreatic cancer cohorts. We found a high degree of data concordance between the two cohorts, which can therefore be used for cross-sectional comparisons. Meanwhile, we used two strategies to predict antibiotic resistance genes and compared the advantages and disadvantages of these two approaches. We also constructed microbe-antibiotic resistance gene networks and found that most of the hub nodes in the networks were antibiotic resistance genes. Conclusions In summary, we describe the panorama of antibiotic resistance genes in the gut microbes of patients with pancreatic cancer. We hope that our study will provide new perspectives on treatment options for the disease.
Collapse
Affiliation(s)
- Xudong Liu
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Kexin Li
- School of Engineering Medicine, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, Jena, Germany
| | - Yun Yang
- School of Engineering Medicine, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| | - Dingyan Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xinjie Xu
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Zilong He
- School of Engineering Medicine, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| | - Wenming Wu
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
214
|
Yang Y, An Y, Dong Y, Chu Q, Wei J, Wang B, Cao H. Fecal microbiota transplantation: no longer cinderella in tumour immunotherapy. EBioMedicine 2024; 100:104967. [PMID: 38241975 PMCID: PMC10831174 DOI: 10.1016/j.ebiom.2024.104967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
The incidence of cancer has shown a great increase during the past decades and poses tough challenges to cancer treatment. Anti-tumour immunotherapy, represented by immune checkpoint inhibitors (ICIs), possesses favorable remission in unrestricted spectrum of cancer types. However, its efficacy seems to be heterogeneous among accumulating studies. Emerging evidences suggest that gut microbiota can modulate anti-tumour immuno-response and predict clinical prognosis. Therefore, remodeling microbiota characteristics with fecal microbiota transplantation (FMT) may be capable of reinforcing host ICIs performance by regulating immune-tumour cell interactions and altering microbial metabolites, thereby imperceptibly shifting the tumour microenvironment. However, the long-term safety of FMT is under concern, which calls for more rigorous screening. In this review, we examine current experimental and clinical evidences supporting the FMT efficacy in boosting anti-tumour immuno-response and lessening tumour-related complications. Moreover, we discuss the challenges in FMT and propose feasible resolutions, which may offer crucial guidance for future clinical operations.
Collapse
Affiliation(s)
- Yunwei Yang
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin, China
| | - Yaping An
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin, China
| | - Yue Dong
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin, China
| | - Qiao Chu
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin, China
| | - Jingge Wei
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin, China.
| | - Hailong Cao
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin, China.
| |
Collapse
|
215
|
Xie Z, Zhou J, Zhang X, Li Z. Clinical potential of microbiota in thyroid cancer therapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166971. [PMID: 38029942 DOI: 10.1016/j.bbadis.2023.166971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Thyroid cancer is one of the most common tumors of the endocrine system because of its rapid and steady increase in incidence and prevalence. In recent years, a growing number of studies have identified a key role for the gut, thyroid tissue and oral microbiota in the regulation of metabolism and the immune system. A growing body of evidence has conclusively demonstrated that the microbiota influences tumor formation, prevention, diagnosis, and treatment. We provide extensive information in which oral, gut, and thyroid microbiota have an effect on thyroid cancer development in this review. In addition, we thoroughly discuss the various microbiota species, their potential functions, and the underlying mechanisms for thyroid cancer. The microbiome offers a unique opportunity to improve the effectiveness of immunotherapy and radioiodine therapy thyroid cancer by maintaining the right type of microbiota, and holds great promise for improving clinical outcomes and quality of life for thyroid cancer patients.
Collapse
Affiliation(s)
- Zilan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jiating Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Xuan Zhang
- Department of General Surgery, The Second People's Hospital of Hunan, Furong Middle Road, Changsha 410078, PR China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| |
Collapse
|
216
|
Yoshida T, Dbouk M, Hirose K, Abou Diwan E, Saba H, Dbouk A, Goggins M. Duodenal and pancreatic tissue microbiome profiles of PPI users and non-users. Pancreatology 2024; 24:188-195. [PMID: 38161092 PMCID: PMC10842342 DOI: 10.1016/j.pan.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Factors that influence the pancreas microbiome are not well understood. Regular proton pump inhibitor (PPI) use induces significant alterations in the gut microbiome, including an increase in the abundance of Streptococcus, and may be associated with pancreatic cancer risk. The aim of this study was to examine whether PPI use is associated with pancreatic and duodenal tissue microbiomes. We compared 16S rRNA microbiome profiles of normal pancreatic and duodenal tissue from 103 patients undergoing pancreatic surgery for non-malignant indications, including 34 patients on PPIs, accounting for factors including age, smoking, body mass index and the presence of main pancreatic duct dilation. Histologically normal tissue from the pancreatic head had higher alpha diversity and enrichment of Firmicutes by phylum-level analysis and Streptococcus species compared to normal pancreas body/tail tissues (16.8 % vs 8.8 %, P = .02, and 5.9 % vs 1.4 %, P = .03, respectively). Measures of beta diversity differed significantly between the pancreas and the duodenum, but in subjects with main pancreatic duct dilation, beta diversity of pancreatic head tissue was more similar to normal duodenal tissue than those without pancreatic duct dilation. Duodenal tissue of PPI users had significant enrichment of Firmicute phyla (34.7 % vs. 14.1 %, P = .01) and Streptococcus genera (19.5 % vs. 5.2 %, P = .01) compared to non-users; these differences were not evident in pancreas tissues. By multivariate analysis, PPI use was associated with alpha diversity in the duodenum, but not in the pancreas. However, some differences in pancreas tissue beta diversity were observed between PPI users and non-users. In summary, we find differences in the microbiome profiles of the pancreas head versus the pancreatic body/tail and we find PPI use is associated with alterations in duodenal and pancreatic tissue microbiome profiles.
Collapse
Affiliation(s)
- Takeichi Yoshida
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Mohamad Dbouk
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Katsuya Hirose
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Elizabeth Abou Diwan
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Helena Saba
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ali Dbouk
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael Goggins
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Departments of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Departments of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
217
|
Guo X, Wang P, Li Y, Chang Y, Wang X. Microbiomes in pancreatic cancer can be an accomplice or a weapon. Crit Rev Oncol Hematol 2024; 194:104262. [PMID: 38199428 DOI: 10.1016/j.critrevonc.2024.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Recently, several investigations have linked the microbiome to pancreatic cancer progression. It is critical to reveal the role of different microbiomes in the occurrence, development, and treatment of pancreatic cancer. The current review summarizes the various microbiota types in pancreatic cancer while updating and supplementing the mechanisms of the representative gut, pancreatic, and oral microbiota, and their metabolites during its pathogenesis and therapeutic intervention. Several novel strategies have been introduced based on the tumor-associated microbiome to optimize the early diagnosis and prognosis of pancreatic cancer. The pros and cons involving different microbiomes in treating pancreatic cancer are discussed. The microbiome-related clinical trials for pancreatic cancer theranostics are outlined. This convergence of cutting-edge knowledge will provide feasible ideas for developing innovative therapies against pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoyu Guo
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Pan Wang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuan Li
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yawei Chang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaobing Wang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
218
|
Xie J, Liu M, Deng X, Tang Y, Zheng S, Ou X, Tang H, Xie X, Wu M, Zou Y. Gut microbiota reshapes cancer immunotherapy efficacy: Mechanisms and therapeutic strategies. IMETA 2024; 3:e156. [PMID: 38868510 PMCID: PMC10989143 DOI: 10.1002/imt2.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 06/14/2024]
Abstract
Gut microbiota is essential for maintaining local and systemic immune homeostasis in the presence of bacterial challenges. It has been demonstrated that microbiota play contrasting roles in cancer development as well as anticancer immunity. Cancer immunotherapy, a novel anticancer therapy that relies on the stimulation of host immunity, has suffered from a low responding rate and incidence of severe immune-related adverse events (irAEs). Previous studies have demonstrated that the diversity and composition of gut microbiota were associated with the heterogeneity of therapeutic effects. Therefore, alteration in microbiota taxa can lead to improved clinical outcomes in immunotherapy. In this review, we determine whether microbiota composition or microbiota-derived metabolites are linked to responses to immunotherapy and irAEs. Moreover, we discuss various approaches to improve immunotherapy efficacy or reduce toxicities by modulating microbiota composition.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Manqing Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhouChina
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shaoquan Zheng
- Department of Breast Surgery, Breast Disease Center, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xueqi Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Minqing Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
219
|
Liu Z, Ma Y, Ye J, Li G, Kang X, Xie W, Wang X. Drug delivery systems for enhanced tumour treatment by eliminating intra-tumoral bacteria. J Mater Chem B 2024; 12:1194-1207. [PMID: 38197141 DOI: 10.1039/d3tb02362a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Cancer remains one of the serious threats to human health. The relationship between bacteria and various tumours has been widely reported in recent years, and studies on intra-tumoral bacteria have become important as intra-tumoral bacteria directly affect the tumorigenesis, progression, immunity and metastatic processes. Therefore, eliminating these commensal intra-tumoral bacteria while treating tumour is expected to be a potential strategy to further enhance the clinical outcome of tumour therapy. Drug delivery systems (DDSs) are widely used to deliver antibiotics and chemotherapeutic drugs for antibacterial and anticancer applications, respectively. Thus, this review firstly provides a comprehensive summary of the association between intra-tumoral bacteria and a host of tumours, followed by a description of advanced DDSs for improving the therapeutic efficacy of cancer treatment through the elimination of intra-tumoral bacteria. It is hoped that this review will provide guidelines for the therapeutic and "synergistic antimicrobial and antitumour" drug delivery strategy.
Collapse
Affiliation(s)
- Ziyi Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yige Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jinxin Ye
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
220
|
Xuan M, Gu X, Liu Y, Yang L, Li Y, Huang D, Li J, Xue C. Intratumoral microorganisms in tumors of the digestive system. Cell Commun Signal 2024; 22:69. [PMID: 38273292 PMCID: PMC10811838 DOI: 10.1186/s12964-023-01425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Tumors of the digestive system pose a significant threat to human health and longevity. These tumors are associated with high morbidity and mortality rates, leading to a heavy economic burden on healthcare systems. Several intratumoral microorganisms are present in digestive system tumors, and their sources and abundance display significant heterogeneity depending on the specific tumor subtype. These microbes have a complex and precise function in the neoplasm. They can facilitate tumor growth through various mechanisms, such as inducing DNA damage, influencing the antitumor immune response, and promoting the degradation of chemotherapy drugs. Therefore, these microorganisms can be targeted to inhibit tumor progression for improving overall patient prognosis. This review focuses on the current research progress on microorganisms present in the digestive system tumors and how they influence the initiation, progression, and prognosis of tumors. Furthermore, the primary sources and constituents of tumor microbiome are delineated. Finally, we summarize the application potential of intratumoral microbes in the diagnosis, treatment, and prognosis prediction of digestive system tumors. Video Abstract.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yingru Liu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Li Yang
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Yi Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| | - Chen Xue
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| |
Collapse
|
221
|
Mendes I, Vale N. Overcoming Microbiome-Acquired Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Biomedicines 2024; 12:227. [PMID: 38275398 PMCID: PMC10813061 DOI: 10.3390/biomedicines12010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Gastrointestinal cancers (GICs) are one of the most recurrent diseases in the world. Among all GICs, pancreatic cancer (PC) is one of the deadliest and continues to disrupt people's lives worldwide. The most frequent pancreatic cancer type is pancreatic ductal adenocarcinoma (PDAC), representing 90 to 95% of all pancreatic malignancies. PC is one of the cancers with the worst prognoses due to its non-specific symptoms that lead to a late diagnosis, but also due to the high resistance it develops to anticancer drugs. Gemcitabine is a standard treatment option for PDAC, however, resistance to this anticancer drug develops very fast. The microbiome was recently classified as a cancer hallmark and has emerged in several studies detailing how it promotes drug resistance. However, this area of study still has seen very little development, and more answers will help in developing personalized medicine. PC is one of the cancers with the highest mortality rates; therefore, it is crucial to explore how the microbiome may mold the response to reference drugs used in PDAC, such as gemcitabine. In this article, we provide a review of what has already been investigated regarding the impact that the microbiome has on the development of PDAC in terms of its effect on the gemcitabine pathway, which may influence the response to gemcitabine. Therapeutic advances in this type of GIC could bring innovative solutions and more effective therapeutic strategies for other types of GIC, such as colorectal cancer (CRC), due to its close relation with the microbiome.
Collapse
Affiliation(s)
- Inês Mendes
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Edifício de Geociências, 5000-801 Vila Real, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
222
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martín-Rodríguez A, Tornero-Aguilera JF. Microbiota Implications in Endocrine-Related Diseases: From Development to Novel Therapeutic Approaches. Biomedicines 2024; 12:221. [PMID: 38255326 PMCID: PMC10813640 DOI: 10.3390/biomedicines12010221] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review article delves into the critical role of the human microbiota in the development and management of endocrine-related diseases. We explore the complex interactions between the microbiota and the endocrine system, emphasizing the implications of microbiota dysbiosis for the onset and progression of various endocrine disorders. The review aims to synthesize current knowledge, highlighting recent advancements and the potential of novel therapeutic approaches targeting microbiota-endocrine interactions. Key topics include the impact of microbiota on hormone regulation, its role in endocrine pathologies, and the promising avenues of microbiota modulation through diet, probiotics, prebiotics, and fecal microbiota transplantation. We underscore the importance of this research in advancing personalized medicine, offering insights for more tailored and effective treatments for endocrine-related diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/ Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
223
|
Wu J, Zhang P, Mei W, Zeng C. Intratumoral microbiota: implications for cancer onset, progression, and therapy. Front Immunol 2024; 14:1301506. [PMID: 38292482 PMCID: PMC10824977 DOI: 10.3389/fimmu.2023.1301506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Significant advancements have been made in comprehending the interactions between the microbiome and cancer. However, prevailing research predominantly directs its focus toward the gut microbiome, affording limited consideration to the interactions of intratumoral microbiota and tumors. Within the tumor microenvironment (TME), the intratumoral microbiome and its associated products wield regulatory influence, directing the modulation of cancer cell properties and impacting immune system functionality. However, to grasp a more profound insight into the intratumoral microbiota in cancer, further research into its underlying mechanisms is necessary. In this review, we delve into the intricate associations between intratumoral microbiota and cancer, with a specific focus on elucidating the significant contribution of intratumoral microbiota to the onset and advancement of cancer. Notably, we provide a detailed exploration of therapeutic advances facilitated by intratumoral microbiota, offering insights into recent developments in this burgeoning field.
Collapse
Affiliation(s)
- Jinmei Wu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Pengfei Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
224
|
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, Zhou M, Lv Z, Wang S, Jin Y. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther 2024; 9:15. [PMID: 38195689 PMCID: PMC10776793 DOI: 10.1038/s41392-023-01693-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes. Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.
Collapse
Affiliation(s)
- Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daquan Meng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Mengmeng Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
225
|
Chandra V, Li L, Le Roux O, Zhang Y, Howell RM, Rupani DN, Baydogan S, Miller HD, Riquelme E, Petrosino J, Kim MP, Bhat KPL, White JR, Kolls JK, Pylayeva-Gupta Y, McAllister F. Gut epithelial Interleukin-17 receptor A signaling can modulate distant tumors growth through microbial regulation. Cancer Cell 2024; 42:85-100.e6. [PMID: 38157865 PMCID: PMC11238637 DOI: 10.1016/j.ccell.2023.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 04/05/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Microbes influence cancer initiation, progression and therapy responsiveness. IL-17 signaling contributes to gut barrier immunity by regulating microbes but also drives tumor growth. A knowledge gap remains regarding the influence of enteric IL-17-IL-17RA signaling and their microbial regulation on the behavior of distant tumors. We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors. Microbial dependent IL-17 signaling increases DUOX2 signaling in tumor cells. Inefficacy of pharmacological inhibition of IL-17RA is overcome with targeted microbial ablation that blocks the compensatory loop. These findings demonstrate the complexities of IL-17-IL-17RA signaling in different compartments and the relevance for accounting for its homeostatic host defense function during cancer therapy.
Collapse
Affiliation(s)
- Vidhi Chandra
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Le Li
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olivereen Le Roux
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Zhang
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rian M Howell
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhwani N Rupani
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyda Baydogan
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haiyan D Miller
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erick Riquelme
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Respiratory Diseases, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Michael P Kim
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jay K Kolls
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
226
|
Routy B, Jackson T, Mählmann L, Baumgartner CK, Blaser M, Byrd A, Corvaia N, Couts K, Davar D, Derosa L, Hang HC, Hospers G, Isaksen M, Kroemer G, Malard F, McCoy KD, Meisel M, Pal S, Ronai Z, Segal E, Sepich-Poore GD, Shaikh F, Sweis RF, Trinchieri G, van den Brink M, Weersma RK, Whiteson K, Zhao L, McQuade J, Zarour H, Zitvogel L. Melanoma and microbiota: Current understanding and future directions. Cancer Cell 2024; 42:16-34. [PMID: 38157864 PMCID: PMC11096984 DOI: 10.1016/j.ccell.2023.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Over the last decade, the composition of the gut microbiota has been found to correlate with the outcomes of cancer patients treated with immunotherapy. Accumulating evidence points to the various mechanisms by which intestinal bacteria act on distal tumors and how to harness this complex ecosystem to circumvent primary resistance to immune checkpoint inhibitors. Here, we review the state of the microbiota field in the context of melanoma, the recent breakthroughs in defining microbial modes of action, and how to modulate the microbiota to enhance response to cancer immunotherapy. The host-microbe interaction may be deciphered by the use of "omics" technologies, and will guide patient stratification and the development of microbiota-centered interventions. Efforts needed to advance the field and current gaps of knowledge are also discussed.
Collapse
Affiliation(s)
- Bertrand Routy
- University of Montreal Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada; Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC H2X 3E4, Canada
| | - Tanisha Jackson
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA
| | - Laura Mählmann
- Seerave Foundation, The Seerave Foundation, 35-37 New Street, St Helier, JE2 3RA Jersey, UK
| | | | - Martin Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Allyson Byrd
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Kasey Couts
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Diwakar Davar
- Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lisa Derosa
- Gustave Roussy Cancer Center, ClinicoBiome, 94805 Villejuif, France; Université Paris Saclay, Faculty of Medicine, 94270 Kremlin Bicêtre, France; Inserm U1015, Equipe Labellisée par la Ligue Contre le Cancer, 94800 Villejuif, France
| | - Howard C Hang
- Departments of Immunology & Microbiology and Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geke Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94905 Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Florent Malard
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Kathy D McCoy
- Department of Physiology & Pharmacology, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA USA
| | - Sumanta Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Ze'ev Ronai
- Sanford Burnham Prebys Discovery Medical Research Institute, La Jolla, CA 92037, USA
| | - Eran Segal
- Weizmann Institute of Science, Computer Science and Applied Mathematics Department, 234th Herzel st., Rehovot 7610001, Israel
| | - Gregory D Sepich-Poore
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Micronoma Inc., San Diego, CA 92121, USA
| | - Fyza Shaikh
- Johns Hopkins School of Medicine, Department of Oncology, Baltimore, MD 21287, USA
| | - Randy F Sweis
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Giorgio Trinchieri
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcel van den Brink
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology, Sloan Kettering Institute, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Liping Zhao
- Department of Biochemistry and Microbiology, New Jersey Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NY 08901, USA
| | - Jennifer McQuade
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Hassane Zarour
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA.
| | - Laurence Zitvogel
- Gustave Roussy Cancer Center, ClinicoBiome, 94805 Villejuif, France; Université Paris Saclay, Faculty of Medicine, 94270 Kremlin Bicêtre, France; Inserm U1015, Equipe Labellisée par la Ligue Contre le Cancer, 94800 Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Gustave Roussy, 94805 Villejuif, France.
| |
Collapse
|
227
|
Ichikawa M, Okada H, Nakamoto N, Taniki N, Chu PS, Kanai T. The gut-liver axis in hepatobiliary diseases. Inflamm Regen 2024; 44:2. [PMID: 38191517 PMCID: PMC10773109 DOI: 10.1186/s41232-023-00315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
Recent advances in the analysis of intestinal bacteria have led to reports of variations in intestinal bacterial levels among hepatobiliary diseases. The mechanisms behind the changes in intestinal bacteria in various hepatobiliary diseases include the abnormal composition of intestinal bacteria, weakening of the intestinal barrier, and bacterial translocation outside the intestinal tract, along with their metabolites, but many aspects remain unresolved. Further research employing clinical studies and animal models is expected to clarify the direct relationship between intestinal bacteria and hepatobiliary diseases and to validate the utility of intestinal bacteria as a diagnostic biomarker and potential therapeutic target. This review summarizes the involvement of the microbiota in the pathogenesis of hepatobiliary diseases via the gut-liver axis.
Collapse
Affiliation(s)
- Masataka Ichikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Haruka Okada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan.
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Po-Sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan.
| |
Collapse
|
228
|
Huang J, Mao Y, Wang L. The crosstalk of intratumor bacteria and the tumor. Front Cell Infect Microbiol 2024; 13:1273254. [PMID: 38235490 PMCID: PMC10791805 DOI: 10.3389/fcimb.2023.1273254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
The in-depth studies reveal the interaction between the host and commensal microbiomes. Symbiotic bacteria influence in tumor initiation, progression, and response to treatment. Recently, intratumor bacteria have been a burgeoning research field. The tumor microenvironment is under vascular hyperplasia, aerobic glycolysis, hypoxia, and immunosuppression. It might be attractive for bacterial growth and proliferation. As a component of the tumor microenvironment, intratumor bacteria influence tumor growth and metastasis, as well as the efficacy of anti-tumor therapies. Therefore, understanding the intricate interplay of intratumoral bacteria and the host might contribute to better approaches to treat tumors. In this review, we summarize current evidence about roles of intratumor bacteria in tumor initiation and anti-tumor therapy, and what is remained to be solved in this field.
Collapse
Affiliation(s)
- Jiating Huang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuqin Mao
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Lishun Wang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
229
|
Cruz MS, Tintelnot J, Gagliani N. Roles of microbiota in pancreatic cancer development and treatment. Gut Microbes 2024; 16:2320280. [PMID: 38411395 PMCID: PMC10900280 DOI: 10.1080/19490976.2024.2320280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis. This is due to the fact that most cases are only diagnosed at an advanced and palliative disease stage, and there is a high incidence of therapy resistance. Despite ongoing efforts, to date, the mechanisms underlying PDAC oncogenesis and its poor responses to treatment are still largely unclear. As the study of the microbiome in cancer progresses, growing evidence suggests that bacteria or fungi might be key players both in PDAC oncogenesis as well as in its resistance to chemo- and immunotherapy, for instance through modulation of the tumor microenvironment and reshaping of the host immune response. Here, we review how the microbiota exerts these effects directly or indirectly via microbial-derived metabolites. Finally, we further discuss the potential of modulating the microbiota composition as a therapy in PDAC.
Collapse
Affiliation(s)
- Mariana Santos Cruz
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Joseph Tintelnot
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
230
|
Ansari D, Ibrahim H, Andersson R. Microbiome alterations in pancreatic cancer: new insights and potential clinical implications. Scand J Gastroenterol 2024; 59:202-203. [PMID: 37752856 DOI: 10.1080/00365521.2023.2261062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Affiliation(s)
- Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Helen Ibrahim
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
231
|
Tian Y, Xu P, Wu X, Gong Z, Yang X, Zhu H, Zhang J, Hu Y, Li G, Sang N, Yue H. Lung injuries induced by ozone exposure in female mice: Potential roles of the gut and lung microbes. ENVIRONMENT INTERNATIONAL 2024; 183:108422. [PMID: 38217903 DOI: 10.1016/j.envint.2024.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Ozone (O3) is one of the most harmful pollutants affecting health. However, the potential effects of O3 exposure on microbes in the gut-lung axis related to lung injuries remain elusive. In this study, female mice were exposed to 0-, 0.5- and 1-ppm O3 for 28 days, followed by routine blood tests, lung function tests and histopathological examination of the colon, nasal cavity and lung. Mouse faeces and lungs were collected for 16s rRNA sequencing to assess the overall microbiological profile and screen for key differential enriched microbes (DEMs). The key DEMs in faecal samples were Butyricimonas, Rikenellaceae RC9 and Escherichia-Shigella, whereas those in lung samples were DNF00809, Fluviicola, Bryobacter, Family XII AD3011 group, Sharpea, MND1 and unclassified Phycisphaeraceae. After a search in microbe-disease databases, these key DEMs were found to be associated with lung diseases such as lung neoplasms, cystic fibrosis, pneumonia, chronic obstructive pulmonary disease, respiratory distress syndrome and bronchiectasis. Subsequently, we used transcriptomic data from Gene Expression Omnibus (GEO) with exposure conditions similar to those in this study to cross-reference with Comparative Toxicogenomic Database (CTD). Il-6 and Ccl2 were identified as the key causative genes and were validated. The findings of this study suggest that exposure to O3 leads to significant changes in the microbial composition of the gut and lungs. These changes are associated with increased levels of inflammatory factors in the lungs and impaired lung function, resulting in an increased risk of lung disease. Altogether, this study provides novel insights into the role of microbes present in the gut-lung axis in O3 exposure-induced lung injury.
Collapse
Affiliation(s)
- Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhihua Gong
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tong ji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, PR China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huizhen Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Jiyue Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yangcheng Hu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
232
|
Jiang S, Ma W, Ma C, Zhang Z, Zhang W, Zhang J. An emerging strategy: probiotics enhance the effectiveness of tumor immunotherapy via mediating the gut microbiome. Gut Microbes 2024; 16:2341717. [PMID: 38717360 PMCID: PMC11085971 DOI: 10.1080/19490976.2024.2341717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
The occurrence and progression of tumors are often accompanied by disruptions in the gut microbiota. Inversely, the impact of the gut microbiota on the initiation and progression of cancer is becoming increasingly evident, influencing the tumor microenvironment (TME) for both local and distant tumors. Moreover, it is even suggested to play a significant role in the process of tumor immunotherapy, contributing to high specificity in therapeutic outcomes and long-term effectiveness across various cancer types. Probiotics, with their generally positive influence on the gut microbiota, may serve as effective agents in synergizing cancer immunotherapy. They play a crucial role in activating the immune system to inhibit tumor growth. In summary, this comprehensive review aims to provide valuable insights into the dynamic interactions between probiotics, gut microbiota, and cancer. Furthermore, we highlight recent advances and mechanisms in using probiotics to improve the effectiveness of cancer immunotherapy. By understanding these complex relationships, we may unlock innovative approaches for cancer diagnosis and treatment while optimizing the effects of immunotherapy.
Collapse
Affiliation(s)
- Shuaiming Jiang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenyao Ma
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Chenchen Ma
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, Shenzhen, PR China
| | - Zeng Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| |
Collapse
|
233
|
Garcia-Gutierrez E, O’Mahony AK, Dos Santos RS, Marroquí L, Cotter PD. Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications. Gut Microbes 2024; 16:2401654. [PMID: 39420751 PMCID: PMC11492678 DOI: 10.1080/19490976.2024.2401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, ETSIA-Universidad Politécnica de Cartagena, Cartagena, Spain
| | - A. Kate O’Mahony
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- School of Microbiology, University College Cork, Co. Cork, Ireland
| | - Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroquí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| |
Collapse
|
234
|
Luo F, Wang X, Ye C, Sun H. Microbial Biomarkers in Liquid Biopsy for Cancer: An Overview and Future Directions. Cancer Control 2024; 31:10732748241292019. [PMID: 39431347 PMCID: PMC11500238 DOI: 10.1177/10732748241292019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, the relationship between microbes and tumors has led to a new wave of scholarly pursuits. Due to the growing awareness of the importance of microbiota, including those within tumors, for cancer onset, progression, metastasis, and treatment, researchers have come to understand that microbiota and the tumor microenvironment together form a dynamic and complex ecosystem. Liquid biopsy technology, a non-invasive and easily repeatable method for sample collection, combined with emerging multi-omics techniques, allows for a more comprehensive and in-depth exploration of microbial signals and characteristics in bodily fluids. Microbial biomarkers hold immense potential in the early diagnosis, treatment stratification, and prognosis prediction of cancer. In this review, we describe the significant potential of microbial biomarkers in liquid biopsy for clinical applications in cancer, including early diagnosis, predicting treatment responses, and prognosis. Moreover, we discuss current limitations and potential solutions related to microbial biomarkers. This review aims to provide an overview and future directions of microbial biomarkers in liquid biopsy for cancer clinical practice.
Collapse
Affiliation(s)
| | - Xinyue Wang
- Xinyue Wang, MB, Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253# Gongye Road, Guangzhou 510280, China.
| | | | - Haitao Sun
- Xinyue Wang, MB, Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253# Gongye Road, Guangzhou 510280, China.
| |
Collapse
|
235
|
Shirai H, Tsukada K. Understanding bacterial infiltration of the pancreas through a deformable pancreatic duct. J Biomech 2024; 162:111883. [PMID: 38064997 DOI: 10.1016/j.jbiomech.2023.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024]
Abstract
Tiny amount of bacteria are found in the pancreas in pancreatitis and cancer, which seemed involved in inflammation and carcinogenesis. However, bacterial infiltration from the duodenum is inhibited by the physical defense mechanisms such as bile flow and the sphincter of Oddi. To understand how the bacteria possibly infiltrate the pancreas through a deformable pancreatic duct, influenced by the periodic contractions of the sphincter of Oddi, a mathematical model of bacterial infiltration is developed that considered large deformation, fluid flow, and bacterial transport in a deformable pancreatic duct. In addition, the sphincter's contraction wave is modeled by including its propagation from the pancreas toward the duodenum. Simulated structure of the deformed duct with the relaxed sphincter and simulated bile distribution agreed reasonably well with the literature, validating the model. Bacterial infiltration from the duodenum in a deformable pancreatic duct, following the sphincter's contraction, is counteracted by a gradual peristalsis-like deformation of the pancreatic duct, due to an antegrade contraction wave propagation from the pancreas to the duodenum, Parametric sensitivity analysis demonstrated that bacterial infiltration is increased with lower bile and pancreatic juice flow rate, greater contraction amplitude and frequency, thinner wall thickness, and retrograde contraction wave propagation. Since contraction waves following retrograde propagation are increased in patients with common bile duct stones and pancreatitis, they may possibly be factors for continuum inflammation of pancreas. (224 words).
Collapse
Affiliation(s)
- Hiroaki Shirai
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan.
| | - Kosuke Tsukada
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan; Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan
| |
Collapse
|
236
|
de Castilhos J, Tillmanns K, Blessing J, Laraño A, Borisov V, Stein-Thoeringer CK. Microbiome and pancreatic cancer: time to think about chemotherapy. Gut Microbes 2024; 16:2374596. [PMID: 39024520 PMCID: PMC11259062 DOI: 10.1080/19490976.2024.2374596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by late diagnosis, rapid progression, and a high mortality rate. Its complex biology, characterized by a dense, stromal tumor environment with an immunosuppressive milieu, contributes to resistance against standard treatments like chemotherapy and radiation. This comprehensive review explores the dynamic role of the microbiome in modulating chemotherapy efficacy and outcomes in PDAC. It delves into the microbiome's impact on drug metabolism and resistance, and the interaction between microbial elements, drugs, and human biology. We also highlight the significance of specific bacterial species and microbial enzymes in influencing drug action and the immune response in the tumor microenvironment. Cutting-edge methodologies, including artificial intelligence, low-biomass microbiome analysis and patient-derived organoid models, are discussed, offering insights into the nuanced interactions between microbes and cancer cells. The potential of microbiome-based interventions as adjuncts to conventional PDAC treatments are discussed, paving the way for personalized therapy approaches. This review synthesizes recent research to provide an in-depth understanding of how the microbiome affects chemotherapy efficacy. It focuses on elucidating key mechanisms and identifying existing knowledge gaps. Addressing these gaps is crucial for enhancing personalized medicine and refining cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Juliana de Castilhos
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Katharina Tillmanns
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Jana Blessing
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Arnelyn Laraño
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Vadim Borisov
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Christoph K. Stein-Thoeringer
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| |
Collapse
|
237
|
Zhang C, Li G, Lu T, Liu L, Sui Y, Bai R, Li L, Sun B. The Interaction of Microbiome and Pancreas in Acute Pancreatitis. Biomolecules 2023; 14:59. [PMID: 38254659 PMCID: PMC10813032 DOI: 10.3390/biom14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Acute pancreatitis (AP) is a common acute abdomen disease characterized by the pathological activation of digestive enzymes and the self-digestion of pancreatic acinar cells. Secondary infection and sepsis are independent prognosticators for AP progression and increased mortality. Accumulating anatomical and epidemiological evidence suggests that the dysbiosis of gut microbiota affects the etiology and severity of AP through intestinal barrier disruption, local or systemic inflammatory response, bacterial translocation, and the regulatory role of microbial metabolites in AP patients and animal models. Recent studies discussing the interactions between gut microbiota and the pancreas have opened new scopes for AP, and new therapeutic interventions that target the bacteria community have received substantial attention. This review concentrates on the alterations of gut microbiota and its roles in modulating gut-pancreas axis in AP. The potential therapies of targeting microbes as well as the major challenges of applying those interventions are explored. We expect to understand the roles of microbes in AP diagnosis and treatment.
Collapse
Affiliation(s)
- Can Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Tianqi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Yuhang Sui
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Rui Bai
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| |
Collapse
|
238
|
Kandalai S, Li H, Zhang N, Peng H, Zheng Q. The human microbiome and cancer: a diagnostic and therapeutic perspective. Cancer Biol Ther 2023; 24:2240084. [PMID: 37498047 PMCID: PMC10376920 DOI: 10.1080/15384047.2023.2240084] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Recent evidence has shown that the human microbiome is associated with various diseases, including cancer. The salivary microbiome, fecal microbiome, and circulating microbial DNA in blood plasma have all been used experimentally as diagnostic biomarkers for many types of cancer. The microbiomes present within local tissue, other regions, and tumors themselves have been shown to promote and restrict the development and progression of cancer, most often by affecting cancer cells or the host immune system. These microbes have also been shown to impact the efficacy of various cancer therapies, including radiation, chemotherapy, and immunotherapy. Here, we review the research advances focused on how microbes impact these different facets and why they are important to the clinical care of cancer. It is only by better understanding the roles these microbes play in the diagnosis, development, progression, and treatment of cancer, that we will be able to catch and treat cancer early.
Collapse
Affiliation(s)
- Shruthi Kandalai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Huapeng Li
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Haidong Peng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
239
|
Khan S, Banerjee G, Setua S, Jones DH, Chauhan BV, Dhasmana A, Banerjee P, Yallapu MM, Behrman S, Chauhan SC. Metagenomic analysis unveils the microbial landscape of pancreatic tumors. Front Microbiol 2023; 14:1275374. [PMID: 38179448 PMCID: PMC10764597 DOI: 10.3389/fmicb.2023.1275374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The composition of resident microbes in the human body is linked to various diseases and their treatment outcomes. Although studies have identified pancreatic ductal adenocarcinoma (PDAC)-associated bacterial communities in the oral and gut samples, herein, we hypothesize that the prevalence of microbiota in pancreatic tumor tissues is different as compared with their matched adjacent, histologically normal appearing tissues, and these microbial molecular signatures can be highly useful for PDAC diagnosis/prognosis. In this study, we performed comparative profiling of bacterial populations in pancreatic tumors and their respective adjacent normal tissues using 16S rRNA-based metagenomics analysis. This study revealed a higher abundance of Proteobacteria and Actinomycetota in tumor tissues compared with adjacent normal tissues. Interestingly, the linear discriminant analysis (LDA) scores unambiguously revealed an enrichment of Delftia in tumor tissues, whereas Sphingomonas, Streptococcus, and Citrobacter exhibited a depletion in tumor tissues. Furthermore, we analyzed the microbial composition between different groups of patients with different tumor differentiation stages. The bacterial genera, Delftia and Staphylococcus, were very high at the G1 stages (well differentiated) compared with G2 (well to moderate/moderately differentiated) and G3/G4 (poorly differentiated) stages. However, the abundance of Actinobacter and Cloacibacterium was found to be very high in G2 and G3, respectively. Additionally, we evaluated the correlation of programmed death-ligand (PDL1) expression with the abundance of bacterial genera in tumor lesions. Our results indicated that three genera such as Streptomyces, Cutibacterium, and Delftia have a positive correlation with PD-L1 expression. Collectively, these findings demonstrate that PDAC lesions harbor relatively different microbiota compared with their normal tumor adjacent tissues, and this information may be helpful for the diagnosis and prognosis of PADC patients.
Collapse
Affiliation(s)
- Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, the University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 105 Agricultural Bioprocess Laboratory, Urbana, IL, United States
| | - Saini Setua
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Blood Oxygen Transport and Hemostasis (CBOTH), Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| | - Daleniece Higgins Jones
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, United States
- Department of Public Health, University of Tennessee, Knoxville, TN, United States
| | - Bhavin V. Chauhan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 105 Agricultural Bioprocess Laboratory, Urbana, IL, United States
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 105 Agricultural Bioprocess Laboratory, Urbana, IL, United States
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, United States
| | - Murali Mohan Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, the University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Stephen Behrman
- Department of Surgery, Baptist Memorial Hospital and Medical Education, Memphis, TN, United States
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, the University of Texas Rio Grande Valley, McAllen, TX, United States
| |
Collapse
|
240
|
Souza VGP, Forder A, Pewarchuk ME, Telkar N, de Araujo RP, Stewart GL, Vieira J, Reis PP, Lam WL. The Complex Role of the Microbiome in Non-Small Cell Lung Cancer Development and Progression. Cells 2023; 12:2801. [PMID: 38132121 PMCID: PMC10741843 DOI: 10.3390/cells12242801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, there has been a growing interest in the relationship between microorganisms in the surrounding environment and cancer cells. While the tumor microenvironment predominantly comprises cancer cells, stromal cells, and immune cells, emerging research highlights the significant contributions of microbial cells to tumor development and progression. Although the impact of the gut microbiome on treatment response in lung cancer is well established, recent investigations indicate complex roles of lung microbiota in lung cancer. This article focuses on recent findings on the human lung microbiome and its impacts in cancer development and progression. We delve into the characteristics of the lung microbiome and its influence on lung cancer development. Additionally, we explore the characteristics of the intratumoral microbiome, the metabolic interactions between lung tumor cells, and how microorganism-produced metabolites can contribute to cancer progression. Furthermore, we provide a comprehensive review of the current literature on the lung microbiome and its implications for the metastatic potential of tumor cells. Additionally, this review discusses the potential for therapeutic modulation of the microbiome to establish lung cancer prevention strategies and optimize lung cancer treatment.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | | | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rachel Paes de Araujo
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Juliana Vieira
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
241
|
Thomas SC, Miller G, Li X, Saxena D. Getting off tract: contributions of intraorgan microbiota to cancer in extraintestinal organs. Gut 2023; 73:175-185. [PMID: 37918889 PMCID: PMC10842768 DOI: 10.1136/gutjnl-2022-328834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
The gastrointestinal ecosystem has received the most attention when examining the contributions of the human microbiome to health and disease. This concentration of effort is logical due to the overwhelming abundance of microbes in the gut coupled with the relative ease of sampling compared with other organs. However, the intestines are intimately connected to multiple extraintestinal organs, providing an opportunity for homeostatic microbial colonisation and pathogenesis in organs traditionally thought to be sterile or only transiently harbouring microbiota. These habitats are challenging to sample, and their low microbial biomass among large amounts of host tissue can make study challenging. Nevertheless, recent findings have shown that many extraintestinal organs that are intimately linked to the gut harbour stable microbiomes, which are colonised from the gut in selective manners and have highlighted not just the influence of the bacteriome but that of the mycobiome and virome on oncogenesis and health.
Collapse
Affiliation(s)
- Scott C Thomas
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - George Miller
- Cancer Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Xin Li
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
- Perlmutter Cancer Institute, New York University Langone Medical Center, New York, NY, USA
- Department of Urology, New York University Grossman School of Medicine, New York, NY, USA
| | - Deepak Saxena
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
- Perlmutter Cancer Institute, New York University Langone Medical Center, New York, NY, USA
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
242
|
Rogers S, Charles A, Thomas RM. The Prospect of Harnessing the Microbiome to Improve Immunotherapeutic Response in Pancreatic Cancer. Cancers (Basel) 2023; 15:5708. [PMID: 38136254 PMCID: PMC10741649 DOI: 10.3390/cancers15245708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is projected to become the second leading cause of cancer-related death in the United States by 2030. Patients are often diagnosed with advanced disease, which explains the dismal 5-year median overall survival rate of ~12%. Immunotherapy has been successful in improving outcomes in the past decade for a variety of malignancies, including gastrointestinal cancers. However, PDAC is historically an immunologically "cold" tumor, one with an immunosuppressive environment and with restricted entry of immune cells that have limited the success of immunotherapy in these tumors. The microbiome, the intricate community of microorganisms present on and within humans, has been shown to contribute to many cancers, including PDAC. Recently, its role in tumor immunology and response to immunotherapy has generated much interest. Herein, the current state of the interaction of the microbiome and immunotherapy in PDAC is discussed with a focus on needed areas of study in order to harness the immune system to combat pancreatic cancer.
Collapse
Affiliation(s)
- Sherise Rogers
- Department of Medicine, Division of Hematology and Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Angel Charles
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32603, USA
| |
Collapse
|
243
|
Schäffer DE, Li W, Elbasir A, Altieri DC, Long Q, Auslander N. Microbial gene expression analysis of healthy and cancerous esophagus uncovers bacterial biomarkers of clinical outcomes. ISME COMMUNICATIONS 2023; 3:128. [PMID: 38049632 PMCID: PMC10696091 DOI: 10.1038/s43705-023-00338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Local microbiome shifts are implicated in the development and progression of gastrointestinal cancers, and in particular, esophageal carcinoma (ESCA), which is among the most aggressive malignancies. Short-read RNA sequencing (RNAseq) is currently the leading technology to study gene expression changes in cancer. However, using RNAseq to study microbial gene expression is challenging. Here, we establish a new tool to efficiently detect viral and bacterial expression in human tissues through RNAseq. This approach employs a neural network to predict reads of likely microbial origin, which are targeted for assembly into longer contigs, improving identification of microbial species and genes. This approach is applied to perform a systematic comparison of bacterial expression in ESCA and healthy esophagi. We uncover bacterial genera that are over or underabundant in ESCA vs healthy esophagi both before and after correction for possible covariates, including patient metadata. However, we find that bacterial taxonomies are not significantly associated with clinical outcomes. Strikingly, in contrast, dozens of microbial proteins were significantly associated with poor patient outcomes and in particular, proteins that perform mitochondrial functions and iron-sulfur coordination. We further demonstrate associations between these microbial proteins and dysregulated host pathways in ESCA patients. Overall, these results suggest possible influences of bacteria on the development of ESCA and uncover new prognostic biomarkers based on microbial genes. In addition, this study provides a framework for the analysis of other human malignancies whose development may be driven by pathogens.
Collapse
Affiliation(s)
- Daniel E Schäffer
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- The Wistar Institute, Philadelphia, PA, 19104, USA
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wenrui Li
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Qi Long
- University of Pennsylvania, Philadelphia, PA, USA
| | - Noam Auslander
- The Wistar Institute, Philadelphia, PA, 19104, USA.
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
244
|
Jiang Y, Jia D, Sun Y, Ding N, Wang L. Microbiota: A key factor affecting and regulating the efficacy of immunotherapy. Clin Transl Med 2023; 13:e1508. [PMID: 38082435 PMCID: PMC10713876 DOI: 10.1002/ctm2.1508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Immunotherapy has made significant progress in cancer treatment; however, the responsiveness to immunotherapy varies widely among patients. Growing evidence has demonstrated the role of the gut microbiota in the efficacy of immunotherapy. MAIN BODY Herein, we summarise the changes in the microbiota in different cancers under various immunotherapies. The microbial-host signal transmission on immunotherapeutic responses and mechanisms associated with microbial translocation to tumours in the context of immunotherapy are also discussed. In addition, we have highlighted the clinical application value of methods for regulating the microbiota. Finally, we elaborate on the relationship between the microbiota, host and immunotherapy, and provide potential directions for future research. CONCLUSION Different microbiota cause changes in the tumour microenvironment through microbial signals thereby affecting immunotherapy efficacy. Translocation of gut microbiota and the role of extraintestinal microbiota in immunotherapy deserve attention. Microbiota regulation is a novel strategy for combination therapy with immunotherapy. Although there are several aspects that deserve further refinement and exploration with regard to administration and clinical translation. Nevertheless, it is foreseeable that the microbiota will become an integral part of cancer treatment.
Collapse
Affiliation(s)
- Yao Jiang
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
| | - Dingjiacheng Jia
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
| | - Yong Sun
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
| | - Ning Ding
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
| | - Liangjing Wang
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| |
Collapse
|
245
|
Hilmi M, Delaye M, Muzzolini M, Nicolle R, Cros J, Hammel P, Cardot-Ruffino V, Neuzillet C. The immunological landscape in pancreatic ductal adenocarcinoma and overcoming resistance to immunotherapy. Lancet Gastroenterol Hepatol 2023; 8:1129-1142. [PMID: 37866368 DOI: 10.1016/s2468-1253(23)00207-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 10/24/2023]
Abstract
Pancreatic ductal adenocarcinoma is associated with a poor prognosis and there are few treatment options. The development of immunotherapy in pancreatic ductal adenocarcinoma has been difficult, and immune checkpoint inhibitors are only effective in a very small subset of patients. Most obstacles for treatment have been related to intertumoural and intratumoural heterogeneity, the composition of tumour stroma, and crosstalk with cancer cells. Improved molecular characterisation of pancreatic ductal adenocarcinoma and a better understanding of its microenvironment have paved the way for novel immunotherapy strategies, including the identification of predictive biomarkers, the development of rational combinations to optimise effectiveness, and the targeting of new mechanisms. Future immunotherapy strategies should consider individual characteristics to move beyond the traditional immune targets and circumvent the resistance to therapies that have been developed so far.
Collapse
Affiliation(s)
- Marc Hilmi
- Gastrointestinal Oncology, Medical Oncology Department, Institut Curie, Université Versailles Saint-Quentin-Université Paris-Saclay, Saint-Cloud, France; Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Paris, France
| | - Matthieu Delaye
- Gastrointestinal Oncology, Medical Oncology Department, Institut Curie, Université Versailles Saint-Quentin-Université Paris-Saclay, Saint-Cloud, France; Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Paris, France
| | - Milena Muzzolini
- Digestive Surgery Department, Ambroise Paré Hospital, APHP, Université Versailles Saint-Quentin-Université Paris-Saclay, Boulogne Billancourt, France
| | - Rémy Nicolle
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris, France
| | - Jérôme Cros
- Université Paris Cité, Pathology Department, Beaujon Hospital, FHU MOSAIC, AP-HP, Clichy, France
| | - Pascal Hammel
- Université Paris-Saclay, Department of Digestive and Medical Oncology, Paul-Brousse Hospital (APHP Sud), Villejuif, France
| | | | - Cindy Neuzillet
- Gastrointestinal Oncology, Medical Oncology Department, Institut Curie, Université Versailles Saint-Quentin-Université Paris-Saclay, Saint-Cloud, France; Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Paris, France.
| |
Collapse
|
246
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
247
|
Mima K, Hamada T, Inamura K, Baba H, Ugai T, Ogino S. The microbiome and rise of early-onset cancers: knowledge gaps and research opportunities. Gut Microbes 2023; 15:2269623. [PMID: 37902043 PMCID: PMC10730181 DOI: 10.1080/19490976.2023.2269623] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
Accumulating evidence indicates an alarming increase in the incidence of early-onset cancers, which are diagnosed among adults under 50 years of age, in the colorectum, esophagus, extrahepatic bile duct, gallbladder, liver, stomach, pancreas, as well as the bone marrow (multiple myeloma), breast, head and neck, kidney, prostate, thyroid, and uterine corpus (endometrium). While the early-onset cancer studies have encompassed research on the wide variety of organs, this article focuses on research on digestive system cancers. While a minority of early-onset cancers in the digestive system are associated with cancer-predisposing high penetrance germline genetic variants, the majority of those cancers are sporadic and multifactorial. Although potential etiological roles of diets, lifestyle, environment, and the microbiome from early life to adulthood (i.e. in one's life course) have been hypothesized, exact contribution of each of these factors remains uncertain. Diets, lifestyle patterns, and environmental exposures have been shown to alter the oral and intestinal microbiome. To address the rising trend of early-onset cancers, transdisciplinary research approaches including lifecourse epidemiology and molecular pathological epidemiology frameworks, nutritional and environmental sciences, multi-omics technologies, etc. are needed. We review current evidence and discuss emerging research opportunities, which can improve our understanding of their etiologies and help us design better strategies for prevention and treatment to reduce the cancer burden in populations.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
248
|
He J, Li H, Jia J, Liu Y, Zhang N, Wang R, Qu W, Liu Y, Jia L. Mechanisms by which the intestinal microbiota affects gastrointestinal tumours and therapeutic effects. MOLECULAR BIOMEDICINE 2023; 4:45. [PMID: 38032415 PMCID: PMC10689341 DOI: 10.1186/s43556-023-00157-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
The intestinal microbiota is considered to be a forgotten organ in human health and disease. It maintains intestinal homeostasis through various complex mechanisms. A significant body of research has demonstrated notable differences in the gut microbiota of patients with gastrointestinal tumours compared to healthy individuals. Furthermore, the dysregulation of gut microbiota, metabolites produced by gut bacteria, and related signal pathways can partially explain the mechanisms underlying the occurrence and development of gastrointestinal tumours. Therefore, this article summarizes the latest research progress on the gut microbiota and gastrointestinal tumours. Firstly, we provide an overview of the composition and function of the intestinal microbiota and discuss the mechanisms by which the intestinal flora directly or indirectly affects the occurrence and development of gastrointestinal tumours by regulating the immune system, producing bacterial toxins, secreting metabolites. Secondly, we present a detailed analysis of the differences of intestinal microbiota and its pathogenic mechanisms in colorectal cancer, gastric cancer, hepatocellular carcinoma, etc. Lastly, in terms of treatment strategies, we discuss the effects of the intestinal microbiota on the efficacy and toxic side effects of chemotherapy and immunotherapy and address the role of probiotics, prebiotics, FMT and antibiotic in the treatment of gastrointestinal tumours. In summary, this article provides a comprehensive review of the pathogenic mechanisms of and treatment strategies pertaining to the intestinal microbiota in patients with gastrointestinal tumours. And provide a more comprehensive and precise scientific basis for the development of microbiota-based treatments for gastrointestinal tumours and the prevention of such tumours.
Collapse
Affiliation(s)
- Jikai He
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Haijun Li
- Department of Gastrointestinal Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010017, Inner Mongolia, China
| | - Jiaqi Jia
- Graduate School of Youjiang Medical University for Nationalities, No. 98 Chengcheng Road, Youjiang District, Baise City, 533000, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Rumeng Wang
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Wenhao Qu
- Graduate School of Youjiang Medical University for Nationalities, No. 98 Chengcheng Road, Youjiang District, Baise City, 533000, China
| | - Yanqi Liu
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010050, Inner Mongolia, China.
| | - Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China.
| |
Collapse
|
249
|
Merali N, Chouari T, Terroire J, Jessel MD, Liu DSK, Smith JH, Wooldridge T, Dhillon T, Jiménez JI, Krell J, Roberts KJ, Rockall TA, Velliou E, Sivakumar S, Giovannetti E, Demirkan A, Annels NE, Frampton AE. Bile Microbiome Signatures Associated with Pancreatic Ductal Adenocarcinoma Compared to Benign Disease: A UK Pilot Study. Int J Mol Sci 2023; 24:16888. [PMID: 38069211 PMCID: PMC10706407 DOI: 10.3390/ijms242316888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a very poor survival. The intra-tumoural microbiome can influence pancreatic tumourigenesis and chemoresistance and, therefore, patient survival. The role played by bile microbiota in PDAC is unknown. We aimed to define bile microbiome signatures that can effectively distinguish malignant from benign tumours in patients presenting with obstructive jaundice caused by benign and malignant pancreaticobiliary disease. Prospective bile samples were obtained from 31 patients who underwent either Endoscopic Retrograde Cholangiopancreatography (ERCP) or Percutaneous Transhepatic Cholangiogram (PTC). Variable regions (V3-V4) of the 16S rRNA genes of microorganisms present in the samples were amplified by Polymerase Chain Reaction (PCR) and sequenced. The cohort consisted of 12 PDAC, 10 choledocholithiasis, seven gallstone pancreatitis and two primary sclerosing cholangitis patients. Using the 16S rRNA method, we identified a total of 135 genera from 29 individuals (12 PDAC and 17 benign). The bile microbial beta diversity significantly differed between patients with PDAC vs. benign disease (Permanova p = 0.0173). The separation of PDAC from benign samples is clearly seen through unsupervised clustering of Aitchison distance. We found three genera to be of significantly lower abundance among PDAC samples vs. benign, adjusting for false discovery rate (FDR). These were Escherichia (FDR = 0.002) and two unclassified genera, one from Proteobacteria (FDR = 0.002) and one from Enterobacteriaceae (FDR = 0.011). In the same samples, the genus Streptococcus (FDR = 0.033) was found to be of increased abundance in the PDAC group. We show that patients with obstructive jaundice caused by PDAC have an altered microbiome composition in the bile compared to those with benign disease. These bile-based microbes could be developed into potential diagnostic and prognostic biomarkers for PDAC and warrant further investigation.
Collapse
Affiliation(s)
- Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Tarak Chouari
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Julien Terroire
- Surrey Institute for People-Centred AI, University of Surrey, Guildford GU2 7XH, UK
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Daniel S. K. Liu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - James-Halle Smith
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK
| | - Tyler Wooldridge
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Tony Dhillon
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - José I. Jiménez
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Jonathan Krell
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Keith J. Roberts
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK
| | - Timothy A. Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), London W1W 7TY, UK
| | - Shivan Sivakumar
- Oncology Department, Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, San Giuliano Terme PI, 56017 Pisa, Italy
| | - Ayse Demirkan
- Surrey Institute for People-Centred AI, University of Surrey, Guildford GU2 7XH, UK
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Nicola E. Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
250
|
Wu S, Wen S, An K, Xiong L, Zeng H, Niu Y, Yin T. Bibliometric analysis of global research trends between gut microbiota and pancreatic cancer: from 2004 to 2023. Front Microbiol 2023; 14:1281451. [PMID: 38088976 PMCID: PMC10715435 DOI: 10.3389/fmicb.2023.1281451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most lethal malignancies of the digestive system and is expected to be the second leading cause of cancer-related death in the United States by 2030. A growing body of evidence suggests that the gut microbiota (GM) is intimately involved in the clinical diagnosis, oncogenic mechanism and treatment of PC. However, no bibliometric analysis of PC and GM has been reported. METHODS The literature on PC and GM was retrieved from the Web of Science Core Collection (WoSCC) database for the period from January 1, 2004 to April 25, 2023. Microsoft Excel 2021, CiteSpace, VOSviewer, Scimago Graphica, Graphpad Prism, Origin, the R package "bibliometrics" and the bibliometric online analysis program were used to visualize the publishing trends and hot spots in this field. RESULTS A total of 1,449 articles were included, including 918 articles and 531 reviews. Publishing had grown rapidly since 2017, with the 2023 expected to publish 268 articles. Unsurprisingly, the United States ranked highest in terms of number of literatures, H index and average citations. The University of California System was the most active institution, but Harvard University tended to be cited the most on average. The three most influential researchers were Robert M. Hoffman, Zhao Minglei, and Zhang Yong. Cancers had published the most papers, while Nature was the most cited journal. Keyword analysis and theme analysis indicated that "tumor microenvironment," "gemcitabine-resistance," "ductal adenocarcinoma," "gut microbiota" and "diagnosis" will be the hotspots and frontiers of research in the future. CONCLUSION In summary, the field is receiving increasing attention. We found that future hotspots of PC/GM research may focus on the mechanism of oncogenesis, flora combination therapy and the exploitation of new predictive biomarkers, which provides effective suggestions and new insights for scholars.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Wen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangli An
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Xiong
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zeng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueyue Niu
- Department of Ophthalmology, Henan Provincial People’s Hospital, Clinical Medical College of Henan University, Zhengzhou, China
| | - Tiejun Yin
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|