201
|
Köpper F, Binkowski AM, Bierwirth C, Dobbelstein M. The MAPK-activated protein kinase 2 mediates gemcitabine sensitivity in pancreatic cancer cells. Cell Cycle 2014; 13:884-9. [PMID: 24556918 PMCID: PMC3984311 DOI: 10.4161/cc.28292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 01/06/2023] Open
Abstract
Pancreatic carcinoma is the major clinical entity where the nucleoside analog gemcitabine is used for first-line therapy. Overcoming cellular resistance toward gemcitabine remains a major challenge in this context. This raises the need to identify factors that determine gemcitabine sensitivity in pancreatic carcinoma cells. We previously found the MAPK-activated protein kinase 2 (MK2), part of the p38/MK2 stress response pathway, to be required for DNA replication fork stalling when osteosarcoma-derived cells were treated with gemcitabine. As a consequence, inhibition or depletion of MK2 protects these cells from gemcitabine-induced death (Köpper, et al. Proc Natl Acad Sci USA 2013; 110:16856-61). Here, we addressed whether MK2 also determines the sensitivity of pancreatic cancer cells toward gemcitabine. We found that MK2 inhibition reduced the intensity of the DNA damage response and enhanced survival of the pancreatic cancer cell lines BxPC-3, MIA PaCa-2, and Panc-1, which display a moderate to strong sensitivity to gemcitabine. In contrast, MK2 inhibition only weakly attenuated the DNA damage response intensity and did not enhance long-term survival in the gemcitabine-resistant cell line PaTu 8902. Importantly, in BxPC-3 and MIA PaCa-2 cells, inhibition of MK2 also rescued increased H2AX phosphorylation caused by inhibition of the checkpoint kinase Chk1 in the presence of gemcitabine. These results indicate that MK2 mediates gemcitabine efficacy in pancreatic cancer cells that respond to the drug, suggesting that the p38/MK2 pathway represents a determinant of the efficacy by that gemcitabine counteracts pancreatic cancer.
Collapse
Affiliation(s)
- Frederik Köpper
- Institute of Molecular Oncology; Göttingen Centre of Molecular Biosciences (GZMB); Faculty of Medicine; University of Göttingen; Göttingen, Germany
| | - Anna Maria Binkowski
- Institute of Molecular Oncology; Göttingen Centre of Molecular Biosciences (GZMB); Faculty of Medicine; University of Göttingen; Göttingen, Germany
| | - Cathrin Bierwirth
- Institute of Molecular Oncology; Göttingen Centre of Molecular Biosciences (GZMB); Faculty of Medicine; University of Göttingen; Göttingen, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology; Göttingen Centre of Molecular Biosciences (GZMB); Faculty of Medicine; University of Göttingen; Göttingen, Germany
| |
Collapse
|
202
|
Zheng R, Heck DE, Black AT, Gow A, Laskin DL, Laskin JD. Regulation of keratinocyte expression of stress proteins and antioxidants by the electrophilic nitrofatty acids 9- and 10-nitrooleic acid. Free Radic Biol Med 2014; 67:1-9. [PMID: 24140437 PMCID: PMC4391631 DOI: 10.1016/j.freeradbiomed.2013.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/15/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
Nitric oxide and various by-products including nitrite contribute to tissue injury by forming novel intermediates via redox-mediated nitration reactions. Nitration of unsaturated fatty acids generates electrophilic nitrofatty acids such as 9-nitrooleic acid (9-NO) and 10-nitrooleic acid (10-NO), which are known to initiate intracellular signaling pathways. In these studies, we characterized nitrofatty acid-induced signaling and stress protein expression in mouse keratinocytes. Treatment of keratinocytes with 5-25μM 9-NO or 10-NO for 6h upregulated mRNA expression of heat shock proteins (hsp's) 27 and 70; primary antioxidants heme oxygenase-1 (HO-1) and catalase; secondary antioxidants glutathione S-transferase (GST) A1/2, GSTA3, and GSTA4; and Cox-2, a key enzyme in prostaglandin biosynthesis. The greatest responses were evident with HO-1, hsp27, and hsp70. In keratinocytes, 9-NO activated JNK and p38 MAP kinases. JNK inhibition suppressed 9-NO-induced HO-1, hsp27, and hsp70 mRNA and protein expression, whereas p38 MAP kinase inhibition suppressed HO-1. In contrast, inhibition of constitutive expression of Erk1/2 suppressed only hsp70, indicating that 9-NO modulates expression of stress proteins by distinct mechanisms. 9-NO and 10-NO also upregulated expression of caveolin-1, the major structural component of caveolae. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation revealed that HO-1, hsp27, and hsp70 were localized within caveolae after nitrofatty acid treatment of keratinocytes, suggesting a link between induction of stress response proteins and caveolin-1 expression. These data indicate that nitrofatty acids are effective signaling molecules in keratinocytes. Moreover, caveolae seem to be important in the localization of stress proteins in response to nitrofatty acids.
Collapse
Affiliation(s)
- Ruijin Zheng
- Pharmacology & Toxicology and Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Diane E Heck
- Environmental Health Science, New York Medical College, Valhalla, NY 10595, USA
| | - Adrienne T Black
- Pharmacology & Toxicology and Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew Gow
- Pharmacology & Toxicology and Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Pharmacology & Toxicology and Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D Laskin
- Environmental & Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
203
|
Cutolo M. Disease modification in systemic sclerosis. Do integrated approaches offer new challenges? Z Rheumatol 2014; 72:326-8. [PMID: 23552981 DOI: 10.1007/s00393-013-1157-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M Cutolo
- Research Laboratories and Academic Unit of Clinical Rheumatology, Department of Internal Medicine, University of Genova Italy, Viale Benedetto XV, 6, 16132 Genova, Italy.
| |
Collapse
|
204
|
Zhu XN, Chen LP, Bai Q, Ma L, Li DC, Zhang JM, Gao C, Lei ZN, Zhang ZB, Xing XM, Liu CX, He ZN, Li J, Xiao YM, Zhang AH, Zeng XW, Chen W. PP2A-AMPKα-HSF1 axis regulates the metal-inducible expression of HSPs and ROS clearance. Cell Signal 2014; 26:825-32. [PMID: 24412756 DOI: 10.1016/j.cellsig.2014.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/03/2014] [Indexed: 01/18/2023]
Abstract
Metals such as cadmium and arsenic are ubiquitous toxicants that cause a variety of adverse health effects. Heat shock proteins (HSPs) response to metal-induced stress and protect cells from further damage. However, the intracellular signalling pathways responsible for activation of HSPs expression are not fully understood. Here, we demonstrate that protein phosphatase 2A (PP2A) regulates expression of HSP70 and HSP27 via dephosphorylation of an AMP-activated protein kinase α subunit (AMPKα) at Thr172. Dephosphorylated AMPKα phosphorylates heat shock factor 1 (HSF1) at Ser303, leading to significant transcriptional suppression of HSP70 and HSP27 in CdCl2- or NaAsO2-treated cells. Suppression of PP2A regulatory B56δ subunit resulted in the sustained phosphorylation of AMPKα upon CdCl2 treatment, subsequent reduction in expression of HSP70 and HSP27, and thereby dramatic reduction of reactive oxygen species (ROS) clearance. We further revealed that PP2A B56δ physically interacted with AMPKα, providing evidence that PP2A B56δ-AMPKα-HSF1 signalling pathway participated in regulating the inducible expression of HSPs and ROS clearance. Taken together, we identified a novel PP2A-dependent signalling pathway involved in regulation of HSPs expression in response to metal stress.
Collapse
Affiliation(s)
- Xiao-nian Zhu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-ping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Bai
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu Ma
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dao-chuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jin-miao Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chen Gao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zi-ning Lei
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zheng-bao Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiu-mei Xing
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Cai-xia Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-ni He
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yong-mei Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ai-hua Zhang
- School of Public Health, Guiyang Medical University, Guiyang 550004, China
| | - Xiao-wen Zeng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
205
|
Lam PY, Harvie EA, Huttenlocher A. Heat shock modulates neutrophil motility in zebrafish. PLoS One 2013; 8:e84436. [PMID: 24367659 PMCID: PMC3868611 DOI: 10.1371/journal.pone.0084436] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/15/2013] [Indexed: 01/24/2023] Open
Abstract
Heat shock is a routine method used for inducible gene expression in animal models including zebrafish. Environmental temperature plays an important role in the immune system and infection progression of ectotherms. In this study, we analyzed the impact of short-term heat shock on neutrophil function using zebrafish (Danio rerio) as an animal model. Short-term heat shock decreased neutrophil recruitment to localized Streptococcus iniae infection and tail fin wounding. Heat shock also increased random neutrophil motility transiently and increased the number of circulating neutrophils. With the use of the translating ribosome affinity purification (TRAP) method for RNA isolation from specific cell types such as neutrophils, macrophages and epithelial cells, we found that heat shock induced the immediate expression of heat shock protein 70 (hsp70) and a prolonged expression of heat shock protein 27 (hsp27). Heat shock also induced cell stress as detected by the splicing of X-box binding protein 1 (xbp1) mRNA, a marker for endoplasmic reticulum (ER) stress. Exogenous expression of Hsp70, Hsp27 and spliced Xbp1 in neutrophils or epithelial cells did not reproduce the heat shock induced effects on neutrophil recruitment. The effect of heat shock on neutrophils is likely due to a combination of complex changes, including, but not limited to changes in gene expression. Our results indicate that routine heat shock can alter neutrophil function in zebrafish. The findings suggest that caution should be taken when employing a heat shock-dependent inducible system to study the innate immune response.
Collapse
Affiliation(s)
- Pui-ying Lam
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth A. Harvie
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
206
|
Sun D, McGinn M, Hankins JE, Mays KM, Rolfe A, Colello RJ. Aging- and injury-related differential apoptotic response in the dentate gyrus of the hippocampus in rats following brain trauma. Front Aging Neurosci 2013; 5:95. [PMID: 24385964 PMCID: PMC3866524 DOI: 10.3389/fnagi.2013.00095] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/04/2013] [Indexed: 11/24/2022] Open
Abstract
The elderly are among the most vulnerable to traumatic brain injury (TBI) with poor functional outcomes and impaired cognitive recovery. Of the pathological changes that occur following TBI, apoptosis is an important contributor to the secondary insults and subsequent morbidity associated with TBI. The current study investigated age-related differences in the apoptotic response to injury, which may represent a mechanistic underpinning of the heightened vulnerability of the aged brain to TBI. This study compared the degree of TBI-induced apoptotic response and changes of several apoptosis-related proteins in the hippocampal dentate gyrus (DG) of juvenile and aged animals following injury. Juvenile (p28) and aged rats (24 months) were subjected to a moderate fluid percussive injury or sham injury and sacrificed at 2 days post-injury. One group of rats in both ages was sacrificed and brain sections were processed for TUNEL and immunofluorescent labeling to assess the level of apoptosis and to identify cell types which undergo apoptosis. Another group of animals was subjected to proteomic analysis, whereby proteins from the ipsilateral DG were extracted and subjected to 2D-gel electrophoresis and mass spectrometry analysis. Histological studies revealed age- and injury-related differences in the number of TUNEL-labeled cells in the DG. In sham animals, juveniles displayed a higher number of TUNEL+ apoptotic cells located primarily in the subgranular zone of the DG as compared to the aged brain. These apoptotic cells expressed the early neuronal marker PSA-NCAM, suggestive of newly generated immature neurons. In contrast, aged rats had a significantly higher number of TUNEL+ cells following TBI than injured juveniles, which were NeuN-positive mature neurons located predominantly in the granule cell layer. Fluorescent triple labeling revealed that microglial cells were closely associated to the apoptotic cells. In concert with these cellular changes, proteomic studies revealed both age-associated and injury-induced changes in the expression levels of three apoptotic-related proteins: hippocalcin, leucine-rich acidic nuclear protein and heat shock protein 27. Taken together, this study revealed distinct apoptotic responses following TBI in the juvenile and aged brain which may contribute to the differential cognitive recovery observed.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosurgery, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Melissa McGinn
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Jeanette E Hankins
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Katherine M Mays
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Andrew Rolfe
- Department of Neurosurgery, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Raymond J Colello
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| |
Collapse
|
207
|
Hettler A, Werner S, Eick S, Laufer S, Weise F. A new in vitro model to study cellular responses after thermomechanical damage in monolayer cultures. PLoS One 2013; 8:e82635. [PMID: 24349324 PMCID: PMC3857248 DOI: 10.1371/journal.pone.0082635] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/04/2013] [Indexed: 01/09/2023] Open
Abstract
Although electrosurgical instruments are widely used in surgery to cut tissue layers or to achieve hemostasis by coagulation (electrocautery), only little information is available concerning the inflammatory or immune response towards the debris generated. Given the elevated local temperatures required for successful electrocautery, the remaining debris is likely to contain a plethora of compounds entirely novel to the intracorporal setting. A very common in vitro method to study cell migration after mechanical damage is the scratch assay, however, there is no established model for thermomechanical damage to characterise cellular reactions. In this study, we established a new in vitro model to investigate exposure to high temperature in a carefully controlled cell culture system. Heatable thermostat-controlled aluminium stamps were developed to induce local damage in primary human umbilical vein endothelial cells (HUVEC). The thermomechanical damage invoked is reproducibly locally confined, therefore allowing studies, under the same experimental conditions, of cells affected to various degrees as well as of unaffected cells. We show that the unaffected cells surrounding the thermomechanical damage zone are able to migrate into the damaged area, resulting in a complete closure of the ‘wound’ within 48 h. Initial studies have shown that there are significant morphological and biological differences in endothelial cells after thermomechanical damage compared to the mechanical damage inflicted by using the unheated stamp as a control. Accordingly, after thermomechanical damage, cell death as well as cell protection programs were activated. Mononuclear cells adhered in the area adjacent to thermomechanical damage, but not to the zone of mechanical damage. Therefore, our model can help to understand the differences in wound healing during the early phase of regeneration after thermomechanical vs. mechanical damage. Furthermore, this model lends itself to study the response of other cells, thus broadening the range of thermal injuries that can be analysed.
Collapse
Affiliation(s)
- Alice Hettler
- Department Molecular Biology, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Simon Werner
- Department Bio-Microelectromechanical Systems / Sensors, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | - Stefan Laufer
- Department Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Frank Weise
- Department Molecular Biology, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- * E-mail:
| |
Collapse
|
208
|
Ghahramanlu E, Banihashem A, Mirhossini NZ, Hosseini G, Mostafavi-Toroghi H, Tavallaie S, Meshkat M, Ghayour-Mobarhan M, Ferns G. Effect of zinc supplementation on serum antibody titers to heat shock protein 27 in patients with thalassemia major. Hematology 2013; 19:113-9. [DOI: 10.1179/1607845413y.0000000099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Elham Ghahramanlu
- Blood Transfusion Research CenterHigh Institute for Research and Education in Transfusion Medicine, North Khorasan, Iran
| | - Abdollah Banihashem
- Hematology DepartmentSheikh Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naghme-Zahra Mirhossini
- Biochemistry of Nutrition Research Center and Cardiovascular Research Center Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Golkoo Hosseini
- Biochemistry of Nutrition Research Center and Cardiovascular Research Center Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesam Mostafavi-Toroghi
- Biochemistry of Nutrition Research Center and Cardiovascular Research Center Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Tavallaie
- Biochemistry of Nutrition Research Center and Cardiovascular Research Center Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Meshkat
- Department of BiostatisticsIslamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Biochemistry of Nutrition Research Center and Cardiovascular Research Center Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon Ferns
- Institute for Science & Technology in Medicine, Faculty of Health, University of Keele, Staffordshire ST4 7QB, UK
| |
Collapse
|
209
|
Nahomi RB, Palmer A, Green KM, Fort PE, Nagaraj RH. Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells. Biochim Biophys Acta Mol Basis Dis 2013; 1842:164-74. [PMID: 24252613 DOI: 10.1016/j.bbadis.2013.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/25/2013] [Accepted: 11/12/2013] [Indexed: 01/10/2023]
Abstract
The formation of acellular capillaries in the retina, a hallmark feature of diabetic retinopathy, is caused by apoptosis of endothelial cells and pericytes. The biochemical mechanism of such apoptosis remains unclear. Small heat shock proteins play an important role in the regulation of apoptosis. In the diabetic retina, pro-inflammatory cytokines are upregulated. In this study, we investigated the effects of pro-inflammatory cytokines on small heat shock protein 27 (Hsp27) in human retinal endothelial cells (HREC). In HREC cultured in the presence of cytokine mixtures (CM), a significant downregulation of Hsp27 at the protein and mRNA level occurred, with no effect on HSF-1, the transcription factor for Hsp27. The presence of high glucose (25mM) amplified the effects of cytokines on Hsp27. CM activated indoleamine 2,3-dioxygenase (IDO) and enhanced the production of kynurenine and ROS. An inhibitor of IDO, 1-methyl tryptophan (MT), inhibited the effects of CM on Hsp27. CM also upregulated NOS2 and, consequently, nitric oxide (NO). A NOS inhibitor, L-NAME, and a ROS scavenger blocked the CM-mediated Hsp27 downregulation. While a NO donor in the culture medium did not decrease the Hsp27 content, a peroxynitrite donor and exogenous peroxynitrite did. The cytokines and high glucose-induced apoptosis of HREC were inhibited by MT and L-NAME. Downregulation of Hsp27 by a siRNA treatment promoted apoptosis in HREC. Together, these data suggest that pro-inflammatory cytokines induce the formation of ROS and NO, which, through the formation of peroxynitrite, reduce the Hsp27 content and bring about apoptosis of retinal capillary endothelial cells.
Collapse
Affiliation(s)
- Rooban B Nahomi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Allison Palmer
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Katelyn M Green
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Patrice E Fort
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Ram H Nagaraj
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
210
|
Seibert TA, Hibbert B, Chen YX, Rayner K, Simard T, Hu T, Cuerrier CM, Zhao X, de Belleroche J, Chow BJW, Hawken S, Wilson KR, O'Brien ER. Serum heat shock protein 27 levels represent a potential therapeutic target for atherosclerosis: observations from a human cohort and treatment of female mice. J Am Coll Cardiol 2013; 62:1446-54. [PMID: 23764828 DOI: 10.1016/j.jacc.2013.05.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the potential of serum heat shock protein 27 (HSP27) as a therapeutic target in coronary artery disease. BACKGROUND Expression of HSP27 in human coronary arteries diminishes with the progression of atherosclerosis, whereas ubiquitous HSP27 overexpression in apolipoprotein E(-/-) (ApoE(-/-)) mice attenuates atherogenesis. However, it remains unclear whether increasing serum HSP27 levels alone is sufficient for atheroprotection. METHODS Low- and intermediate-risk patients undergoing coronary or computed tomography angiography had serum HSP27 levels measured. Elevated serum HSP27 levels in female atheroprone ApoE(-/-) mice were achieved by transplantation with HSP27 overexpressing bone marrow or by administering recombinant HSP27. RESULTS Patients with >50% stenosis in any major epicardial artery had lower HSP27 levels compared with those free of atherosclerosis (median [interquartile range]: 2,176 pg/ml [551-5,475] vs. 6,200 pg/ml [2,575-9,560]; p < 0.001). After a 5-year period of clinical follow-up, low serum HSP27 levels (<50th percentile) were predictive of subsequent major adverse cardiovascular events (hazard ratio: 2.93, 95% confidence interval: 1.06 to 8.12; p = 0.04). In experimental murine models of atherosclerosis, increasing serum HSP27 levels both reduced de novo atherosclerotic lesion formation and enhanced features of plaque stability. CONCLUSIONS In humans, low serum HSP27 levels are associated with the presence of coronary artery disease and prognostic of future adverse clinical events. In mouse models of atherosclerosis, increasing HSP27 levels reduced lesion progression and promoted features of plaque stability. Serum HSP27 levels may represent a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Tara A Seibert
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Gruden G, Carucci P, Lolli V, Cosso L, Dellavalle E, Rolle E, Cantamessa A, Pinach S, Abate ML, Campra D, Brunello F, Bruno G, Rizzetto M, Perin PC. Serum heat shock protein 27 levels in patients with hepatocellular carcinoma. Cell Stress Chaperones 2013; 18:235-41. [PMID: 23073653 PMCID: PMC3581631 DOI: 10.1007/s12192-012-0377-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/27/2012] [Accepted: 09/27/2012] [Indexed: 12/11/2022] Open
Abstract
Levels of serum heat shock protein 27 (sHsp27) have been studied in numerous cancer types, but their potential relevance in patients with hepatocellular carcinoma (HCC) is undetermined. Our aim was to compare sHsp27 levels in patients with HCC and HCC-free controls. Specifically, we recruited 71 patients with HCC (80 % with early tumour), 80 patients with chronic liver disease (59 with liver cirrhosis and 21 with chronic active hepatitis) and 42 healthy subjects. sHsp27 was measured by immunoenzymatic assay. Results showed that sHsp27 levels were significantly (p < 0.001) higher in patients with HCC than in the other groups, particularly in those with hepatitis C virus (HCV)-related disease. In HCC patients, sHsp27 levels were not associated with prognostic risk factors, such as size/multiplicity of nodules and stage. In logistic regression analysis, performed in patients with liver disease, log-sHsp27 was associated with a significant age-adjusted 2.5-fold increased odds ratio of HCC and with a significant 4.4-fold higher odds ratio of HCC in the subgroup with HCV-related liver disease. In receiver operating characteristic curve analysis, sensitivity and specificity of the best sHsp27 cut-off value (456.5 pg/ml) for differentiating patients with HCC from those with HCC-free chronic liver disease were 70 and 73 %, respectively. In conclusion, sHsp27 levels are enhanced in patients with HCC and may represent a candidate biomarker of HCC.
Collapse
Affiliation(s)
- Gabriella Gruden
- Department of Medical Science, University of Turin, C/so AM Dogliotti 14, 10126 Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Kammoun M, Picard B, Henry-Berger J, Cassar-Malek I. A network-based approach for predicting Hsp27 knock-out targets in mouse skeletal muscles. Comput Struct Biotechnol J 2013; 6:e201303008. [PMID: 24688716 PMCID: PMC3962151 DOI: 10.5936/csbj.201303008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 12/16/2022] Open
Abstract
Thanks to genomics, we have previously identified markers of beef tenderness, and computed a bioinformatic analysis that enabled us to build an interactome in which we found Hsp27 at a crucial node. Here, we have used a network-based approach for understanding the contribution of Hsp27 to tenderness through the prediction of its interactors related to tenderness. We have revealed the direct interactors of Hsp27. The predicted partners of Hsp27 included proteins involved in different functions, e.g. members of Hsp families (Hsp20, Cryab, Hsp70a1a, and Hsp90aa1), regulators of apoptosis (Fas, Chuk, and caspase-3), translation factors (Eif4E, and Eif4G1), cytoskeletal proteins (Desmin) and antioxidants (Sod1). The abundances of 15 proteins were quantified by Western blotting in two muscles of HspB1-null mice and their controls. We observed changes in the amount of most of the Hsp27 predicted targets in mice devoid of Hsp27 mainly in the most oxidative muscle. Our study demonstrates the functional links between Hsp27 and its predicted targets. It suggests that Hsp status, apoptotic processes and protection against oxidative stress are crucial for post-mortem muscle metabolism, subsequent proteolysis, and therefore for beef tenderness.
Collapse
Affiliation(s)
- Malek Kammoun
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
- Clermont University, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| | - Brigitte Picard
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
- Clermont University, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| | | | - Isabelle Cassar-Malek
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
- Clermont University, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
- Corresponding author: E-mail address: (Isabelle Cassar-Malek)
| |
Collapse
|
213
|
αB-crystallin regulates oxidative stress-induced apoptosis in cardiac H9c2 cells via the PI3K/AKT pathway. Mol Biol Rep 2012; 40:2517-26. [PMID: 23212619 DOI: 10.1007/s11033-012-2332-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 11/20/2012] [Indexed: 01/08/2023]
Abstract
The present study was carried out to observe the protective effects of αB-crystallin protein on hydrogen peroxide (H2O2)-induced injury in rat myocardial cells (H9c2) and to investigate the mechanisms of these protective effects at the cellular level, which could provide the experimental basis for future applications of αB-crystallin in the treatment of cardiovascular disease. Western blotting was used to measure the expression of αB-crystallin in cultured H9c2 cells in vitro. A αB-crystallin recombinant expression vector, pcDNA3.1-Cryab, was constructed to transfect H9c2 cells for the establishment of cells that stably expressed αB-crystallin. A tetrazolium-based colorimetric assay (MTT test) was used to measure changes in the viability of the H9c2 cells at 1, 2, 3 and 4 h after induced by 150 μM H2O2 to establish a model of H2O2 injury to cells. H2O2 was applied to H9c2 cells that were stably transfected with αB-crystallin, and the effect of αB-crystallin overexpression on the viability of myocardial cells subjected to H2O2-induced injury was measured by the MTT assay. The effect of αB-crystallin overexpression on the H2O2-induced injury of H9c2 cells was also analyzed by flow cytometry. The mitochondrial components and cytoplasmic components of H9c2 cells were separated, and western blotting was used to measure the effect of αB-crystallin overexpression on the release of cytochrome c from the mitochondria. Western blotting was also used to measure the effect of αB-crystallin overexpression on the expression of the anti-apoptosis protein Bcl-2 and components of the phosphatidylinositol 3-OH kinase (PI3K)/AKT pathway. The αB-crystallin recombinant expression vector pcDNA3.1-Cryab successfully transfected H9c2 cells, and H9c2 cells that were stably transfected with αB-crystallin were established after G418 selection. The measurements carried out by western blotting showed that αB-crystallin proteins are expressed in normal H9c2 cells, but the proteins' expression was much higher in pcDNA3.1-Cryab transfected cells (P < 0.01). The MTT assays showed that 4 h of H2O2 treatment induced significant injury in H9c2 cells (P < 0.01), but αB-crystallin overexpression can effectively antagonize the H2O2-induced injury to H9c2 cells (P < 0.05). The results of flow cytometry analysis showed that αB-crystallin overexpression can significantly reduce apoptosis in H2O2-injured H9c2 cells (P < 0.05). The results of western blotting showed that αB-crystallin overexpression in myocardial cells can reduce the H2O2-induced release of cytochrome c from the mitochondria (P < 0.05), antagonize the H2O2-induced downregulation of Bcl-2 (P < 0.05) and magnify the decrease in phosphorylated AKT levels induced by H2O2 injury (P < 0.05). The overexpression of αB-crystallin has a protective effect on H2O2-injured H9c2 cells, and αB-crystallin can play a protective role by reducing apoptosis, reducing the release of cytochrome c from the mitochondria and antagonizing the downregulation of Bcl-2 expression. The protective effects of αB-crystallin may be related to the PI3K/AKT pathway.
Collapse
|
214
|
Ahner A, Gong X, Schmidt BZ, Peters KW, Rabeh WM, Thibodeau PH, Lukacs GL, Frizzell RA. Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier-dependent pathway. Mol Biol Cell 2012; 24:74-84. [PMID: 23155000 PMCID: PMC3541966 DOI: 10.1091/mbc.e12-09-0678] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective degradation of the mutant protein responsible for most cystic fibrosis, F508del cystic fibrosis transmembrane conductance regulator (CFTR), is initiated by Hsp27, which associates with the small ubiquitin-like modifier (SUMO) E2, Ubc9. They modify F508del with SUMO-2/3, directing F508del to a SUMO-targeted ubiquitin ligase, RNF4. This work implicates SUMO and RNF4 in quality control of a cytosolic transmembrane protein. Small heat shock proteins (sHsps) bind destabilized proteins during cell stress and disease, but their physiological functions are less clear. We evaluated the impact of Hsp27, an sHsp expressed in airway epithelial cells, on the common protein misfolding mutant that is responsible for most cystic fibrosis. F508del cystic fibrosis transmembrane conductance regulator (CFTR), a well-studied protein that is subject to cytosolic quality control, selectively associated with Hsp27, whose overexpression preferentially targeted mutant CFTR to proteasomal degradation. Hsp27 interacted physically with Ubc9, the small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, implying that F508del SUMOylation leads to its sHsp-mediated degradation. Enhancing or disabling the SUMO pathway increased or blocked Hsp27’s ability to degrade mutant CFTR. Hsp27 promoted selective SUMOylation of F508del NBD1 in vitro and of full-length F508del CFTR in vivo, which preferred endogenous SUMO-2/3 paralogues that form poly-chains. The SUMO-targeted ubiquitin ligase (STUbL) RNF4 recognizes poly-SUMO chains to facilitate nuclear protein degradation. RNF4 overexpression elicited F508del degradation, whereas Hsp27 knockdown blocked RNF4’s impact on mutant CFTR. Similarly, the ability of Hsp27 to degrade F508del CFTR was lost during overexpression of dominant-negative RNF4. These findings link sHsp-mediated F508del CFTR degradation to its SUMOylation and to STUbL-mediated targeting to the ubiquitin–proteasome system and thereby implicate this pathway in the disposal of an integral membrane protein.
Collapse
Affiliation(s)
- Annette Ahner
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|