201
|
Holmes C. Review: Systemic inflammation and Alzheimer's disease. Neuropathol Appl Neurobiol 2013; 39:51-68. [DOI: 10.1111/j.1365-2990.2012.01307.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/01/2012] [Indexed: 11/29/2022]
Affiliation(s)
- C. Holmes
- University of Southampton; Division of Clinical and Experimental Science; Memory Assessment and Research Centre; Moorgreen Hospital; Southampton; UK
| |
Collapse
|
202
|
Weinstock M, Bejar C, Schorer-Apelbaum D, Panarsky R, Luques L, Shoham S. Dose-dependent effects of ladostigil on microglial activation and cognition in aged rats. J Neuroimmune Pharmacol 2013; 8:345-55. [PMID: 23325108 DOI: 10.1007/s11481-013-9433-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/08/2013] [Indexed: 11/25/2022]
Abstract
UNLABELLED The current study determined the effects of chronic treatment of aging rats with ladostigil, a cholinesterase (ChE) and monoamine oxidase (MAO) inhibitor, at doses of 1 and 8.5 mg/kg/day, on novel object recognition (NOR) and reference memory in the Morris water maze (MWM). A dose of (1 mg/kg/day) did not inhibit ChE or MAO but prevented the loss of NOR and reference memory in the MWM that occurs at 20.5 months of age. This anti-aging effect was associated with a reduction in the expression of CD11b, a marker of microglial activation, in the fornix and parietal cortex and restoration of microglial morphology to that in young adult rats. Ladostigil (8.5 mg/kg/day) inhibited brain ChE by ≈30 % and MAO A and B by 55-59 %, and had a similar, or greater effect than the low dose on microglia, but was less effective in preventing the decline in NOR. Ladostigil (8.5 mg/kg/day) may have caused too much cortical ChE inhibition and acetylcholine elevation at 16 months when NOR was intact. In support of this suggestion we showed that acute administration of ladostigil (8.5 mg/kg) worsened NOR at this age. However, at 20 months, when NOR was impaired and brain acetylcholine levels are 40 % below normal, ladostigil (8.5 mg/kg) reversed the memory deficit. CONCLUSION Ladostigil (1 mg/kg/day) prevents the development of age-related memory deficits by a combination of immunomodulatory and antioxidant effects. A dose causing 30 % ChE inhibition is necessary in order to reverse existing memory deficits at 20 months of age.
Collapse
Affiliation(s)
- Marta Weinstock
- Department of Pharmacology, Institute of Drug Research, Hebrew University Medical Center, Ein Kerem, Jerusalem 91120, Israel.
| | | | | | | | | | | |
Collapse
|
203
|
Risacher SL, Saykin AJ. Neuroimaging and other biomarkers for Alzheimer's disease: the changing landscape of early detection. Annu Rev Clin Psychol 2013; 9:621-48. [PMID: 23297785 DOI: 10.1146/annurev-clinpsy-050212-185535] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The goal of this review is to provide an overview of biomarkers for Alzheimer's disease (AD), with emphasis on neuroimaging and cerebrospinal fluid (CSF) biomarkers. We first review biomarker changes in patients with late-onset AD, including findings from studies using structural and functional magnetic resonance imaging (MRI), advanced MRI techniques (diffusion tensor imaging, magnetic resonance spectroscopy, perfusion), positron emission tomography with fluorodeoxyglucose, amyloid tracers, and other neurochemical tracers, and CSF protein levels. Next, we evaluate findings from these biomarkers in preclinical and prodromal stages of AD including mild cognitive impairment (MCI) and pre-MCI conditions conferring elevated risk. We then discuss related findings in patients with dominantly inherited AD. We conclude with a discussion of the current theoretical framework for the role of biomarkers in AD and emergent directions for AD biomarker research.
Collapse
Affiliation(s)
- Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | |
Collapse
|
204
|
Effects of minocycline on spatial learning, hippocampal neurogenesis and microglia in aged and adult mice. Behav Brain Res 2012; 242:17-24. [PMID: 23274840 DOI: 10.1016/j.bbr.2012.12.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 11/23/2022]
Abstract
Age-related priming of microglia and release of inflammatory cytokines, such as interleukin-1β (IL-1β) and interleuekin-6 (IL-6) have been associated with deficits in cognitive function. The present study assessed whether treatment with minocycline could improve spatial cognition in aged mice, and whether these improvements in behavior were associated with reduced microglia activation and an enhancement in hippocampal neurogenesis. Adult (3 months) and aged (22 months) male BALB/c mice received minocycline in their drinking water or control mice received distilled water for 20 days. Mice received BrdU to label dividing cells on days 8-17. Spatial learning was measured using the water maze. Immunohistochemistry was conducted to measure number of BrdU positive neurons and number and size of microglia by detection of Iba-1 in the dentate gyrus molecular layer. Further, hippocampal samples were collected to measure changes in IL-1β, IL-6, and CD74 expression. The data show that aged mice have increased hippocampal expression of IL-1β, IL-6, and CD74 relative to adults. Minocycline treatment significantly improved acquisition of the water maze in aged mice but not adults. Minocycline reduced the average size of Iba-1 positive cells and total Iba-1 counts, but did not affect hippocampal cytokine gene expression. Minocycline increased neurogenesis in adults but not aged mice. Collectively, the data indicate that treatment with minocycline may recover some aspects of cognitive decline associated with aging, but the effect appears to be unrelated to adult hippocampal neurogenesis.
Collapse
|
205
|
Edison P, Carter SF, Rinne JO, Gelosa G, Herholz K, Nordberg A, Brooks DJ, Hinz R. Comparison of MRI based and PET template based approaches in the quantitative analysis of amyloid imaging with PIB-PET. Neuroimage 2012; 70:423-33. [PMID: 23261639 DOI: 10.1016/j.neuroimage.2012.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/10/2012] [Accepted: 12/10/2012] [Indexed: 11/15/2022] Open
Abstract
RATIONALE [(11)C]Pittsburgh compound-B (PIB) has been the most widely used positron emission tomography (PET) imaging agent for brain amyloid. Several longitudinal studies evaluating the progression of Alzheimer's disease (AD), and numerous therapeutic intervention studies are underway using [(11)C]PIB PET as an AD biomarker. Quantitative analysis of [(11)C]PIB data requires the definition of regional volumes of interest. This investigation systematically compared two data analysis routes both using a probabilistic brain atlas with 11 bilateral regions. Route 1 used individually segmented structural magnetic resonance images (MRI) for each subject while Route 2 used a standardised [(11)C]PIB PET template. METHODS A total of 54 subjects, 20 with probable Alzheimer's disease (AD), 14 with amnestic Mild Cognitive Impairment (MCI) and 20 age-matched healthy controls, were scanned at two imaging centres either in London (UK) or in Turku (Finland). For all subjects structural volumetric MRI and [(11)C]PIB PET scans were acquired. Target-to-cerebellum ratios 40 min to 60 min post injection were used as outcome measures. Regional read outs for grey matter target regions were generated for both routes. Based on a composite neocortical, frontal, posterior cingulate, combined posterior cingulate and frontal cortical regions, scans were categorised into either 'PIB negative' (PIB-) or 'PIB positive' (PIB+) using previously reported cut-off target-to-cerebellar ratios of 1.41, 1.5 and 1.6, respectively. RESULTS Target-to-cerebellum ratios were greater when defined with a [(11)C]PIB PET template than with individual MRIs for all cortical regions regardless of diagnosis. This difference was highly significant for controls (p<0.001, paired samples t-test), less significant for MCIs and borderline for ADs. Assignment of subjects to raised or normal categories was the same with both routes with a 1.6 cut-off while with lower cut off using frontal cortex, and combined frontal cortex and posterior cingulate demonstrated similar results, while posterior cingulate alone demonstrated significantly higher proportion of controls as amyloid positive by Route 2. CONCLUSIONS Definition of cortical grey matter regions is more accurate when individually segmented MRIs (Route 1) were used rather than a population-based PET template (Route 2). The impact of this difference depends on the grey-to-white matter contrast in the PET images; specifically seen in healthy controls with high white matter and low grey matter uptake. When classifying AD, MCI and control subjects as normal or abnormal using large cortical regions; discordance was found between the MRI and template approach for those few subjects who presented with cortex-to-cerebellum ratios very close to the pre-assigned cut-off. However, posterior cingulate alone demonstrated significant discordance in healthy controls using template based approach. This study, therefore, demonstrates that the use of a [(11)C]PIB PET template (Route 2) is adequate for clinical diagnostic purposes, while MRI based analysis (Route 1) remains more appropriate for clinical research.
Collapse
Affiliation(s)
- P Edison
- Division of Neuroscience, Imperial College London, Hammersmith Campus, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
PURPOSE OF REVIEW In 2011, a new set of new guidelines for the research diagnosis of three stages of Alzheimer disease was promulgated by the US National Institute of Aging and the Alzheimer Association. For the first time, they include the diagnosis of presymptomatic Alzheimer disease, recognizing that the disease process begins years before cognitive impairment develops. Awareness of this fact has largely been driven by neuroimaging, and particularly by imaging amyloid β (abeta) deposition in the brain, a procedure approved by the US Food and Drug Administration for clinical use in April 2012. RECENT FINDINGS In Alzheimer disease, abeta deposition antecedes, probably by decades, the onset of cognitive impairment. In brain regions with greatest abeta deposition, synaptic dysfunction can be imaged beginning at preclinical stages. In regions that are not identical with the ones with greatest abeta deposition but heavily connected with them, regional atrophy and loss of white-matter anisotropy can be detected later in the course of the disease, near the time when mild cognitive impairment supervenes. Together with neuropsychological testing, imaging can improve the prediction of worsening to Alzheimer disease among patients with mild cognitive impairment. SUMMARY These findings have huge implications for research on therapeutic approaches to Alzheimer disease. For instance, while so far only patients with the clinical diagnosis have been treated with immunotherapy targeting abeta removal, a consensus is building that to be effective, this therapy should be given in the preclinical stages of the disease, which are assessed most advantageously by means of neuroimaging.
Collapse
|
207
|
Toledo JB, Toledo E, Weiner MW, Jack CR, Jagust W, Lee VMY, Shaw LM, Trojanowski JQ. Cardiovascular risk factors, cortisol, and amyloid-β deposition in Alzheimer's Disease Neuroimaging Initiative. Alzheimers Dement 2012; 8:483-9. [PMID: 23102118 PMCID: PMC3668456 DOI: 10.1016/j.jalz.2011.08.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/11/2011] [Accepted: 08/24/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND There is epidemiological evidence that cardiovascular risk factors (CVRF) also are risk factors for Alzheimer's disease, but there is limited information on this from neuropathological studies, and even less from in vivo studies. Therefore, we examined the relationship between CVRF and amyloid-β (Aβ) brain burden measured by Pittsburgh Compound B-positron emission tomography (PiB-PET) studies in the Alzheimer's Disease Neuroimaging Initiative. METHODS Ninety-nine subjects from the Alzheimer's Disease Neuroimaging Initiative cohort who had a PiB-PET study measure, apolipoprotein E genotyping data, and information available on CVRF (body mass index [BMI], systolic blood pressure, diastolic blood pressure [DBP], and cholesterol and fasting glucose test results) were included. Eighty-one subjects also had plasma cortisol, C-reactive protein, and superoxide dismutase 1 measurements. Stepwise regression models were used to assess the relation between the CVRF and the composite PiB-PET score. RESULTS The first model included the following as baseline variables: age, clinical diagnosis, number of apolipoprotein ɛ4 alleles, BMI (P = .023), and DBP (P = .012). BMI showed an inverse relation with PiB-PET score, and DBP had a positive relation with PiB-PET score. In the second adjusted model, cortisol plasma levels were also associated with PiB-PET score (P = .004). Systolic blood pressure, cholesterol, or impaired fasting glucose were not found to be associated with PiB-PET values. CONCLUSION In this cross-sectional study, we found an association between Aβ brain burden measured in vivo and DBP and cortisol, indicating a possible link between these CVRF and Aβ burden measured by PiB-PET. These findings highlight the utility of biomarkers to explore potential pathways linking diverse Alzheimer's disease risk factors.
Collapse
Affiliation(s)
- Jon B. Toledo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA,USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, Medical School, Universidad de Navarra, Pamplona, Spain
| | - Michael W. Weiner
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | | | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Virginia M.-Y. Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA,USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA,USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA,USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
208
|
Abstract
Although the prevalence of neurodegenerative diseases is increasing as a consequence of the growing aging population, the exact pathophysiological mechanisms leading to these diseases remains obscure. Multiple sclerosis (MS), an autoimmune disease of the central nervous system and the most frequent cause of disability among young people after traumatic brain injury, is characterized by inflammatory/demyelinating and neurodegenerative processes that occurr earlier in life. The ability to make an early diagnosis of MS with the support of conventional MRI techniques, provides the opportunity to study neurodegeneration and the underlying pathophysiological processes in earlier stages than in classical neurodegenerative diseases. This review summarizes mechanisms of neurodegeneration common to MS and to Alzheimer disease, Parkinson disease, and amiotrophic lateral sclerosis, and provides a brief overview of the neuroimaging studies employing MRI and PET techniques to investigate and monitor neurodegeneration in both MS and classical neurodegenerative diseases.
Collapse
Affiliation(s)
- Matilde Inglese
- Department of Neurology, Radiology and Neuroscience, Mount Sinai School of Medicine, New York, NY, USA.
| | | |
Collapse
|
209
|
PET imaging in the differential diagnosis of vascular dementia. J Neurol Sci 2012; 322:268-73. [DOI: 10.1016/j.jns.2012.09.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 08/20/2012] [Accepted: 09/18/2012] [Indexed: 01/21/2023]
|
210
|
Wu L, Rosa-Neto P, Gauthier S. Use of Biomarkers in Clinical Trials of Alzheimer Disease. Mol Diagn Ther 2012; 15:313-25. [DOI: 10.1007/bf03256467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
211
|
Varnum MM, Ikezu T. The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer's disease brain. Arch Immunol Ther Exp (Warsz) 2012; 60:251-66. [PMID: 22710659 PMCID: PMC4429536 DOI: 10.1007/s00005-012-0181-2] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/20/2012] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline of cognitive function. There is no therapy that can halt or reverse its progression. Contemporary research suggests that age-dependent neuroinflammatory changes may play a significant role in the decreased neurogenesis and cognitive impairments in AD. The innate immune response is characterized by pro-inflammatory (M1) activation of macrophages and subsequent production of specific cytokines, chemokines, and reactive intermediates, followed by resolution and alternative activation for anti-inflammatory signaling (M2a) and wound healing (M2c). We propose that microglial activation phenotypes are analogous to those of macrophages and that their activation plays a significant role in regulating neurogenesis in the brain. Microglia undergo a switch from an M2- to an M1-skewed activation phenotype during aging. This review will assess the neuroimmunological studies that led to characterization of the different microglial activation states in AD mouse models. It will also discuss the roles of microglial activation on neurogenesis in AD and propose anti-inflammatory molecules as exciting therapeutic targets for research. Molecules such as interleukin-4 and CD200 have proven to be important anti-inflammatory mediators in the regulation of neuroinflammation in the brain, which will be discussed in detail for their therapeutic potential.
Collapse
Affiliation(s)
- Megan M. Varnum
- Laboratory of Molecular NeuroTherapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Tsuneya Ikezu
- Laboratory of Molecular NeuroTherapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
212
|
Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [¹¹C]DAA1106. Psychiatry Res 2012; 203:67-74. [PMID: 22892349 DOI: 10.1016/j.pscychresns.2011.08.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/07/2011] [Accepted: 08/29/2011] [Indexed: 11/22/2022]
Abstract
Subjects with mild cognitive impairment (MCI) have "prodromal or incipient" dementia with neuropathological changes. Peripheral benzodiazepine receptor (PBR) binding was shown to reflect activated microglia, one of the predictive biomarkers of conversion to dementia. We sought to evaluate PBR binding in MCI subjects using positron emission tomography (PET). PET scans with [¹¹C]DAA1106, a potent and selective ligand for PBR, were performed on seven MCI subjects, 10 patients with Alzheimer's disease (AD) and 10 age-matched control subjects. PBR binding in the regions of interest was quantified by binding potential (BP). Five MCI subjects were clinically followed for 5 years after their initial PET scans. [¹¹C]DAA1106 binding to PBR was significantly increased in widespread areas in MCI subjects when compared to healthy controls. We found no significant difference in BP between MCI and AD patients. MCI subjects with [¹¹C]DAA1106 binding values higher than the control mean +0.5 standard deviation (S.D.) developed dementia within 5 years. Our finding of higher DAA binding in MCI subjects indicated that microglial activation may occur before the onset of dementia. In vivo detection of microglial activation may provide useful prognostic information with respect to stratifying MCI subjects at increased risk of dementia.
Collapse
|
213
|
Schuitemaker A, Kropholler MA, Boellaard R, van der Flier WM, Kloet RW, van der Doef TF, Knol DL, Windhorst AD, Luurtsema G, Barkhof F, Jonker C, Lammertsma AA, Scheltens P, van Berckel BNM. Microglial activation in Alzheimer's disease: an (R)-[¹¹C]PK11195 positron emission tomography study. Neurobiol Aging 2012; 34:128-36. [PMID: 22840559 DOI: 10.1016/j.neurobiolaging.2012.04.021] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 04/06/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Inflammatory mechanisms, like microglial activation, could be involved in the pathogenesis of Alzheimer's disease (AD). (R)-[(11)C]PK11195 (1-(2-chlorophenyl)-N-methyl-N-1(1-methylpropyl)-3-isoquinolinecarboxamide), a positron emission tomography (PET) ligand, can be used to quantify microglial activation in vivo. The purpose of this study was to assess whether increased (R)-[(11)C]PK11195 binding is present in AD and mild cognitive impairment (MCI), currently also known as "prodromal AD." METHODS Nineteen patients with probable AD, 10 patients with prodromal AD (MCI), and 21 healthy control subjects were analyzed. Parametric images of binding potential (BP(ND)) of (R)-[(11)C]PK11195 scans were generated using receptor parametric mapping (RPM) with supervised cluster analysis. Differences between subject groups were tested using mixed model analysis, and associations between BP(ND) and cognition were evaluated using Pearson correlation coefficients. RESULTS Voxel-wise statistical parametric mapping (SPM) analysis showed small clusters of significantly increased (R)-[(11)C]PK11195 BP(ND) in occipital lobe in AD dementia patients compared with healthy control subjects. Regions of interest (ROI)-based analyses showed no differences, with large overlap between groups. There were no differences in (R)-[(11)C]PK11195 BP(ND) between clinically stable prodromal AD patients and those who progressed to dementia, and BP(ND) did not correlate with cognitive function. CONCLUSION Microglial activation is a subtle phenomenon occurring in AD.
Collapse
Affiliation(s)
- Alie Schuitemaker
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Ferretti MT, Bruno MA, Ducatenzeiler A, Klein WL, Cuello AC. Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer's disease. Neurobiol Aging 2012; 33:1329-42. [DOI: 10.1016/j.neurobiolaging.2011.01.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/21/2011] [Accepted: 01/26/2011] [Indexed: 12/21/2022]
|
215
|
Jacobs AH, Tavitian B. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 2012; 32:1393-415. [PMID: 22549622 PMCID: PMC3390799 DOI: 10.1038/jcbfm.2012.53] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/05/2012] [Accepted: 03/23/2012] [Indexed: 12/23/2022]
Abstract
Inflammation is a highly dynamic and complex adaptive process to preserve and restore tissue homeostasis. Originally viewed as an immune-privileged organ, the central nervous system (CNS) is now recognized to have a constant interplay with the innate and the adaptive immune systems, where resident microglia and infiltrating immune cells from the periphery have important roles. Common diseases of the CNS, such as stroke, multiple sclerosis (MS), and neurodegeneration, elicit a neuroinflammatory response with the goal to limit the extent of the disease and to support repair and regeneration. However, various disease mechanisms lead to neuroinflammation (NI) contributing to the disease process itself. Molecular imaging is the method of choice to try to decipher key aspects of the dynamic interplay of various inducers, sensors, transducers, and effectors of the orchestrated inflammatory response in vivo in animal models and patients. Here, we review the basic principles of NI with emphasis on microglia and common neurologic disease mechanisms, the molecular targets which are being used and explored for imaging, and molecular imaging of NI in frequent neurologic diseases, such as stroke, MS, neurodegeneration, epilepsy, encephalitis, and gliomas.
Collapse
Affiliation(s)
- Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI) at the Westfalian Wilhelms-University of Münster (WWU), Münster, Germany.
| | | |
Collapse
|
216
|
Naismith SL, Norrie LM, Mowszowski L, Hickie IB. The neurobiology of depression in later-life: Clinical, neuropsychological, neuroimaging and pathophysiological features. Prog Neurobiol 2012; 98:99-143. [DOI: 10.1016/j.pneurobio.2012.05.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 02/07/2023]
|
217
|
Eikelenboom P, Hoozemans JJ, Veerhuis R, van Exel E, Rozemuller AJ, van Gool WA. Whether, when and how chronic inflammation increases the risk of developing late-onset Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2012; 4:15. [PMID: 22647384 PMCID: PMC3506930 DOI: 10.1186/alzrt118] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuropathological studies have revealed the presence of a broad variety of inflammation-related proteins (complement factors, acute-phase proteins, pro-inflammatory cytokines) in Alzheimer's disease (AD) brains. These constituents of innate immunity are involved in several crucial pathogenic events of the underlying pathological cascade in AD, and recent studies have shown that innate immunity is involved in the etiology of late-onset AD. Genome-wide association studies have demonstrated gene loci that are linked to the complement system. Neuropathological and experimental studies indicate that fibrillar amyloid-β (Aβ) can activate the innate immunity-related CD14 and Toll-like receptor signaling pathways of glial cells for pro-inflammatory cytokine production. The production capacity of this pathway is under genetic control and offspring with a parental history of late-onset AD have a higher production capacity for pro-inflammatory cytokines. The activation of microglia by fibrillar Aβ deposits in the early preclinical stages of AD can make the brain susceptible later on for a second immune challenge leading to enhanced production of pro-inflammatory cytokines. An example of a second immune challenge could be systemic inflammation in patients with preclinical AD. Prospective epidemiological studies show that elevated serum levels of acute phase reactants can be considered as a risk factor for AD. Clinical studies suggest that peripheral inflammation increases the risk of dementia, especially in patients with preexistent cognitive impairment, and accelerates further deterioration in demented patients. The view that peripheral inflammation can increase the risk of dementia in older people provides scope for prevention.
Collapse
Affiliation(s)
- Piet Eikelenboom
- Valeriuskliniek, Valeriusplein 9, 1075 BG Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
218
|
Politis M, Su P, Piccini P. Imaging of microglia in patients with neurodegenerative disorders. Front Pharmacol 2012; 3:96. [PMID: 22661951 PMCID: PMC3361961 DOI: 10.3389/fphar.2012.00096] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/01/2012] [Indexed: 01/13/2023] Open
Abstract
Microglia constitute the main immune defense in the central nervous system. In response to neuronal injury, microglia become activated, acquire phagocytic properties, and release a wide range of pro-inflammatory mediators that are essential for the annihilation of the neuronal insult. Although the role of microglial activation in acute neuronal damage is well defined, the pathophysiological processes underlying destructive or protective role to neurons following chronic exposure to microglial activation is still a subject of debate. It is likely that chronic exposure induces detrimental effects by promoting neuronal death through the release of neurotoxic factors. Positron emission tomography (PET) imaging with the use of translocator protein (TSPO) radioligands provides an in vivo tool for tracking the progression and severity of neuroinflammation in neurodegenerative disease. TSPO expression is correlated to the extent of microglial activation and the measurement of TSPO uptake in vivo with PET is a useful indicator of active disease. Although understanding of the interaction between radioligands and TSPO is not completely clear, there is a wide interest in application of TSPO imaging in neurodegenerative disease. In this article, we aim to review the applications of in vivo microglia imaging in neurodegenerative disorders such as Parkinson's disease, Huntington's disease, Dementias, and Multiple Sclerosis.
Collapse
Affiliation(s)
- Marios Politis
- Division of Experimental Medicine, Faculty of Medicine, Centre for Neuroscience, Hammersmith Hospital, Imperial College London London, UK
| | | | | |
Collapse
|
219
|
Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer's Disease. Int J Alzheimers Dis 2012; 2012:868972. [PMID: 22675649 PMCID: PMC3364551 DOI: 10.1155/2012/868972] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/21/2012] [Indexed: 11/25/2022] Open
Abstract
There exists an urgent need for new target discovery to treat Alzheimer's disease (AD); however, recent clinical trials based on anti-Aβ and anti-inflammatory strategies have yielded disappointing results. To expedite new drug discovery, we propose reposition targets which have been previously pursued by both industry and academia for indications other than AD. One such target is the calcium-activated potassium channel KCa3.1 (KCNN4), which in the brain is primarily expressed in microglia and is significantly upregulated when microglia are activated. We here review the existing evidence supporting that KCa3.1 inhibition could block microglial neurotoxicity without affecting their neuroprotective phagocytosis activity and without being broadly immunosuppressive. The anti-inflammatory and neuroprotective effects of KCa3.1 blockade would be suitable for treating AD as well as cerebrovascular and traumatic brain injuries, two well-known risk factors contributing to the dementia in AD patients presenting with mixed pathologies. Importantly, the pharmacokinetics and pharmacodynamics of several KCa3.1 blockers are well known, and a KCa3.1 blocker has been proven safe in clinical trials. It is therefore promising to reposition old or new KCa3.1 blockers for AD preclinical and clinical trials.
Collapse
|
220
|
Gelosa G, Brooks DJ. The prognostic value of amyloid imaging. Eur J Nucl Med Mol Imaging 2012; 39:1207-19. [PMID: 22491780 DOI: 10.1007/s00259-012-2108-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
Mild cognitive impairment is characterized by a decline in cognitive performance without interference with activities of daily living. The amnestic subtype of mild cognitive impairment progresses to Alzheimer's disease at a rate of 10-15% per year and in the majority the neuropathology is intermediate between the neuropathological changes of typical ageing and Alzheimer's disease. Amyloid deposition occurs over a decade before the development of noticeable cognitive symptoms in a continuous process that starts in healthy elderly individuals. Newly developed PET amyloid imaging agents provide noninvasive biomarkers for the early in vivo detection of Alzheimer's pathology in healthy elderly individuals and those with mild cognitive impairment. Exclusion of amyloid pathology should allow a more accurate prognosis to be given and ensure appropriate recruitment into clinical trials testing the efficacy of new putative antiamyloid agents at an earlier disease stage. The development of (18)F-labelled amyloid imaging agents has increased the availability of this new technology for clinical and research use since they can be used in PET centres where a cyclotron and radiochemistry are not available. This review discusses the role of PET imaging for assessing the amyloid load in cognitively normal elderly subjects and subjects with mild cognitive impairment at risk of conversion to Alzheimer's disease.
Collapse
Affiliation(s)
- Giorgio Gelosa
- Department of Neurology and Nuclear Medicine, University of Milano-Bicocca, Monza, Italy.
| | | |
Collapse
|
221
|
Ly JV, Rowe CC, Villemagne VL, Zavala JA, Ma H, Sahathevan R, O'Keefe G, Gong SJ, Gunawan R, Churilov L, Saunder T, Ackerman U, Tochon-Danguy H, Donnan GA. Subacute ischemic stroke is associated with focal 11C PiB positron emission tomography retention but not with global neocortical Aβ deposition. Stroke 2012; 43:1341-6. [PMID: 22492514 DOI: 10.1161/strokeaha.111.636266] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Conflicting evidence exists as to whether focal cerebral ischemia contributes to cerebral amyloid deposition. We aimed to look at Aβ deposits, detected by N-methyl-2-(4'-methylaminophenyl)-6-hydroxybenzothiazole (PiB) positron emission tomography, in patients with recent ischemic stroke. Specifically, we hypothesized that patients with recent ischemic stroke have higher local and neocortical PiB positron emission tomography retention and that this may be associated with major vascular risk factors. METHODS Ischemic stroke patients were studied using PiB positron emission tomography within 30 days and compared to age-matched controls. Distribution volume ratio maps were created using Logan graphical analysis with the cerebellar cortex as a reference. RESULTS Among the 21 ischemic stroke patients (median age, 76 years; interquartile range, 68-77), the ipsilateral peri-infarct region PiB retention was higher compared to the contralateral mirror region, with a PiB distribution volume ratio difference of 0.29 (95% CI, 0.2-0.44; P=0.001) at median 10 (interquartile range, 7-14) days after stroke. Two patients also had higher PiB retention within the infarct compared to the contralateral side. There was no difference in the neocortical PiB retention elsewhere in the brain among ischemic stroke patients compared with 22 age-matched normal controls (P=0.22). Among the risk factors in the ischemic stroke patients, diabetes was associated with a higher neocortical PiB retention (Spearman Rho=0.48; 95% CI, 0.28-0.72). CONCLUSIONS PiB retention was higher in the peri-infarct region among patients with recent ischemic stroke. This did not translate into a higher global neocortical PiB retention except possibly in patients with diabetes. The cause of the focal PiB retention is uncertain and requires further investigation.
Collapse
Affiliation(s)
- John V Ly
- University of Melbourne, Carlton South, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Ferretti MT, Allard S, Partridge V, Ducatenzeiler A, Cuello AC. Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer's disease-like amyloid pathology. J Neuroinflammation 2012; 9:62. [PMID: 22472085 PMCID: PMC3352127 DOI: 10.1186/1742-2094-9-62] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/02/2012] [Indexed: 12/20/2022] Open
Abstract
Background A growing body of evidence indicates that inflammation is one of the earliest neuropathological events in Alzheimer's disease. Accordingly, we have recently shown the occurrence of an early, pro-inflammatory reaction in the hippocampus of young, three-month-old transgenic McGill-Thy1-APP mice in the absence of amyloid plaques but associated with intracellular accumulation of amyloid beta petide oligomers. The role of such a pro-inflammatory process in the progression of the pathology remained to be elucidated. Methods and results To clarify this we administered minocycline, a tetracyclic derivative with anti-inflammatory and neuroprotective properties, to young, pre-plaque McGill-Thy1-APP mice for one month. The treatment ended at the age of three months, when the mice were still devoid of plaques. Minocycline treatment corrected the up-regulation of inducible nitric oxide synthase and cyclooxygenase-2 observed in young transgenic placebo mice. Furthermore, the down-regulation of inflammatory markers correlated with a reduction in amyloid precursor protein levels and amyloid precursor protein-related products. Beta-site amyloid precursor protein cleaving enzyme 1 activity and levels were found to be up-regulated in transgenic placebo mice, while minocycline treatment restored these levels to normality. The anti-inflammatory and beta-secretase 1 effects could be partly explained by the inhibition of the nuclear factor kappa B pathway. Conclusions Our study suggests that the pharmacological modulation of neuroinflammation might represent a promising approach for preventing or delaying the development of Alzheimer's disease neuropathology at its initial, pre-clinical stages. The results open new vistas to the interplay between inflammation and amyloid pathology.
Collapse
Affiliation(s)
- Maria Teresa Ferretti
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
223
|
Caraci F, Bosco P, Signorelli M, Spada RS, Cosentino FI, Toscano G, Bonforte C, Muratore S, Prestianni G, Panerai S, Giambirtone MC, Gulotta E, Romano C, Salluzzo MG, Nicoletti F, Copani A, Drago F, Aguglia E, Ferri R. The CC genotype of transforming growth factor-β1 increases the risk of late-onset Alzheimer's disease and is associated with AD-related depression. Eur Neuropsychopharmacol 2012; 22:281-9. [PMID: 21924590 DOI: 10.1016/j.euroneuro.2011.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 07/29/2011] [Accepted: 08/18/2011] [Indexed: 12/17/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is a neurotrophic factor that exerts neuroprotective effects against β-amyloid-induced neurodegeneration. Recently, a specific impairment of the TGF-β1 signaling pathway has been demonstrated in Alzheimer's disease (AD) brain. TGF-β1 is also involved in the pathogenesis of depressive disorders, which may occur in 30-40% of AD patients. The TGF-β1 gene contains single nucleotide polymorphisms (SNPs) at codon +10 (T/C) and +25 (G/C), which are known to influence the level of expression of TGF-β1. We investigated TGF-β1 +10 (T/C) and +25 (G/C) SNPs and allele frequencies in 131 sporadic AD patients and in 135 healthy age- and sex-matched controls. Genotypes of the TGF-β1 SNPs at codon +10 (T/C) and +25 (G/C) did not differ between AD patients and controls, whereas the allele frequencies of codon +10 polymorphism showed a significant difference (P = 0.0306). We also found a different distribution of the +10 (C/C) phenotype (continuity-corrected χ(2) test with one degree of freedom = 4.460, P = 0.0347) between late onset AD (LOAD) patients and controls (P = 0.0126), but not between early onset AD (EOAD) patients and controls. In addition, the presence of the C/C genotype increased the risk of LOAD regardless of the status of apolipoprotein E4 (odds ratio [OR] = 2.34; 95% CI = 1.19-4.59). Compared to patients bearing the T/T and C/T polymorphisms, LOAD TGF-β1 C/C carriers also showed > 5-fold risk to develop depressive symptoms independently of a history of depression (OR = 5.50; 95% CI = 1.33-22.69). An association was also found between the TGF-β1 C/C genotype and the severity of depressive symptoms (HAM-D(17) ≥ 14) (P < 0.05). These results suggest that the CC genotype of the TGF-β1 gene increases the risk to develop LOAD and is also associated with depressive symptoms in AD.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Panarsky R, Luques L, Weinstock M. Anti-inflammatory effects of ladostigil and its metabolites in aged rat brain and in microglial cells. J Neuroimmune Pharmacol 2012; 7:488-98. [PMID: 22454040 DOI: 10.1007/s11481-012-9358-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
Impaired mitochondrial function accompanied by microglial activation and the release of nitric oxide (NO) and pro-inflammatory cytokines has been reported in Alzheimer's disease, its prodromal phase of Mild Cognitive Impairment (MCI) and in aged rats. The present study showed that 6 months treatment of 16 month old rats with ladostigil (1 mg/kg/day), a novel drug designed for the treatment of MCI, prevented the development of spatial memory deficits at 22 months of age and significantly decreased the gene expression of IL-1β, IL-6, TNF-α and inducible nitric oxide synthase (iNOS) in the parietal cortex. It was also shown that concentrations ranging from 1nM-1 μM of ladostigil and three of its active metabolites inhibited the release of nitric oxide (NO) induced by lipopolysaccharide (LPS) from mouse microglial cells by up to 35-40 %. Ladostigil and its metabolites (10nM) also reduced TNF-α mRNA and protein by 25-35 % and IL-1β and inducible nitric oxide synthase (iNOS) mRNA by 20-35 %. The concentration of 10nM is in the range of that of the parent drug, R-MCPAI and R-HPAI found in plasma after oral administration of ladostigil (1 mg/kg/day) to rats. All the compounds inhibited the degradation of IkB-α and nuclear translocation of the p65 subunit of NF-kB. They also inhibited phosphorylation of p38 and ERK1/2 mitogen-activated protein kinase (MAPK), but had no effect on that of JNK. We propose that the anti-inflammatory activity may contribute towards the neuroprotective action of ladostigil against the development of memory impairments induced by aging or toxin-induced microglial activation.
Collapse
Affiliation(s)
- Rony Panarsky
- Institute of Drug Research, Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | | | | |
Collapse
|
225
|
Klunk WE. Amyloid imaging as a biomarker for cerebral β-amyloidosis and risk prediction for Alzheimer dementia. Neurobiol Aging 2012; 32 Suppl 1:S20-36. [PMID: 22078170 DOI: 10.1016/j.neurobiolaging.2011.09.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Since the introduction of amyloid imaging nearly 10 years ago, this technique has gained widespread use and acceptance. More recently, published reports have begun to appear in which amyloid imaging is used to detect the effects of antiamyloid therapies. This review will consider the issues involved in the use of amyloid imaging in the development and evaluation of drugs for the treatment of Alzheimer's disease. Current evidence regarding the postmortem correlates of in vivo amyloid imaging data are considered. The application of amyloid imaging to screening subjects for trials and use as an outcome measure is discussed in light of longitudinal changes in the in vivo amyloid signal. While the bulk of this review is directed at symptomatic patients with dementia, consideration is given to the use of amyloid imaging in nondemented subjects as well. Similarities and differences of cerebral amyloid assessment by amyloid imaging and cerebrospinal fluid (CSF) measurements are delineated and an agenda for further research to improve the applicability of amyloid positron emission tomography (PET) to clinical trials is proposed.
Collapse
Affiliation(s)
- William E Klunk
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
226
|
Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B, Nordberg A. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med 2012; 53:37-46. [PMID: 22213821 DOI: 10.2967/jnumed.110.087031] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Astrocytes colocalize with fibrillar amyloid-β (Aβ) plaques in postmortem Alzheimer disease (AD) brain tissue. It is therefore of great interest to develop a PET tracer for visualizing astrocytes in vivo, enabling the study of the regional distribution of both astrocytes and fibrillar Aβ. A multitracer PET investigation was conducted for patients with mild cognitive impairment (MCI), patients with mild AD, and healthy controls using (11)C-deuterium-L-deprenyl ((11)C-DED) to measure monoamine oxidase B located in astrocytes. Along with (11)C-DED PET, (11)C-Pittsburgh compound B ((11)C-PIB; fibrillar Aβ deposition), (18)F-FDG (glucose metabolism), T1 MRI, cerebrospinal fluid, and neuropsychologic data were acquired from the patients. METHODS (11)C-DED PET was performed in MCI patients (n = 8; mean age ± SD, 62.6 ± 7.5 y; mean Mini Mental State Examination, 27.5 ± 2.1), AD patients (n = 7; mean age, 65.1 ± 6.3 y; mean Mini Mental State Examination, 24.4 ± 5.7), and healthy age-matched controls (n = 14; mean age, 64.7 ± 3.6 y). A modified reference Patlak model, with cerebellar gray matter as a reference, was chosen for kinetic analysis of the (11)C-DED data. (11)C-DED data from 20 to 60 min were analyzed using a digital brain atlas. Mean regional (18)F-FDG uptake and (11)C-PIB retention were calculated for each patient, with cerebellar gray matter as a reference. RESULTS ANOVA analysis of the regional (11)C-DED binding data revealed a significant group effect in the bilateral frontal and bilateral parietal cortices related to increased binding in the MCI patients. All patients, except 3 with MCI, showed high (11)C-PIB retention. Increased (11)C-DED binding in most cortical and subcortical regions was observed in MCI (11)C-PIB+ patients relative to controls, MCI (11)C-PIB (negative) patients, and AD patients. No regional correlations were found between the 3 PET tracers. CONCLUSION Increased (11)C-DED binding throughout the brain of the MCI (11)C-PIB+ patients potentially suggests that astrocytosis is an early phenomenon in AD development.
Collapse
Affiliation(s)
- Stephen F Carter
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
227
|
Abstract
Contrary to early views, we now know that systemic inflammatory/immune responses transmit to the brain. The microglia, the resident "macrophages" of the brain's innate immune system, are most responsive, and increasing evidence suggests that they enter a hyper-reactive state in neurodegenerative conditions and aging. As sustained over-production of microglial pro-inflammatory mediators is neurotoxic, this raises great concern that systemic inflammation (that also escalates with aging) exacerbates or possibly triggers, neurological diseases (Alzheimer's, prion, motoneuron disease). It is known that inflammation has an essential role in the progression of Alzheimer's disease (AD), since amyloid-β (Aβ) is able to activate microglia, initiating an inflammatory response, which could have different consequences for neuronal survival. On one hand, microglia may delay the progression of AD by contributing to the clearance of Aβ, since they phagocyte Aβ and release enzymes responsible for Aβ degradation. Microglia also secrete growth factors and anti-inflammatory cytokines, which are neuroprotective. In addition, microglia removal of damaged cells is a very important step in the restoration of the normal brain environment, as if left such cells can become potent inflammatory stimuli, resulting in yet further tissue damage. On the other hand, as we age microglia become steadily less efficient at these processes, tending to become over-activated in response to stimulation and instigating too potent a reaction, which may cause neuronal damage in its own right. Therefore, it is critical to understand the state of activation of microglia in different AD stages to be able to determine the effect of potential anti-inflammatory therapies. We discuss here recent evidence supporting both the beneficial or detrimental performance of microglia in AD, and the attempt to find molecules/biomarkers for early diagnosis or therapeutic interventions.
Collapse
Affiliation(s)
- Egle Solito
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London, Queen Mary’s School of Medicine and DentistryLondon, UK
| | - Magdalena Sastre
- Centre for Neuroscience, Division of Experimental Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
228
|
Pathogenesis of cognitive dysfunction in patients with obstructive sleep apnea: a hypothesis with emphasis on the nucleus tractus solitarius. SLEEP DISORDERS 2012; 2012:251096. [PMID: 23470865 PMCID: PMC3581091 DOI: 10.1155/2012/251096] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/13/2011] [Accepted: 12/22/2011] [Indexed: 02/06/2023]
Abstract
OSA is characterized by the quintessential triad of intermittent apnea, hypoxia, and hypoxemia due to pharyngeal collapse. This paper highlights the upstream mechanisms that may trigger cognitive decline in OSA. Three interrelated steps underpin cognitive dysfunction in OSA patients. First, several risk factors upregulate peripheral inflammation; these crucial factors promote neuroinflammation, cerebrovascular endothelial dysfunction, and oxidative stress in OSA. Secondly, the neuroinflammation exerts negative impact globally on the CNS, and thirdly, important foci in the neocortex and brainstem are rendered inflamed and dysfunctional. A strong link is known to exist between neuroinflammation and neurodegeneration. A unique perspective delineated here underscores the importance of dysfunctional brainstem nuclei in etiopathogenesis of cognitive decline in OSA patients. Nucleus tractus solitarius (NTS) is the central integration hub for afferents from upper airway (somatosensory/gustatory), respiratory, gastrointestinal, cardiovascular (baroreceptor and chemoreceptor) and other systems. The NTS has an essential role in sympathetic and parasympathetic systems also; it projects to most key brain regions and modulates numerous physiological functions. Inflamed and dysfunctional NTS and other key brainstem nuclei may play a pivotal role in triggering memory and cognitive dysfunction in OSA. Attenuation of upstream factors and amelioration of the NTS dysfunction remain important challenges.
Collapse
|
229
|
Abstract
Over the years it has become evident that the immune system can affect the function of the central nervous system (CNS), including altering cognitive processes. The impact of immune activation on the CNS is particularly important for aged individuals, as the brain's resident immune cells, microglia, acquire a pro-inflammatory profile. The low-grade chronic neuroinflammation that develops with normal aging likely contributes to the susceptibility to cognitive deficits and a host of age-related pathologies. Understanding why microglia show increased inflammatory activity (i.e., neuroinflammation) and identifying effective treatments to reduce microglia activation is expected to have beneficial effects on cognitive performance and measures of neural plasticity. However, microglia also promote regeneration after injury. Therefore, effective treatments must dampen inflammatory activity while preserving microglia's neuroprotective function. Discovering factors that induce neuroinflammation and investigating potential preventative therapies is expected to uncover the ways of maintaining normal microglia activity in the aged brain.
Collapse
Affiliation(s)
- Rachel A Kohman
- Department of Psychology, University of Illinois at Urbana-Champaign, Beckman Institute, Urbana, IL, USA.
| |
Collapse
|
230
|
Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rübe CE, Walter J, Heneka MT, Hartmann T, Menger MD, Fassbender K. TLR2 is a primary receptor for Alzheimer's amyloid β peptide to trigger neuroinflammatory activation. THE JOURNAL OF IMMUNOLOGY 2011; 188:1098-107. [PMID: 22198949 DOI: 10.4049/jimmunol.1101121] [Citation(s) in RCA: 329] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microglia activated by extracellularly deposited amyloid β peptide (Aβ) act as a two-edged sword in Alzheimer's disease pathogenesis: on the one hand, they damage neurons by releasing neurotoxic proinflammatory mediators (M1 activation); on the other hand, they protect neurons by triggering anti-inflammatory/neurotrophic M2 activation and by clearing Aβ via phagocytosis. TLRs are associated with Aβ-induced microglial inflammatory activation and Aβ internalization, but the mechanisms remain unclear. In this study, we used real-time surface plasmon resonance spectroscopy and conventional biochemical pull-down assays to demonstrate a direct interaction between TLR2 and the aggregated 42-aa form of human Aβ (Aβ42). TLR2 deficiency reduced Aβ42-triggered inflammatory activation but enhanced Aβ phagocytosis in cultured microglia and macrophages. By expressing TLR2 in HEK293 cells that do not endogenously express TLR2, we observed that TLR2 expression enabled HEK293 cells to respond to Aβ42. Through site-directed mutagenesis of tlr2 gene, we identified the amino acids EKKA (741-744) as a critical cytoplasmic domain for transduction of inflammatory signals. By coexpressing TLR1 or TLR6 in TLR2-transgenic HEK293 cells or silencing tlrs genes in RAW264.7 macrophages, we observed that TLR2-mediated Aβ42-triggered inflammatory activation was enhanced by TLR1 and suppressed by TLR6. Using bone marrow chimeric Alzheimer's amyloid precursor transgenic mice, we observed that TLR2 deficiency in microglia shifts M1- to M2-inflammatory activation in vivo, which was associated with improved neuronal function. Our study demonstrated that TLR2 is a primary receptor for Aβ to trigger neuroinflammatory activation and suggested that inhibition of TLR2 in microglia could be beneficial in Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Shirong Liu
- Department of Neurology, University of the Saarland, 66421 Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Brain imaging in the study of Alzheimer's disease. Neuroimage 2011; 61:505-16. [PMID: 22173295 DOI: 10.1016/j.neuroimage.2011.11.075] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 11/17/2011] [Accepted: 11/25/2011] [Indexed: 12/14/2022] Open
Abstract
Over the last 20 years, there has been extraordinary progress in brain imaging research and its application to the study of Alzheimer's disease (AD). Brain imaging researchers have contributed to the scientific understanding, early detection and tracking of AD. They have set the stage for imaging techniques to play growing roles in the clinical setting, the evaluation of disease-modifying treatments, and the identification of demonstrably effective prevention therapies. They have developed ground-breaking methods, including positron emission tomography (PET) ligands to measure fibrillar amyloid-β (Aβ) deposition, new magnetic resonance imaging (MRI) pulse sequences, and powerful image analysis techniques, to help in these endeavors. Additional work is needed to develop even more powerful imaging methods, to further clarify the relationship and time course of Aβ and other disease processes in the predisposition to AD, to establish the role of brain imaging methods in the clinical setting, and to provide the scientific means and regulatory approval pathway needed to evaluate the range of promising disease-modifying and prevention therapies as quickly as possible. Twenty years from now, AD may not yet be a distant memory, but the best is yet to come.
Collapse
|
232
|
Hoozemans JJM, Rozemuller AJM, van Haastert ES, Eikelenboom P, van Gool WA. Neuroinflammation in Alzheimer's disease wanes with age. J Neuroinflammation 2011; 8:171. [PMID: 22152162 PMCID: PMC3248382 DOI: 10.1186/1742-2094-8-171] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inflammation is a prominent feature in Alzheimer's disease (AD). It has been proposed that aging has an effect on the function of inflammation in the brain, thereby contributing to the development of age-related diseases like AD. However, the age-dependent relationship between inflammation and clinical phenotype of AD has never been investigated. METHODS In this study we have analysed features of the neuroinflammatory response in clinically and pathologically confirmed AD and control cases in relation to age (range 52-97 years). The mid-temporal cortex of 19 controls and 19 AD cases was assessed for the occurrence of microglia and astrocytes by immunohistochemistry using antibodies directed against CD68 (KP1), HLA class II (CR3/43) and glial fibrillary acidic protein (GFAP). RESULTS By measuring the area density of immunoreactivity we found significantly more microglia and astrocytes in AD cases younger than 80 years compared to older AD patients. In addition, the presence of KP1, CR3/43 and GFAP decreases significantly with increasing age in AD. CONCLUSION Our data suggest that the association between neuroinflammation and AD is stronger in relatively young patients than in the oldest patients. This age-dependent relationship between inflammation and clinical phenotype of AD has implications for the interpretation of biomarkers and treatment of the disease.
Collapse
Affiliation(s)
- Jeroen JM Hoozemans
- Department of Pathology, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Annemieke JM Rozemuller
- Department of Pathology, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Elise S van Haastert
- Department of Pathology, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Piet Eikelenboom
- Department of Psychiatry, VU University Medical Center, Valeriusplein 9, 1075 BG Amsterdam, The Netherlands
- Department of Neurology, Academic Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Willem A van Gool
- Department of Neurology, Academic Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
233
|
Nordberg A. Molecular imaging in Alzheimer's disease: new perspectives on biomarkers for early diagnosis and drug development. ALZHEIMERS RESEARCH & THERAPY 2011; 3:34. [PMID: 22136152 PMCID: PMC3308023 DOI: 10.1186/alzrt96] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent progress in molecular imaging has provided new important knowledge for further understanding the time course of early pathological disease processes in Alzheimer's disease (AD). Positron emission tomography (PET) amyloid beta (Aβ) tracers such as Pittsburgh Compound B detect increasing deposition of fibrillar Aβ in the brain at the prodromal stages of AD, while the levels of fibrillar Aβ appear more stable at high levels in clinical AD. There is a need for PET ligands to visualize smaller forms of Aβ, oligomeric forms, in the brain and to understand how they interact with synaptic activity and neurodegeneration. The inflammatory markers presently under development might provide further insight into the disease mechanism as well as imaging tracers for tau. Biomarkers measuring functional changes in the brain such as regional cerebral glucose metabolism and neurotransmitter activity seem to strongly correlate with clinical symptoms of cognitive decline. Molecular imaging biomarkers will have a clinical implication in AD not only for early detection of AD but for selecting patients for certain drug therapies and to test disease-modifying drugs. PET fibrillar Aβ imaging together with cerebrospinal fluid biomarkers are promising as biomarkers for early recognition of subjects at risk for AD, for identifying patients for certain therapy and for quantifying anti-amyloid effects. Functional biomarkers such as regional cerebral glucose metabolism together with measurement of the brain volumes provide valuable information about disease progression and outcome of drug treatment.
Collapse
Affiliation(s)
- Agneta Nordberg
- Karolinska Institutet, Alzheimer Neurobiology Center, Karolinska University, Hospital Huddinge, Novum 5th floor, 141 86 Stockholm, Sweden.
| |
Collapse
|
234
|
Lautner R, Mattsson N, Schöll M, Augutis K, Blennow K, Olsson B, Zetterberg H. Biomarkers for microglial activation in Alzheimer's disease. Int J Alzheimers Dis 2011; 2011:939426. [PMID: 22114747 PMCID: PMC3206374 DOI: 10.4061/2011/939426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/01/2011] [Indexed: 01/21/2023] Open
Abstract
Intensive research over the last decades has provided increasing evidence for neuroinflammation as an integral part in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). Inflammatory responses in the central nervous system (CNS) are initiated by activated microglia, representing the first line of the innate immune defence of the brain. Therefore, biochemical markers of microglial activation may help us understand the underlying mechanisms of neuroinflammation in AD as well as the double-sided qualities of microglia, namely, neuroprotection and neurotoxicity. In this paper we summarize candidate biomarkers of microglial activation in AD along with a survey of recent neuroimaging techniques.
Collapse
Affiliation(s)
- Ronald Lautner
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Niklas Mattsson
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Michael Schöll
- Division of Alzheimer Neurobiology, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 17177 Stockholm, Sweden
| | - Kristin Augutis
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Bob Olsson
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| |
Collapse
|
235
|
Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V, Drago F, Nicoletti F, Copani A. Dysfunction of TGF-β1 signaling in Alzheimer's disease: perspectives for neuroprotection. Cell Tissue Res 2011; 347:291-301. [PMID: 21879289 DOI: 10.1007/s00441-011-1230-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/07/2011] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects about 35 million people worldwide. Current drugs for AD only treat the symptoms and do not interfere with the underlying pathogenic mechanisms of the disease. AD is characterized by the presence of β-amyloid (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Identification of the molecular determinants underlying Aβ-induced neurodegeneration is an essential step for the development of disease-modifying drugs. Recently, an impairment of the transforming growth factor-β1 (TGF-β1) signaling pathway has been demonstrated to be specific to the AD brain and, particularly, to the early phase of the disease. TGF-β1 is a neurotrophic factor responsible for the initiation and maintenance of neuronal differentiation and synaptic plasticity. The deficiency of TGF-β1 signaling is associated with Aβ pathology and neurofibrillary tangle formation in AD animal models. Reduced TGF-β1 signaling seems to contribute both to microglial activation and to ectopic cell-cycle re-activation in neurons, two events that contribute to neurodegeneration in the AD brain. The neuroprotective features of TGF-β1 indicate the advantage of rescuing TGF-β1 signaling as a means to slow down the neurodegenerative process in AD.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Kannan S, Saadani-Makki F, Balakrishnan B, Chakraborty P, Janisse J, Lu X, Muzik O, Romero R, Chugani DC. Magnitude of [(11)C]PK11195 binding is related to severity of motor deficits in a rabbit model of cerebral palsy induced by intrauterine endotoxin exposure. Dev Neurosci 2011; 33:231-40. [PMID: 21791891 DOI: 10.1159/000328125] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 03/25/2011] [Indexed: 11/19/2022] Open
Abstract
Intrauterine inflammation is known to be a risk factor for the development of periventricular leukomalacia (PVL) and cerebral palsy. In recent years, activated microglial cells have been implicated in the pathogenesis of PVL and in the development of white matter injury. Clinical studies have shown the increased presence of activated microglial cells diffusely throughout the white matter in brains of patients with PVL. In vitro studies have reported that activated microglial cells induce oligodendrocyte damage and white matter injury by release of inflammatory cytokines, reactive nitrogen and oxygen species and the production of excitotoxic metabolites. PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide] is a ligand that is selective for the 18-kDa translocator protein expressed on the outer mitochondrial membrane of activated microglia and macrophages. When labeled with carbon-11, [(11)C]PK11195 can effectively be used as a ligand in positron emission tomography (PET) studies for the detection of activated microglial cells in various neuroinflammatory and neurodegenerative conditions. In this study, we hypothesized that the magnitude of [(11)C]-(R)-PK11195 uptake in the newborn rabbit brain, as measured using a small-animal PET scanner, would match the severity of motor deficits resulting from intrauterine inflammation-induced perinatal brain injury. Pregnant New Zealand white rabbits were intrauterinely injected with endotoxin or saline at 28 days of gestation. Kits were born spontaneously at 31 days and underwent neurobehavioral testing and PET imaging following intravenous injection of the tracer [(11)C]-(R)-PK11195 on the day of birth. The neurobehavioral scores were compared with the change in [(11)C]PK11195 uptake over the time of scanning, for each of the kits. Upon analysis using receiver operating characteristic curves, an optimal combined sensitivity and specificity for detecting abnormal neurobehavioral scores suggestive of cerebral palsy in the neonatal rabbit was noted for a positive change in [(11)C]PK11195 uptake in the brain over time on PET imaging (sensitivity of 100% and area under the curve of >0.82 for all parameters tested). The strongest agreements were noted between a positive uptake slope - indicating increased [(11)C]PK11195 uptake over time - and worsening scores for measures of locomotion (indicated by hindlimb movement, forelimb movement, circular motion and straight- line motion; Cohen's κ >0.75 for each) and feeding (indicated by ability to suck and swallow and turn the head during feeding; Cohen's κ >0.85 for each). This was also associated with increased numbers of activated microglia (mean ratio ± SD of activated to total microglia: 0.96 ± 0.16 in the endotoxin group vs. 0.13 ± 0.08 in controls; p < 0.001) in the internal capsule and corona radiata. Our findings indicate that the magnitude of [(11)C]PK11195 binding measured in vivo by PET imaging matches the severity of motor deficits in the neonatal rabbit. Molecular imaging of ongoing neuroinflammation in the neonatal period may be helpful as a screening biomarker for detecting patients at risk of developing cerebral palsy due to a perinatal insult.
Collapse
Affiliation(s)
- Sujatha Kannan
- Department of Pediatrics, Wayne State University, Detroit, MI, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Serrano-Pozo A, Mielke ML, Gómez-Isla T, Betensky RA, Growdon JH, Frosch MP, Hyman BT. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1373-84. [PMID: 21777559 DOI: 10.1016/j.ajpath.2011.05.047] [Citation(s) in RCA: 360] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/22/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022]
Abstract
Senile plaques are a prominent pathological feature of Alzheimer's disease (AD), but little is understood about the association of glial cells with plaques or about the dynamics of glial responses through the disease course. We investigated the progression of reactive glial cells and their relationship with AD pathological hallmarks to test whether glial cells are linked only to amyloid deposits or also to tangle deposition, thus integrating both lesions as a marker of disease severity. We conducted a quantitative stereology-based post-mortem study on the temporal neocortex of 15 control subjects without dementia and 91 patients with AD, including measures of amyloid load, neurofibrillary tangles, reactive astrocytes, and activated microglia. We also addressed the progression of glial responses in the vicinity (≤50 μm) of dense-core plaques and tangles. Although the amyloid load reached a plateau early after symptom onset, astrocytosis and microgliosis increased linearly throughout the disease course. Moreover, glial responses correlated positively with tangle burden, whereas astrocytosis correlated negatively with cortical thickness. However, neither correlated with amyloid load. Glial responses increased linearly around existing plaques and in the vicinity of tangles. These results indicate that the progression of astrocytosis and microgliosis diverges from that of amyloid deposition, arguing against a straightforward relationship between glial cells and plaques. They also suggest that reactive glia might contribute to the ongoing neurodegeneration.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Massachusetts General Hospital Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
238
|
Pan XD, Zhu YG, Lin N, Zhang J, Ye QY, Huang HP, Chen XC. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease. Mol Neurodegener 2011; 6:45. [PMID: 21718498 PMCID: PMC3149591 DOI: 10.1186/1750-1326-6-45] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 06/30/2011] [Indexed: 01/21/2023] Open
Abstract
Background Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ), a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ). However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear. Results We demonstrated that Aβ(1-42) fibrils, not Aβ(1-42) oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42) not only attenuated fAβ(1-42)-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42). Compared with the fAβ(1-42) treatment, the oAβ(1-42) treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β) level and produced higher levels of tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular superoxide anion (SOA). The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42)-induced microglia was decreased by IL-1β, lippolysaccharide (LPS) and tert-butyl hydroperoxide (t-BHP). The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC), a nuclear factor-κB (NF-κB) inhibitor, and N-acetyl-L-cysteine (NAC), a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42) stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1), and Ig receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2) and scavenger receptor class B1 (SRB1), compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42) or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP) significantly downregulated the fAβ(1-42)-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells. Conclusion These results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD.
Collapse
Affiliation(s)
- Xiao-Dong Pan
- Department of Neurology, Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
| | | | | | | | | | | | | |
Collapse
|
239
|
Gulyás B, Vas Á, Tóth M, Takano A, Varrone A, Cselényi Z, Schain M, Mattsson P, Halldin C. Age and disease related changes in the translocator protein (TSPO) system in the human brain: Positron emission tomography measurements with [11C]vinpocetine. Neuroimage 2011; 56:1111-21. [DOI: 10.1016/j.neuroimage.2011.02.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/02/2011] [Accepted: 02/05/2011] [Indexed: 01/06/2023] Open
|
240
|
In vivo positron emission tomographic imaging of glial responses to amyloid-beta and tau pathologies in mouse models of Alzheimer's disease and related disorders. J Neurosci 2011; 31:4720-30. [PMID: 21430171 DOI: 10.1523/jneurosci.3076-10.2011] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Core pathologies of Alzheimer's disease (AD) are aggregated amyloid-β peptides (Aβ) and tau, and the latter is also characteristic of diverse neurodegenerative tauopathies. These amyloid lesions provoke microglial activation, and recent neuroimaging technologies have enabled visualization of this response in living brains using radioligands for the peripheral benzodiazepine receptor also known as the 18 kDa translocator protein (TSPO). Here, we elucidated contributions of Aβ and tau deposits to in vivo TSPO signals in pursuit of mechanistic and diagnostic significance of TSPO imaging in AD and other tauopathies. A new antibody to human TSPO revealed induction of TSPO-positive microgliosis by tau fibrils in tauopathy brains. Emergence of TSPO signals before occurrence of brain atrophy and thioflavin-S-positive tau amyloidosis was also demonstrated in living mice transgenic for mutant tau by positron emission tomography (PET) with two classes of TSPO radioligands, [(11)C]AC-5216 and [(18)F]fluoroethoxy-DAA1106. Meanwhile, only modest TSPO elevation was observed in aged mice modeling Aβ plaque deposition, despite the notably enhanced in vivo binding of amyloid radiotracer, [(11)C]Pittsburgh Compound-B, to plaques. In these animals, [(11)C]AC-5216 yielded better TSPO contrasts than [(18)F]fluoroethoxy-DAA1106, supporting the possibility of capturing early neurotoxicity with high-performance TSPO probes. Furthermore, an additional line of mice modeling intraneuronal Aβ accumulation displayed elevated TSPO signals following noticeable neuronal loss, unlike TSPO upregulation heralding massive neuronal death in tauopathy model mice. Our data corroborate the utility of TSPO-PET imaging as a biomarker for tau-triggered toxicity, and as a complement to amyloid scans for diagnostic assessment of tauopathies with and without Aβ pathologies.
Collapse
|
241
|
Lee HG, Won SM, Gwag BJ, Lee YB. Microglial P2X₇ receptor expression is accompanied by neuronal damage in the cerebral cortex of the APPswe/PS1dE9 mouse model of Alzheimer's disease. Exp Mol Med 2011; 43:7-14. [PMID: 21088470 DOI: 10.3858/emm.2011.43.1.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The possibility that P2X₇ receptor (P2X₇R) expression in microglia would mediate neuronal damage via reactive oxygen species (ROS) production was examined in the APPswe/PS1dE9 mouse model of Alzheimer's disease (AD). P2X7R was predominantly expressed in CD11b-immunopositive microglia from 3 months of age before Abeta plaque formation. In addition, gp91phox, a catalytic subunit of NADPH oxidase, and ethidium fluorescence were detected in P2X₇R-positive microglial cells of animals at 6 months of age, indicating that P2X₇R-positive microglia could produce ROS. Postsynaptic density 95-positive dendrites showed significant damage in regions positive for P2X₇R in the cerebral cortex of 6 month-old mice. Taken together, up-regulation of P2X₇R activation and ROS production in microglia are parallel with Aβ increase and correlate with synaptotoxicity in AD.
Collapse
Affiliation(s)
- Hwan Goo Lee
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | | | | | | |
Collapse
|
242
|
Abstract
Depression is highly common throughout the life course and dementia is common in late life. Depression has been linked with dementia, and growing evidence implies that the timing of depression may be important in defining the nature of this association. In particular, earlier-life depression (or depressive symptoms) has consistently been associated with a more than twofold increase in dementia risk. By contrast, studies of late-life depression and dementia risk have been conflicting; most support an association, yet the nature of this association (for example, if depression is a prodrome or consequence of, or risk factor for dementia) remains unclear. The likely biological mechanisms linking depression to dementia include vascular disease, alterations in glucocorticoid steroid levels and hippocampal atrophy, increased deposition of amyloid-β plaques, inflammatory changes, and deficits of nerve growth factors. Treatment strategies for depression could interfere with these pathways and alter the risk of dementia. Given the projected increase in dementia incidence in the coming decades, understanding whether treatment for depression alone, or combined with other regimens, improves cognition is of critical importance. In this Review, we summarize and analyze current evidence linking late-life and earlier-life depression and dementia, and discuss the primary underlying mechanisms and implications for treatment.
Collapse
|
243
|
Abdul HM, Baig I, LeVine H, Guttmann RP, Norris CM. Proteolysis of calcineurin is increased in human hippocampus during mild cognitive impairment and is stimulated by oligomeric Abeta in primary cell culture. Aging Cell 2011; 10:103-13. [PMID: 20969723 PMCID: PMC3021581 DOI: 10.1111/j.1474-9726.2010.00645.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recent reports demonstrate that the activation and interaction of the protease calpain (CP) and the protein phosphatase calcineurin (CN) are elevated in the late stages of Alzheimer's disease (AD). However, the extent to which CPs and CN interact during earlier stages of disease progression remains unknown. Here, we investigated CP and CN protein levels in cytosolic, nuclear, and membrane fractions prepared from human postmortem hippocampal tissue from aged non-demented subjects, and subjects diagnosed with mild cognitive impairment (MCI). The results revealed a parallel increase in CP I and the 48 kDa CN-Aα (ΔCN-Aα48) proteolytic fragment in cytosolic fractions during MCI. In primary rat hippocampal cultures, CP-dependent proteolysis and activation of CN was stimulated by application of oligomeric Aβ((1-42)) peptides. Deleterious effects of Aβ on neuronal morphology were reduced by blockade of either CP or CN. NMDA-type glutamate receptors, which help regulate cognition and neuronal viability, and are modulated by CPs and CN, were also investigated in human hippocampus. Relative to controls, MCI subjects showed significantly greater proteolytic levels of the NR2B subunit. Within subjects, the extent of NR2B proteolysis was strongly correlated with the generation of ΔCN-Aα48 in the cytosol. A similar proteolytic pattern for NR2B was also observed in primary rat hippocampal cultures treated with oligomeric Aβ and prevented by inhibition of CP or CN. Together, the results demonstrate that the activation and interaction of CPs and CN are increased early in cognitive decline associated with AD and may help drive other pathologic processes during disease progression.
Collapse
Affiliation(s)
- Hafiz Mohmmad Abdul
- The Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536
| | - Irfan Baig
- The Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
| | - Harry LeVine
- The Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
| | - Rodney P Guttmann
- The Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536
- Graduate Center for Gerontology, University of Kentucky, Lexington, KY 40536
| | - Christopher M. Norris
- The Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY40536
| |
Collapse
|
244
|
|
245
|
Imaging Brain Microglial Activation Using Positron Emission Tomography and Translocator Protein-Specific Radioligands. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 101:19-39. [DOI: 10.1016/b978-0-12-387718-5.00002-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
246
|
Kadir A, Marutle A, Gonzalez D, Schöll M, Almkvist O, Mousavi M, Mustafiz T, Darreh-Shori T, Nennesmo I, Nordberg A. Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer's disease. ACTA ACUST UNITED AC 2010; 134:301-17. [PMID: 21149866 PMCID: PMC3009843 DOI: 10.1093/brain/awq349] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The accumulation of β-amyloid in the brain is an early event in Alzheimer’s disease. This study presents the first patient with Alzheimer’s disease who underwent positron emission tomography imaging with the amyloid tracer, Pittsburgh Compound B to visualize fibrillar β-amyloid in the brain. Here we relate the clinical progression, amyloid and functional brain positron emission tomography imaging with molecular neuropathological alterations at autopsy to gain new insight into the relationship between β-amyloid accumulation, inflammatory processes and the cholinergic neurotransmitter system in Alzheimer’s disease brain. The patient underwent positron emission tomography studies with 18F-fluorodeoxyglucose three times (at ages 53, 56 and 58 years) and twice with Pittsburgh Compound B (at ages 56 and 58 years), prior to death at 61 years of age. The patient showed a pronounced decline in cerebral glucose metabolism and cognition during disease progression, while Pittsburgh Compound B retention remained high and stable at follow-up. Neuropathological examination of the brain at autopsy confirmed the clinical diagnosis of pure Alzheimer’s disease. A comprehensive neuropathological investigation was performed in nine brain regions to measure the regional distribution of β-amyloid, neurofibrillary tangles and the levels of binding of 3H-nicotine and 125I-α-bungarotoxin to neuronal nicotinic acetylcholine receptor subtypes, 3H-L-deprenyl to activated astrocytes and 3H-PK11195 to microglia, as well as butyrylcholinesterase activity. Regional in vivo11C-Pittsburgh Compound B-positron emission tomography retention positively correlated with 3H-Pittsburgh Compound B binding, total insoluble β-amyloid, and β-amyloid plaque distribution, but not with the number of neurofibrillary tangles measured at autopsy. There was a negative correlation between regional fibrillar β-amyloid and levels of 3H-nicotine binding. In addition, a positive correlation was found between regional 11C-Pittsburgh Compound B positron emission tomography retention and 3H-Pittsburgh Compound B binding with the number of glial fibrillary acidic protein immunoreactive cells, but not with 3H-L-deprenyl and 3H-PK-11195 binding. In summary, high 11C-Pittsburgh Compound B positron emission tomography retention significantly correlates with both fibrillar β-amyloid and losses of neuronal nicotinic acetylcholine receptor subtypes at autopsy, suggesting a closer involvement of β-amyloid pathology with neuronal nicotinic acetylcholine receptor subtypes than with inflammatory processes.
Collapse
Affiliation(s)
- Ahmadul Kadir
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Hao W, Liu Y, Liu S, Walter S, Grimm MO, Kiliaan AJ, Penke B, Hartmann T, Rübe CE, Menger MD, Fassbender K. Myeloid differentiation factor 88-deficient bone marrow cells improve Alzheimer's disease-related symptoms and pathology. ACTA ACUST UNITED AC 2010; 134:278-92. [PMID: 21115468 DOI: 10.1093/brain/awq325] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Alzheimer's disease is characterized by extracellular deposits of amyloid β peptide in the brain. Increasing evidence suggests that amyloid β peptide injures neurons both directly and indirectly by triggering neurotoxic innate immune responses. Myeloid differentiation factor 88 is the key signalling molecule downstream to most innate immune receptors crucial in inflammatory activation. For this reason, we investigated the effects of myeloid differentiation factor 88-deficient bone marrow cells on Alzheimer's disease-related symptoms and pathology by establishing bone marrow chimeric amyloid β peptide precursor transgenic mice, in which bone marrow cells differentiate into microglia and are recruited to amyloid β peptide deposits. We observed that myeloid differentiation factor 88-deficient bone marrow reconstruction reduced both inflammatory activation and amyloid β peptide burden in the brain. In addition, synaptophysin, a marker of neuronal integrity, was preserved and the expression of neuronal plasticity-related genes, ARC and NMDA-R1, was increased. Thus, myeloid differentiation factor 88-deficient microglia significantly improved the cognitive function of amyloid β peptide precursor protein transgenic mice. Myeloid differentiation factor 88-deficiency enhanced amyloid β peptide phagocytosis by microglia/macrophages and blunted toxic inflammatory activation. Both the expression of amyloid β peptide precursor protein and amyloid β peptide degrading enzymes and also the efflux of amyloid β peptide from brain parenchyma were unaffected by myeloid differentiation factor 88-deficient microglia. By contrast, the activity of β-secretase was increased. β-Secretase is expressed primarily in neurons, with relatively little expression in astrocytes and microglia. Therefore, microglial replenishment with myeloid differentiation factor 88-deficient bone marrow cells might improve cognitive functions in Alzheimer's disease mouse models by enhancing amyloid β peptide phagocytosis and reducing inflammatory activation. These results could offer a new therapeutic option that might delay the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Wenlin Hao
- Department of Neurology, University of the Saarland, 66421 Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Maezawa I, Zimin PI, Wulff H, Jin LW. Amyloid-beta protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J Biol Chem 2010; 286:3693-706. [PMID: 20971854 DOI: 10.1074/jbc.m110.135244] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Neuroinflammation and associated neuronal dysfunction mediated by activated microglia play an important role in the pathogenesis of Alzheimer disease (AD). Microglia are activated by aggregated forms of amyloid-β protein (Aβ), usually demonstrated in vitro by stimulating microglia with micromolar concentrations of fibrillar Aβ, a major component of amyloid plaques in AD brains. Here we report that amyloid-β oligomer (AβO), at 5-50 nm, induces a unique pattern of microglia activation that requires the activity of the scavenger receptor A and the Ca(2+)-activated potassium channel KCa3.1. AβO treatment induced an activated morphological and biochemical profile of microglia, including activation of p38 MAPK and nuclear factor κB. Interestingly, although increasing nitric oxide (NO) production, AβO did not increase several proinflammatory mediators commonly induced by lipopolyliposaccharides or fibrillar Aβ, suggesting that AβO stimulates both common and divergent pathways of microglia activation. AβO at low nanomolar concentrations, although not neurotoxic, induced indirect, microglia-mediated damage to neurons in dissociated cultures and in organotypic hippocampal slices. The indirect neurotoxicity was prevented by (i) doxycycline, an inhibitor of microglia activation; (ii) TRAM-34, a selective KCa3.1 blocker; and (iii) two inhibitors of inducible NO synthase, indicating that KCa3.1 activity and excessive NO release are required for AβO-induced microglial neurotoxicity. Our results suggest that AβO, generally considered a neurotoxin, may more potently cause neuronal damage indirectly by activating microglia in AD.
Collapse
Affiliation(s)
- Izumi Maezawa
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, California 95618, USA
| | | | | | | |
Collapse
|
249
|
Chételat G, Villemagne VL, Pike KE, Baron JC, Bourgeat P, Jones G, Faux NG, Ellis KA, Salvado O, Szoeke C, Martins RN, Ames D, Masters CL, Rowe CC. Larger temporal volume in elderly with high versus low beta-amyloid deposition. ACTA ACUST UNITED AC 2010; 133:3349-58. [PMID: 20739349 DOI: 10.1093/brain/awq187] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
β-Amyloid deposition is one of the main hallmarks of Alzheimer's disease thought to eventually cause neuronal death. Post-mortem and neuroimaging studies have consistently reported cases with documented normal cognition despite high β-amyloid burden. It is of great interest to understand what differentiates these particular subjects from those without β-amyloid deposition or with both β-amyloid deposition and cognitive deficits, i.e. what allows these subjects to resist the damage of the pathological lesions. [¹¹C]Pittsburgh compound B positron emission tomography and magnetic resonance brain scans were obtained in 149 participants including healthy controls and patients with subjective cognitive impairment, mild cognitive impairment and Alzheimer's disease. Magnetic resonance data were compared between high versus low-[11C]Pittsburgh compound B cases, and between high-[¹¹C]Pittsburgh compound B cases with versus those without cognitive deficits. Larger temporal (including hippocampal) grey matter volume, associated with better episodic memory performance, was found in high- versus low-[¹¹C]Pittsburgh compound B healthy controls. The same finding was obtained using different [¹¹C]Pittsburgh compound B thresholds, correcting [¹¹C]Pittsburgh compound B data for partial averaging, using age, education, Mini-Mental State Examination, apolipoprotein E4 and sex-matched subsamples, and using manual hippocampal delineation instead of voxel-based analysis. By contrast, in participants with subjective cognitive impairment, significant grey matter atrophy was found in high-[¹¹C]Pittsburgh compound B cases compared to low-[¹¹C]Pittsburgh compound B cases, as well as in high-[¹¹C]Pittsburgh compound B cases with subjective cognitive impairment, mild cognitive impairment and Alzheimer's disease compared to high-[¹¹C]Pittsburgh compound B healthy controls. Larger grey matter volume in high-[¹¹C]Pittsburgh compound B healthy controls may reflect either a tissue reactive response to β-amyloid or a combination of higher 'brain reserve' and under-representation of subjects with standard/low temporal volume in the high-[¹¹C]Pittsburgh compound B healthy controls. Our complementary analyses tend to support the latter hypotheses. Overall, our findings suggest that the deleterious effects of β-amyloid on cognition may be delayed in those subjects with larger brain (temporal) volume.
Collapse
Affiliation(s)
- Gaël Chételat
- Department of Nuclear Medicine and Centre for PET, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Grimmer T, Drzezga A, Kurz A. [Visualization of amyloid with positron emission tomography. Useful improvement in the diagnosis of dementia?]. DER NERVENARZT 2010; 81:602-6. [PMID: 20221742 DOI: 10.1007/s00115-010-2951-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Imaging techniques for in vivo visualization of cerebral amyloid using positron emission tomography (PET) have been tested in clinical trails over the past 5 years. Based on a selected overview of the literature including our own studies the various radiopharmaceuticals are presented and the current status of research on the validity of amyloid PET imaging as well as its suitability for early and differential diagnosis of Alzheimer's disease (AD) are described. The findings available up to now support the validity of amyloid PET imaging and suggest a possible benefit in differential diagnosis. However, there are as yet no studies with large sample sizes. The possible use for the early diagnosis of AD should be viewed critically, particularly due to the lack of treatment options.
Collapse
Affiliation(s)
- T Grimmer
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Zentrum für kognitive Störungen, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Strasse 22, 81675, München, Deutschland.
| | | | | |
Collapse
|