201
|
Tang D, Lin Q, He Y, Chai R, Li H. Inhibition of H3K9me2 Reduces Hair Cell Regeneration after Hair Cell Loss in the Zebrafish Lateral Line by Down-Regulating the Wnt and Fgf Signaling Pathways. Front Mol Neurosci 2016; 9:39. [PMID: 27303264 PMCID: PMC4880589 DOI: 10.3389/fnmol.2016.00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
The activation of neuromast (NM) supporting cell (SC) proliferation leads to hair cell (HC) regeneration in the zebrafish lateral line. Epigenetic mechanisms have been reported that regulate HC regeneration in the zebrafish lateral line, but the role of H3K9me2 in HC regeneration after HC loss remains poorly understood. In this study, we focused on the role of H3K9me2 in HC regeneration following neomycin-induced HC loss. To investigate the effects of H3K9me2 in HC regeneration, we took advantage of the G9a/GLP-specific inhibitor BIX01294 that significantly reduces the dimethylation of H3K9. We found that BIX01294 significantly reduced HC regeneration after neomycin-induced HC loss in the zebrafish lateral line. BIX01294 also significantly reduced the proliferation of NM cells and led to fewer SCs in the lateral line. In situ hybridization showed that BIX01294 significantly down-regulated the Wnt and Fgf signaling pathways, which resulted in reduced SC proliferation and HC regeneration in the NMs of the lateral line. Altogether, our results suggest that down-regulation of H3K9me2 significantly decreases HC regeneration after neomycin-induced HC loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus H3K9me2 plays a critical role in HC regeneration.
Collapse
Affiliation(s)
- Dongmei Tang
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Qin Lin
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Fujian Medical University Fuzhou, China
| | - Yingzi He
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China; Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| | - Huawei Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China; Institute of Stem Cell and Regeneration Medicine, Institutions of Biomedical Science, Fudan UniversityShanghai, China; Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
202
|
Kempfle JS, Turban JL, Edge ASB. Sox2 in the differentiation of cochlear progenitor cells. Sci Rep 2016; 6:23293. [PMID: 26988140 PMCID: PMC4796895 DOI: 10.1038/srep23293] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/02/2016] [Indexed: 12/19/2022] Open
Abstract
HMG domain transcription factor, Sox2, is a critical gene for the development of cochlear hair cells, the receptor cells for hearing, but this has been ascribed to expansion of the progenitors that become hair cells. Here, we show that Sox2 activated Atoh1, a transcription factor important for hair cell differentiation, through an interaction with the 3′ enhancer of Atoh1. Binding to consensus sequences in the Atoh1 enhancer was dependent on the level of Sox2, and the extent of enhancer binding correlated to the extent of activation. Atoh1 activation by Sox2 was required for embryonic hair cell development: deletion of Sox2 in an inducible mutant, even after progenitor cells were fully established, halted development of hair cells, and silencing also inhibited postnatal differentiation of hair cells induced by inhibition of γ-secretase. Sox2 is thus required in the cochlea to both expand the progenitor cells and initiate their differentiation to hair cells.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Jack L Turban
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Albert S B Edge
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Division of Health Science and Technology, Harvard &MIT, Cambridge, MA 02139, USA
| |
Collapse
|
203
|
Liu L, Chen Y, Qi J, Zhang Y, He Y, Ni W, Li W, Zhang S, Sun S, Taketo MM, Wang L, Chai R, Li H. Wnt activation protects against neomycin-induced hair cell damage in the mouse cochlea. Cell Death Dis 2016; 7:e2136. [PMID: 26962686 PMCID: PMC4823936 DOI: 10.1038/cddis.2016.35] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
Abstract
Recent studies have reported the role of Wnt/β-catenin signaling in hair cell (HC) development, regeneration, and differentiation in the mouse cochlea; however, the role of Wnt/β-catenin signaling in HC protection remains unknown. In this study, we took advantage of transgenic mice to specifically knockout or overactivate the canonical Wnt signaling mediator β-catenin in HCs, which allowed us to investigate the role of Wnt/β-catenin signaling in protecting HCs against neomycin-induced damage. We first showed that loss of β-catenin in HCs made them more vulnerable to neomycin-induced injury, while constitutive activation of β-catenin in HCs reduced HC loss both in vivo and in vitro. We then showed that loss of β-catenin in HCs increased caspase-mediated apoptosis induced by neomycin injury, while β-catenin overexpression inhibited caspase-mediated apoptosis. Finally, we demonstrated that loss of β-catenin in HCs led to increased expression of forkhead box O3 transcription factor (Foxo3) and Bim along with decreased expression of antioxidant enzymes; thus, there were increased levels of reactive oxygen species (ROS) after neomycin treatment that might be responsible for the increased aminoglycoside sensitivity of HCs. In contrast, β-catenin overexpression reduced Foxo3 and Bim expression and ROS levels, suggesting that β-catenin is protective against neomycin-induced HC loss. Our findings demonstrate that Wnt/β-catenin signaling has an important role in protecting HCs against neomycin-induced HC loss and thus might be a new therapeutic target for the prevention of HC death.
Collapse
Affiliation(s)
- L Liu
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Y Chen
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Laboratory Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, PR China
| | - J Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Y Zhang
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Laboratory Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, PR China
| | - Y He
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Laboratory Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, PR China
| | - W Ni
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, PR China
| | - W Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Laboratory Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, PR China
| | - S Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - S Sun
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Laboratory Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, PR China
| | - M M Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - L Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - R Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - H Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, PR China
| |
Collapse
|
204
|
Lu X, Sun S, Qi J, Li W, Liu L, Zhang Y, Chen Y, Zhang S, Wang L, Miao D, Chai R, Li H. Bmi1 Regulates the Proliferation of Cochlear Supporting Cells Via the Canonical Wnt Signaling Pathway. Mol Neurobiol 2016; 54:1326-1339. [PMID: 26843109 DOI: 10.1007/s12035-016-9686-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023]
Abstract
Cochlear supporting cells (SCs), which include the cochlear progenitor cells, have been shown to be a promising resource for hair cell (HC) regeneration, but the mechanisms underlying the initiation and regulation of postnatal cochlear SC proliferation are not yet fully understood. Bmi1 is a member of the Polycomb protein family and has been reported to regulate the proliferation of stem cells and progenitor cells in multiple organs. In this study, we investigated the role of Bmi1 in regulating SC and progenitor cell proliferation in neonatal mice cochleae. We first showed that knockout of Bmi1 significantly inhibited the proliferation of SCs and Lgr5-positive progenitor cells after neomycin injury in neonatal mice in vitro, and we then showed that Bmi1 deficiency significantly reduced the sphere-forming ability of the organ of Corti and Lgr5-positive progenitor cells in neonatal mice. These results suggested that Bmi1 is required for the initiation of SC and progenitor cell proliferation in neonatal mice. Next, we found that DKK1 expression was significantly upregulated, while beta-catenin and Lgr5 expression were significantly downregulated in neonatal Bmi1-/- mice compared to wild-type controls. The observation that Bmi1 knockout downregulates Wnt signaling provides compelling evidence that Bmi1 is required for the Wnt signaling pathway. Furthermore, the exogenous Wnt agonist BIO overcame the downregulation of SC proliferation in Bmi1-/- mice, suggesting that Bmi1 knockout might inhibit the proliferation of SCs via downregulation of the canonical Wnt signaling pathway. Our findings demonstrate that Bmi1 plays an important role in regulating the proliferation of cochlear SCs and Lgr5-positive progenitor cells in neonatal mice through the Wnt signaling pathway, and this suggests that Bmi1 might be a new therapeutic target for HC regeneration.
Collapse
Affiliation(s)
- Xiaoling Lu
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Shan Sun
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Jieyu Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Wenyan Li
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Liman Liu
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Yanping Zhang
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Yan Chen
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lei Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, 210096, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Huawei Li
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
205
|
Harris RE, Setiawan L, Saul J, Hariharan IK. Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs. eLife 2016; 5. [PMID: 26840050 PMCID: PMC4786413 DOI: 10.7554/elife.11588] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/02/2016] [Indexed: 12/16/2022] Open
Abstract
Many organisms lose the capacity to regenerate damaged tissues as they mature. Damaged Drosophila imaginal discs regenerate efficiently early in the third larval instar (L3) but progressively lose this ability. This correlates with reduced damage-responsive expression of multiple genes, including the WNT genes wingless (wg) and Wnt6. We demonstrate that damage-responsive expression of both genes requires a bipartite enhancer whose activity declines during L3. Within this enhancer, a damage-responsive module stays active throughout L3, while an adjacent silencing element nucleates increasing levels of epigenetic silencing restricted to this enhancer. Cas9-mediated deletion of the silencing element alleviates WNT repression, but is, in itself, insufficient to promote regeneration. However, directing Myc expression to the blastema overcomes repression of multiple genes, including wg, and restores cellular responses necessary for regeneration. Localized epigenetic silencing of damage-responsive enhancers can therefore restrict regenerative capacity in maturing organisms without compromising gene functions regulated by developmental signals.
Collapse
Affiliation(s)
- Robin E Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Linda Setiawan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Josh Saul
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
206
|
Affiliation(s)
- Buffy S Ellsworth
- Department of Physiology, Southern Illinois University, Carbondale, Illinois 62901-6523
| |
Collapse
|
207
|
A central to peripheral progression of cell cycle exit and hair cell differentiation in the developing mouse cristae. Dev Biol 2016; 411:1-14. [PMID: 26826497 DOI: 10.1016/j.ydbio.2016.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 01/15/2023]
Abstract
The inner ear contains six distinct sensory organs that each maintains some ability to regenerate hair cells into adulthood. In the postnatal cochlea, there appears to be a relationship between the developmental maturity of a region and its ability to regenerate as postnatal regeneration largely occurs in the apical turn, which is the last region to differentiate and mature during development. In the mature cristae there are also regional differences in regenerative ability, which led us to hypothesize that there may be a general relationship between the relative maturity of a region and the regenerative competence of that region in all of the inner ear sensory organs. By analyzing adult mouse cristae labeled embryonically with BrdU, we found that hair cell birth starts in the central region and progresses to the periphery with age. Since the peripheral region of the adult cristae also maintains active Notch signaling and some regenerative competence, these results are consistent with the hypothesis that the last regions to develop retain some of their regenerative ability into adulthood. Further, by analyzing embryonic day 14.5 inner ears we provide evidence for a wave of hair cell birth along the longitudinal axis of the cristae from the central regions to the outer edges. Together with the data from the adult inner ears labeled with BrdU as embryos, these results suggest that hair cell differentiation closely follows cell cycle exit in the cristae, unlike in the cochlea where they are uncoupled.
Collapse
|
208
|
Jessen KR, Mirsky R, Arthur-Farraj P. The Role of Cell Plasticity in Tissue Repair: Adaptive Cellular Reprogramming. Dev Cell 2016; 34:613-20. [PMID: 26418293 DOI: 10.1016/j.devcel.2015.09.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/07/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
It is becoming clear that a radical change of cell identity of differentiated cells in vivo, triggered by injury or other adversity, provides an essential route to recovery for many different mammalian tissues. This process, which we term adaptive cellular reprogramming, promotes regeneration in one of two ways: by providing a transient class of repair cells or by directly replacing cells lost during tissue damage. Controlling adaptive changes in cell fate in vivo in order to promote the body's own cell therapy, particularly by pharmacology rather than genetics, is likely to become an increasingly active area of future work.
Collapse
Affiliation(s)
- Kristjan R Jessen
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Peter Arthur-Farraj
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
209
|
Roccio M, Hahnewald S, Perny M, Senn P. Cell cycle reactivation of cochlear progenitor cells in neonatal FUCCI mice by a GSK3 small molecule inhibitor. Sci Rep 2015; 5:17886. [PMID: 26643939 PMCID: PMC4672274 DOI: 10.1038/srep17886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/06/2015] [Indexed: 11/09/2022] Open
Abstract
Due to the lack of regenerative capacity of the mammalian auditory epithelium, sensory hair cell loss results in permanent hearing deficit. Nevertheless, a population of tissue resident stem/progenitor cells has been recently described. Identification of methods to trigger their activity could lead to exploitation of their potential therapeutically. Here we validate the use of transgenic mice reporting cell cycle progression (FUCCI), and stemness (Lgr5-GFP), as a valuable tool to identify regulators of cell cycle re-entry of supporting cells within the auditory epithelium. The small molecule compound CHIR99021 was used to inhibit GSK3 activity. This led to a significant increase in the fraction of proliferating sphere-forming cells, labeled by the FUCCI markers and in the percentage of Lgr5-GFP + cells, as well as a selective increase in the fraction of S-G2-M cells in the Lgr5 + population. Using whole mount cultures of the organ of Corti we detected a statistically significant increment in the fraction of proliferating Sox2 supporting cells after CHIR99021 treatment, but only rarely appearance of novel MyoVIIa+/Edu + hair cells. In conclusion, these tools provide a robust mean to identify novel regulators of auditory organ regeneration and to clarify the contribution of stem cell activity.
Collapse
Affiliation(s)
- M Roccio
- Laboratory of Inner Ear Research, Department of Clinical Research, University of Bern and University Department of Otorhinolaryngology, Head &Neck Surgery, Inselspital, Bern, Switzerland
| | - S Hahnewald
- Laboratory of Inner Ear Research, Department of Clinical Research, University of Bern and University Department of Otorhinolaryngology, Head &Neck Surgery, Inselspital, Bern, Switzerland
| | - M Perny
- Laboratory of Inner Ear Research, Department of Clinical Research, University of Bern and University Department of Otorhinolaryngology, Head &Neck Surgery, Inselspital, Bern, Switzerland.,Laboratory of Neuroinfectiology, Institute of Infectious Diseases (IFIK), University of Bern
| | - P Senn
- Laboratory of Inner Ear Research, Department of Clinical Research, University of Bern and University Department of Otorhinolaryngology, Head &Neck Surgery, Inselspital, Bern, Switzerland.,Department of Otorhinolaryngology, Head &Neck Surgery University Hospital Geneva (HUG), Switzerland
| |
Collapse
|
210
|
Abstract
UNLABELLED The mammalian cochlea exhibit minimal spontaneous regeneration, and loss of sensory hair cells (HCs) results in permanent hearing loss. In nonmammalian vertebrates, spontaneous HC regeneration occurs through both proliferation and differentiation of surrounding supporting cells (SCs). HC regeneration in postnatal mammalian cochleae in vivo remains limited by the small HC number and subsequent death of regenerated HCs. Here, we describe in vivo generation of 10-fold more new HCs in the mouse cochlea than previously reported, most of which survive to adulthood. We achieved this by combining the expression of a constitutively active form of β-catenin (a canonical Wnt activator) with ectopic expression of Atoh1 (a HC fate determination factor) in neonatal Lgr5+ cells (the presumed SC and HC progenitors of the postnatal mouse cochlea), and discovered synergistic increases in proliferation and differentiation. The new HCs were predominantly located near the endogenous inner HCs, expressed early HC differentiation markers, and were innervated despite incomplete alignment of presynaptic and postsynaptic markers. Surprisingly, genetic tracing revealed that only a subset of Lgr5+ cells that lie medial to the inner HCs respond to this combination, highlighting a previously unknown heterogeneity that exists among Lgr5+ cells. Together, our data indicate that β-catenin and Atoh1 mediate synergistic effects on both proliferation and differentiation of a subset of neonatal cochlear Lgr5+ cells, thus overcoming major limitations of HC regeneration in postnatal mouse cochleae in vivo. These results provide a basis for combinatorial therapeutics for hearing restoration. SIGNIFICANCE STATEMENT Hearing loss in humans from aging, noise exposure, or ototoxic drugs (i.e., cisplatin or some antibiotics) is permanent and affects every segments of the population, worldwide. However, birds, frog, and fish have the ability to recover hearing, and recent studies have focused on understanding and applying what we have learned from them for restoring hearing in humans. However, studies have been hampered by low efficiency, limited cell numbers, and subsequent death of these newly generated auditory cells. Here, we describe a combinatorial approach, which results in the generation of auditory cells in greater numbers than previously reported, with most of them surviving to adult ages in vivo. These results provide a basis for combinatorial therapeutics for hearing restoration efforts.
Collapse
|
211
|
Abstract
Regeneration involves interactions between multiple signaling pathways acting in a spatially and temporally complex manner. As signaling pathways are highly conserved, understanding how regeneration is controlled in animal models exhibiting robust regenerative capacities should aid efforts to stimulate repair in humans. One way to discover molecular regulators of regeneration is to alter gene/protein function and quantify effect(s) on the regenerative process: dedifferentiation/reprograming, stem/progenitor proliferation, migration/remodeling, progenitor cell differentiation and resolution. A powerful approach for applying this strategy to regenerative biology is chemical genetics, the use of small-molecule modulators of specific targets or signaling pathways. Here, we review advances that have been made using chemical genetics for hypothesis-focused and discovery-driven studies aimed at furthering understanding of how regeneration is controlled.
Collapse
|
212
|
Leaver AM, Seydell-Greenwald A, Rauschecker JP. Auditory-limbic interactions in chronic tinnitus: Challenges for neuroimaging research. Hear Res 2015; 334:49-57. [PMID: 26299843 DOI: 10.1016/j.heares.2015.08.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/07/2015] [Accepted: 08/17/2015] [Indexed: 01/09/2023]
Abstract
Tinnitus is a widespread auditory disorder affecting approximately 10-15% of the population, often with debilitating consequences. Although tinnitus commonly begins with damage to the auditory system due to loud-noise exposure, aging, or other etiologies, the exact neurophysiological basis of chronic tinnitus remains unknown. Many researchers point to a central auditory origin of tinnitus; however, a growing body of evidence also implicates other brain regions, including the limbic system. Correspondingly, we and others have proposed models of tinnitus in which the limbic and auditory systems both play critical roles and interact with one another. Specifically, we argue that damage to the auditory system generates an initial tinnitus signal, consistent with previous research. In our model, this "transient" tinnitus is suppressed when a limbic frontostriatal network, comprised of ventromedial prefrontal cortex and ventral striatum, successfully modulates thalamocortical transmission in the auditory system. Thus, in chronic tinnitus, limbic-system damage and resulting inefficiency of auditory-limbic interactions prevents proper compensation of the tinnitus signal. Neuroimaging studies utilizing connectivity methods like resting-state fMRI and diffusion MRI continue to uncover tinnitus-related anomalies throughout auditory, limbic, and other brain systems. However, directly assessing interactions between these brain regions and networks has proved to be more challenging. Here, we review existing empirical support for models of tinnitus stressing a critical role for involvement of "non-auditory" structures in tinnitus pathophysiology, and discuss the possible impact of newly refined connectivity techniques from neuroimaging on tinnitus research.
Collapse
Affiliation(s)
- Amber M Leaver
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA; Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Josef P Rauschecker
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA; Institute for Advanced Study, TUM, Munich, Germany.
| |
Collapse
|
213
|
Jahan I, Pan N, Elliott KL, Fritzsch B. The quest for restoring hearing: Understanding ear development more completely. Bioessays 2015. [PMID: 26208302 DOI: 10.1002/bies.201500044] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurosensory hearing loss is a growing problem of super-aged societies. Cochlear implants can restore some hearing, but rebuilding a lost hearing organ would be superior. Research has discovered many cellular and molecular steps to develop a hearing organ but translating those insights into hearing organ restoration remains unclear. For example, we cannot make various hair cell types and arrange them into their specific patterns surrounded by the right type of supporting cells in the right numbers. Our overview of the topologically highly organized and functionally diversified cellular mosaic of the mammalian hearing organ highlights what is known and unknown about its development. Following this analysis, we suggest critical steps to guide future attempts toward restoration of a functional organ of Corti. We argue that generating mutant mouse lines that mimic human pathology to fine-tune attempts toward long-term functional restoration are needed to go beyond the hope generated by restoring single hair cells in postnatal sensory epithelia.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| | - Ning Pan
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| | - Karen L Elliott
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
214
|
Romero-Carvajal A, Navajas Acedo J, Jiang L, Kozlovskaja-Gumbrienė A, Alexander R, Li H, Piotrowski T. Regeneration of Sensory Hair Cells Requires Localized Interactions between the Notch and Wnt Pathways. Dev Cell 2015; 34:267-82. [PMID: 26190147 DOI: 10.1016/j.devcel.2015.05.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/30/2015] [Accepted: 05/29/2015] [Indexed: 02/06/2023]
Abstract
In vertebrates, mechano-electrical transduction of sound is accomplished by sensory hair cells. Whereas mammalian hair cells are not replaced when lost, in fish they constantly renew and regenerate after injury. In vivo tracking and cell fate analyses of all dividing cells during lateral line hair cell regeneration revealed that support and hair cell progenitors localize to distinct tissue compartments. Importantly, we find that the balance between self-renewal and differentiation in these compartments is controlled by spatially restricted Notch signaling and its inhibition of Wnt-induced proliferation. The ability to simultaneously study and manipulate individual cell behaviors and multiple pathways in vivo transforms the lateral line into a powerful paradigm to mechanistically dissect sensory organ regeneration. The striking similarities to other vertebrate stem cell compartments uniquely place zebrafish to help elucidate why mammals possess such low capacity to regenerate hair cells.
Collapse
Affiliation(s)
- Andrés Romero-Carvajal
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | | | - Linjia Jiang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Tatjana Piotrowski
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA.
| |
Collapse
|
215
|
Atkinson PJ, Huarcaya Najarro E, Sayyid ZN, Cheng AG. Sensory hair cell development and regeneration: similarities and differences. Development 2015; 142:1561-71. [PMID: 25922522 DOI: 10.1242/dev.114926] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sensory hair cells are mechanoreceptors of the auditory and vestibular systems and are crucial for hearing and balance. In adult mammals, auditory hair cells are unable to regenerate, and damage to these cells results in permanent hearing loss. By contrast, hair cells in the chick cochlea and the zebrafish lateral line are able to regenerate, prompting studies into the signaling pathways, morphogen gradients and transcription factors that regulate hair cell development and regeneration in various species. Here, we review these findings and discuss how various signaling pathways and factors function to modulate sensory hair cell development and regeneration. By comparing and contrasting development and regeneration, we also highlight the utility and limitations of using defined developmental cues to drive mammalian hair cell regeneration.
Collapse
Affiliation(s)
- Patrick J Atkinson
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elvis Huarcaya Najarro
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zahra N Sayyid
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
216
|
Sox2-CreER mice are useful for fate mapping of mature, but not neonatal, cochlear supporting cells in hair cell regeneration studies. Sci Rep 2015; 5:11621. [PMID: 26108463 PMCID: PMC4479870 DOI: 10.1038/srep11621] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/01/2015] [Indexed: 01/06/2023] Open
Abstract
Studies of hair cell regeneration in the postnatal cochlea rely on fate mapping of supporting cells. Here we characterized a Sox2-CreER knock-in mouse line with two independent reporter mouse strains at neonatal and mature ages. Regardless of induction age, reporter expression was robust, with CreER activity being readily detectable in >85% of supporting cells within the organ of Corti. When induced at postnatal day (P) 28, Sox2-CreER activity was exclusive to supporting cells demonstrating its utility for fate mapping studies beyond this age. However, when induced at P1, Sox2-CreER activity was also detected in >50% of cochlear hair cells, suggesting that Sox2-CreER may not be useful to fate map a supporting cell origin of regenerated hair cells if induced at neonatal ages. Given that this model is currently in use by several investigators for fate mapping purposes, and may be adopted by others in the future, our finding that current protocols are effective for restricting CreER activity to supporting cells at mature but not neonatal ages is both significant and timely.
Collapse
|
217
|
Quantitative High-Resolution Cellular Map of the Organ of Corti. Cell Rep 2015; 11:1385-99. [PMID: 26027927 DOI: 10.1016/j.celrep.2015.04.062] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/14/2015] [Accepted: 04/28/2015] [Indexed: 11/20/2022] Open
Abstract
The organ of Corti harbors highly specialized sensory hair cells and surrounding supporting cells that are essential for the sense of hearing. Here, we report a single cell gene expression data analysis and visualization strategy that allows for the construction of a quantitative spatial map of the neonatal organ of Corti along its major anatomical axes. The map displays gene expression levels of 192 genes for all organ of Corti cell types ordered along the apex-to-base axis of the cochlea. Statistical interrogation of cell-type-specific gene expression patterns along the longitudinal gradient revealed features of apical supporting cells indicative of a propensity for proliferative hair cell regeneration. This includes reduced expression of Notch effectors, receptivity for canonical Wnt signaling, and prominent expression of early cell-cycle genes. Cochlear hair cells displayed expression gradients of genes indicative of cellular differentiation and the establishment of the tonotopic axis.
Collapse
|
218
|
He Y, Tang D, Cai C, Chai R, Li H. LSD1 is Required for Hair Cell Regeneration in Zebrafish. Mol Neurobiol 2015; 53:2421-34. [PMID: 26008620 DOI: 10.1007/s12035-015-9206-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/01/2015] [Indexed: 02/06/2023]
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A) plays an important role in complex cellular processes such as differentiation, proliferation, apoptosis, and cell cycle progression. It has recently been demonstrated that during development, downregulation of LSD1 inhibits cell proliferation, modulates the expression of cell cycle regulators, and reduces hair cell formation in the zebrafish lateral line, which suggests that LSD1-mediated epigenetic regulation plays a key role in the development of hair cells. However, the role of LSD1 in hair cell regeneration after hair cell loss remains poorly understood. Here, we demonstrate the effect of LSD1 on hair cell regeneration following neomycin-induced hair cell loss. We show that the LSD1 inhibitor trans-2-phenylcyclopropylamine (2-PCPA) significantly decreases the regeneration of hair cells in zebrafish after neomycin damage. In addition, immunofluorescent staining demonstrates that 2-PCPA administration suppresses supporting cell proliferation and alters cell cycle progression. Finally, in situ hybridization shows that 2-PCPA significantly downregulates the expression of genes related to Wnt/β-catenin and Fgf activation. Altogether, our data suggest that downregulation of LSD1 significantly decreases hair cell regeneration after neomycin-induced hair cell loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus, LSD1 plays a critical role in hair cell regeneration and might represent a novel biomarker and potential therapeutic approach for the treatment of hearing loss.
Collapse
Affiliation(s)
- Yingzi He
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, People's Republic of China
| | - Dongmei Tang
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, People's Republic of China
| | - Chengfu Cai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu, 210096, People's Republic of China
| | - Huawei Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, People's Republic of China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China. .,Institute of Stem Cell and Regeneration Medicine, Institute of Biomedical Science, Fudan University, Shanghai, People's Republic of China. .,Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
219
|
Zhang Y, Chen Y, Ni W, Guo L, Lu X, Liu L, Li W, Sun S, Wang L, Li H. Dynamic expression of Lgr6 in the developing and mature mouse cochlea. Front Cell Neurosci 2015; 9:165. [PMID: 26029045 PMCID: PMC4428082 DOI: 10.3389/fncel.2015.00165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/14/2015] [Indexed: 11/13/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays important roles in mammalian inner ear development. Lgr5, one of the downstream target genes of the Wnt/β-catenin signaling pathway, has been reported to be a marker for inner ear hair cell progenitors. Lgr6 shares approximately 50% sequence homology with Lgr5 and has been identified as a stem cell marker in several organs. However, the detailed expression profiles of Lgr6 have not yet been investigated in the mouse inner ear. Here, we first used Lgr6-EGFP-Ires-CreERT2 mice to examine the spatiotemporal expression of Lgr6 protein in the cochlear duct during embryonic and postnatal development. Lgr6-EGFP was first observed in one row of prosensory cells in the middle and basal turn at embryonic day 15.5 (E15.5). From E18.5 to postnatal day 3 (P3), the expression of Lgr6-EGFP was restricted to the inner pillar cells (IPCs). From P7 to P15, the Lgr6-EGFP expression level gradually decreased in the IPCs and gradually increased in the inner border cells (IBCs). At P20, Lgr6-EGFP was only expressed in the IBCs, and by P30 Lgr6-EGFP expression had completely disappeared. Next, we demonstrated that Wnt/β-catenin signaling is required to maintain the Lgr6-EGFP expression in vitro. Finally, we demonstrated that the Lgr6-EGFP-positive cells isolated by flow cytometry could differentiate into myosin 7a-positive hair cells after 10 days in-culture, and this suggests that the Lgr6-positive cells might serve as the hair cell progenitor cells in the cochlea.
Collapse
Affiliation(s)
- Yanping Zhang
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Institutes of Biomedical Sciences, Fudan University Shanghai, China
| | - Yan Chen
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Wenli Ni
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Luo Guo
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Xiaoling Lu
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Liman Liu
- Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Wen Li
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Shan Sun
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Lei Wang
- Institutes of Biomedical Sciences, Fudan University Shanghai, China
| | - Huawei Li
- Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| |
Collapse
|
220
|
Kaur T, Hirose K, Rubel EW, Warchol ME. Macrophage recruitment and epithelial repair following hair cell injury in the mouse utricle. Front Cell Neurosci 2015; 9:150. [PMID: 25954156 PMCID: PMC4406144 DOI: 10.3389/fncel.2015.00150] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
Abstract
The sensory organs of the inner ear possess resident populations of macrophages, but the function of those cells is poorly understood. In many tissues, macrophages participate in the removal of cellular debris after injury and can also promote tissue repair. The present study examined injury-evoked macrophage activity in the mouse utricle. Experiments used transgenic mice in which the gene for the human diphtheria toxin receptor (huDTR) was inserted under regulation of the Pou4f3 promoter. Hair cells in such mice can be selectively lesioned by systemic treatment with diphtheria toxin (DT). In order to visualize macrophages, Pou4f3-huDTR mice were crossed with a second transgenic line, in which one or both copies of the gene for the fractalkine receptor CX3CR1 were replaced with a gene for GFP. Such mice expressed GFP in all macrophages, and mice that were CX3CR1(GFP/GFP) lacked the necessary receptor for fractalkine signaling. Treatment with DT resulted in the death of ∼70% of utricular hair cells within 7 days, which was accompanied by increased numbers of macrophages within the utricular sensory epithelium. Many of these macrophages appeared to be actively engulfing hair cell debris, indicating that macrophages participate in the process of 'corpse removal' in the mammalian vestibular organs. However, we observed no apparent differences in injury-evoked macrophage numbers in the utricles of CX3CR1(+/GFP) mice vs. CX3CR1(GFP/GFP) mice, suggesting that fractalkine signaling is not necessary for macrophage recruitment in these sensory organs. Finally, we found that repair of sensory epithelia at short times after DT-induced hair cell lesions was mediated by relatively thin cables of F-actin. After 56 days recovery, however, all cell-cell junctions were characterized by very thick actin cables.
Collapse
Affiliation(s)
- Tejbeer Kaur
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO USA
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO USA
| | - Edwin W Rubel
- The Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine Seattle, WA, USA
| | - Mark E Warchol
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
221
|
Walters BJ, Zuo J. A Sox10(rtTA/+) Mouse Line Allows for Inducible Gene Expression in the Auditory and Balance Organs of the Inner Ear. J Assoc Res Otolaryngol 2015; 16:331-45. [PMID: 25895579 DOI: 10.1007/s10162-015-0517-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/02/2015] [Indexed: 11/25/2022] Open
Abstract
Genetic mouse models provide invaluable tools for discerning gene function in vivo. Tetracycline-inducible systems (Tet-On/Off) provide temporal and cell-type specific control of gene expression, offering an alternative or even complementary approach to existing Cre/LoxP systems. Here we characterized a Sox10(rtTA/+) knock-in mouse line which demonstrates inducible reverse tetracycline trans-activator (rtTA) activity and Tet-On transgene expression in the inner ear following induction with the tetracycline derivative doxycycline (Dox). These Sox10(rtTA/+) mice do not exhibit any readily observable developmental or hearing phenotypes, and actively drive Tet-On transgene expression in Sox10 expressing cells in the inner ear. Sox10(rtTA/+) activity was revealed by multiple Tet-On reporters to be nearly ubiquitous throughout the membranous labyrinth of the developing inner ear, and notably absent from hair cells, tympanic border cells, and ganglion neurons following postnatal Dox inductions. Interestingly, Dox-induced Sox10(rtTA/+) activity declined with induction age, where Tet-On reporters became uninducible in adult cochlear epithelium. Co-administration of the loop diuretic furosemide was able to rescue Dox-induced reporter expression, though this method also caused significant cochlear hair cell loss. Surprisingly, Sox10(rtTA/+) driven reporter expression in the cochlea persists for at least 54 days after cessation of neonatal induction, presumably due to the persistence of Dox within inner ear tissues. These findings highlight the utility of the Sox10(rtTA/+) mouse line as a powerful tool for functional genetic studies of the auditory and balance organs in vivo, but also reveal some important considerations that must be adequately controlled for in future studies that rely upon Tet-On/Off systems.
Collapse
Affiliation(s)
- Bradley J Walters
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA,
| | | |
Collapse
|
222
|
Mellott AJ, Devarajan K, Shinogle HE, Moore DS, Talata Z, Laurence JS, Forrest ML, Noji S, Tanaka E, Staecker H, Detamore MS. Nonviral Reprogramming of Human Wharton's Jelly Cells Reveals Differences Between ATOH1 Homologues. Tissue Eng Part A 2015; 21:1795-809. [PMID: 25760435 DOI: 10.1089/ten.tea.2014.0340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription factor atonal homolog 1 (ATOH1) has multiple homologues that are functionally conserved across species and is responsible for the generation of sensory hair cells. To evaluate potential functional differences between homologues, human and mouse ATOH1 (HATH1 and MATH-1, respectively) were nonvirally delivered to human Wharton's jelly cells (hWJCs) for the first time. Delivery of HATH1 to hWJCs demonstrated superior expression of inner ear hair cell markers and characteristics than delivery of MATH-1. Inhibition of HES1 and HES5 signaling further increased the atonal effect. Transfection of hWJCs with HATH1 DNA, HES1 siRNA, and HES5 siRNA displayed positive identification of key hair cell and support cell markers found in the cochlea, as well as a variety of cell shapes, sizes, and features not native to hair cells, suggesting the need for further examination of other cell types induced by HATH1 expression. In the first side-by-side evaluation of HATH1 and MATH-1 in human cells, substantial differences were observed, suggesting that the two atonal homologues may not be interchangeable in human cells, and artificial expression of HATH1 in hWJCs requires further study. In the future, this line of research may lead to engineered systems that would allow for evaluation of drug ototoxicity or potentially even direct therapeutic use.
Collapse
Affiliation(s)
- Adam J Mellott
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas
| | | | - Heather E Shinogle
- 3Microscopy and Analytical Imaging Lab, University of Kansas, Lawrence, Kansas
| | - David S Moore
- 3Microscopy and Analytical Imaging Lab, University of Kansas, Lawrence, Kansas
| | - Zsolt Talata
- 4Department of Mathematics, University of Kansas, Lawrence, Kansas
| | - Jennifer S Laurence
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,5Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas
| | - M Laird Forrest
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,5Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas
| | - Sumihare Noji
- 6Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Eiji Tanaka
- 7Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Hinrich Staecker
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,8Department of Otolaryngology, Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael S Detamore
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,9Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas
| |
Collapse
|
223
|
Wang T, Chai R, Kim GS, Pham N, Jansson L, Nguyen DH, Kuo B, May L, Zuo J, Cunningham LL, Cheng AG. Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle. Nat Commun 2015; 6:6613. [PMID: 25849379 PMCID: PMC4391285 DOI: 10.1038/ncomms7613] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/11/2015] [Indexed: 01/10/2023] Open
Abstract
Recruitment of endogenous progenitors is critical during tissue repair. The inner ear utricle requires mechanosensory hair cells (HCs) to detect linear acceleration. After damage, non-mammalian utricles regenerate HCs via both proliferation and direct transdifferentiation. In adult mammals, limited transdifferentiation from unidentified progenitors occurs to regenerate extrastriolar Type II HCs. Here we show that HC damage in neonatal mouse utricle activates the Wnt target gene Lgr5 in striolar supporting cells. Lineage tracing and time-lapse microscopy reveal that Lgr5+ cells transdifferentiate into HC-like cells in vitro. In contrast to adults, HC ablation in neonatal utricles in vivo recruits Lgr5+ cells to regenerate striolar HCs through mitotic and transdifferentiation pathways. Both Type I and II HCs are regenerated, and regenerated HCs display stereocilia and synapses. Lastly, stabilized ß-catenin in Lgr5+ cells enhances mitotic activity and HC regeneration. Thus Lgr5 marks Wnt-regulated, damage-activated HC progenitors and may help uncover factors driving mammalian HC regeneration.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Renjie Chai
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Grace S. Kim
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nicole Pham
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lina Jansson
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Duc-Huy Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bryan Kuo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38103, USA
| | - Lindsey May
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38103, USA
| | - Lisa L. Cunningham
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Corresponding author: Alan G. Cheng, M.D., 801 Welch Road, Department of Otolaryngology-HNS, Stanford, CA 94305, Phone: (650) 725-6500, Fax: (650) 721-2163,
| |
Collapse
|
224
|
Lin J, Zhang X, Wu F, Lin W. Hair cell damage recruited Lgr5-expressing cells are hair cell progenitors in neonatal mouse utricle. Front Cell Neurosci 2015; 9:113. [PMID: 25883551 PMCID: PMC4381628 DOI: 10.3389/fncel.2015.00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 01/08/2023] Open
Abstract
Damage-activated stem/progenitor cells play important roles in regenerating lost cells and in tissue repair. Previous studies reported that the mouse utricle has limited hair cell regeneration ability after hair cell ablation. However, the potential progenitor cell population regenerating new hair cells remains undiscovered. In this study, we first found that Lgr5, a Wnt target gene that is not usually expressed in the neonatal mouse utricle, can be activated by 24 h neomycin treatment in a sub-population of supporting cells in the striolar region of the neonatal mouse utricle. Lineage tracing demonstrated that these Lgr5-positive supporting cells could regenerate new hair cells in explant culture. We isolated the damage-activated Lgr5-positive cells with flow cytometry and found that these Lgr5-positive supporting cells could regenerate hair cells in vitro, and self-renew to form spheres, which maintained the capacity to differentiate into hair cells over seven generations of passages. Our results suggest that damage-activated Lgr5-positive supporting cells act as hair cell progenitors in the neonatal mouse utricle, which may help to uncover a potential route to regenerate hair cell in mammals.
Collapse
Affiliation(s)
- Jinchao Lin
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| | - Xiaodong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| | - Fengfang Wu
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| | - Weinian Lin
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| |
Collapse
|
225
|
pRb phosphorylation regulates the proliferation of supporting cells in gentamicin-damaged neonatal avian utricle. Neuroreport 2015; 25:1144-50. [PMID: 25100553 DOI: 10.1097/wnr.0000000000000241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ability of nonmammalian vertebrates to regenerate hair cells (HCs) after damage-induced HC loss has stimulated and inspired research in the field of HC regeneration. The protein pRb encoded by retinoblastoma gene Rb1 forces sensory progenitor cells to exit cell cycle and maintain differentiated HCs and supporting cells (SCs) in a quiescent state. pRb function is regulated by phosphorylation through the MEK/ERK or the pRb/Raf-1 signaling pathway. In our previous study, we have shown that pRb phosphorylation is crucial for progenitor cell proliferation and survival during the early embryonic stage of avian otocyst sensory epithelium development. However, in damaged avian utricle, the role of pRb in regulating the cell cycling of SCs or HCs regeneration still remains unclear. To further elucidate the function of pRb phosphorylation on SCs re-entering the cell cycle triggered by gentamycin-induced HCs damage, we isolated neonatal chicken utricles and treated them with the MEK inhibitor U0126 or the pRb/Raf-1 inhibitor RRD-251, respectively in vitro. We found that after gentamycin-induced HCs damage, pRb phosphorylation is important for the quiescent SCs re-entering the cell cycle in the neonatal chicken utricle. In addition, the proliferation of SCs decreased in a dose-dependent manner in response to both U0126 and RRD-251, which indicates that both the MEK/ERK and the pRb/Raf-1 signaling pathway play important roles in pRb phosphorylation in damaged neonatal chicken utricle. Together, these findings on the function of pRb in damaged neonatal chicken utricle improve our understanding of the regulation of the cell cycle of SCs after HCs loss and may shed light on the mammalian HC regeneration from SCs in damaged organs.
Collapse
|
226
|
Song Y, Xia A, Lee HY, Wang R, Ricci AJ, Oghalai JS. Activity-dependent regulation of prestin expression in mouse outer hair cells. J Neurophysiol 2015; 113:3531-42. [PMID: 25810486 DOI: 10.1152/jn.00869.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/19/2015] [Indexed: 12/11/2022] Open
Abstract
Prestin is a membrane protein necessary for outer hair cell (OHC) electromotility and normal hearing. Its regulatory mechanisms are unknown. Several mouse models of hearing loss demonstrate increased prestin, inspiring us to investigate how hearing loss might feedback onto OHCs. To test whether centrally mediated feedback regulates prestin, we developed a novel model of inner hair cell loss. Injection of diphtheria toxin (DT) into adult CBA mice produced significant loss of inner hair cells without affecting OHCs. Thus, DT-injected mice were deaf because they had no afferent auditory input despite OHCs continuing to receive normal auditory mechanical stimulation and having normal function. Patch-clamp experiments demonstrated no change in OHC prestin, indicating that loss of information transfer centrally did not alter prestin expression. To test whether local mechanical feedback regulates prestin, we used Tecta(C1509G) mice, where the tectorial membrane is malformed and only some OHCs are stimulated. OHCs connected to the tectorial membrane had normal prestin levels, whereas OHCs not connected to the tectorial membrane had elevated prestin levels, supporting an activity-dependent model. To test whether the endocochlear potential was necessary for prestin regulation, we studied Tecta(C1509G) mice at different developmental ages. OHCs not connected to the tectorial membrane had lower than normal prestin levels before the onset of the endocochlear potential and higher than normal prestin levels after the onset of the endocochlear potential. Taken together, these data indicate that OHC prestin levels are regulated through local feedback that requires mechanoelectrical transduction currents. This adaptation may serve to compensate for variations in the local mechanical environment.
Collapse
Affiliation(s)
- Yohan Song
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Anping Xia
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Hee Yoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Rosalie Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - John S Oghalai
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| |
Collapse
|
227
|
Jansson L, Kim GS, Cheng AG. Making sense of Wnt signaling-linking hair cell regeneration to development. Front Cell Neurosci 2015; 9:66. [PMID: 25814927 PMCID: PMC4356074 DOI: 10.3389/fncel.2015.00066] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/12/2015] [Indexed: 01/10/2023] Open
Abstract
Wnt signaling is a highly conserved pathway crucial for development and homeostasis of multicellular organisms. Secreted Wnt ligands bind Frizzled receptors to regulate diverse processes such as axis patterning, cell division, and cell fate specification. They also serve to govern self-renewal of somatic stem cells in several adult tissues. The complexity of the pathway can be attributed to the myriad of Wnt and Frizzled combinations as well as its diverse context-dependent functions. In the developing mouse inner ear, Wnt signaling plays diverse roles, including specification of the otic placode and patterning of the otic vesicle. At later stages, its activity governs sensory hair cell specification, cell cycle regulation, and hair cell orientation. In regenerating sensory organs from non-mammalian species, Wnt signaling can also regulate the extent of proliferative hair cell regeneration. This review describes the current knowledge of the roles of Wnt signaling and Wnt-responsive cells in hair cell development and regeneration. We also discuss possible future directions and the potential application and limitation of Wnt signaling in augmenting hair cell regeneration.
Collapse
Affiliation(s)
- Lina Jansson
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| | - Grace S Kim
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| |
Collapse
|
228
|
Chow CL, Guo W, Trivedi P, Zhao X, Gubbels SP. Characterization of a unique cell population marked by transgene expression in the adult cochlea of nestin-CreER(T2)/tdTomato-reporter mice. J Comp Neurol 2015; 523:1474-87. [PMID: 25611038 DOI: 10.1002/cne.23747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/18/2014] [Accepted: 01/13/2015] [Indexed: 02/06/2023]
Abstract
Hair cells in the adult mammalian cochlea cannot spontaneously regenerate after damage, resulting in the permanency of hearing loss. Stem cells have been found to be present in the cochlea of young rodents; however, there has been little evidence for their existence into adulthood. We used nestin-CreER(T2)/tdTomato-reporter mice to trace the lineage of putative nestin-expressing cells and their progeny in the cochleae of adult mice. Nestin, an intermediate filament found in neural progenitor cells during early development and adulthood, is regarded as a multipotent and neural stem cell marker. Other investigators have reported its presence in postnatal and young adult rodents; however, there are discrepancies among these reports. Using lineage tracing, we documented a robust population of tdTomato-expressing cells and evaluated these cells at a series of adult time points. Upon activation of the nestin promoter, tdTomato was observed just below and medial to the inner hair cell layer. All cells colocalized with the stem cell and cochlear-supporting-cell marker Sox2 as well as the supporting cell and Schwann cell marker Sox10; however, they did not colocalize with the Schwann cell marker Krox20, spiral ganglion marker NF200, nor glial fibrillary acidic acid (GFAP)-expressing supporting cell marker. The cellular identity of this unique population of tdTomato-expressing cells in the adult cochlea of nestin-CreER(T2)/tdTomato mice remains unclear; however, these cells may represent a type of supporting cell on the neural aspect of the inner hair cell layer.
Collapse
Affiliation(s)
- Cynthia L Chow
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin, 53706.,Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Weixiang Guo
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Parul Trivedi
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705.,Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Samuel P Gubbels
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705.,Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, 53792
| |
Collapse
|
229
|
Taurine Enhances Excitability of Mouse Cochlear Neural Stem Cells by Selectively Promoting Differentiation of Glutamatergic Neurons Over GABAergic Neurons. Neurochem Res 2015; 40:924-31. [DOI: 10.1007/s11064-015-1546-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/14/2015] [Accepted: 02/19/2015] [Indexed: 12/31/2022]
|
230
|
Richardson RT, Atkinson PJ. Atoh1 gene therapy in the cochlea for hair cell regeneration. Expert Opin Biol Ther 2015; 15:417-30. [DOI: 10.1517/14712598.2015.1009889] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
231
|
Auditory hair cell-specific deletion of p27Kip1 in postnatal mice promotes cell-autonomous generation of new hair cells and normal hearing. J Neurosci 2015; 34:15751-63. [PMID: 25411503 DOI: 10.1523/jneurosci.3200-14.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hearing in mammals relies upon the transduction of sound by hair cells (HCs) in the organ of Corti within the cochlea of the inner ear. Sensorineural hearing loss is a widespread and permanent disability due largely to a lack of HC regeneration in mammals. Recent studies suggest that targeting the retinoblastoma (Rb)/E2F pathway can elicit proliferation of auditory HCs. However, previous attempts to induce HC proliferation in this manner have resulted in abnormal cochlear morphology, HC death, and hearing loss. Here we show that cochlear HCs readily proliferate and survive following neonatal, HC-specific, conditional knock-out of p27(Kip1) (p27CKO), a tumor suppressor upstream of Rb. Indeed, HC-specific p27CKO results in proliferation of these cells without the upregulation of the supporting cell or progenitor cell proteins, Prox1 or Sox2, suggesting that they remain HCs. Furthermore, p27CKO leads to a significant addition of postnatally derived HCs that express characteristic synaptic and stereociliary markers and survive to adulthood, although a portion of the newly derived inner HCs exhibit cytocauds and lack VGlut3 expression. Despite this, p27CKO mice exhibit normal hearing as measured by evoked auditory brainstem responses, which suggests that the newly generated HCs may contribute to, or at least do not greatly detract from, function. These results show that p27(Kip1) actively maintains HC quiescence in postnatal mice, and suggest that inhibition of p27(Kip1) in residual HCs represents a potential strategy for cell-autonomous auditory HC regeneration.
Collapse
|
232
|
Fujioka M, Okano H, Edge ASB. Manipulating cell fate in the cochlea: a feasible therapy for hearing loss. Trends Neurosci 2015; 38:139-44. [PMID: 25593106 DOI: 10.1016/j.tins.2014.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/23/2014] [Accepted: 12/02/2014] [Indexed: 02/06/2023]
Abstract
Mammalian auditory hair cells do not spontaneously regenerate, unlike hair cells in lower vertebrates, including fish and birds. In mammals, hearing loss due to the loss of hair cells is permanent and intractable. Recent studies in the mouse have demonstrated spontaneous hair cell regeneration during a short postnatal period, but this regenerative capacity is lost in the adult cochlea. Reduced regeneration coincides with a transition that results in a decreased pool of progenitor cells in the cochlear sensory epithelium. Here, we review the signaling cascades involved in hair cell formation and morphogenesis of the organ of Corti in developing mammals, the changing status of progenitor cells in the cochlea, and the regeneration of auditory hair cells in adult mammals.
Collapse
Affiliation(s)
- Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Albert S B Edge
- Eaton-Peabody Laboratory, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
233
|
Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proc Natl Acad Sci U S A 2014; 112:166-71. [PMID: 25535395 DOI: 10.1073/pnas.1415901112] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The activation of cochlear progenitor cells is a promising approach for hair cell (HC) regeneration and hearing recovery. The mechanisms underlying the initiation of proliferation of postnatal cochlear progenitor cells and their transdifferentiation to HCs remain to be determined. We show that Notch inhibition initiates proliferation of supporting cells (SCs) and mitotic regeneration of HCs in neonatal mouse cochlea in vivo and in vitro. Through lineage tracing, we identify that a majority of the proliferating SCs and mitotic-generated HCs induced by Notch inhibition are derived from the Wnt-responsive leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5(+)) progenitor cells. We demonstrate that Notch inhibition removes the brakes on the canonical Wnt signaling and promotes Lgr5(+) progenitor cells to mitotically generate new HCs. Our study reveals a new function of Notch signaling in limiting proliferation and regeneration potential of postnatal cochlear progenitor cells, and provides a new route to regenerate HCs from progenitor cells by interrupting the interaction between the Notch and Wnt pathways.
Collapse
|
234
|
Fritzsch B, Jahan I, Pan N, Elliott KL. Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system. Cell Tissue Res 2014; 359:295-313. [PMID: 25416504 DOI: 10.1007/s00441-014-2043-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022]
Abstract
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, CLAS, 143 BB, Iowa City, IA, 52242, USA,
| | | | | | | |
Collapse
|
235
|
He Y, Cai C, Tang D, Sun S, Li H. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts. Front Cell Neurosci 2014; 8:382. [PMID: 25431550 PMCID: PMC4230041 DOI: 10.3389/fncel.2014.00382] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/27/2014] [Indexed: 11/13/2022] Open
Abstract
In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, non-mammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well-suited for studying hair cell development and regeneration. Histone deacetylase (HDAC) activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU) incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA) or valproic acid (VPA) increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21(Cip1) and p27(Kip1) expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line.
Collapse
Affiliation(s)
- Yingzi He
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China
| | - Chengfu Cai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiamen UniversityXiamen, Fujian, China
| | - Dongmei Tang
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China
| | - Shan Sun
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China
| | - Huawei Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China
- State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China
- Institute of Stem Cell and Regeneration Medicine, Institutions of Biomedical Science, Fudan UniversityShanghai, China
- Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
236
|
Spontaneous regeneration of cochlear supporting cells after neonatal ablation ensures hearing in the adult mouse. Proc Natl Acad Sci U S A 2014; 111:16919-24. [PMID: 25385613 DOI: 10.1073/pnas.1408064111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Supporting cells in the cochlea play critical roles in the development, maintenance, and function of sensory hair cells and auditory neurons. Although the loss of hair cells or auditory neurons results in sensorineural hearing loss, the consequence of supporting cell loss on auditory function is largely unknown. In this study, we specifically ablated inner border cells (IBCs) and inner phalangeal cells (IPhCs), the two types of supporting cells surrounding inner hair cells (IHCs) in mice in vivo. We demonstrate that the organ of Corti has the intrinsic capacity to replenish IBCs/IPhCs effectively during early postnatal development. Repopulation depends on the presence of hair cells and cells within the greater epithelial ridge and is independent of cell proliferation. This plastic response in the neonatal cochlea preserves neuronal survival, afferent innervation, and hearing sensitivity in adult mice. In contrast, the capacity for IBC/IPhC regeneration is lost in the mature organ of Corti, and consequently IHC survival and hearing sensitivity are impaired significantly, demonstrating that there is a critical period for the regeneration of cochlear supporting cells. Our findings indicate that the quiescent neonatal organ of Corti can replenish specific supporting cells completely after loss in vivo to guarantee mature hearing function.
Collapse
|
237
|
Cai T, Groves AK. The Role of Atonal Factors in Mechanosensory Cell Specification and Function. Mol Neurobiol 2014; 52:1315-1329. [PMID: 25339580 DOI: 10.1007/s12035-014-8925-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Atonal genes are basic helix-loop-helix transcription factors that were first identified as regulating the formation of mechanoreceptors and photoreceptors in Drosophila. Isolation of vertebrate homologs of atonal genes has shown these transcription factors to play diverse roles in the development of neurons and their progenitors, gut epithelial cells, and mechanosensory cells in the inner ear and skin. In this article, we review the molecular function and regulation of atonal genes and their targets, with particular emphasis on the function of Atoh1 in the development, survival, and function of hair cells of the inner ear. We discuss cell-extrinsic signals that induce Atoh1 expression and the transcriptional networks that regulate its expression during development. Finally, we discuss recent work showing how identification of Atoh1 target genes in the cerebellum, spinal cord, and gut can be used to propose candidate Atoh1 targets in tissues such as the inner ear where cell numbers and biochemical material are limiting.
Collapse
Affiliation(s)
- Tiantian Cai
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
238
|
Lush ME, Piotrowski T. Sensory hair cell regeneration in the zebrafish lateral line. Dev Dyn 2014; 243:1187-202. [PMID: 25045019 DOI: 10.1002/dvdy.24167] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. RESULTS Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. CONCLUSIONS Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish.
Collapse
Affiliation(s)
- Mark E Lush
- Stowers Institute for Medical Research, Kansas City, Missouri
| | | |
Collapse
|
239
|
Abstract
Hearing loss is the most common sensory deficit in humans, with some estimates suggesting up to 300 million affected individuals worldwide. Both environmental and genetic factors contribute to hearing loss and can cause death of sensory cells and neurons. Because these cells do not regenerate, the damage tends to accumulate, leading to profound deafness. Several biological strategies to restore auditory function are currently under investigation. Owing to the success of cochlear implants, which offer partial recovery of auditory function for some profoundly deaf patients, potential biological therapies must extend hearing restoration to include greater auditory acuity and larger patient populations. Here, we review the latest gene, stem-cell, and molecular strategies for restoring auditory function in animal models and the prospects for translating these approaches into viable clinical therapies.
Collapse
Affiliation(s)
- Gwenaëlle S G Géléoc
- Department of Otolaryngology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|