201
|
Ju ZH, Li QL, Huang JM, Hou MH, Li RL, Li JB, Zhong JF, Wang CF. Three novel SNPs of the bovine Tf gene in Chinese native cattle and their associations with milk production traits. GENETICS AND MOLECULAR RESEARCH 2011; 10:340-52. [PMID: 21365550 DOI: 10.4238/vol10-1gmr1038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Transferrin (Tf) is a β-globulin protein that transports iron ions in mammalian cells. It contributes to innate immunity to microbial pathogens, primarily by limiting microbial access to iron. Thus, polymorphisms present in bovine Tf could potentially underlie inherited differences in mastitis resistance and milk production traits. We detected three novel single-nucleotide polymorphisms of the Tf gene in Chinese native cattle by screening for genetic variation of Tf in 751 individuals of three Chinese cattle breeds, namely China Holstein, Luxi Yellow and Bohai Black, using PCR-RFLP and DNA sequencing techniques. The three new SNPs, g.-1748G>A ss250608649, g.13942T>C ss250608650, and g.14037A>G ss250608651, had allele frequencies of 85.9, 86.3 and 92.5%, 64.5, 73.3 and 65.0%, and 67.6, 73.7 and 60.0%, respectively. SNP g.-1748G>A was located in the 5' flanking region of Tf. SNP g.14037A>G was located in intron 8 of Tf. SNP g.13942T>C, located in exon 8 of Tf, was a synonymous mutation (TTA > CTA), encoding a leucine (326 aa) in the Tf protein. Associations of the Tf SNPs with milk traits were also analyzed. Significant (P < 0.05) relationships among the Tf polymorphisms, somatic cell scores (SCS), and milk productive traits were observed. Cows with genotypes TT (g.13942T>C), GG (g.-1748G>A) and AG (g.14037A>G) had a lower SCS and higher protein levels and 305-day milk yield. Nineteen combinations of different haplotypes from the three SNPs were identified in Chinese Holstein cattle. The haplotype combination ATA/GCA, GCA/GCA and GCG/ GTA was dominant in cows with a lower SCS, a higher protein level and a higher 305-day milk yield, respectively. Moreover, the gene expression level of Tf was higher in mastitis-affected mammary tissues than in normal mammary tissues. These results suggest that the Tf gene affects milk production, as well as mastitis-resistance traits, in Chinese Holsteins.
Collapse
Affiliation(s)
- Z H Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Kim BS, Kim NK, Lee SH, Cho YM, Heo KN, Park EW, Yang BK, Yoon DH. Association Study Between the Polymorphisms of Exostosin-1 Gene and Economic Traits in Hanwoo. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2011. [DOI: 10.5187/jast.2011.53.1.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
203
|
He X, Yan YL, DeLaurier A, Postlethwait JH. Observation of miRNA gene expression in zebrafish embryos by in situ hybridization to microRNA primary transcripts. Zebrafish 2011; 8:1-8. [PMID: 21288128 DOI: 10.1089/zeb.2010.0680] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) add a previously unexpected layer to the post-transcriptional regulation of protein production. Although locked nucleic acids (LNAs) reveal the distribution of mature miRNAs by in situ hybridization (ISH) experiments in zebrafish and other organisms, high cost has restricted their use. Further, LNA probes designed to recognize mature miRNAs do not distinguish expression patterns of two miRNA genes that produce the same mature miRNA sequence. Riboprobes are substantially less expensive than LNAs, but have not been used to detect miRNA gene expression because they do not bind with high affinity to the short, 22-nucleotide-long mature miRNAs. To solve these problems, we capitalized on the fact that miRNAs are initially transcribed into long primary transcripts (pri-mRNAs). We show here that conventional digoxigenin-labeled riboprobes can bind to primary miRNA transcripts in zebrafish embryos. We tested intergenic and intronic miRNAs (miR-10d, miR-21, miR-27a, miR-126a, miR-126b, miR-138, miR-140, miR-144, miR-196a1, miR-196a2, miR-196a2b [miR-196c], miR-196b, miR-196b1b [miR-196d], miR-199, miR-214, miR-200, and miR-222) in whole mounts and some of these in histological sections. Results showed that pri-miRNA ISH provides an attractive and cost-effective tool to study miRNA expression by ISH. We use this method to show that miR-126a and miR-126b are transcribed in the caudal vasculature in the pattern of their neighboring gene ci116 or host gene egfl7, respectively, and that the chondrocyte miRNA mir-140 lies downstream of Sox9 in development of the craniofacial skeleton.
Collapse
Affiliation(s)
- Xinjun He
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | | | | | | |
Collapse
|
204
|
Wang C, Liu M, Li Q, Ju Z, Huang J, Li J, Wang H, Zhong J. Three novel single-nucleotide polymorphisms of MBL1 gene in Chinese native cattle and their associations with milk performance traits. Vet Immunol Immunopathol 2011; 139:229-36. [DOI: 10.1016/j.vetimm.2010.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 10/20/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
|
205
|
Rose AB, Emami S, Bradnam K, Korf I. Evidence for a DNA-Based Mechanism of Intron-Mediated Enhancement. FRONTIERS IN PLANT SCIENCE 2011; 2:98. [PMID: 22645558 PMCID: PMC3355757 DOI: 10.3389/fpls.2011.00098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/30/2011] [Indexed: 05/07/2023]
Abstract
Many introns significantly increase gene expression through a process termed intron-mediated enhancement (IME). Introns exist in the transcribed DNA and the nascent RNA, and could affect expression from either location. To determine which is more relevant to IME, hybrid introns were constructed that contain sequences from stimulating Arabidopsis thaliana introns either in their normal orientation or as the reverse complement. Both ends of each intron are from the non-stimulatory COR15a intron in their normal orientation to allow splicing. The inversions create major alterations to the sequence of the transcribed RNA with relatively minor changes to the DNA structure. Introns containing portions of either the UBQ10 or ATPK1 intron increased expression to a similar degree regardless of orientation. Also, computational predictions of IME improve when both intron strands are considered. These findings are more consistent with models of IME that act at the level of DNA rather than RNA.
Collapse
Affiliation(s)
- Alan B. Rose
- Molecular and Cellular Biology, University of CaliforniaDavis, CA, USA
- *Correspondence: Alan B. Rose, Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA. e-mail:
| | - Shahram Emami
- Molecular and Cellular Biology, University of CaliforniaDavis, CA, USA
| | - Keith Bradnam
- Molecular and Cellular Biology, University of CaliforniaDavis, CA, USA
| | - Ian Korf
- Molecular and Cellular Biology, University of CaliforniaDavis, CA, USA
| |
Collapse
|
206
|
Madritsch C, Flicker S, Scheiblhofer S, Zafred D, Pavkov-Keller T, Thalhamer J, Keller W, Valenta R. Recombinant monoclonal human immunoglobulin E to investigate the allergenic activity of major grass pollen allergen Phl p 5. Clin Exp Allergy 2010; 41:270-80. [DOI: 10.1111/j.1365-2222.2010.03666.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
207
|
He Y, Wu Y, Lan Z, Liu Y, Zhang Y. Molecular analysis of the first intron in the bovine myostatin gene. Mol Biol Rep 2010; 38:4643-9. [PMID: 21125331 DOI: 10.1007/s11033-010-0598-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 11/22/2010] [Indexed: 02/02/2023]
Abstract
To study the mechanism of transcription and expression of the myostatin gene, we cloned and analyzed the sequence of the bovine myostatin gene promoter and first intron from Qinchuan and Red Angus cattle, then constructed eukaryotic expression vectors encoding the GFP vector by replacing the CMV promoter with the bovine myostatin promoter using PCR method, thereby obtaining an expression vector coding GFP report gene with first intron (identified as pEGFP-MSTNPro-intron1). By transfecting C2C12 cells with the vectors, we then compared the effect on GFP gene expression of the promoter and normal first intron of Qinchuan and Red Angus cattle with that from the promoter and a Qinchuan allele with a 16 base pair insertion. After 48 h incubation, fluorescent indices (FIs), which indicate the expression rate and intensity of gene GFP expression, were analyzed by flow cytometry (FCM). Results showed that Qinchuan sequence homology of promoter was 99% with Red Angus, that Qinchuan first intron sequence homology was 99.51% with Red Angus and that first intron homologies of Qinchuan and Red Angus were 99.08 and 99.02%, respectively, with Accession No.AF320998 in GenBank. Expression of the GFP gene did not differ significantly between preparations using the Qinchuan versus Red Angus promoter. Preparations with a construct that included the first intron had higher GFP gene expression in C2C12 cells than those whose construct lacked the first intron (P < 0.05 or P < 0.01). However, there was no significant difference (P > 0.05) in gene expression between normal first intron and 16 bp insertion first intron (+16 bp) preparations.
Collapse
Affiliation(s)
- Yulong He
- Key Laboratory of Animal Reproductive Endocrinology and Embryo Engineering, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | | | | | | | | |
Collapse
|
208
|
Zheng X, Ju Z, Wang J, Li Q, Huang J, Zhang A, Zhong J, Wang C. Single nucleotide polymorphisms, haplotypes and combined genotypes of LAP3 gene in bovine and their association with milk production traits. Mol Biol Rep 2010; 38:4053-61. [DOI: 10.1007/s11033-010-0524-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
|
209
|
Interactions Between Introns and Corresponding Protein Coding Sequences of Ribosomal Protein Genes in C. elegans*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2010.00186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
210
|
Wang Z, Wang G, Huang J, Li Q, Wang C, Zhong J. Novel SNPs in the ATP1B2 gene and their associations with milk yield, milk composition and heat-resistance traits in Chinese Holstein cows. Mol Biol Rep 2010; 38:1749-55. [PMID: 20842439 DOI: 10.1007/s11033-010-0289-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 09/02/2010] [Indexed: 11/30/2022]
Abstract
Genetic association analysis was applied to examine the effect of the Na(+)/K(+)-ATPase beta 2 subunit (ATP1B2) gene on rectal temperature, milk traits, K(+) levels and Na(+)/K(+)-ATPase (NKA) activity in the red blood cells of 1001 Chinese Holstein cows under normal and heat-stress conditions. We detected two novel single nucleotide polymorphisms, G2258A and C2833T, in the second and fourth introns, respectively, of ATP1B2. G2258A significantly affected milk fat content (P < 0.05) and 305-day milk yield (P < 0.01), but not milk protein content. C2833T significantly affected milk protein content (P < 0.01) and 305-day milk yield (P < 0.05), but not milk fat content. Calculated gene substitution effects suggested that A to G substitution in G2258A, and T to C substitution in C2833T, positively affected milk fat content, 305-day milk yield and somatic cell score, but negatively affected milk protein content. We also detected significant variation in milk fat content, milk protein content, 305-day milk yield and somatic cell scores (P < 0.05 or P < 0.01) among the nine ATP1B2 haplotypes. Under heat-stress, the C2833T polymorphism was significantly related to rectal temperature (P < 0.01), red blood cell K(+) levels, NKA activity and milk yield (P < 0.05). Cows with the TT genotype showed the desirable characteristics of low rectal temperature and red blood cell K(+), low decline rate in milk yield and red blood cell NKA activity. This study suggests that the ATP1B2 single nucleotide polymorphism C2833T is a genetic marker of heat-resistance traits in Chinese Holstein cows.
Collapse
Affiliation(s)
- Zeying Wang
- College of Animal Science and Technology, Nanjing Agricultural University, No 1 Weigang, Nanjing City, 210095 Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
211
|
Abstract
Hoxc13 belongs to the Abd-B class of Hox gene family, which participated in the hair follicle formation and hair growth regulation process. The structural protein of hair KP (keratin) and KAP (keratin-associated protein) expression is under regulation of Hoxc13, and then changes the characteristics of hair by regulating the composition of these two types of hair proteins and maintaining the normal morphology of hair follicle. In this review, we summarized that the relationship between the expression level of Hoxc13 and hair follicle development/hair growth and the mechanisim under the controling of Hoxc13 and relevant genes.
Collapse
|
212
|
Abstract
Nearly 97% of the human genome is composed of noncoding DNA,
which varies from one species to another. Changes in these
sequences often manifest themselves in clinical and circumstantial
malfunction. Numerous genes in these non-protein-coding regions
encode microRNAs, which are responsible for RNA-mediated
gene silencing through RNA interference (RNAi)-like pathways.
MicroRNAs (miRNAs), small single-stranded regulatory RNAs capable
of interfering with intracellular messenger RNAs (mRNAs) with
complete or partial complementarity, are useful for the design of
new therapies against cancer polymorphisms and viral mutations. Currently, many varieties
of miRNA are widely reported in plants, animals, and even
microbes. Intron-derived microRNA (Id-miRNA) is a new class of
miRNA derived from the processing of gene introns. The intronic
miRNA requires type-II RNA polymerases (Pol-II) and spliceosomal
components for their biogenesis. Several kinds of Id-miRNA have
been identified in C elegans, mouse, and human cells;
however, neither function nor application has been reported. Here,
we show for the first time that intron-derived miRNAs are able to
induce RNA interference in not only human and mouse cells, but in
also zebrafish, chicken embryos, and adult mice, demonstrating the
evolutionary preservation of intron-mediated gene silencing via
functional miRNA in cell and in vivo. These findings suggest an
intracellular miRNA-mediated gene regulatory system, fine-tuning
the degradation of protein-coding messenger RNAs.
Collapse
Affiliation(s)
- Shi-Lung Lin
- Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, BMT-403, 1333 San Pablo Street,
Los Angeles, CA 90033, USA
| | - Joseph D. Miller
- Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, BMT-403, 1333 San Pablo Street,
Los Angeles, CA 90033, USA
| | - Shao-Yao Ying
- Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, BMT-403, 1333 San Pablo Street,
Los Angeles, CA 90033, USA
- *Shao-Yao Ying:
| |
Collapse
|
213
|
Vectors and parameters that enhance the efficacy of RNAi-mediated gene disruption in transgenic Drosophila. Proc Natl Acad Sci U S A 2010; 107:11435-40. [PMID: 20534445 DOI: 10.1073/pnas.1006689107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whole-genome transgenic RNAi libraries permit systematic genetic screens in individual tissues of Drosophila. However, there is a high incidence of nonspecific phenotypes because of off-target effects. To minimize such effects, it is essential to obtain a deeper understanding of the specificity of action of RNAi. Here, in vivo assays are used to determine the minimum, contiguous nucleotide pairing required between an siRNA and a target mRNA to generate a phenotype. We observe that as few as 16 nucleotides of contiguous homology are sufficient to attenuate gene activity. This finding provides an explanation for the high incidence of off-target effects observed in RNAi-based genetic screens. Toward improving the efficacy of RNAi-induced phenotypes in vivo, we describe siRNA expression vectors that allow coexpression of one or more siRNAs with a fluorescent reporter gene in cultured cells or transgenic flies. This expression system makes use of the small intron from the ftz segmentation gene to provide efficient processing of synthetic siRNAs from a reporter transcript. These studies provide a foundation for the specific and effective use of gene silencing in transgenic Drosophila.
Collapse
|
214
|
Hitti E, Al-Yahya S, Al-Saif M, Mohideen P, Mahmoud L, Polyak SJ, Khabar KSA. A versatile ribosomal protein promoter-based reporter system for selective assessment of RNA stability and post-transcriptional control. RNA (NEW YORK, N.Y.) 2010; 16:1245-55. [PMID: 20418359 PMCID: PMC2874176 DOI: 10.1261/rna.2026310] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Assessment of post-transcriptional control relies on use of transcriptional inhibitors and is masked by copious and cryptic transcriptional induction. We screened several cellular promoters that are constitutively active yet noninducible to external stimuli. The ribosomal protein RPS30 promoter was chosen; its TATA signal and sp1 site location were optimized. The modified promoter (RPS30M) is selective to post-transcriptional effects of AU-rich elements (ARE) in the 3'UTR, while it is not transcriptionally responsive to a wide variety of agents including pro-inflammatory cytokines and RNA-binding proteins. Specific cis-acting elements can be appended to RPS30M by a cloning-free approach to allow coupled transcriptional/post-transcriptional assessment, as demonstrated with NF-kappaB and beta-catenin/wnt signaling experiments. Moreover, efficient tetracycline-regulated RPS30M was created for quantitative assessment of the half-lives of mRNAs containing AREs. The described approach provides enhanced versatility and suitability for selective post-transcriptional assessment with or without transcriptional induction.
Collapse
Affiliation(s)
- Edward Hitti
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia 11211
| | | | | | | | | | | | | |
Collapse
|
215
|
Akua T, Berezin I, Shaul O. The leader intron of AtMHX can elicit, in the absence of splicing, low-level intron-mediated enhancement that depends on the internal intron sequence. BMC PLANT BIOLOGY 2010; 10:93. [PMID: 20487561 PMCID: PMC3095359 DOI: 10.1186/1471-2229-10-93] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/20/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND Introns stimulate gene expression in a wide range of organisms by increasing the levels of mature mRNA, without affecting mRNA stability. Although introns sometimes function as transcriptional enhancers, they usually stimulate expression by a process termed intron-mediated enhancement (IME). The mechanism of IME is largely unknown. While splicing per se is not sufficient for IME, as evident from the fact that not all introns increase expression, it is not clear yet whether splicing of the enhancing introns is essential for enhancement. The leader intron (LI) of the Arabidopsis AtMHX gene was previously shown to substantially increase the expression of the AtMHX promoter. Here we investigated whether this LI acts as a transcriptional enhancer and whether its splicing is essential for IME. RESULTS Expression in transformed Arabidopsis plants of an AtMHX::GUS construct from which the LI was eliminated was similar to a construct that included only the minimal promoter fused to GUS. Yet, almost no expression was seen in constructs that included the LI in addition to the minimal promoter or the LI inserted in various locations in the promoter. While the LI enhanced 272-fold the expression of the weak AtMHX promoter, only a 3-fold enhancement was observed for the strong CaMV 35S promoter. In the context of the AtMHX promoter, an unspliceable version of the LI that had mutated 5' and 3' splice sites mediated a low-level (5-fold) enhancement. Eliminating the internal 320 nt of the 416 nt unspliceable intron resulted in loss of ability to mediate low-level enhancement. CONCLUSIONS Although AtMHX promoter shows almost no expression in the absence of its LI, this intron does not act as a transcriptional enhancer and is unable to support expression in the absence of the enhancer elements of the promoter. It is also shown that the same intron can have very different contributions to expression of different promoters. Our results also demonstrate that while splicing is essential for substantial IME, in the absence of splicing low-level enhancement can be obtained. Notably, it is shown that the internal intron sequence plays a significant role in mediating the low-level enhancement of unspliced introns.
Collapse
Affiliation(s)
- Tsofit Akua
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Irina Berezin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
216
|
Wen J, Brogna S. Splicing-dependent NMD does not require the EJC in Schizosaccharomyces pombe. EMBO J 2010; 29:1537-51. [PMID: 20360683 PMCID: PMC2876954 DOI: 10.1038/emboj.2010.48] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 03/04/2010] [Indexed: 12/04/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-linked process that destroys mRNAs with premature translation termination codons (PTCs). In mammalian cells, NMD is also linked to pre-mRNA splicing, usually PTCs trigger strong NMD only when positioned upstream of at least one intron. The exon junction complex (EJC) is believed to mediate the link between splicing and NMD in these systems. Here, we report that in Schizosaccharomyces pombe splicing also enhances NMD, but against the EJC model prediction, an intron stimulated NMD regardless of whether it is positioned upstream or downstream of the PTC and EJC components are not required. Still the effect of splicing seems to be direct-we have found that the important NMD determinant is the proximity of an intron to the PTC, not just the occurrence of splicing. On the basis of these results, we propose a new model to explain how splicing could affect NMD.
Collapse
Affiliation(s)
- Jikai Wen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
217
|
Liu W, Wang J, Li Q, Ju Z, Huang J, Wang H, Liu S, Li J, Zhong J, Wang C. Correlation analysis between three novel SNPs of the Src gene in bovine and milk production traits. Mol Biol Rep 2010; 37:3771-7. [PMID: 20213510 DOI: 10.1007/s11033-010-0031-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 02/24/2010] [Indexed: 11/25/2022]
Affiliation(s)
- Wenyan Liu
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, No.159-1 industry north road, Jinan, Shandong province, 250100, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Kaposi's sarcoma-associated herpesvirus ORF57 protein binds and protects a nuclear noncoding RNA from cellular RNA decay pathways. PLoS Pathog 2010; 6:e1000799. [PMID: 20221435 PMCID: PMC2832700 DOI: 10.1371/journal.ppat.1000799] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/28/2010] [Indexed: 02/07/2023] Open
Abstract
The control of RNA stability is a key determinant in cellular gene expression. The stability of any transcript is modulated through the activity of cis- or trans-acting regulatory factors as well as cellular quality control systems that ensure the integrity of a transcript. As a result, invading viral pathogens must be able to subvert cellular RNA decay pathways capable of destroying viral transcripts. Here we report that the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds to a unique KSHV polyadenylated nuclear RNA, called PAN RNA, and protects it from degradation by cellular factors. ORF57 increases PAN RNA levels and its effects are greatest on unstable alleles of PAN RNA. Kinetic analysis of transcription pulse assays shows that ORF57 protects PAN RNA from a rapid cellular RNA decay process, but ORF57 has little effect on transcription or PAN RNA localization based on chromatin immunoprecipitation and in situ hybridization experiments, respectively. Using a UV cross-linking technique, we further demonstrate that ORF57 binds PAN RNA directly in living cells and we show that binding correlates with function. In addition, we define an ORF57-responsive element (ORE) that is necessary for ORF57 binding to PAN RNA and sufficient to confer ORF57-response to a heterologous intronless beta-globin mRNA, but not its spliced counterparts. We conclude that ORF57 binds to viral transcripts in the nucleus and protects them from a cellular RNA decay pathway. We propose that KSHV ORF57 protein functions to enhance the nuclear stability of intronless viral transcripts by protecting them from a cellular RNA quality control pathway.
Collapse
|
219
|
Schneider M, Tanaka-Nozaki M, Kato S, Blömeke B. Influence of 5-fluorouracil on ferredoxin reductase mRNA splice variants in colorectal carcinomas. Oncol Lett 2010; 1:351-354. [PMID: 22966307 DOI: 10.3892/ol_00000062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 09/04/2009] [Indexed: 11/05/2022] Open
Abstract
5-Fluorouracil (5-FU) is a frequently used antitumor drug. Recently, it has been shown that mRNA and protein levels of the ferredoxin reductase gene (gene, FDXR; protein, FR) increase drastically after 5-FU treatment in various cell lines including colorectal cancer. The induction is mediated by p53 and enhanced reactive oxygen species (ROS)-associated apoptosis. Thus, knowledge about FDXR expression in human tissue and expression of the known splice variants is critical for understanding this finding. A sensitive and specific reverse transcriptase polymerase chain reaction (RT-PCR) assay for quantification of FDXR mRNA levels including the splice variants, a biological active variant (-18 bp) and an inactive variant (+18 bp), was developed and used to measure mRNAs after 5-FU chemotherapy in colorectal tissues of 40 cancer patients prior to and after treatment with 5-FU for 14 days. Before treatment, the great majority of normal tissues expressed the splice variants in a 100:1 ratio in favor of the -18-variant similar to what has been reported for other tissues. In tumors, the mRNA levels of total FDXR and splice variants were approximately 2-fold higher compared to the normal tissue. After 5-FU treatment, levels of the +18-variant increased 17-fold in tumors and 31-fold in normal tissues, clearly shifting the ratio towards the +18-form. 5-FU-mediated -18-variant induction (>1) in normal (12/17) and tumor tissues (12/16) was apparently associated with response, while a balanced ratio (0.1-2) was associated with 5-FU resistance (n=5) based on the histological evaluation of the tissues.
Collapse
Affiliation(s)
- Mark Schneider
- Department of Environmental Toxicology, University of Trier, 54296 Trier, Germany
| | | | | | | |
Collapse
|
220
|
Mukhopadhyay P, Ghosh TC. Relationship between gene compactness and base composition in rice and human genome. J Biomol Struct Dyn 2010; 27:477-88. [PMID: 19916569 DOI: 10.1080/07391102.2010.10507332] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In human, highly expressed genes contain shorter and fewer introns and these have been attributed to selection for economy in transcription and translation. On the other hand, in plants, it has been shown that highly expressed genes tend to be longer than lowly expressed genes. Here, in this study, we analyzed compositional influence on genome organization in both rice and human. We demonstrated that, in GC rich rice genes, highly expressed genes are less compact than lowly expressed genes. In GC-poor class, there is no difference in gene compactness between highly and lowly expressed genes. However, the scenario is different for human as there is no influence of GC composition on gene compactness due to their expression levels. We also reported that, highly expressed rice GC-rich pre-mRNA tend to form less stable secondary structure than that of lowly expressed genes. However, on removing intronic sequences, highly expressed mRNA form a stable secondary structure as compared to lowly expressed GC-rich genes. We suggest that in GC-rich rice genes long introns are under selection for enhancing transcriptional efficiency by modulating pre-mRNA secondary structural stability. Thus evolutionary mechanisms behind genome organization are different between these two genomes (human and rice).
Collapse
Affiliation(s)
- Pamela Mukhopadhyay
- Bioinformatics Centre, Bose Institute P 1/12, C.I.T. Scheme VII M - Kolkata 700054- India.
| | | |
Collapse
|
221
|
Ying SY, Chang CP, Lin SL. Intron-mediated RNA interference, intronic microRNAs, and applications. Methods Mol Biol 2010; 629:205-37. [PMID: 20387152 DOI: 10.1007/978-1-60761-657-3_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nearly 97% of the human genome is non-coding DNA. The intron occupies most of it around the gene-coding regions. Numerous intronic sequences have been recently found to encode microRNAs (miRNAs), responsible for RNA-mediated gene silencing through RNA interference (RNAi)-like pathways. miRNAs, small single-stranded regulatory RNAs capable of interfering with intracellular messenger RNAs (mRNAs) that contain either complete or partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. This flexible characteristic differs from double-stranded siRNAs (small interfering RNAs) because more rigid complementarity is required for siRNA-induced RNAi gene silencing. miRNAs were firstly discovered in Caenorhabditis elegans as native RNA fragments that modulate a wide range of genetic regulatory pathways during embryonic development. Currently, varieties of miRNAs are widely reported in plants, animals, and even microorganisms. Intronic miRNA is a new class of miRNAs derived from the processing of gene introns. The intronic miRNAs differ from previously described intergenic miRNAs due to the requirement of type II RNA polymerases (Pol-II) and spliceosomal components for their biogenesis. Several kinds of intronic miRNAs have been identified in C. elegans, mouse, and human cells. However, neither function nor application has been reported. Here, we show that, for the first time, intron-derived miRNAs are able to induce RNA interference not only in human and mouse cell lines but also in zebrafish, chicken, and mouse, which demonstrates the evolutionary preservation of the intron-mediated gene silencing through miRNA functionality in cell and in vivo. Based on this novel mechanism, numerous biomedical applications have been developed, including cosmetic skin whitening, transgenic animal generation, anti-viral vaccination and therapy, and somatic cell reprogramming into induced pluripotent stem (iPS) cells. These findings suggest an important miRNA-mediated gene regulatory system, which fine-tunes a variety of cellular and developmental events through the mechanism of RNAi-like gene silencing.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Cell, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | |
Collapse
|
222
|
Haddad-Mashadrizeh A, Zomorodipour A, Izadpanah M, Sam MR, Ataei F, Sabouni F, Hosseini SJ. A systematic study of the function of the human beta-globin introns on the expression of the human coagulation factor IX in cultured Chinese hamster ovary cells. J Gene Med 2009; 11:941-50. [PMID: 19565465 DOI: 10.1002/jgm.1367] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Intronic sequences have the potential to improve gene expression in eukaryotes by a variety of mechanisms. In this context, human beta-globin (hBG) introns were inserted into the human factor IX (hFIX) cDNA in cytomegalovirus (CMV)-regulated plasmids. The resulting construct was then used for further expression analysis in vitro. METHODS Seven hFIX-expressing plasmids with different combinations of the two hBG introns and the Kozak element were constructed and used for a systematic expression analysis in cultured Chinese hamster ovary (CHO) cells. In parallel, the hBG intronic sequences were analysed for the presence of possible regulatory elements. RESULTS All the constructed plasmids resulted in transient expression of the hFIX. However, the coagulation activities varied according to the particular constructs used. Based on the hFIX antigenic assay, a wide range of variation was observed during persistent expression. The second hBG intron appears to be more effective than the first one. The expression level was further increased upon the inclusion of the Kozak element. Sequence analysis has detected several transcription factor binding (TFB) motifs in both of the introns, but with a higher frequency in the second one. CONCLUSIONS Potentials of hBG introns as enhancer-like elements for the expression of the hFIX in cultured CHO cells and a higher activity with respect to the second hBG intron compared to the first one were demonstrated. The larger number of TFBs in the second hBG intron reflects its stronger effect. The results obtained suggest possible synergistic functions of the hBG introns and Kozak on the expression level of hFIX in vitro.
Collapse
|
223
|
Chen L. A global comparison between nuclear and cytosolic transcriptomes reveals differential compartmentalization of alternative transcript isoforms. Nucleic Acids Res 2009; 38:1086-97. [PMID: 19969546 PMCID: PMC2831334 DOI: 10.1093/nar/gkp1136] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Transcriptome analyses have typically disregarded nucleocytoplasmic differences. This approach has ignored some post-transcriptional regulations and their effect on the ultimate protein expression levels. Despite a longstanding interest in the differences between the nuclear and cytosolic transcriptomes, it is only recently that data have become available to study such differences and their associated features on a genome-wide scale. Here, we compared the nuclear and cytosolic transcriptomes of HepG2 and HeLa cells. HepG2 and HeLa cells vary significantly in the differential compartmentalization of their transcript isoforms, indicating that nucleocytoplasmic compartmentalization is a cell-specific characteristic. The differential compartmentalization is manifested at the transcript isoform level instead of the gene level because alternative isoforms of one gene can display different nucleocytoplasmic distributions. The isoforms enriched in the cytosol tend to have more introns and longer introns in their pre-mRNAs. They have more functional RNA folds and unique exons in the 3′ regions. These isoforms are more conserved than the isoforms enriched in the nucleus. Surprisingly, the presence of microRNAs does not have a significant impact on the nucleocytoplasmic distribution of their target isoforms. In contrast, nonsense-mediated decay is significantly more associated with the isoforms enriched in the nucleus than those enriched in the cytosol.
Collapse
Affiliation(s)
- Liang Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
224
|
A potent enhancer element in the 5′-UTR intron is crucial for transcriptional regulation of the human ubiquitin C gene. Gene 2009; 448:88-101. [DOI: 10.1016/j.gene.2009.08.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/26/2009] [Accepted: 08/28/2009] [Indexed: 02/01/2023]
|
225
|
Bartlett JG, Snape JW, Harwood WA. Intron-mediated enhancement as a method for increasing transgene expression levels in barley. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:856-66. [PMID: 19781005 DOI: 10.1111/j.1467-7652.2009.00448.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It is desirable to produce transgenic plants which have optimized and stable levels of transgene expression. Low levels of transgene expression may lead to an insufficient quantity of transgenic protein being produced for a particular purpose. This report demonstrates a means of enhancing transgene expression in barley beyond that conferred by the Ubi1 promoter, via the inclusion of an intron at a specific position within the transgene coding sequence. We independently cloned two different introns (RpoT-i4 from maize and UBQ10-i1 from Arabidopsis) into the same position within the firefly luciferase (luc) coding sequence. The constructs produced were transformed into barley (Hordeum vulgare) via Agrobacterium-mediated transformation, and the resulting transformant populations (of between 119 and 123 independent plants for each construct) were assayed for luciferase activity. Both introns significantly increased luciferase activity, and a quantitative reverse-transcription polymerase chain reaction assay revealed that the introns increased the accumulation of luciferase mRNA transcripts. The enhanced transgene expression levels were maintained in the T(1) and T(2) progenies. These findings show that intron-mediated enhancement is a valuable additional tool for achieving high and stable levels of transgene expression in crop plants.
Collapse
Affiliation(s)
- Joanne G Bartlett
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| | | | | |
Collapse
|
226
|
Zhang J, Zhang M, Jiang W, Wang L, Fu Z, Li D, Pang D, Li D. B7-H4 gene polymorphisms are associated with sporadic breast cancer in a Chinese Han population. BMC Cancer 2009; 9:394. [PMID: 19903360 PMCID: PMC2780456 DOI: 10.1186/1471-2407-9-394] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 11/11/2009] [Indexed: 11/10/2022] Open
Abstract
Background B7-H4, a co-inhibitory molecule of the B7 family, can restrain T cell proliferation, cytokine secretion and the development of cytotoxicity. B7-H4 is expressed in tumor tissues at a higher level than in normal tissues, and has a potential effect to protect tumors from anti-tumor immune responses. This case-control study was carried out to determine the potential influences of B7-H4 gene polymorphisms on the susceptibility and progression of breast cancer in Han women of Northeast China. Methods We genotyped three B7-H4 variants (rs10754339, rs10801935 and rs3738414) and tagged all common haplotypes (frequency greater than or equal to 1%) in a Chinese population consisting of 500 breast cancer cases and 504 control individuals matched for age. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was used to determine the genotypes. Results Our data indicated that, compared with the common genotype and allele of each SNP, the rs10754339 AG genotype and G allele showed a significantly increased risk of breast cancer (OR = 1.455, 95% CI 1.119-1.892; OR = 1.325, 95% CI 1.073-1.637, respectively). The rs10801935 CC genotype, the rs3738414 AA genotype and the rs3738414 A allele were associated with a significantly decreased risk of breast cancer (OR = 0.328, 95% CI 0.145-0.739; OR = 0.412, 95% CI 0.203-0.835; OR = 0.698, 95% CI 0.564-0.864, respectively). Additionally, the rs10754339 GG genotype was significantly associated with lymph node metastasis and PR status, and the G allele and the AG genotype were respectively associated with lymph node metastasis and ER status. In haplotype analysis, we observed that compared with the AAG haplotype, the AAA haplotype showed a significantly decreased risk of breast cancer (OR = 0.689, 95% CI 0.539-0.881), but the GAG haplotype was associated with a significantly increased risk of breast cancer (OR = 1.511, 95% CI 1.125-2.031). And the AAA and the GCG haplotypes also respectively have significant influences on tumor size and ER status. Conclusion These results suggest that B7-H4 gene polymorphism may contribute to the sporadic breast cancer risk and prognosis in Chinese Han women.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Kennard ML, Goosney DL, Monteith D, Zhang L, Moffat M, Fischer D, Mott J. The generation of stable, high MAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Biotechnol Bioeng 2009; 104:540-53. [PMID: 19557833 DOI: 10.1002/bit.22406] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The manufacture of recombinant proteins at industrially relevant levels requires technologies that can engineer stable, high expressing cell lines rapidly, reproducibly and with relative ease. Commonly used methods incorporate transfection of mammalian cell lines with plasmid DNA containing the gene of interest. Identifying stable high expressing transfectants is normally laborious and time consuming. To improve this process, the ACE System has been developed based on pre-engineered artificial chromosomes with multiple recombination acceptor sites. This system allows for the targeted transfection of single or multiple genes and eliminates the need for random integration into native host chromosomes. To illustrate the utility of the ACE System in generating stable, high expressing cell lines, CHO based candidate cell lines were generated to express a human monoclonal IgG1 antibody. Candidate cell lines were generated in under 6 months and expressed over 1 g/L and with specific productivities of up to 45 pg/cell/day under non-fed, non-optimized shake flask conditions. These candidate cell lines were shown to have stable expression of the monoclonal antibody for up to 70 days of continuous culture. The results of this study demonstrate that clonal, stable monoclonal antibody expressing CHO based cell lines can be generated by the ACE System rapidly and perform competitively with those cell lines generated by existing technologies. The ACE System, therefore, provides an attractive and practical alternative to conventional methods of cell line generation.
Collapse
|
228
|
Carmel L, Koonin EV. A universal nonmonotonic relationship between gene compactness and expression levels in multicellular eukaryotes. Genome Biol Evol 2009; 1:382-90. [PMID: 20333206 PMCID: PMC2817431 DOI: 10.1093/gbe/evp038] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2009] [Indexed: 01/21/2023] Open
Abstract
Analysis of gene architecture and expression levels of four organisms, Homo sapiens, Caenorhabditis elegans, Drosophila melanogaster, and Arabidopsis thaliana, reveals a surprising, nonmonotonic, universal relationship between expression level and gene compactness. With increasing expression level, the genes tend at first to become longer but, from a certain level of expression, they become more and more compact, resulting in an approximate bell-shaped dependence. There are two leading hypotheses to explain the compactness of highly expressed genes. The selection hypothesis predicts that gene compactness is predominantly driven by the level of expression, whereas the genomic design hypothesis predicts that expression breadth across tissues is the driving force. We observed the connection between gene expression breadth in humans and gene compactness to be significantly weaker than the connection between expression level and compactness, a result that is compatible with the selection hypothesis but not the genome design hypothesis. The initial gene elongation with increasing expression level could be explained, at least in part, by accumulation of regulatory elements enhancing expression, in particular, in introns. This explanation is compatible with the observed positive correlation between intron density and expression level of a gene. Conversely, the trend toward increasing compactness for highly expressed genes could be caused by selection for minimization of energy and time expenditure during transcription and splicing and for increased fidelity of transcription, splicing, and/or translation that is likely to be particularly critical for highly expressed genes. Regardless of the exact nature of the forces that shape the gene architecture, we present evidence that, at least, in animals, coding and noncoding parts of genes show similar architectonic trends.
Collapse
Affiliation(s)
- Liran Carmel
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
229
|
Chatterjee S, Min L, Karuturi RKM, Lufkin T. The role of post-transcriptional RNA processing and plasmid vector sequences on transient transgene expression in zebrafish. Transgenic Res 2009; 19:299-304. [PMID: 19662507 DOI: 10.1007/s11248-009-9312-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 07/29/2009] [Indexed: 12/28/2022]
Abstract
A tissue-specific transgenic model was employed to test the effects of intron and vector sequences on transgene expression in zebrafish after microinjection. In this model, the 2.3 kb promoter taken from the 5' upstream region of the transcription initiation site of keratin 4 (krt4) was used to drive the enhanced green fluorescence protein (EGFP) reporter gene in a transgenic vector. For assaying the strength of EGFP expression, the effects of including an intron before the EGFP coding region or using different forms of DNA, including circular plasmid, linear full-length plasmid, and the linear transgene coding region without any prokaryotic vector sequence, were tested. After microinjection, the transgene expression was analyzed using transient assays. Consequently, further comparative analysis supported by Fisher's exact test was performed based on the data generated by analyzing the strength of the transgene expression. It was shown that inclusion of an intron in the construct increases the transgene expression in a transient transgenic zebrafish assay. Furthermore, the circular plasmid containing the transgene produced the strongest EGFP expression.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Stem Cell and Developmental Biology, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore
| | | | | | | |
Collapse
|
230
|
Fablet M, Bueno M, Potrzebowski L, Kaessmann H. Evolutionary origin and functions of retrogene introns. Mol Biol Evol 2009; 26:2147-56. [PMID: 19553367 DOI: 10.1093/molbev/msp125] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Retroposed genes (retrogenes) originate via the reverse transcription of mature messenger RNAs from parental source genes and are therefore usually devoid of introns. Here, we characterize a particular set of mammalian retrogenes that acquired introns upon their emergence and thus represent rare cases of intron gain in mammals. We find that although a few retrogenes evolved introns in their coding or 3' untranslated regions (untranslated region, UTR), most introns originated together with untranslated exons in the 5' flanking regions of the retrogene insertion site. They emerged either de novo or through fusions with 5' UTR exons of host genes into which the retrogenes inserted. Generally, retrogenes with introns display high transcription levels and show broader spatial expression patterns than other retrogenes. Our experimental expression analyses of individual intron-containing retrogenes show that 5' UTR introns may indeed promote higher expression levels, at least in part through encoded regulatory elements. By contrast, 3' UTR introns may lead to downregulation of expression levels via nonsense-mediated decay mechanisms. Notably, the majority of retrogenes with introns in their 5' flanks depend on distant, sometimes bidirectional CpG dinucleotide-enriched promoters for their expression that may be recruited from other genes in the genomic vicinity. We thus propose a scenario where the acquisition of new 5' exon-intron structures was directly linked to the recruitment of distant promoters by these retrogenes, a process potentially facilitated by the presence of proto-splice sites in the genomic vicinity of retrogene insertion sites. Thus, the primary role and selective benefit of new 5' introns (and UTR exons) was probably initially to span the often substantial distances to potent CpG promoters driving retrogene transcription. Later in evolution, these introns then obtained additional regulatory roles in fine tuning retrogene expression levels. Our study provides novel insights regarding mechanisms underlying the origin of new introns, the evolutionary relevance of intron gain, and the origin of new gene promoters.
Collapse
Affiliation(s)
- Marie Fablet
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
231
|
Ricci EP, Mure F, Gruffat H, Decimo D, Medina-Palazon C, Ohlmann T, Manet E. Translation of intronless RNAs is strongly stimulated by the Epstein-Barr virus mRNA export factor EB2. Nucleic Acids Res 2009; 37:4932-43. [PMID: 19528074 PMCID: PMC2731895 DOI: 10.1093/nar/gkp497] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Epstein–Barr virus protein (EB2) allows the nuclear export of a particular subset of early and late viral RNAs derived from intronless genes. EB2 is conserved among most herpesvirus members and its presence is essential for the production of infectious particles. Here we show that, besides its role as a nuclear export factor, EB2 strongly stimulates translation of unspliced mRNAs without affecting overall cellular translation. Interestingly, this effect can be reversed by the addition of an intron within the gene. The spliced mRNA is then efficiently exported and translated even in the absence of EB2. Moreover, we show that EB2 associates with translating ribosomes and increases the proportion of its target RNA in the polyribosomal fraction. Finally, testing of EB2 homolog proteins derived from EBV-related herpesviruses, shows that, even if they play similar roles within the replication cycle of their respective virus, their mechanisms of action are different.
Collapse
Affiliation(s)
- Emiliano P Ricci
- INSERM U758, Unité de Virologie Humaine, Ecole Normale Supérieure de Lyon, Lyon F-69007, France
| | | | | | | | | | | | | |
Collapse
|
232
|
Sun J, Li D, Hao Y, Zhang Y, Fan W, Fu J, Hu Y, Liu Y, Shao Y. Posttranscriptional regulatory elements enhance antigen expression and DNA vaccine efficacy. DNA Cell Biol 2009; 28:233-40. [PMID: 19388846 DOI: 10.1089/dna.2009.0862] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In higher eukaryotes, introns are usually required for efficient pre-mRNA processing. However, some viruses have alternative approaches involving posttranscriptional regulatory elements (PREs) to enhance intronless heterologous gene expression through enabling stability and 3' end formation, and to facilitate the nucleocytoplasmic export of unspliced mRNAs. In the current study, we compared the human cytomegalovirus (hCMV) immediate/early (IE) intronA, as well as virus-derived PREs-the PRE of Hepatitis B virus (HPRE) and Woodchuck Hepatitis virus (WPRE) on their ability to enhance antigen gene expression in vitro and immune responses induced by DNA vaccination in animal. Among all the constructs, the plasmids carrying the HPRE element showed the highest gene expression level in both in vivo and in vitro models. During immunization of mice with low doses (10 microg) of HIV-1 DNA vaccine, only -intronA/+HPRE and +intronA/+HPRE vaccine constructs induced anti-Gag antibodies, although the -intronA/+WPRE construct also elicited antigen-specific cellular immune responses. In addition, pInHGag (+intronA/+HPRE) at a 10 mug dose could induce higher anti-Gag antibody level than that induced by pGag (-intronA/-HPRE) or pInGag (+intronA/-HPRE) at 40 microg dose (p < 0.05). Our data are useful for the optimization of heterologous expression and immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Exon junction complex enhances translation of spliced mRNAs at multiple steps. Biochem Biophys Res Commun 2009; 384:334-40. [PMID: 19409878 DOI: 10.1016/j.bbrc.2009.04.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 04/24/2009] [Indexed: 11/23/2022]
Abstract
Translation of spliced mRNAs is enhanced by exon junction complex (EJC), which is deposited on mRNAs as a result of splicing. Although this phenomenon itself is well known, the underlying molecular mechanism remains poorly understood. Here we show, using siRNAs against Y14 and eIF4AIII and spliced or intronless constructs that contain different types of internal ribosome entry sites (IRESes), that Y14 and eIF4AIII increase translation of spliced mRNAs before and after formation of the 80S ribosome complex, respectively. These results suggest that EJC modulates translation of spliced mRNA at multiple steps.
Collapse
|
234
|
De Luca F, Di Vito M, Fanelli E, Reyes A, Greco N, De Giorgi C. Characterization of the heat shock protein 90 gene in the plant parasitic nematode Meloidogyne artiellia and its expression as related to different developmental stages and temperature. Gene 2009; 440:16-22. [PMID: 19348876 DOI: 10.1016/j.gene.2009.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/27/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
The full-length cDNA and the corresponding gene of the heat shock protein 90, Mt-Hsp90, were isolated and characterized in the plant parasitic nematode Meloidogyne artiellia. The full-length Mt-Hsp90 cDNA contained a 5' untranslated region (UTR) of 45 bp with the 22 bp trans-spliced leader SL1, an ORF of 2172 bp encoding a polypeptide of 723 amino acids and a 3' UTR of 191 bp. The deduced amino acid sequence of Mt-hsp90 showed high similarity with other known Hsp90s. Five conserved amino acid signatures indicated that Mt-hsp90 is a cytosolic member of the Hsp90 family. The gene consists of 10 exons and 9 introns, a more expanded gene structure compared to the corresponding Caenorhabditis elegans gene, daf-21. Mt-hsp90 gene was constitutively expressed at high levels in all developmental stages of M. artiellia. Egg masses and second stage juveniles (J2s) were exposed at 5 degrees and 30 degrees C for different periods of times in order to explore the impact of adverse temperature on Mt-hsp90 gene expression. Expression levels of Mt-hsp90 were examined by fluorescent real-time PCR. At 30 degrees C a burst of expression for Mt-hsp90 was observed in J2s after 2 h of heat shock treatment, then expression dropped with longer exposing times, although remaining still relatively high after 24 h. This temperature did not affect Mt-hsp90 gene expression in the egg masses. However, egg masses exposed at 5 degrees C showed a little but gradual increase in the mRNA level with time. By contrast, no significant changes in the Mt-hsp90 level were observed in J2s exposed to cold. These data show that egg masses and J2s exposed to cold and heat stresses have different expression profiles suggesting that Mt-Hsp90 may provide a link between environmental conditions and the life cycle of the nematode.
Collapse
Affiliation(s)
- Francesca De Luca
- Istituto per la Protezione delle Piante, CNR, Via Amendola 122/D, 70126 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
235
|
WU JH, ZHANG WG, LI JQ, YIN J, ZHANG YJ. Hoxc13 Expression Pattern in Cashmere Goat Skin During Hair Follicle Development. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1671-2927(08)60237-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
236
|
Intron retention generates ANKRD1 splice variants that are co-regulated with the main transcript in normal and failing myocardium. Gene 2009; 440:28-41. [PMID: 19341785 DOI: 10.1016/j.gene.2009.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 12/28/2022]
Abstract
The cardiac ankyrin repeat domain 1 protein (ANKRD1, also known as CARP) has been extensively characterized with regard to its proposed functions as a cardio-enriched transcriptional co-factor and stress-inducible myofibrillar protein. The present results show the occurrence of alternative splicing by intron retention events in the pig and human ankrd1 gene. In pig heart, ankrd1 is expressed as four alternatively spliced transcripts, three of which have non-excised introns: ankrd1-contained introns 6, 7 and 8 (i.e., ankrd1-i6,7,8), ankrd1-contained introns 7 and 8 (i.e., ankrd1-i7,8), and ankrd1 retained only intron 8 (i.e., ankrd1-i8). In the human heart, two orthologues of porcine intron-retaining ankrd1 variants (i.e., ankrd1-i8 and ankrd1-i7,8) are detected. We demonstrate that these newly-identified intron-retaining ankrd1 transcripts are functionally intact, efficiently translated into protein in vitro and exported to the cytoplasm in cardiomyocytes in vivo. In the piglet heart, both the intronless and intron-retaining ankrd1 mRNAs are co-expressed in a chamber-dependent manner being more abundant in the left as compared to the right myocardium. Our data further indicate co-upregulation of the ankrd1 spliced variants in myocardium in the porcine model of diastolic heart failure. Most significantly, we demonstrate that in vivo forced expression of recombinant intronless ankrd1 markedly increases the levels of intron-retaining ankrd1 variants (but not of the endogenous main transcript) in piglet myocardium, suggesting that ANKRD1 may positively regulate the expression of its own intron-containing RNAs in response to cardiac stress. Overall, our findings demonstrate that in cardiomyocytes ANKRD1 can exist in multiple isoforms which may contribute to the functional diversity of this factor in heart development and disease.
Collapse
|
237
|
Abstract
Mature rRNA are normally extremely stable in rapidly growing cells. However, studies show that some mature rRNA in Saccharomyces cerevisiae are, in fact, turned over quite rapidly by the nonfunctional rRNA decay (NRD) pathway. NRD eliminates the RNA component of mature but defective ribosomal subunits and ribosomes. NRD was discovered using rDNA reporter plasmids to express and track the fate of rRNA containing mutations in functionally important regions of the ribosome. This chapter outlines some of the available rDNA reporter plasmids that can be used to study NRD and describes assays to test for functionality and stability of rRNA in yeast.
Collapse
|
238
|
Ivashchenko AT, Tauasarova MI, Atambayeva SA. Exon-intron structure of genes in complete fungal genomes. Mol Biol 2009. [DOI: 10.1134/s002689330901004x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
239
|
Hirschfeld M, zur Hausen A, Bettendorf H, Jäger M, Stickeler E. Alternative splicing of Cyr61 is regulated by hypoxia and significantly changed in breast cancer. Cancer Res 2009; 69:2082-90. [PMID: 19244129 DOI: 10.1158/0008-5472.can-08-1997] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia is known to induce the transcriptional activation of pathways involved in angiogenesis, growth factor signaling, and tissue invasion and is therefore a potential key regulator of tumor growth. Cyr61 (cysteine rich 61) is a secreted, matricellular protein with proangiogenic capabilities and is transcriptionally induced under hypoxic conditions. High expression levels of Cyr61 were already detected in various cancer types and linked to tumor progression and advanced stages in breast cancer. Besides hypoxia, there is some evidence that posttranscriptional pre-mRNA processing could be involved in the regulation of Cyr61 expression, but was thus far not investigated. We studied the expression pattern of Cyr61 mRNA and protein in breast cancer cell lines as well as in matched pairs of noncancerous breast tissue, preinvasive lesions, and invasive breast cancers, respectively. In addition, we analyzed the potential regulatory capability of hypoxia on Cyr61 expression by functional tissue culture experiments. Our study revealed a stage-dependent induction of Cyr61 mRNA and protein in breast cancer tumorigenesis and for the first time alternative splicing of the Cyr61 gene due to intron retention. Breast carcinogenesis was accompanied by a shift from an intron 3 retaining toward an intron 3 skipping mRNA phenotype consecutively leading to processing of the biological active Cyr61 protein. The functional analyses strongly emphasize that hypoxia serves as a specific inducer of alternative Cyr61 splicing toward the intron skipping mRNA isoform with potential biological consequences in tumor cells.
Collapse
Affiliation(s)
- Marc Hirschfeld
- Department of Obstetrics and Gynecology and Institute of Pathology, Freiburg University Medical Center, Freiburg, Germany
| | | | | | | | | |
Collapse
|
240
|
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-coupled mechanism that eliminates mRNAs containing premature translation-termination codons (PTCs). In mammalian cells, NMD is also linked to pre-mRNA splicing, as in many instances strong mRNA reduction occurs only when the PTC is located upstream of an intron. It is proposed that in these systems, the exon junction complex (EJC) mediates the link between splicing and NMD. Recent studies have questioned the role of splicing and the EJC in initiating NMD. Instead, they put forward a general and evolutionarily conserved mechanism in which the main regulator of NMD is the distance between a PTC and the poly(A) tail of an mRNA. Here we discuss the limitations of the new NMD model and the EJC concept; we argue that neither satisfactorily accounts for all of the available data and offer a new model to test in future studies.
Collapse
Affiliation(s)
- Saverio Brogna
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham B15 2TT, UK.
| | | |
Collapse
|
241
|
Pawlicki JM, Steitz JA. Subnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs: processing at transcription sites or accumulation in SC35 foci. Cell Cycle 2009; 8:345-56. [PMID: 19177009 DOI: 10.4161/cc.8.3.7494] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate expression of their target messenger RNAs. We recently demonstrated that primary miRNA transcripts (pri-miRNAs) retained at transcription sites are processed with enhanced efficiency, suggesting that pri-miRNA processing is coupled to transcription in mammalian cells. We also observed that transiently expressed pri-miRNAs accumulate in nuclear foci with splicing factor SC35 and Microprocessor components, Drosha and DGCR8. Here, we show that pri-miRNAs containing a self-cleaving hepatitis delta ribozyme accumulate in the nucleoplasm after release from their transcription sites, but are not efficiently processed. Pri-miRNAs with ribozyme-generated 3' ends do not localize to SC35-containing foci, whereas cleaved and polyadenylated pri-miRNA transcripts with or without the pre-miRNA hairpin do. Pri-miRNA/SC35 foci contain a number of proteins normally associated with SC35 domains, including ASF/SF2, PABII, and the prolyl isomerase, Pin1. In contrast, RNA polymerase II and PM/Scl-100 do not strongly colocalize with pri-miRNAs in SC35-containing foci. These data argue that pri-miRNA/SC35-containing foci are not major sites of pri-miRNA processing and that pri-miRNA processing is coupled to transcription. We discuss the implications of our findings relative to recent insights into miRNA biogenesis, mRNA metabolism, and the nuclear organization of gene expression.
Collapse
Affiliation(s)
- Jan M Pawlicki
- Department of Pharmacology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
242
|
Koonin EV. Evolution of genome architecture. Int J Biochem Cell Biol 2009; 41:298-306. [PMID: 18929678 PMCID: PMC3272702 DOI: 10.1016/j.biocel.2008.09.015] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/16/2008] [Accepted: 09/16/2008] [Indexed: 11/26/2022]
Abstract
Charles Darwin believed that all traits of organisms have been honed to near perfection by natural selection. The empirical basis underlying Darwin's conclusions consisted of numerous observations made by him and other naturalists on the exquisite adaptations of animals and plants to their natural habitats and on the impressive results of artificial selection. Darwin fully appreciated the importance of heredity but was unaware of the nature and, in fact, the very existence of genomes. A century and a half after the publication of the "Origin", we have the opportunity to draw conclusions from the comparisons of hundreds of genome sequences from all walks of life. These comparisons suggest that the dominant mode of genome evolution is quite different from that of the phenotypic evolution. The genomes of vertebrates, those purported paragons of biological perfection, turned out to be veritable junkyards of selfish genetic elements where only a small fraction of the genetic material is dedicated to encoding biologically relevant information. In sharp contrast, genomes of microbes and viruses are incomparably more compact, with most of the genetic material assigned to distinct biological functions. However, even in these genomes, the specific genome organization (gene order) is poorly conserved. The results of comparative genomics lead to the conclusion that the genome architecture is not a straightforward result of continuous adaptation but rather is determined by the balance between the selection pressure, that is itself dependent on the effective population size and mutation rate, the level of recombination, and the activity of selfish elements. Although genes and, in many cases, multigene regions of genomes possess elaborate architectures that ensure regulation of expression, these arrangements are evolutionarily volatile and typically change substantially even on short evolutionary scales when gene sequences diverge minimally. Thus, the observed genome architectures are, mostly, products of neutral processes or epiphenomena of more general selective processes, such as selection for genome streamlining in successful lineages with large populations. Selection for specific gene arrangements (elements of genome architecture) seems only to modulate the results of these processes.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.
| |
Collapse
|
243
|
Abstract
Nearly 97% of the human genome is non-coding DNA, and introns occupy most of it around the gene-coding regions. Numerous intronic sequences have been recently found to encode microRNAs, which are responsible for RNA-mediated gene silencing through RNA interference (RNAi)-like pathways. microRNAs (miRNAs), small single-stranded regulatory RNAs capable of interfering with intracellular messenger RNAs (mRNAs) that contain either complete or partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. This flexible characteristic is different from double-stranded siRNAs (small interfering RNAs) because a much more rigid complementarity is required for siRNA-induced RNAi gene silencing. miRNAs were firstly discovered in Caenorhabditis elegans as native RNA fragments that modulate a wide range of genetic regulatory pathways during embryonic development. Currently, varieties of miRNAs are widely reported in plants, animals and even microbes. Intronic microRNA is a new class of miRNAs derived from the processing of gene introns. The intronic miRNAs differ uniquely from previously described intergenic miRNAs in the requirement of type II RNA polymerases (Pol-II) and spliceosomal components for their biogenesis. Several kinds of intronic miRNAs have been identified in C. elegans, mouse and human cells; however, neither function nor application has been reported. Here, we show for the first time that intron-derived miRNAs are able to induce RNA interference in not only human and mouse cells but also zebrafishes, chicken embryos and adult mice, demonstrating the evolutionary preservation of the intron-mediated gene silencing through miRNA functionality in cell and in vivo. These findings suggest an intracellular miRNA-mediated gene regulatory system, fine-tuning the degradation of protein-coding messenger RNAs.
Collapse
|
244
|
Next generation tools for high-throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus. Genomics 2008; 93:196-204. [PMID: 18950699 DOI: 10.1016/j.ygeno.2008.09.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 09/15/2008] [Accepted: 09/17/2008] [Indexed: 11/22/2022]
Abstract
We have engineered a set of useful tools that facilitate targeted single copy knock-in (KI) at the hypoxanthine guanine phosphoribosyl transferase 1 (Hprt1) locus. We employed fine scale mapping to delineate the precise breakpoint location at the Hprt1(b-m3) locus allowing allele specific PCR assays to be established. Our suite of tools contains four targeting expression vectors and a complementing series of embryonic stem cell lines. Two of these vectors encode enhanced green fluorescent protein (EGFP) driven by the human cytomegalovirus immediate-early enhancer/modified chicken beta-actin (CAG) promoter, whereas the other two permit flexible combinations of a chosen promoter combined with a reporter and/or gene of choice. We have validated our tools as part of the Pleiades Promoter Project (http://www.pleiades.org), with the generation of brain-specific EGFP positive germline mouse strains.
Collapse
|
245
|
Calzascia T, Loh JMS, Di Berardino-Besson W, Masson F, Guillaume P, Burkhardt K, Herrera PL, Dietrich PY, Walker PR. Peripheral tolerance limits CNS accumulation of CD8 T cells specific for an antigen shared by tumor cells and normal astrocytes. Glia 2008; 56:1625-36. [DOI: 10.1002/glia.20715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
246
|
Abstract
Utilization of gene silencing effectors, such as microRNA (miRNA) and small hairpin RNA (shRNA), provides a powerful new strategy for human skin care in vivo, particularly for hyperpigmentation treatment and aging prevention. In this study, tyrosinase (Tyr), the rate-limiting enzyme of melanin (black pigment) biosynthesis, was served as a target for treatment of hyperpigmentation in mouse and human skins. There are over 54 native microRNA capable of silencing human tyrosinase for skin whitening and lightening. To this, we have designed a mir-434-5p homologue and used it to successfully demonstrate the feasibility of miRNA-mediated skin whitening and lightening in vitro and in vivo. Under the same experimental condition in the trials, Pol-II-directed intronic mir-434-5p expression did not cause any detectable sign of cytotoxicity, whereas siRNAs targeting the same sequence often induced certain nonspecific mRNA degradation as previously reported. Because the intronic miRNA-mediated gene silencing pathway is tightly regulated by multiple intracellular surveillance systems, including Pol-II transcription, RNA splicing, exosomal digestion and nonsense-mediated RNA decay (NMD), the current findings underscore the fact that intronic miRNA agents, such as manually re-designed mir-434-5p homologues, are effective, target-specific and safe to be used for skin whitening without any detectable cytotoxic effect. Given that the human skins also express a variety of other native miRNAs, we may re-design these miRNAs based on their individual functions for skin care, which may provide significant insights into areas of opportunity for new cosmetic and/or therapeutical applications.
Collapse
Affiliation(s)
- David Ts Wu
- Institute of Mello Biotechnology, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
247
|
O'Brien K, Matlin AJ, Lowell AM, Moore MJ. The biflavonoid isoginkgetin is a general inhibitor of Pre-mRNA splicing. J Biol Chem 2008; 283:33147-54. [PMID: 18826947 PMCID: PMC2586251 DOI: 10.1074/jbc.m805556200] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Membrane-permeable compounds that reversibly inhibit a particular step in
gene expression are highly useful tools for cell biological and
biochemical/structural studies. In comparison with other gene expression steps
where multiple small molecule effectors are available, very few compounds have
been described that act as general inhibitors of pre-mRNA splicing. Here we
report construction and validation of a set of mammalian cell lines suitable
for the identification of small molecule inhibitors of pre-mRNA splicing.
Using these cell lines, we identified the natural product isoginkgetin as a
general inhibitor of both the major and minor spliceosomes. Isoginkgetin
inhibits splicing both in vivo and in vitro at similar
micromolar concentrations. It appears to do so by preventing stable
recruitment of the U4/U5/U6 tri-small nuclear ribonucleoprotein, resulting in
accumulation of the prespliceosomal A complex. Like two other recently
reported general pre-mRNA splicing inhibitors, isoginkgetin has been
previously described as an anti-tumor agent. Our results suggest that splicing
inhibition is the mechanistic basis of the anti-tumor activity of
isoginkgetin. Thus, pre-mRNA splicing inhibitors may represent a novel avenue
for development of new anti-cancer agents.
Collapse
Affiliation(s)
- Kristine O'Brien
- Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
248
|
Wooddell CI, Reppen T, Wolff JA, Herweijer H. Sustained liver-specific transgene expression from the albumin promoter in mice following hydrodynamic plasmid DNA delivery. J Gene Med 2008; 10:551-63. [PMID: 18330848 DOI: 10.1002/jgm.1179] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND To properly study gene expression in vivo, often long-term expression is desired. Previous studies using plasmid DNA (pDNA) vectors have typically resulted in short-term expression. Here, we evaluated combinations of the albumin promoter with different enhancers and untranslated regions for liver-specific expression in mice. METHODS A series of pDNA secreted alkaline phosphatase (SEAP) reporter gene expression vectors was constructed using the albumin promoter and various other expression cassette elements. Each was evaluated for level and duration of SEAP expression in mice following hydrodynamic tail vein delivery. RESULTS Sustained liver expression was obtained from vectors combining the albumin promoter with an albumin 3' untranslated region (3'UTR). The level of expression was increased by inclusion of enhancers and a 5' intron. The optimal expression vector consisted of the albumin promoter combined with an alpha-fetoprotein MERII enhancer, 5' intron from the factor IX gene, and the 3'UTR from the albumin gene including intron 14. With this vector, SEAP reporter gene expression levels remained high for 1 year, at levels comparable to those obtained from the cytomegalovirus (CMV) promoter on day 1. Expression of human apolipoprotein E3 (hApoE) in ApoE knockout mice provided a dose-dependent correction of their hypercholesterolemia. CONCLUSIONS Liver-specific sustained transgene expression can be obtained at very high levels from optimized pDNA vectors, without the use of integration systems. Such vectors will further facilitate biological studies of genes in vivo and may find application in gene therapy.
Collapse
|
249
|
Ebert AM, McAnelly CA, Handschy AV, Mueller RL, Horne WA, Garrity DM. Genomic organization, expression, and phylogenetic analysis of Ca2+ channel beta4 genes in 13 vertebrate species. Physiol Genomics 2008; 35:133-44. [PMID: 18682574 DOI: 10.1152/physiolgenomics.90264.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Ca(2+) channel beta-subunits, encoded by CACNB genes 1-4, are membrane-associated guanylate kinase (MAGUK) proteins. As auxiliary subunits of voltage-gated Ca(2+) channels, the beta-subunits facilitate membrane trafficking of the pore-forming alpha1 subunits and regulate voltage-dependent channel gating. In this report, we investigate whether two zebrafish beta4 genes, beta4.1 and beta4.2, have diverged in structure and function over time. Comparative expression analyses indicated that beta4.1 and beta4.2 were expressed in separable domains within the developing brain and other tissues. Alternative splicing in both genes was subject to differential temporal and spatial regulation, with some organs expressing different subsets of beta4.1 and beta4.2 transcript variants. We used several genomic tools to identify and compare predicted cDNAs for eight teleost and five tetrapod beta4 genes. Teleost species had either one or two beta4 paralogs, whereas each tetrapod species contained only one. Teleost beta4.1 and beta4.2 genes had regions of sequence divergence, but compared with tetrapod beta4s, they exhibited similar exon/intron structure, strong conservation of residues involved in alpha1 subunit binding, and similar 5' alternative splicing. Phylogenetic results are consistent with the duplicate teleost beta4 genes resulting from the teleost whole genome duplication. Following duplication, the beta4.1 genes have evolved faster than beta4.2 genes. We identified disproportionately large second and third introns in several beta4 genes, which we propose may provide regulatory elements contributing to their differential tissue expression. In sum, both mRNA expression data and phylogenetic analysis support the evolutionary divergence of beta4.1 and beta4.2 subunit function.
Collapse
Affiliation(s)
- Alicia M Ebert
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | |
Collapse
|
250
|
Christensen LH, Holm J, Lund G, Riise E, Lund K. Several distinct properties of the IgE repertoire determine effector cell degranulation in response to allergen challenge. J Allergy Clin Immunol 2008; 122:298-304. [DOI: 10.1016/j.jaci.2008.05.026] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 05/16/2008] [Accepted: 05/19/2008] [Indexed: 10/21/2022]
|