201
|
Lichtenberg M, Jakobsen TH, Kühl M, Kolpen M, Jensen PØ, Bjarnsholt T. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6574409. [PMID: 35472245 PMCID: PMC9438473 DOI: 10.1093/femsre/fuac018] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/04/2022] [Accepted: 04/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark
| | - Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Copenhagen University Hospital, Ole Maaløes vej 26, 2200, København, Denmark
| | - Peter Østrup Jensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Ole Maaløes vej 26, 2200, København, Denmark
| | - Thomas Bjarnsholt
- Corresponding author: Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark. Tel: +45 20659888; E-mail:
| |
Collapse
|
202
|
Gomes F, Furtado GE, Henriques M, Sousa LB, Santos-Costa P, Bernardes R, Apóstolo J, Parreira P, Salgueiro-Oliveira A. The skin microbiome of infected pressure ulcers: A review and implications for health professionals. Eur J Clin Invest 2022; 52:e13688. [PMID: 34601718 DOI: 10.1111/eci.13688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pressure ulcers (PUs) are injuries resulting from ischaemia caused by prolonged compression or shear forces on the skin, adjacent tissues and bones. Advanced stages of PUs are associated with infectious complications and constitute a major clinical challenge, with high social and economic impacts in health care. GOALS This study aims to identify and describe the relationship between PU risk factors, stages and anatomical locations, and the relevance of microbial cohabitation and biofilm growth. METHODS The narrative review method to advocating a critical and objective analysis of the current knowledge on the topic was performed. Indexed databases and direct consultation to specialized and high-impact journals on the subject were used to extract relevant information, guided by co-authors. The Medical Subject Headings of pressure ulcer (or injury), biofilms, infection and other analogues terms were used. RESULTS Development of PUs and consequent infection depends on several direct and indirect risk factors, including cutaneous/PU microbiome, microclimate and behavioural factors. Infected PUs are polymicrobial and characterized by biofilm-associated infection, phenotypic hypervariability of species and inherent resistance to antimicrobials. The different stages and anatomical locations also play an important role in their colonization. The prevention and monitoring of PUs remain crucial for avoiding the emergence of systemic infections and reducing health care-associated costs, improve the quality of life of patients and reduce the mortality-associated infected PUs.
Collapse
Affiliation(s)
- Fernanda Gomes
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Guilherme Eustáquio Furtado
- The Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal.,Polytechnic Institute of Guarda, Research Unit for Inland Development (UDI), Guarda, Portugal
| | - Mariana Henriques
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Liliana Baptista Sousa
- The Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal
| | - Paulo Santos-Costa
- The Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal
| | - Rafael Bernardes
- The Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal
| | - João Apóstolo
- The Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal
| | - Pedro Parreira
- The Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal
| | - Anabela Salgueiro-Oliveira
- The Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal
| |
Collapse
|
203
|
Laulund AS, Schwartz FA, Christophersen L, Høiby N, Svendsen JSM, Stensen W, Thomsen K, Cavanagh JP, Moser C. Lactoferricin inspired peptide AMC-109 augments the effect of ciprofloxacin against Pseudomonas aeruginosa biofilm in chronic murine wounds. J Glob Antimicrob Resist 2021; 29:185-193. [PMID: 34954415 DOI: 10.1016/j.jgar.2021.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The pathophysiology of chronic wounds is characterized by prolonged inflammation, low mitogenic-activity, high protease-/low inhibitor-activity, microbiota changes and biofilm formation, in combination with the etiology of the original insult. One strategy to promote healing is to terminate the parasitism-like-relationship between the biofilm-growing-pathogen and the host response. The antimicrobial peptide AMC-109 is a potential treatment with low resistance-potential and broad-spectrum coverage with rapid bactericidal effect. Our purpose was to investigate if adjunctive AMC-109 could augment the ciprofloxacin effect in a chronic Pseudomonas aeruginosa wound model. METHODS Third-degree-burns were inflicted on 33BALB/c mice. P.Aeruginosa embedded in seaweed alginate was injected under the eschar to mimic a biofilm. Mice were randomized to receive AMC-109, combined AMC-109 and ciprofloxacin, ciprofloxacin or placebo for 5 days followed by sample collection. RESULTS Lower bacterial load was seen in the double treated group when compared to both monotherapy groups (AMC-109, p=0.008 and ciprofloxacin, p=0.03). To evaluate the innate host response, quantification of cytokines and growth factors were performed. The pro-inflammatory response was dampened in the double-treated mice, compared to the mono-ciprofloxacin-treated group (p=0.0009). A lower mobilization of neutrophils from the bone marrow was indicated by reduced granulocyte-colony-stimulating factor in all treatment groups compared to the placebo group. Improved tissue-remodeling was indicated by the highest level of tissue inhibitor of metalloproteases and low metalloprotease level in the double-treated group. CONCLUSIONS AMC-109 revealed adjunctive anti-pseudomonas abilities augmenting the antimicrobial effect of ciprofloxacin in this wound model. The study indicates a potential role for AMC-109 in treating chronic wounds with complicating biofilm infections.
Collapse
Affiliation(s)
- Anne Sofie Laulund
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Henrik Harpestrengs Vej 4A, 2100, Copenhagen, Denmark, phone +4593999557
| | | | - Lars Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet and Department of Immunology and Microbiology (ISIM), University of Copenhagen
| | - John Sigurd Mjøen Svendsen
- Amicoat AS, Sykehusvegen 26, 9019 Tromsø, Norway and the Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet
| | - Jorunn Pauline Cavanagh
- Amicoat AS, Sykehusvegen 26, 9019 Tromsø, Norway and the Department of Clinical Medicine, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet
| |
Collapse
|
204
|
Evaluation of the Use of Antibiofilmogram Technology in the Clinical Evolution of Foot Ulcers Infected by Staphylococcus aureus in Persons Living with Diabetes: A Pilot Study. J Clin Med 2021; 10:jcm10245928. [PMID: 34945223 PMCID: PMC8705769 DOI: 10.3390/jcm10245928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 01/22/2023] Open
Abstract
Infected diabetic foot ulcers (DFUs) represent a serious threat to public health because of their frequency and the severity of their consequences. DFUs are frequently infected by bacteria in biofilms, obstructing antibiotic action. Antibiofilmogram was developed to assess the impact of antibiotics to inhibit biofilm formation. This pilot study aimed to determine the benefits of this technology in predicting antibiotic activity on the outcome of 28 patients with Grade 2 DFUs that were infected by a monomicrobial Staphylococcus aureus. Patients with diabetes were followed during the antibiotic treatment (day 14) and the follow-up period of the study (day 45). The contribution of Antibiofilmogram was compared between patients with non-concordant results (n = 13) between antibiogram and Antibiofilmogram versus concordant results (n = 15). The clinical improvement of wounds (80.0% vs. 38.5%, p = 0.0245) and the absence of exudates (0% vs. 33.3%, p = 0.0282) were observed in concordant vs. discordant groups. This pilot study provides promising results for the interest of Antibiofilmogram in the prescription of antibiotics to prevent biofilm formation in infected DFUs.
Collapse
|
205
|
Jesus C, Soares R, Cunha E, Grilo M, Tavares L, Oliveira M. Influence of Nisin-Biogel at Subinhibitory Concentrations on Virulence Expression in Staphylococcus aureus Isolates from Diabetic Foot Infections. Antibiotics (Basel) 2021; 10:antibiotics10121501. [PMID: 34943712 PMCID: PMC8698857 DOI: 10.3390/antibiotics10121501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/22/2023] Open
Abstract
A new approach to diabetic foot infections (DFIs) has been investigated, using a nisin-biogel combining the antimicrobial peptide (AMP) nisin with the natural polysaccharide guar-gum. Since in in vivo conditions bacteria may be exposed to decreased antimicrobial concentrations, known as subinhibitory concentrations (sub-MICs), effects of nisin-biogel sub-MIC values corresponding to 1/2, 1/4 and 1/8 of nisin's minimum inhibitory concentration (MIC) on virulence expression by six Staphylococcus aureus DFI isolates was evaluated by determining bacteria growth rate; expression of genes encoding for staphylococcal protein A (spA), coagulase (coa), clumping factor A (clfA), autolysin (atl), intracellular adhesin A (icaA), intracellular adhesin D (icaD), and the accessory gene regulator I (agrI); biofilm formation; Coa production; and SpA release. Nisin-biogel sub-MICs decreased bacterial growth in a strain- and dose-dependent manner, decreased agrI, atl and clfA expression, and increased spA, coa, icaA and icaD expression. Biofilm formation increased in the presence of nisin-biogel at 1/4 and 1/8 MIC, whereas 1/2 MIC had no effect. Finally, nisin-biogel at sub-MICs did not affect coagulase production, but decreased SpA production in a dose-dependent manner. Results highlight the importance of optimizing nisin-biogel doses before proceeding to in vivo trials, to reduce the risk of virulence factor's up-regulation due to the presence of inappropriate antimicrobial concentrations.
Collapse
|
206
|
He W, Zhang Z, Chen J, Zheng Y, Xie Y, Liu W, Wu J, Mosselhy DA. Evaluation of the anti-biofilm activities of bacterial cellulose-tannic acid-magnesium chloride composites using an in vitro multispecies biofilm model. Regen Biomater 2021; 8:rbab054. [PMID: 34754505 PMCID: PMC8569941 DOI: 10.1093/rb/rbab054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/29/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic wounds are a serious worldwide problem, which are often accompanied by wound infections. In this study, bacterial cellulose (BC)-based composites introduced with tannic acid (TA) and magnesium chloride (BC-TA-Mg) were fabricated for anti-biofilm activities. The prepared composites' surface properties, mechanical capacity, thermal stability, water absorption and retention property, releasing behavior, anti-biofilm activities and potential cytotoxicity were tested. Results showed that TA and MgCl2 particles closely adhered to the nanofibers of BC membranes, thus increasing surface roughness and hydrophobicity of the membranes. While the introduction of TA and MgCl2 did not influence the transparency of the membranes, making it beneficial for wound inspection. BC-TA and BC-TA-Mg composites displayed increased tensile strength and elongation at break compared to pure BC. Moreover, BC-TA-Mg exhibited higher water absorption and retention capacity than BC and BC-TA, suitable for the absorption of wound exudates. BC-TA-Mg demonstrated controlled release of TA and good inhibitory effect on both singly cultured Staphylococcus aureus and Pseudomonas aeruginosa biofilm and co-cultured biofilm of S. aureus and P. aeruginosa. Furthermore, the cytotoxicity grade of BC-TA-6Mg membrane was eligible based on standard toxicity classifications. These indicated that BC-TA-Mg is potential to be used as wound dressings combating biofilms in chronic wounds.
Collapse
Affiliation(s)
- Wei He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Suzhou Xiangcheng Medical Materials Science and Technology Co., Ltd, Suzhou 215028, China
| | - Zhaoyu Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbo Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Jian Wu
- Suzhou Xiangcheng Medical Materials Science and Technology Co., Ltd, Suzhou 215028, China
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang 330200, China
| | - Dina A Mosselhy
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki 00014, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
| |
Collapse
|
207
|
Jayasena Kaluarachchi TD, Campbell PM, Wickremasinghe R, Ranasinghe S, Wickremasinghe R, Yasawardene S, De Silva H, Menike C, Jayarathne MCK, Jayathilake S, Dilhari A, McBain AJ, Weerasekera MM. Distinct microbiome profiles and biofilms in Leishmania donovani-driven cutaneous leishmaniasis wounds. Sci Rep 2021; 11:23181. [PMID: 34848752 PMCID: PMC8633208 DOI: 10.1038/s41598-021-02388-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
The endemic strain of Leishmania donovani in Sri Lanka causes cutaneous leishmaniasis (CL) rather than more common visceral form. We have visualized biofilms and profiled the microbiome of lesions and unaffected skin in thirty-nine CL patients. Twenty-four lesions (61.5%) were biofilm-positive according to fluorescence in situ hybridization. Biopsies of biofilm-positive lesions were dominated by Pseudomonas, class Bacilli and Enterobacteriaceae and distinguished by significantly lower community evenness. Higher relative abundance of a class Bacilli OTU was detected in wound swabs versus contralateral skin. Wound swabs and biopsies had significantly distinct microbiome profiles and lower diversity compared to unaffected skin. Greater abundances of potentially pathogenic organisms were observed in wet ulcers, lesions with high parasite loads and large wounds. In summary, more than half of L. donovani associated CL wounds harboured biofilms and the wounds exhibited a distinct, less diverse, microbiome than unaffected skin.
Collapse
Affiliation(s)
- T D Jayasena Kaluarachchi
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.
| | - Paul M Campbell
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rajitha Wickremasinghe
- Department of Public Health, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Shalindra Ranasinghe
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Renu Wickremasinghe
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Surangi Yasawardene
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | | | - Chandrani Menike
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - M C K Jayarathne
- Department of Family Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Subodha Jayathilake
- Department of Pathology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Ayomi Dilhari
- Department of Basic Sciences, Faculty of Allied Health Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Manjula M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
208
|
Simonetti O, Rizzetto G, Radi G, Molinelli E, Cirioni O, Giacometti A, Offidani A. New Perspectives on Old and New Therapies of Staphylococcal Skin Infections: The Role of Biofilm Targeting in Wound Healing. Antibiotics (Basel) 2021; 10:antibiotics10111377. [PMID: 34827315 PMCID: PMC8615132 DOI: 10.3390/antibiotics10111377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/31/2022] Open
Abstract
Among the most common complications of both chronic wound and surgical sites are staphylococcal skin infections, which slow down the wound healing process due to various virulence factors, including the ability to produce biofilms. Furthermore, staphylococcal skin infections are often caused by methicillin-resistant Staphylococcus aureus (MRSA) and become a therapeutic challenge. The aim of this narrative review is to collect the latest evidence on old and new anti-staphylococcal therapies, assessing their anti-biofilm properties and their effect on skin wound healing. We considered antibiotics, quorum sensing inhibitors, antimicrobial peptides, topical dressings, and antimicrobial photo-dynamic therapy. According to our review of the literature, targeting of biofilm is an important therapeutic choice in acute and chronic infected skin wounds both to overcome antibiotic resistance and to achieve better wound healing.
Collapse
Affiliation(s)
- Oriana Simonetti
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
- Correspondence: ; Tel.: +39-0-715-963-494
| | - Giulio Rizzetto
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Giulia Radi
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| |
Collapse
|
209
|
Patel N, Curtis JC, Plotkin BJ. Insulin Regulation of Escherichia coli Abiotic Biofilm Formation: Effect of Nutrients and Growth Conditions. Antibiotics (Basel) 2021; 10:antibiotics10111349. [PMID: 34827287 PMCID: PMC8615133 DOI: 10.3390/antibiotics10111349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli plays an important role in biofilm formation across a wide array of disease and ecological settings. Insulin can function as an adjuvant in the regulation of biofilm levels. The modulation of insulin-regulated biofilm formation by environmental conditions has not been previously described. In the present study, the effects that various environmental growth conditions and nutrients have on insulin-modulated levels of biofilm production were measured. Micropipette tips were incubated with E. coli ATCC® 25922™ in a Mueller Hinton broth (MH), or a yeast nitrogen base with 1% peptone (YNBP), which was supplemented with glucose, lactose, galactose and/or insulin (Humulin®-R). The incubation conditions included a shaking or static culture, at 23 °C or 37 °C. After incubation, the biofilm production was calculated per CFU. At 23 °C, the presence of insulin increased biofilm formation. The amount of biofilm formation was highest in glucose > galactose >> lactose, while the biofilm levels decreased in shaking cultures, except for galactose (3-fold increase; 0.1% galactose and 20 μU insulin). At 37 °C, regardless of condition, there was more biofilm formation/CFU under static conditions in YNBP than in MH, except for the MH containing galactose. E. coli biofilm formation is influenced by aeration, temperature, and insulin concentration in combination with the available sugars.
Collapse
Affiliation(s)
- Nina Patel
- Department of Microbiology and Immunology, College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (N.P.); (J.C.C.)
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60625, USA
| | - Jeremy C. Curtis
- Department of Microbiology and Immunology, College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (N.P.); (J.C.C.)
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (N.P.); (J.C.C.)
- Correspondence:
| |
Collapse
|
210
|
Gardner S. Wound Expo 2021 highlights: wound preparation zone. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2021; 30:S44. [PMID: 34781760 DOI: 10.12968/bjon.2021.30.sup20.s44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
211
|
Vernon T, Moore K, Collier M. Development and integration of a wound cleansing pathway into clinical practice. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2021; 30:S18-S26. [PMID: 34781765 DOI: 10.12968/bjon.2021.30.sup20.s18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wound bed preparation has come into sharper focus over the past decade, with strategies identified to improve wound condition. This article focuses on implementing a wound cleansing policy and measuring, through audits, how this change affected rates of wound infection. From 2016 onwards, the Skin Integrity Team at Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust took steps to revise and improve wound care practices. This resulted in the introduction of a wound cleansing pathway incorporating a surfactant-based cleanser in place of saline, with subsequent staff training and other changes made to practice. This study details the steps taken to implement the new pathway, which brought a reduction in wound infections of 84.3% between 2017 and 2019.
Collapse
Affiliation(s)
- Tracy Vernon
- Lead Nurse, Skin Integrity Team, Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust (position held until March 2021)
| | - Kelly Moore
- Clinical Nurse Specialist, Skin Integrity Team, Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust
| | | |
Collapse
|
212
|
Pouget C, Dunyach-Remy C, Pantel A, Boutet-Dubois A, Schuldiner S, Sotto A, Lavigne JP, Loubet P. Alternative Approaches for the Management of Diabetic Foot Ulcers. Front Microbiol 2021; 12:747618. [PMID: 34675910 PMCID: PMC8524042 DOI: 10.3389/fmicb.2021.747618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/07/2021] [Indexed: 01/13/2023] Open
Abstract
Diabetic foot ulcers (DFU) represent a growing public health problem. The emergence of multidrug-resistant (MDR) bacteria is a complication due to the difficulties in distinguishing between infection and colonization in DFU. Another problem lies in biofilm formation on the skin surface of DFU. Biofilm is an important pathophysiology step in DFU and may contribute to healing delays. Both MDR bacteria and biofilm producing microorganism create hostile conditions to antibiotic action that lead to chronicity of the wound, followed by infection and, in the worst scenario, lower limb amputation. In this context, alternative approaches to antibiotics for the management of DFU would be very welcome. In this review, we discuss current knowledge on biofilm in DFU and we focus on some new alternative solutions for the management of these wounds, such as antibiofilm approaches that could prevent the establishment of microbial biofilms and wound chronicity. These innovative therapeutic strategies could replace or complement the classical strategy for the management of DFU to improve the healing process.
Collapse
Affiliation(s)
- Cassandra Pouget
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Nîmes, France
| | - Catherine Dunyach-Remy
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, Clinique du Pied Gard Occitanie, CHU Nîmes, Nîmes, France
| | - Alix Pantel
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, Clinique du Pied Gard Occitanie, CHU Nîmes, Nîmes, France
| | - Adeline Boutet-Dubois
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, Clinique du Pied Gard Occitanie, CHU Nîmes, Nîmes, France
| | - Sophie Schuldiner
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service des Maladies Métaboliques et Endocriniennes, Clinique du Pied Gard Occitanie, CHU Nîmes, Le Grau-du-Roi, France
| | - Albert Sotto
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service des Maladies Infectieuses et Tropicales, Clinique du Pied Gard Occitanie, CHU Nîmes, Nîmes, France
| | - Jean-Philippe Lavigne
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, Clinique du Pied Gard Occitanie, CHU Nîmes, Nîmes, France
| | - Paul Loubet
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service des Maladies Infectieuses et Tropicales, Clinique du Pied Gard Occitanie, CHU Nîmes, Nîmes, France
| |
Collapse
|
213
|
Lopez AJ, Jones LM, Reynolds L, Diaz RC, George IK, Little W, Fleming D, D'souza A, Rennie MY, Rumbaugh KP, Smith AC. Detection of bacterial fluorescence from in vivo wound biofilms using a point-of-care fluorescence imaging device. Int Wound J 2021; 18:626-638. [PMID: 33565263 PMCID: PMC8450799 DOI: 10.1111/iwj.13564] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Wound biofilms must be identified to target disruption and bacterial eradication but are challenging to detect with standard clinical assessment. This study tested whether bacterial fluorescence imaging could detect porphyrin-producing bacteria within a biofilm using well-established in vivo models. Mouse wounds were inoculated on Day 0 with planktonic bacteria (n = 39, porphyrin-producing and non-porphyrin-producing species, 107 colony forming units (CFU)/wound) or with polymicrobial biofilms (n = 16, 3 biofilms per mouse, each with 1:1:1 parts Staphylococcus aureus/Escherichia coli/Enterobacter cloacae, 107 CFU/biofilm) that were grown in vitro. Mouse wounds inoculated with biofilm underwent fluorescence imaging up to Day 4 or 5. Wounds were then excised and sent for microbiological analysis. Bacteria-matrix interaction was assessed with scanning electron microscopy (SEM) and histopathology. A total of 48 hours after inoculation with planktonic bacteria or biofilm, red fluorescence was readily detected in wounds; red fluorescence intensified up to Day 4. Red fluorescence from biofilms persisted in excised wound tissue post-wash. SEM and histopathology confirmed bacteria-matrix interaction. This pre-clinical study is the first to demonstrate the fluorescence detection of bacterial biofilm in vivo using a point-of-care wound imaging device. These findings have implications for clinicians targeting biofilm and may facilitate improved visualisation and removal of biofilms.
Collapse
Affiliation(s)
- Andrea J. Lopez
- Department of Honors StudiesTexas Tech UniversityLubbockTexasUSA
| | | | - Landrye Reynolds
- Department of Honors StudiesTexas Tech UniversityLubbockTexasUSA
| | - Rachel C. Diaz
- Department of Honors StudiesTexas Tech UniversityLubbockTexasUSA
| | - Isaiah K. George
- Department of Honors StudiesTexas Tech UniversityLubbockTexasUSA
| | - William Little
- Department of Honors StudiesTexas Tech UniversityLubbockTexasUSA
| | - Derek Fleming
- Department of SurgeryTexas Tech University Health Sciences CenterLubbockTexasUSA
- Division of Clinical Microbiology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | | | | | - Kendra P. Rumbaugh
- Department of SurgeryTexas Tech University Health Sciences CenterLubbockTexasUSA
| | | |
Collapse
|
214
|
Gupta P, Mishra P, Mehra L, Rastogi K, Prasad R, Mittal G, Poluri KM. Eugenol-acacia gum-based bifunctional nanofibers as a potent antifungal transdermal substitute. Nanomedicine (Lond) 2021; 16:2269-2289. [PMID: 34569268 DOI: 10.2217/nnm-2021-0274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Fungal biofilms interfere with the wound healing processes. Henceforth, the study aims to fabricate a biomaterial-based nano-scaffold with the dual functionalities of wound healing and antibiofilm activity. Methods: Nanofibers comprising acacia gum, polyvinyl alcohol and inclusion complex of eugenol in β-cyclodextrin (EG-NF) were synthesized using electrospinning. Antibiofilm studies were performed on Candida species, and the wound-healing activity was evaluated through an in vivo excision wound rat model. Results: The EG-NF potentially eradicated the mature biofilm of Candida species and their clinical isolates. Further, EG-NF also enhanced the re-epithelization and speed of wound healing in in vivo rat experiments. Conclusion: The study established the bifunctional applications of eugenol nanofibers as a transdermal substitute with antifungal potency.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Purusottam Mishra
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Lalita Mehra
- Department of Combat Sciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation, Timarpur, 110054, Delhi, India
| | - Kartikey Rastogi
- Department of Combat Sciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation, Timarpur, 110054, Delhi, India
| | - Ramasare Prasad
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Gaurav Mittal
- Department of Combat Sciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation, Timarpur, 110054, Delhi, India
| | - Krishna Mohan Poluri
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
215
|
Jørgensen E, Bjarnsholt T, Jacobsen S. Biofilm and Equine Limb Wounds. Animals (Basel) 2021; 11:2825. [PMID: 34679846 PMCID: PMC8532864 DOI: 10.3390/ani11102825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
In chronic wounds in humans, biofilm formation and wound chronicity are linked, as biofilms contribute to chronic inflammation and delayed healing. Biofilms are aggregates of bacteria, and living as biofilms is the default mode of bacterial life; within these aggregates, the bacteria are protected from both antimicrobial substances and the immune response of the host. In horses, delayed healing is more commonly seen in limb wounds than body wounds. Chronic inflammation and hypoxia are the main characteristics of delayed wound healing in equine limbs, and biofilms might also contribute to this healing pattern in horses. However, biofilm formation in equine wounds has been studied to a very limited degree. Biofilms have been detected in equine traumatic wounds, and recent experimental models have shown that biofilms protract the healing of equine limb wounds. Detection of biofilms within wounds necessitates advanced techniques that are not available in routine diagnostic yet. However, infections with biofilm should be suspected in equine limb wounds not healing as expected, as they are in human wounds. Treatment should be based on repeated debridement and application of topical antimicrobial therapy.
Collapse
Affiliation(s)
- Elin Jørgensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
- Department of Clinical Microbiology, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark;
| |
Collapse
|
216
|
Abstract
Bacterial species and their role in delaying the healing of pressure ulcers (PU) in spinal cord injury (SCI) patients have not been well described. This pilot study aimed to characterise the evolution of the cutaneous microbiota of PU in SCI cohort. Twenty-four patients with SCI from a French neurological rehabilitation centre were prospectively included. PU tissue biopsies were performed at baseline (D0) and 28 days (D28) and analysed using 16S rRNA gene-based sequencing analysis of the V3–V4 region. At D0, if the overall relative abundance of genus highlighted a large proportion of Staphylococcus, Anaerococcus and Finegoldia had a significantly higher relative abundance in wounds that stagnated or worsened in comparison with those improved at D28 (3.74% vs 0.05%; p = 0.015 and 11.02% versus 0.16%; p = 0.023, respectively). At D28, Proteus and Morganella genera were only present in stagnated or worsened wounds with respectively 0.02% (p = 0.003) and 0.01% (p = 0.02). Moreover, Proteus, Morganella, Anaerococcus and Peptoniphilus were associated within the same cluster, co-isolated from biopsies that had a poor evolution. This pathogroup could be a marker of wound degradation and Proteus could represent a promising target in PU management.
Collapse
|
217
|
Burns and biofilms: priority pathogens and in vivo models. NPJ Biofilms Microbiomes 2021; 7:73. [PMID: 34504100 PMCID: PMC8429633 DOI: 10.1038/s41522-021-00243-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023] Open
Abstract
Burn wounds can create significant damage to human skin, compromising one of the key barriers to infection. The leading cause of death among burn wound patients is infection. Even in the patients that survive, infections can be notoriously difficult to treat and can cause lasting damage, with delayed healing and prolonged hospital stays. Biofilm formation in the burn wound site is a major contributing factor to the failure of burn treatment regimens and mortality as a result of burn wound infection. Bacteria forming a biofilm or a bacterial community encased in a polysaccharide matrix are more resistant to disinfection, the rigors of the host immune system, and critically, more tolerant to antibiotics. Burn wound-associated biofilms are also thought to act as a launchpad for bacteria to establish deeper, systemic infection and ultimately bacteremia and sepsis. In this review, we discuss some of the leading burn wound pathogens and outline how they regulate biofilm formation in the burn wound microenvironment. We also discuss the new and emerging models that are available to study burn wound biofilm formation in vivo.
Collapse
|
218
|
Dhoonmoon L, Turner-Dobbin H, Staines K. A renewed look at silver dressings for wound infections: Ag Oxysalts technology. Br J Community Nurs 2021; 26:S26-S36. [PMID: 34473541 DOI: 10.12968/bjcn.2021.26.sup9.s26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wound infection is an important complicating factor in the wound healing process, and infections can be even more complex and difficult to manage in the case of wounds with biofilms. Silver has been used to treat infected wounds for a long time now, and the strength of the product depends on the number of Ag ions, where the greater the number of ions, the higher and faster the reactivity is. Ag Oxysalts technology-used in 3M Kerracontact Ag dressing-has three times more ions than standard silver dressings. The technology also does not show the typical disadvantages of silver, such as cytotoxicity and systemic toxicity. This article discusses the use of Ag Oxysalts technology for infected wounds and presents case studies to support the efficacy of this product in promoting wound healing.
Collapse
Affiliation(s)
- Luxmi Dhoonmoon
- Nurse Consultant Tissue Viability (Goodall), Central and North West London NHS Foundation Trust
| | | | - Karen Staines
- Director: Education and Research/Clinical Lead Wound Care, Accelerate CIC
| |
Collapse
|
219
|
Efficacy of a Topical Wound Agent Methanesulfonic Acid and Dimethylsulfoxide on In Vitro Biofilms. Int J Mol Sci 2021; 22:ijms22179471. [PMID: 34502378 PMCID: PMC8431709 DOI: 10.3390/ijms22179471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022] Open
Abstract
A topical desiccating wound agent containing methanesulfonic acid, dimethylsulfoxide and amorphous silica was evaluated in three in vitro models for its efficacy against biofilms produced by Pseudomonas aeruginosa (ATCC-15442) and Staphylococcus aureus (ATCC-6538). The in vitro biofilm models used were; the MBEC Assay®, Centre for Disease Control (CDC) Biofilm Reactor® and a Semi-solid biofilm model. A 30-s exposure of a topical wound desiccating agent was used in each model. A complete eradication of viable cells was demonstrated in all models for both strains (p < 0.0001). Imaging with scanning electron microscopy (SEM) was performed where possible. All three models demonstrated complete eradication of viable cells with a 30 s application of a topical wound desiccating agent.
Collapse
|
220
|
Alqahtani A, Mena L, Scholl D, Kruczek C, Colmer-Hamood JA, Jeter RM, Hamood AN. Recombinant R2-pyocin cream is effective in treating Pseudomonas aeruginosa-infected wounds. Can J Microbiol 2021; 67:919-932. [PMID: 34437812 DOI: 10.1139/cjm-2021-0207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pseudomonas aeruginosa, a gram-negative opportunistic pathogen, is one of the major species isolated from infected chronic wounds. The multidrug resistance exhibited by P. aeruginosa and its ability to form biofilms that are difficult to eradicate, along with the rising cost of producing new antibiotics, has necessitated the search for alternatives to standard antibiotics. Pyocins are antimicrobial compounds produced by P. aeruginosa that protect themselves from their competitors. We synthesized and purified recombinant P. aeruginosa R2 pyocin and used it in an aqueous solution (rR2P) or formulated in polyethylene glycol (rR2PC) to treat P. aeruginosa-infected wounds. Clinical strains of P. aeruginosa were found to be sensitive (completely), partially sensitive, or resistant to rR2P. In the in vitro biofilm model, rR2P inhibited biofilm development by rR2P-sensitive isolates, while rR2PC eliminated partial biofilms formed by these strains in an in vitro wound biofilm model. In the murine model of excision wounds, and at 24 h post-infection, rR2PC application significantly reduced the bioburden of the clinical isolate BPI86. Application of rR2PC containing two glycoside hydrolase antibiofilm agents eliminated BPI86 from infected wounds. These results suggest that the topical application of rR2PC is an effective therapy for treating wounds infected with R2P-senstive P. aeruginosa strains.
Collapse
Affiliation(s)
| | - London Mena
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dean Scholl
- Pylum Biosciences, San Francisco, California, USA
| | - Cassandra Kruczek
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jane A Colmer-Hamood
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Randall M Jeter
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Abdul N Hamood
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
221
|
Ortega MA, Fraile-Martinez O, García-Montero C, Callejón-Peláez E, Sáez MA, Álvarez-Mon MA, García-Honduvilla N, Monserrat J, Álvarez-Mon M, Bujan J, Canals ML. A General Overview on the Hyperbaric Oxygen Therapy: Applications, Mechanisms and Translational Opportunities. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:864. [PMID: 34577787 PMCID: PMC8465921 DOI: 10.3390/medicina57090864] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
Hyperbaric oxygen therapy (HBOT) consists of using of pure oxygen at increased pressure (in general, 2-3 atmospheres) leading to augmented oxygen levels in the blood (Hyperoxemia) and tissue (Hyperoxia). The increased pressure and oxygen bioavailability might be related to a plethora of applications, particularly in hypoxic regions, also exerting antimicrobial, immunomodulatory and angiogenic properties, among others. In this review, we will discuss in detail the physiological relevance of oxygen and the therapeutical basis of HBOT, collecting current indications and underlying mechanisms. Furthermore, potential areas of research will also be examined, including inflammatory and systemic maladies, COVID-19 and cancer. Finally, the adverse effects and contraindications associated with this therapy and future directions of research will be considered. Overall, we encourage further research in this field to extend the possible uses of this procedure. The inclusion of HBOT in future clinical research could be an additional support in the clinical management of multiple pathologies.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Enrique Callejón-Peláez
- Underwater and Hyperbaric Medicine Service, Central University Hospital of Defence—UAH Madrid, 28801 Alcala de Henares, Spain;
| | - Miguel A. Sáez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence—UAH Madrid, 28801 Alcala de Henares, Spain
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases—Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - María Luisa Canals
- ISM, IMHA Research Chair, Former of IMHA (International Maritime Health Association), 43001 Tarragona, Spain;
| |
Collapse
|
222
|
Armstrong DG, Orgill DP, Galiano RD, Glat PM, DiDomenico LA, Carter MJ, Zelen CM. A multi-centre, single-blinded randomised controlled clinical trial evaluating the effect of resorbable glass fibre matrix in the treatment of diabetic foot ulcers. Int Wound J 2021; 19:791-801. [PMID: 34418302 PMCID: PMC9013587 DOI: 10.1111/iwj.13675] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/25/2021] [Indexed: 12/28/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are at risk for detrimental complications even with current, standard of care (SOC) treatments. The primary objective of this randomised controlled trial was to compare a unique resorbable glass microfiber matrix (Mirragen; Advanced Wound Matrix [BBGFM]; ETS Wound Care, Rolla, Missouri) compared with a standard of care group (SOC, collagen alginate dressing) at 12 weeks. Both groups received standard diabetic foot care including glucose monitoring, weekly debridements when needed and an offloading device. The primary endpoint was proportion of full‐thickness, non‐infected, non‐ischaemic wounds healed at 12 weeks, with secondary endpoints including percent area reduction (PAR) and changes in Semmes‐Weinstein monofilament testing. The result illustrated in the intent‐to‐treat analysis at 12 weeks showed that 70% (14/20) of the BBGFM‐treated DFUs healed compared with 25% (5/20) treated with SOC alone (adjusted P = .006). Mean PAR at 12 weeks was 79% in the BBGFM group compared with 37% in the SOC group (adjusted P = .027). Mean change in neuropathic score between baseline and up to 12 weeks of treatment was 2.0 in the BBGFM group compared with −0.6 in the SOC group where positive improvement in scores are better (adjusted P = .008). The mean number of BBGFM applications was 6.0. In conclusion, adding BBGFM to SOC significantly improved wound healing with no adverse events related to treatment compared with SOC alone.
Collapse
Affiliation(s)
- David G Armstrong
- Department of Surgery Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Dennis P Orgill
- Professional Education and Research Institute, Roanoke, Virginia, USA
| | - Robert D Galiano
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Paul M Glat
- Department of Surgery, Drexel University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Charles M Zelen
- Professional Education and Research Institute, Roanoke, Virginia, USA
| |
Collapse
|
223
|
Reddersen K, Güllmar A, Tonndorf-Martini S, Sigusch BW, Ewald A, Dauben TJ, Martin K, Wiegand C. Critical parameters in cultivation of experimental biofilms using the example of Pseudomonas fluorescens. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:96. [PMID: 34406486 PMCID: PMC8373757 DOI: 10.1007/s10856-021-06568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Formation and treatment of biofilms present a great challenge for health care and industry. About 80% of human infections are associated with biofilms including biomaterial centered infections, like infections of prosthetic heart valves, central venous catheters, or urinary catheters. Additionally, biofilms can cause food and drinking water contamination. Biofilm research focusses on application of experimental biofilm models to study initial adherence processes, to optimize physico-chemical properties of medical materials for reducing interactions between materials and bacteria, and to investigate biofilm treatment under controlled conditions. Exploring new antimicrobial strategies plays a key role in a variety of scientific disciplines, like medical material research, anti-infectious research, plant engineering, or wastewater treatment. Although a variety of biofilm models exist, there is a lack of standardization for experimental protocols, and designing experimental setups remains a challenge. In this study, a number of experimental parameters critical for material research have been tested that influence formation and stability of an experimental biofilm using the non-pathogenic model strain of Pseudomonas fluorescens. These parameters include experimental time frame, nutrient supply, inoculum concentration, static and dynamic cultivation conditions, material properties, and sample treatment during staining for visualization of the biofilm. It was shown, that all tested parameters critically influence the experimental biofilm formation process. The results obtained in this study shall support material researchers in designing experimental biofilm setups.
Collapse
Affiliation(s)
- Kirsten Reddersen
- Klinik für Hautkrankheiten, Universitätsklinikum Jena, Jena, Germany.
| | - André Güllmar
- Poliklinik für Konservierende Zahnheilkunde und Parodontologie, Universitätsklinikum Jena, Jena, Germany
| | - Silke Tonndorf-Martini
- Poliklinik für Konservierende Zahnheilkunde und Parodontologie, Universitätsklinikum Jena, Jena, Germany
| | - Bernd W Sigusch
- Poliklinik für Konservierende Zahnheilkunde und Parodontologie, Universitätsklinikum Jena, Jena, Germany
| | - Andrea Ewald
- Lehrstuhl für Funktionswerkstoffe der Medizin und Zahnheilkunde, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Thomas J Dauben
- Lehrstuhl für Materialwissenschaft, Otto-Schott-Institut für Materialforschung, Jena, Germany
| | - Karin Martin
- Hans-Knöll-Institut, Leibnitz-Institut für Naturstoff-Forschung und Infektionsbiologie, Jena, Germany
| | - Cornelia Wiegand
- Klinik für Hautkrankheiten, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
224
|
Madden L, Low SH, Phillips ARJ, Kline KA, Becker DL. The effects of Staphylococcus aureus biofilm conditioned media on 3T3 fibroblasts. FEMS MICROBES 2021; 2:xtab010. [PMID: 37334228 PMCID: PMC10117754 DOI: 10.1093/femsmc/xtab010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/13/2021] [Indexed: 07/20/2023] Open
Abstract
Staphylococcus aureus (SA) is the most common bacterial species in chronic wounds. However, there is a lack of understanding of how SA secretions affect the cell biology during the healing process. We studied the effects of biofilm-secretions from SA strain SA29213 on 3T3 fibroblasts. SA29213 is a chronic wound isolate and widely used as a reference strain. We used a series of concentrations of biofilm-conditioned media (BCM) and found 100% BCM is lethal within 10 h. Cells survived in ≤75% BCM but the rate of closure in scratch wound assays was reduced. Treatment with 75% and 50% BCM caused fibroblasts to change shape and develop dendrite like processes. Prolonged treatment with 75% and 50% BCM reduced cell proliferation and increased the 4n deoxyribonucleic acid cell population with cell cycle arrest. There was also an elevation in the senescence marker beta galactosidase and the number of multinucleated cells. Shorter treatments with 75% and 50% SA BCM caused an increase in cell-cell adhesion and a redistribution of β-catenin from the cell membrane to the cytoplasm along with a change in the appearance and decrease in size of ZO-1, vinculin and paxillin structures. Fibroblasts in the edge of chronic wounds exposed to the secretions of SA may suffer similar effects such as induction of senescence, reduced proliferation and migration, which may contribute to the delayed healing of these chronic infected wounds.
Collapse
Affiliation(s)
- Leigh Madden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11, Mandalay Road, Singapore, 308232
- Skin Research Institute Singapore, Level 17, Clinical Sciences Building, 11, Mandalay Road, Singapore, 308232
| | - Shyan Huey Low
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11, Mandalay Road, Singapore, 308232
| | - Anthony R J Phillips
- Department of Surgery, School of Biological Sciences, Auckland University, Symonds street, Auckland Central, New Zealand, 1010
| | - Kimberly A Kline
- School of Biological Sciences and Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - David L Becker
- Corresponding author: Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building,11, Mandalay Road, Singapore, 308232. Tel: 65 -65923955; E-mail:
| |
Collapse
|
225
|
Macdonald KE, Boeckh S, Stacey HJ, Jones JD. The microbiology of diabetic foot infections: a meta-analysis. BMC Infect Dis 2021; 21:770. [PMID: 34372789 PMCID: PMC8351150 DOI: 10.1186/s12879-021-06516-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023] Open
Abstract
Background Diabetic foot ulcers are a common complication of poorly controlled diabetes and often become infected, termed diabetic foot infection. There have been numerous studies of the microbiology of diabetic foot infection but no meta-analysis has provided a global overview of these data. This meta-analysis aimed to investigate the prevalence of bacteria isolated from diabetic foot infections using studies of any design which reported diabetic foot infection culture results. Methods The Medline, EMBASE, Web of Science and BIOSIS electronic databases were searched for studies published up to 2019 which contained microbiological culture results from at least 10 diabetic foot infection patients. Two authors independently assessed study eligibility and extracted the data. The main outcome was the prevalence of each bacterial genera or species. Results A total of 112 studies were included, representing 16,159 patients from which 22,198 microbial isolates were obtained. The organism most commonly identified was Staphylococcus aureus, of which 18.0% (95% CI 13.8–22.6%; I2 = 93.8% [93.0–94.5%]) was MRSA. Other highly prevalent organisms were Pseudomonas spp., E. coli and Enterococcus spp. A correlation was identified between Gross National Income and the prevalence of Gram positive or negative organisms in diabetic foot infections. Conclusion The microbiology of diabetic foot infections is diverse, but S. aureus predominates. The correlation between the prevalence of Gram positive and negative organisms and Gross National Income could reflect differences in healthcare provision and sanitation. This meta-analysis has synthesised multiple datasets to provide a global overview of the microbiology of diabetic foot infections that will help direct the development of novel therapeutics. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06516-7.
Collapse
Affiliation(s)
- Katherine E Macdonald
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Sophie Boeckh
- Faculty of Medicine and Health Sciences, McGill University, 3605 Rue de la Montagne, Montreal, QC, H3G 2M1, Canada
| | - Helen J Stacey
- Edinburgh Medical School, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Joshua D Jones
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
226
|
Bosque BA, Frampton C, Chaffin AE, Bohn GA, Woo K, DeLeonardis C, Lepow BD, Melin MM, Madu T, Dowling SG, May BCH. Retrospective real-world comparative effectiveness of ovine forestomach matrix and collagen/ORC in the treatment of diabetic foot ulcers. Int Wound J 2021; 19:741-753. [PMID: 34363311 PMCID: PMC9013592 DOI: 10.1111/iwj.13670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
The retrospective pragmatic real‐world data (RWD) study compared the healing outcomes of diabetic foot ulcers (DFUs) treated with either ovine forestomach matrix (OFM) (n = 1150) or collagen/oxidised regenerated cellulose (ORC) (n = 1072) in out‐patient wound care centres. Median time to wound closure was significantly (P = .0015) faster in the OFM group (14.6 ± 0.5 weeks) relative to the collagen/ORC group (16.4 ± 0.7). A sub‐group analysis was performed to understand the relative efficacy in DFUs requiring longer periods of treatment and showed that DFUs treated with OFM healed up to 5.3 weeks faster in these challenging wounds. The percentage of wounds closed at 36 weeks was significantly improved in OFM treated DFUs relative to the collagen/ORC. A Cox proportional hazards analysis showed OFM‐treated wounds had a 18% greater probability of healing versus wounds managed with collagen/ORC, and the probability increased to 21% when the analysis was adjusted for multiple variables. This study represents the first large retrospective RWD analysis comparing OFM and collagen/ORC and supports the clinical efficacy of OFM in the treatment of DFUs.
Collapse
Affiliation(s)
| | - Christopher Frampton
- Department of Psychological Medicine (Christchurch), Otago University, Christchurch, New Zealand
| | - Abigail E Chaffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Gregory A Bohn
- Department of Surgery, Central Michigan University, Tawas City, Michigan, USA
| | - Kevin Woo
- Queen's School of Nursing, Queen's University, Toronto, Ontario, Canada
| | | | - Brian D Lepow
- Division of Vascular Surgery and Endovascular Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - M Mark Melin
- M Health Fairview Wound Healing Institute, South Campus, Department of Vascular Surgery, University of Minnesota, Edina, Minnesota, USA
| | - Tobe Madu
- Tissue Analytics, a Net Health Company, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
227
|
Kaiser P, Wächter J, Windbergs M. Therapy of infected wounds: overcoming clinical challenges by advanced drug delivery systems. Drug Deliv Transl Res 2021; 11:1545-1567. [PMID: 33611768 PMCID: PMC8236057 DOI: 10.1007/s13346-021-00932-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
In recent years, the incidence of infected wounds is steadily increasing, and so is the clinical as well as economic interest in effective therapies. These combine reduction of pathogen load in the wound with general wound management to facilitate the healing process. The success of current therapies is challenged by harsh conditions in the wound microenvironment, chronicity, and biofilm formation, thus impeding adequate concentrations of active antimicrobials at the site of infection. Inadequate dosing accuracy of systemically and topically applied antibiotics is prone to promote development of antibiotic resistance, while in the case of antiseptics, cytotoxicity is a major problem. Advanced drug delivery systems have the potential to enable the tailor-made application of antimicrobials to the side of action, resulting in an effective treatment with negligible side effects. This review provides a comprehensive overview of the current state of treatment options for the therapy of infected wounds. In this context, a special focus is set on delivery systems for antimicrobials ranging from semi-solid and liquid formulations over wound dressings to more advanced carriers such as nano-sized particulate systems, vesicular systems, electrospun fibers, and microneedles, which are discussed regarding their potential for effective therapy of wound infections. Further, established and novel models and analytical techniques for preclinical testing are introduced and a future perspective is provided.
Collapse
Affiliation(s)
- Pia Kaiser
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Jana Wächter
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
228
|
Rancan F, Jurisch J, Günday C, Türeli E, Blume-Peytavi U, Vogt A, Schaudinn C, Günday-Türeli N. Screening of Surfactants for Improved Delivery of Antimicrobials and Poly-Lactic- co-Glycolic Acid Particles in Wound Tissue. Pharmaceutics 2021; 13:1093. [PMID: 34371785 PMCID: PMC8308990 DOI: 10.3390/pharmaceutics13071093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 01/14/2023] Open
Abstract
Topical wound management is often a challenge due to the poor penetration of antimicrobials in wound tissue and across the biofilm matrix where bacteria are embedded. Surfactants have been used for decades to improve the stability of formulations, increase drug solubility, and enhance penetration. In this study, we screened different detergents with respect to their cytotoxicity and their ability to improve the penetration of poly-lactic-co-glycolic acid (PLGA) particles in wound tissue. Among the tested surfactants, Kolliphor SLS and Tween 80 increased the penetration of PLGA particles and had a limited cytotoxicity. Then, these surfactants were used to formulate PLGA particles loaded with the poorly water-soluble antibiotic ciprofloxacin. The antimicrobial efficacy of the formulations was tested in a wound infection model based on human ex vivo skin. We found that even though PLGA particles had the same antimicrobial efficiency than the particle-free drug formulation, thanks to their solubilizing and anti-biofilm properties, the surfactants remarkably improved the antimicrobial activity of ciprofloxacin with respect to the drug formulation in water. We conclude that the use of Tween 80 in antimicrobial formulations might be a safe and efficient option to improve the topical antimicrobial management of chronic wound infections.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin 10117, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (J.J.); (U.B.-P.); (A.V.)
| | - Jana Jurisch
- Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin 10117, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (J.J.); (U.B.-P.); (A.V.)
| | - Cemre Günday
- MyBiotech, 66802 Überherrn, Germany; (C.G.); (E.T.); (N.G.-T.)
| | - Emre Türeli
- MyBiotech, 66802 Überherrn, Germany; (C.G.); (E.T.); (N.G.-T.)
| | - Ulrike Blume-Peytavi
- Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin 10117, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (J.J.); (U.B.-P.); (A.V.)
| | - Annika Vogt
- Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin 10117, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (J.J.); (U.B.-P.); (A.V.)
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy (Zentrum für Biologische Gefahren und Spezielle Pathogene 4), Robert Koch Institute, 13353 Berlin, Germany;
| | | |
Collapse
|
229
|
Freitas PDSS, Rezende LDA, Silva KEDJ, Fiorin BH, Santos RAD, Ramalho AO. USE OF DIALKYL CARBAMOYL CHLORIDE IN THE PREVENTION AND TREATMENT OF BIOFILM IN WOUNDS. ESTIMA 2021. [DOI: 10.30886/estima.v19.1087_in] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objectives: The aim was to identify the benefits of using Dialkyl Carbamoyl Chloride for the treatment of biofilms in wounds. Methods: This is an integrative literature review that aimed to answer the guiding question: “What are the benefits of using Dialkyl Carbamoyl Chloride in the healing of skin lesions?”. The article selection stages resulted in 13 articles included. Results: The selected articles were grouped into two groups, namely: prevention and treatment of infection in wounds and prevention of surgical site infection, with nine productions in the first group and four in the second. Studies have shown that Dialkyl Carbamoyl Chloride attenuates colonization symptoms, such as odor, pain complaints and oozing, in addition to aiding in the prophylactic management of wound biofilm. Evidence indicates that dressings with Dialkyl Carbamoyl Chloride have no adverse effects, making them viable and safe options for chronic, acute and, mainly, infected injuries. Conclusion: It was identified that Dialkyl Carbamoyl Chloride was able to promote beneficial actions in the treatment of wounds, especially those of greater complexity. The proper choice of dressings and coverings can contribute to the rational use of existing technologies and antimicrobials, culminating in cost reduction and promotion of quality of life for individuals with chronic wounds.
Collapse
|
230
|
Ghomi ER, Shakiba M, Ardahaei AS, Akbari M, Faraji M, Ataei S, Kohansal P, Jafari I, Abdouss M, Ramakrishna S. Innovations in drug delivery for chronic wound healing. Curr Pharm Des 2021; 28:340-351. [PMID: 34269663 DOI: 10.2174/1381612827666210714102304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Wound healing is a varied and complex process designed to promptly restore standard skin structure, function, and appearance. To achieve this goal, different immune and biological systems participate in coordination through four separate steps, including homeostasis, inflammation, proliferation, and regeneration. Each step involves the function of other cells, cytokines, and growth factors. However, chronic ulcers, which are classified into three types of ulcers, namely vascular ulcers, diabetic ulcers, and pressure ulcers, cannot heal through the mentioned natural stages. It causes mental and physical problems for these people and, as a result, imposes high economic and social costs on society. In this regard, using a system that can accelerate the healing process of such chronic wounds, as an urgent need in the community, should be considered. Therefore, in this study, the innovations of drug delivery systems for the healing of chronic wounds using hydrogels, nanomaterial, and membranes are discussed and reviewed.
Collapse
Affiliation(s)
- Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, Faculty of Engineering, Singapore 117581, Singapore
| | | | - Ali Saedi Ardahaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, P.O. Box 491888369, Iran
| | - Mahsa Akbari
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Faraji
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Shahla Ataei
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Parisa Kohansal
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Iman Jafari
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, Faculty of Engineering, Singapore 117581, Singapore
| |
Collapse
|
231
|
Astrada A, Nakagami G, Minematsu T, Goto T, Kitamura A, Mugita Y, Sanada H. Concurrent validity of biofilm detection by wound blotting on hard-to-heal wounds. J Wound Care 2021; 30:S4-S13. [PMID: 33856931 DOI: 10.12968/jowc.2021.30.sup4.s4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Wound biofilms delay healing of hard-to-heal wounds. Convenient biofilm identification tools for clinical settings are currently not available, hindering biofilm-based wound management. Wound blotting with biofilm staining is a potential tool for biofilm detection, owing to its convenience. Although predictive validity of wound blotting has been established, it is necessary to confirm its concurrent validity. Furthermore, current staining systems employing ruthenium red have some disadvantages for clinical use. This study aimed to evaluate the usability of alcian blue as a substitute for ruthenium red. METHOD Both in vitro and in vivo clinical samples were used to investigate validity and usability. RESULTS The in vitro study showed that proteins and extracellular DNA in biofilms did not affect staining ability of ruthenium red and alcian blue in the detection of biofilms. In the in vivo study, using a wound biofilm model with Pseudomonas aeruginosa, the staining sensitivity of ruthenium red was 88.9% and 100% for alcian blue, with correlation coefficients of signal intensities with native polyacrylamide gel electrophoresis (PAGE) of r=0.67 (p=0.035) and r=0.67 (p=0.036) for ruthenium red and alcian blue, respectively. Results from clinical samples were r=0.75 (p=0.001) for ruthenium red and r=0.77 (p<0.001) for alcian blue. The sensitivities of wound blotting staining by ruthenium red and alcian blue were very high and had a good correlation with native PAGE analysis. CONCLUSION Because the alcian blue procedure is more convenient than the ruthenium red procedure, wound blotting with alcian blue staining would be a promising tool to guide clinicians in delivering biofilm-based wound management.
Collapse
Affiliation(s)
- Adam Astrada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeo Minematsu
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Skincare Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taichi Goto
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, US
| | - Aya Kitamura
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuko Mugita
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
232
|
Stürmer EK, Dissemond J. Evidenz in der lokalen Therapie chronischer Wunden: Was ist gesichert? AKTUELLE DERMATOLOGIE 2021. [DOI: 10.1055/a-1469-7828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungChronische Wunden sind ein komplexes Symptom verschiedener Grunderkrankungen. Sie können bspw. vaskulärer, metabolischer oder immunologischer Genese sein. Auch wenn die Therapie dieser Grunderkrankungen im Vordergrund steht und zielführend ist, so beeinflussen diese Wunden die Lebensqualität der einzelnen Patienten oder Patientinnen stark. Zur Lokaltherapie chronischer Wunden steht ein breites Portfolio an Möglichkeiten zur Verfügung. Anders als in anderen Bereichen der Medizin ist die Evidenz für die verschiedenen Lokaltherapeutika meist gering. Deshalb rücken Experten-Empfehlungen und Leitlinien an ihre Stelle, die sinnvolle Behandlungspfade aufzeigen. Die wichtigsten Fragestellungen in der täglichen Praxis betreffen die Wahl und Effektivität der Wundspülung und des Wunddebridements, das Exsudatmanagement, den Einsatz von antimikrobiellen Wirkstoffen in Lösungen und Wundauflagen, die Unterdruck-Wundtherapie (NPWT) und die Indikationsstellung zur Kompressionstherapie. Trotz des Mangels an Evidenz folgt die Behandlung chronischer Wunde einigen grundlegenden Prinzipien, die im folgenden Artikel inklusive der dazugehörigen Behandlungsempfehlungen dargestellt werden.
Collapse
Affiliation(s)
- E. K. Stürmer
- Universitätsklinikum Hamburg-Eppendorf, Universitäres Herz- und Gefäßzentrum, Klinik und Poliklinik für Gefäßmedizin, Hamburg
| | - J. Dissemond
- Universitätsklinikum Hamburg-Eppendorf, Universitäres Herz- und Gefäßzentrum, Klinik und Poliklinik für Gefäßmedizin, Hamburg
| |
Collapse
|
233
|
Birk SE, Boisen A, Nielsen LH. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Adv Drug Deliv Rev 2021; 174:30-52. [PMID: 33845040 DOI: 10.1016/j.addr.2021.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Now-a-days healthcare systems face great challenges with antibiotic resistance and low efficacy of antibiotics when combating pathogenic bacteria and bacterial biofilms. Administration of an antibiotic in its free form is often ineffective due to lack of selectivity to the infectious site and breakdown of the antibiotic before it exerts its effect. Therefore, polymeric delivery systems, where the antibiotic is encapsulated into a formulation, have shown great promise, facilitating a high local drug concentration at the site of infection, a controlled drug release and less drug degradation. All this leads to improved therapeutic effects and fewer systemic side effects together with a lower risk of developing antibiotic resistance. Here, we review and provide a comprehensive overview of polymer-based nano- and microparticles as carriers for antimicrobial agents and their effect on eradicating bacterial biofilms. We have a main focus on polymeric particulates containing poly(lactic-co-glycolic acid), chitosan and polycaprolactone, but also strategies involving combinations of these polymers are included. Different production techniques are reviewed and important parameters for biofilm treatment are discussed such as drug loading capacity, control of drug release, influence of particle size and mobility in biofilms. Additionally, we reflect on other promising future strategies for combating biofilms such as lipid-polymer hybrid particles, enzymatic biofilm degradation, targeted/triggered antibiotic delivery and future alternatives to the conventional particles.
Collapse
|
234
|
Pires BMFB, Baptista de Oliveira BGR, Bokehi LC, Luiz RR, Carvalho BTF, Santana RF, Alfradique de Souza P, Renato de Paula G, Teixeira LA. Clinical and Microbiological Outcomes Associated With Use of Platelet-Rich Plasma in Chronic Venous Leg Uclers: A Randomized Controlled Trial. J Wound Ostomy Continence Nurs 2021; 48:292-299. [PMID: 34186547 DOI: 10.1097/won.0000000000000774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate the susceptibility profiles of Staphylococcus aureus and Pseudomonas aeruginosa strains identified in chronic venous ulcers treated with platelet-rich plasma (PRP) and petrolatum gauze or petrolatum gauze alone and to quantitatively evaluate the bacterial load and biofilm-forming capacities of the detected S. aureus and P. aeruginosa strains. DESIGN Randomized controlled trial. SUBJECTS AND SETTING The convenience sample included 36 participants; 18 were allocated to the PRP combined with the petrolatum gauze group, and 18 were allocated to the control group, which was treated with petrolatum gauze alone. METHODS Thirty-six patients presenting with chronic venous ulcers were consecutively randomized to the PRP group (n = 18) or the petrolatum gauze control group (n = 18). We followed participants for 3 months during treatment and collected swab cultures from their wounds during weeks 1, 6, and 12 or until the wounds healed. The samples were analyzed using mass spectrometry. Antimicrobial susceptibility tests were performed using disk diffusion. RESULTS P. aeruginosa was identified in 39 (39%) of 100 samples, and S. aureus was detected in only 10 (10%) samples collected over the study period. At the end of the 12-week treatment period, the wound infections reduced in both the PRP (P = .0078) and control groups (P = .01). The microorganisms were susceptible to most of the tested antimicrobials. The PRP did not increase the bacterial load in the wounds. All S. aureus strains identified showed biofilm-forming capacities and were classified as weak biofilm producers. All P. aeruginosa strains produced biofilm, with 17 strains being classified as weak, 14 as moderate, and 8 as strong biofilm producers. CONCLUSIONS The PRP plus petrolatum gauze did not increase bacteriological growth or the microbial load in chronic venous ulcers compared with petrolatum gauze alone and could be a considered as an advanced treatment option for these types of chronic wounds.
Collapse
Affiliation(s)
- Bruna Maiara Ferreira Barreto Pires
- Bruna Maiara Ferreira Barreto Pires, PhD, RN, Universidade Federal Fluminense, Niterói, Brazil
- Beatriz Guitton Renaud Baptista de Oliveira, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Luciana Castilho Bokehi, GD, Universidade Federal Fluminense, Niterói, Brazil
- Ronir Raggio Luiz, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Bernadete Teixeira Ferreira Carvalho, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rosimere Ferreira Santana, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Priscilla Alfradique de Souza, PhD, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Geraldo Renato de Paula, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Lenise Arneiro Teixeira, PhD, Universidade Federal Fluminense, Niterói, Brazil
| | - Beatriz Guitton Renaud Baptista de Oliveira
- Bruna Maiara Ferreira Barreto Pires, PhD, RN, Universidade Federal Fluminense, Niterói, Brazil
- Beatriz Guitton Renaud Baptista de Oliveira, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Luciana Castilho Bokehi, GD, Universidade Federal Fluminense, Niterói, Brazil
- Ronir Raggio Luiz, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Bernadete Teixeira Ferreira Carvalho, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rosimere Ferreira Santana, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Priscilla Alfradique de Souza, PhD, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Geraldo Renato de Paula, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Lenise Arneiro Teixeira, PhD, Universidade Federal Fluminense, Niterói, Brazil
| | - Luciana Castilho Bokehi
- Bruna Maiara Ferreira Barreto Pires, PhD, RN, Universidade Federal Fluminense, Niterói, Brazil
- Beatriz Guitton Renaud Baptista de Oliveira, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Luciana Castilho Bokehi, GD, Universidade Federal Fluminense, Niterói, Brazil
- Ronir Raggio Luiz, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Bernadete Teixeira Ferreira Carvalho, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rosimere Ferreira Santana, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Priscilla Alfradique de Souza, PhD, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Geraldo Renato de Paula, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Lenise Arneiro Teixeira, PhD, Universidade Federal Fluminense, Niterói, Brazil
| | - Ronir Raggio Luiz
- Bruna Maiara Ferreira Barreto Pires, PhD, RN, Universidade Federal Fluminense, Niterói, Brazil
- Beatriz Guitton Renaud Baptista de Oliveira, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Luciana Castilho Bokehi, GD, Universidade Federal Fluminense, Niterói, Brazil
- Ronir Raggio Luiz, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Bernadete Teixeira Ferreira Carvalho, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rosimere Ferreira Santana, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Priscilla Alfradique de Souza, PhD, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Geraldo Renato de Paula, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Lenise Arneiro Teixeira, PhD, Universidade Federal Fluminense, Niterói, Brazil
| | - Bernadete Teixeira Ferreira Carvalho
- Bruna Maiara Ferreira Barreto Pires, PhD, RN, Universidade Federal Fluminense, Niterói, Brazil
- Beatriz Guitton Renaud Baptista de Oliveira, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Luciana Castilho Bokehi, GD, Universidade Federal Fluminense, Niterói, Brazil
- Ronir Raggio Luiz, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Bernadete Teixeira Ferreira Carvalho, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rosimere Ferreira Santana, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Priscilla Alfradique de Souza, PhD, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Geraldo Renato de Paula, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Lenise Arneiro Teixeira, PhD, Universidade Federal Fluminense, Niterói, Brazil
| | - Rosimere Ferreira Santana
- Bruna Maiara Ferreira Barreto Pires, PhD, RN, Universidade Federal Fluminense, Niterói, Brazil
- Beatriz Guitton Renaud Baptista de Oliveira, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Luciana Castilho Bokehi, GD, Universidade Federal Fluminense, Niterói, Brazil
- Ronir Raggio Luiz, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Bernadete Teixeira Ferreira Carvalho, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rosimere Ferreira Santana, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Priscilla Alfradique de Souza, PhD, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Geraldo Renato de Paula, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Lenise Arneiro Teixeira, PhD, Universidade Federal Fluminense, Niterói, Brazil
| | - Priscilla Alfradique de Souza
- Bruna Maiara Ferreira Barreto Pires, PhD, RN, Universidade Federal Fluminense, Niterói, Brazil
- Beatriz Guitton Renaud Baptista de Oliveira, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Luciana Castilho Bokehi, GD, Universidade Federal Fluminense, Niterói, Brazil
- Ronir Raggio Luiz, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Bernadete Teixeira Ferreira Carvalho, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rosimere Ferreira Santana, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Priscilla Alfradique de Souza, PhD, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Geraldo Renato de Paula, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Lenise Arneiro Teixeira, PhD, Universidade Federal Fluminense, Niterói, Brazil
| | - Geraldo Renato de Paula
- Bruna Maiara Ferreira Barreto Pires, PhD, RN, Universidade Federal Fluminense, Niterói, Brazil
- Beatriz Guitton Renaud Baptista de Oliveira, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Luciana Castilho Bokehi, GD, Universidade Federal Fluminense, Niterói, Brazil
- Ronir Raggio Luiz, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Bernadete Teixeira Ferreira Carvalho, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rosimere Ferreira Santana, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Priscilla Alfradique de Souza, PhD, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Geraldo Renato de Paula, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Lenise Arneiro Teixeira, PhD, Universidade Federal Fluminense, Niterói, Brazil
| | - Lenise Arneiro Teixeira
- Bruna Maiara Ferreira Barreto Pires, PhD, RN, Universidade Federal Fluminense, Niterói, Brazil
- Beatriz Guitton Renaud Baptista de Oliveira, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Luciana Castilho Bokehi, GD, Universidade Federal Fluminense, Niterói, Brazil
- Ronir Raggio Luiz, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Bernadete Teixeira Ferreira Carvalho, PhD, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rosimere Ferreira Santana, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Priscilla Alfradique de Souza, PhD, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Geraldo Renato de Paula, PhD, Universidade Federal Fluminense, Niterói, Brazil
- Lenise Arneiro Teixeira, PhD, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
235
|
Kim J, Yang GS, Lyon D, Kelly DL, Stechmiller J. Metabolomics: Impact of Comorbidities and Inflammation on Sickness Behaviors for Individuals with Chronic Wounds. Adv Wound Care (New Rochelle) 2021; 10:357-369. [PMID: 32723226 PMCID: PMC8165460 DOI: 10.1089/wound.2020.1215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Significance: Approximately 6.5 million people in the United States suffer from chronic wounds. The chronic wound population is typically older and is characterized by a number of comorbidities associated with inflammation. In addition to experiencing wound-related pain, individuals with chronic wounds commonly experience multiple concurrent psychoneurological symptoms such as fatigue and depression, which delay wound healing. However, these distressing symptoms have been relatively overlooked in this population, although their adverse effects on morbidity are well established in other chronic disease populations. Recent Advances: Inflammation is involved in multiple pathways, which activate brain endothelial and innate immune cells that release proinflammatory cytokines, which produce multiple symptoms known as sickness behaviors. Inflammation-based activation of the kynurenine (KYN) pathway and its metabolites is a mechanism associated with chronic illnesses. Critical Issues: Although putative humoral and neuronal routes have been identified, the specific metabolic variations involved in sickness behaviors in chronic wound patients remain unclear. To improve health outcomes in the chronic wound population, clinicians need to have better understanding of the mechanisms underlying sickness behaviors to provide appropriate treatments. Future Directions: This article presents a synthesis of studies investigating associations between inflammation, metabolic pathways, and sickness behaviors in multiple chronic diseases. The presentation of a theoretical framework proposes a mechanism underlying sickness behaviors in the chronic wound population. By mediating the immune system response, dysregulated metabolites in the KYN pathway may play an important role in sickness behaviors in chronic inflammatory conditions. This framework may guide researchers in developing new treatments to reduce the disease burden in the chronic wound population.
Collapse
Affiliation(s)
- Junglyun Kim
- Adult and Gerontological Health Cooperative, University of Minnesota School of Nursing, Minneapolis, Minnesota, USA
| | - Gee Su Yang
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Debra Lyon
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Debra L. Kelly
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Joyce Stechmiller
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| |
Collapse
|
236
|
Dilhari A, Weerasekera M, Gunasekara C, Pathirage S, Fernando N, Weerasekara D, McBain AJ. Biofilm prevalence and microbial characterisation in chronic wounds in a Sri Lankan cohort. Lett Appl Microbiol 2021; 73:477-485. [PMID: 34184296 DOI: 10.1111/lam.13532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 01/13/2023]
Abstract
Biofilms have been associated with chronic wound infections in diabetic patients. The study assessed the occurrence of biofilms in chronic diabetic wounds (CDWs) in a Sri Lankan cohort. Tissue specimens collected during surgical debridement were analysed by quantitative differential viable counting, scanning electron microscopy (SEM), fluorescence insitu hybridization (FISH) and light microscopy with Gram and Haematoxylin-Eosin staining. All specimens harboured >5·0 log10 CFU per g bacteria and 2-9 distinct species per specimen were recovered from twenty wounds by culture. The most frequently isolated bacterium was Pseudomonas spp. (12/20;60%). Strict anaerobes were isolated from 10/20 specimens. Gram and Haematoxylin-Eosin staining showed aggregated micro-colonies, embedded in the wound tissue bed (20/20) but the exopolymer matrix was not visible in all samples (13/20). Fluorescence microscopy using a eubacteria-specific FISH probe indicated the presence of bacterial aggregates within the deep layers of the wound tissues (20/20). SEM revealed the presumptive architecture of matrix-embedded microbial clusters (20/20). The approximate diameter of bacterial aggregates in tissues ranged between 12 and 400 µm. Bacterial infiltration into the internal portions of the tissues was apparent using FISH, Gram, and Haematoxylin-Eosin staining. All CDWs carried biofilm-specific morphological features. FISH was more specific than SEM and indicated the presence of microcolonies within deeper tissues.
Collapse
Affiliation(s)
- A Dilhari
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.,Department of Basic Sciences, Faculty of Allied Health Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - C Gunasekara
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - S Pathirage
- Department of Bacteriology, Medical Research Institute, Colombo 08, Sri Lanka
| | - N Fernando
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - D Weerasekara
- Department of Surgery, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - A J McBain
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.,Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
237
|
The Insights of Microbes' Roles in Wound Healing: A Comprehensive Review. Pharmaceutics 2021; 13:pharmaceutics13070981. [PMID: 34209654 PMCID: PMC8308956 DOI: 10.3390/pharmaceutics13070981] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
A diverse range of normal flora populates the human skin and numbers are relatively different between individuals and parts of the skin. Humans and normal flora have formed a symbiotic relationship over a period of time. With numerous disease processes, the interaction between the host and normal flora can be interrupted. Unlike normal wound healing, which is complex and crucial to sustaining the skin’s physical barrier, chronic wounds, especially in diabetes, are wounds that fail to heal in a timely manner. The conditions become favorable for microbes to colonize and establish infections within the skin. These include secretions of various kinds of molecules, substances or even trigger the immune system to attack other cells required for wound healing. Additionally, the healing process can be slowed down by prolonging the inflammatory phase and delaying the wound repair process, which causes further destruction to the tissue. Antibiotics and wound dressings become the targeted therapy to treat chronic wounds. Though healing rates are improved, prolonged usage of these treatments could become ineffective or microbes may become resistant to the treatments. Considering all these factors, more studies are needed to comprehensively elucidate the role of human skin normal flora at the cellular and molecular level in a chronic injury. This article will review wound healing physiology and discuss the role of normal flora in the skin and chronic wounds.
Collapse
|
238
|
Antibiofilm activity of host defence peptides: complexity provides opportunities. Nat Rev Microbiol 2021; 19:786-797. [PMID: 34183822 DOI: 10.1038/s41579-021-00585-w] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Host defence peptides (HDPs) are integral components of innate immunity across all living organisms. These peptides can exert direct antibacterial effects, targeting planktonic cells (referred to as antimicrobial peptides), and exhibit antibiofilm (referred to as antibiofilm peptides), antiviral, antifungal and host-directed immunomodulatory activities. In this Review, we discuss how the complex functional attributes of HDPs provide many opportunities for the development of antimicrobial therapeutics, focusing particularly on their emerging antibiofilm properties. The mechanisms of action of antibiofilm peptides are compared and contrasted with those of antimicrobial peptides. Furthermore, obstacles for the practical translation of candidate peptides into therapeutics and the potential solutions are discussed. Critically, HDPs have the value-added assets of complex functional attributes, particularly antibiofilm and anti-inflammatory activities and their synergy with conventional antibiotics.
Collapse
|
239
|
Antibiofilm Efficacy of Polihexanide, Octenidine and Sodium Hypochlorite/Hypochlorous Acid Based Wound Irrigation Solutions against Staphylococcus aureus, Pseudomonas aeruginosa and a Multispecies Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1369:53-67. [PMID: 34173213 DOI: 10.1007/5584_2021_645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Infection and the formation of biofilms have been shown to have a significant role in increased inflammation and delayed wound healing. Wound irrigation solutions are used to debride wounds, removing cell debris and infecting microorganisms, therefore preventing infection. The aim of this study was to evaluate a Polihexanide (PHMB) based wound irrigation solution, Octenidine HCl based wound irrigation solution and electrolysed water based wound care solution for antibiofilm efficacy against Staphylococcus aureus, Pseudomonas aeruginosa and a multispecies biofilm in several models to gain a broad understanding of ability. The PHMB based wound irrigation solution demonstrated broad range antibiofilm efficacy against P. aeruginosa, S. aureus and the multispecies biofilm. The Octenidine HCl based wound irrigation solution and the electrolysed water based wound care solution demonstrated potent antibiofilm efficacy against S. aureus and to a lesser extent P. aeruginosa. Overall, less efficacy was observed in the drip flow bioreactor model for all 3 test solutions, which may be attributed to the continuous flow of nutrients during treatment, which may have diluted or washed away the solution. The data presented also highlights the importance of testing antibiofilm activity in a range of biofilm models and against different bacterial strains to get an overall representation of efficacy.
Collapse
|
240
|
Spindler N, Moter A, Wiessner A, Gradistanac T, Borger M, Rodloff AC, Langer S, Kikhney J. Fluorescence in situ Hybridization (FISH) in the Microbiological Diagnostic of Deep Sternal Wound Infection (DSWI). Infect Drug Resist 2021; 14:2309-2319. [PMID: 34188497 PMCID: PMC8232876 DOI: 10.2147/idr.s310139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose Postoperative mediastinitis after cardiac surgery is still a devastating complication. Insufficient microbiological specimens obtained by superficial swabbing may only detect bacteria on the surface, but pathogens that are localized in the deep tissue may be missed. The aim of this study was to analyze deep sternal wound infection (DSWI) samples by conventional microbiological procedures and fluorescence in situ hybridization (FISH) in order to discuss a diagnostic benefit of the culture-independent methods and to map spatial organization of pathogens and microbial biofilms in the wounds. Methods Samples from 12 patients were collected and analyzed using classic microbiological culture and FISH in combination with molecular nucleic acid amplification techniques (FISHseq). Frequency of and the time to occurrence of a DSWI was recorded, previous operative interventions, complications, as well as individual risk factors and the microbiologic results were documented. Results Tissue samples were taken from 12 patients suffering from DSWI. Classical microbiological culture resulted in the growth of microorganisms in the specimens of five patients (42%), including bacteria and in one case Candida. FISHseq gave additional diagnostic information in five cases (41%) and confirmed culture results in seven cases (59%). Conclusion Microbial biofilms are not always present in DSWI wounds, but microorganisms are distributed in a “patchy” pattern in the tissue. Therefore, a deep excision of the wound has to be performed to control the infection. We recommend to analyze at least two wound samples from different locations by culture and in difficult to interpret cases, additional molecular biological analysis by FISHseq.
Collapse
Affiliation(s)
- Nick Spindler
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Annette Moter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Berlin, Germany.,MoKi Analytics GmbH, Berlin, Germany
| | - Alexandra Wiessner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Berlin, Germany.,MoKi Analytics GmbH, Berlin, Germany
| | - Tanja Gradistanac
- Department of Pathology, University Clinic Leipzig, Leipzig, Germany
| | - Michael Borger
- Department of Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Leipzig, Germany
| | - Arne C Rodloff
- Institute of Microbiology and Epidemiology of Infectious Diseases, University Hospital Leipzig, Leipzig, Germany
| | - Stefan Langer
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Judith Kikhney
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Berlin, Germany.,MoKi Analytics GmbH, Berlin, Germany
| |
Collapse
|
241
|
Brown HL, Clayton A, Stephens P. The role of bacterial extracellular vesicles in chronic wound infections: Current knowledge and future challenges. Wound Repair Regen 2021; 29:864-880. [PMID: 34132443 DOI: 10.1111/wrr.12949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Chronic wounds are a significant global problem with an increasing economic and patient welfare impact. How wounds move from an acute to chronic, non-healing, state is not well understood although it is likely that it is driven by a poorly regulated local inflammatory state. Opportunistic pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa are well known to stimulate a pro-inflammatory response and so their presence may further drive chronicity. Studies have demonstrated that host cell extracellular vesicles (hEVs), in particular exosomes, have multiple roles in both increasing and decreasing chronicity within wounds; however, the role of bacterial extracellular vesicles (bEVs) is still poorly understood. The aim of this review is to evaluate bEV biogenesis and function within chronic wound relevant bacterial species to determine what, if any, role bEVs may have in driving wound chronicity. We determine that bEVs drive chronicity by both increasing persistence of key pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa and stimulating a pro-inflammatory response by the host. Data also suggest that both bEVs and hEVs show therapeutic promise, providing vaccine candidates, decoy targets for bacterial toxins or modulating the bacterial species within chronic wound biofilms. Caution should, however, be used when interpreting findings to date as the bEV field is still in its infancy and as such lacks consistency in bEV isolation and characterization. It is of primary importance that this is addressed, allowing meaningful conclusions to be drawn and increasing reproducibility within the field.
Collapse
Affiliation(s)
- Helen L Brown
- School of Dentistry, Cardiff University, Cardiff, UK
| | - Aled Clayton
- Division of Cancer & Genetics, School of Medicine, Cardiff, UK
| | - Phil Stephens
- School of Dentistry, Cardiff University, Cardiff, UK
| |
Collapse
|
242
|
Bjarnsholt T, Mastroianni E, Kirketerp-Møller K, Stewart PS, Mähr AM, Domínguez Cabañes A, Nørager R. The impact of mental models on the treatment and research of chronic infections due to biofilms. APMIS 2021; 129:598-606. [PMID: 34120370 DOI: 10.1111/apm.13163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/30/2021] [Indexed: 01/14/2023]
Abstract
Research on biofilms is predominantly made in in vitro contexts. However, in vivo observation of biofilms in human chronic infections shows distinct differences compared to in vitro biofilm growth. This could imply the use of an inadequate mental model both in research and healthcare practices. Drawing on knowledge from the cognitive sciences, we hypothesise that the predominance of in vitro research on biofilms is skewed towards a mental model promoting wrong inferences for researchers and healthcare professionals (HCPs) in the in vivo context. To explore the prevalence of such a mental model, we carried out a qualitative image analysis in which biofilm illustrations from a Google image search were coded for typical in vitro or in vivo characteristics. Further, to investigate potential misinformed and unhelpful clinical interventions related to biofilms, we conducted a quantitative questionnaire among HCPs. The questions were designed to test whether knowledge about in vitro biofilms was used in an in vivo context. This questionnaire was analysed through a chi-squared test. Most biofilm illustrations were consistent with the in vitro model. A statistical analysis of survey responses revealed that HCPs have adequate knowledge about biofilm but often respond incorrectly when asked to apply their knowledge to in vivo contexts. The outcome of this research points to a prevalent and consolidated mental model derived from in vitro observations. This model has likely been made dominant by HCPs' frequent exposure to visual depictions in articles and presentations. The prevalence of the in vitro model sets up the possibility of erroneous claims when the in vitro model is inadequately applied to in vivo contexts. This has potential implications for HCPs working in fields involving biofilm, such as wound care treatment.
Collapse
Affiliation(s)
- Thomas Bjarnsholt
- Costerton Biofilm Centre, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | | | | | | |
Collapse
|
243
|
Mahnic A, Breznik V, Bombek Ihan M, Rupnik M. Comparison Between Cultivation and Sequencing Based Approaches for Microbiota Analysis in Swabs and Biopsies of Chronic Wounds. Front Med (Lausanne) 2021; 8:607255. [PMID: 34150786 PMCID: PMC8211761 DOI: 10.3389/fmed.2021.607255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic wounds are a prominent health concern affecting 0.2% of individuals in the Western population. Microbial colonization and the consequent infection contribute significantly to the healing process. We have compared two methods, cultivation and 16S amplicon sequencing (16S-AS), for the characterization of bacterial populations in both swabs and biopsy tissues obtained from 45 chronic wounds. Using cultivation approach, we detected a total of 39 bacterial species, on average 2.89 per sample (SD = 1.93), compared to 5.9 (SD = 7.1) operational taxonomic units per sample obtained with 16S-AS. The concordance in detected bacteria between swab and biopsy specimens obtained from the same CWs was greater when using cultivation (58.4%) as compared to 16S-AS (25%). In the entire group of 45 biopsy samples concordance in detected bacterial genera between 16S-AS and cultivation-based approach was 36.4% and in swab samples 28.7%. Sequencing proved advantageous in comparison to the cultivation mainly in case of highly diverse microbial communities, where we could additionally detect numerous obligate and facultative anaerobic bacteria from genera Anaerococcus, Finegoldia, Porphyromonas, Morganella, and Providencia. Comparing swabs and biopsy tissues we concluded, that neither sampling method shows significant advantage over the other regardless of the method used (16S-AS or cultivation). In this study, chronic wound microbiota could be distributed into three groups based on the bacterial community diversity. The chronic wound surface area was positively correlated with bacterial diversity in swab specimens but not in biopsy tissues. Larger chronic wound surface area was also associated with the presence of Pseudomonas in both biopsy and swab specimens. The presence of Corynebacterium species at the initial visit was the microbial marker most predictive of the unfavorable clinical outcome after one-year follow-up visit.
Collapse
Affiliation(s)
- Aleksander Mahnic
- National Laboratory for Health, Environment, and Food, Department for Microbiological Research, Maribor, Slovenia
| | - Vesna Breznik
- Department of Dermatology and Venereal Diseases, University Medical Centre Maribor, Maribor, Slovenia
| | - Maja Bombek Ihan
- National Laboratory for Health, Environment, and Food, Department for Medical Microbiology, Maribor, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment, and Food, Department for Microbiological Research, Maribor, Slovenia
- Department of Microbiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
244
|
Li S, Renick P, Senkowsky J, Nair A, Tang L. Diagnostics for Wound Infections. Adv Wound Care (New Rochelle) 2021; 10:317-327. [PMID: 32496977 DOI: 10.1089/wound.2019.1103] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Significance: Infections can significantly delay the healing process in chronic wounds, placing an enormous economic burden on health care resources. Identification of infection biomarkers and imaging modalities to observe and quantify them has seen progress over the years. Recent Advances: Traditionally, clinicians determine the presence of infection through visual observation of wounds and confirm their diagnosis through wound culture. Many laboratory markers, including C-reactive protein, procalcitonin, presepsin, and bacterial protease activity, have been quantified to assist diagnosis of infection. Moreover, imaging modalities like plain radiography, computed tomography, magnetic resonance imaging, ultrasound imaging, spatial frequency domain imaging, thermography, autofluorescence imaging, and biosensors have emerged for real-time wound infection diagnosis and showed their unique advantages in deeper wound infection diagnosis. Critical Issues: While traditional diagnostic approaches provide valuable information, they are time-consuming and depend on clinicians' experiences. There is a need for noninvasive wound infection diagnostics that are highly specific, rapid, and accurate, and do not require extensive training. Future Directions: While innovative diagnostics utilizing various imaging instrumentation are being developed, new biomarkers have been investigated as potential indicators for wound infection. Products may be developed to either qualitatively or quantitatively measure these biomarkers. This review summarizes and compares all available diagnostics for wound infection, including those currently used in clinics and still under development. This review could serve as a valuable resource for clinicians treating wound infections as well as patients and wound care providers who would like to be informed of the recent developments.
Collapse
Affiliation(s)
- Shuxin Li
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, USA
| | - Paul Renick
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, USA
| | - Jon Senkowsky
- Texas Health Physician's Group, Arlington, Texas, USA
| | | | - Liping Tang
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
245
|
Alves PJ, Barreto RT, Barrois BM, Gryson LG, Meaume S, Monstrey SJ. Update on the role of antiseptics in the management of chronic wounds with critical colonisation and/or biofilm. Int Wound J 2021; 18:342-358. [PMID: 33314723 PMCID: PMC8244012 DOI: 10.1111/iwj.13537] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 12/22/2022] Open
Abstract
Biofilms play a major role in delaying chronic wounds from healing. A wound infiltrated with biofilm, or "critically colonised" wound, may become clinically infected if the number of microbes exceeds a critical level. Chronic wound biofilms represent a significant treatment challenge by demonstrating recalcitrance towards antimicrobial agents. However, a "window of opportunity" may exist after wound debridement when biofilms are more susceptible to topical antiseptics. Here, we discuss the role of antiseptics in the management of chronic wounds and biofilm, focusing on povidone-iodine (PVP-I) in comparison with two commonly used antiseptics: polyhexanide (PHMB) and silver. This article is based on the literature reviewed during a focus group meeting on antiseptics in wound care and biofilm management, and on a PubMed search conducted in March 2020. Compared with PHMB and silver, PVP-I has a broader spectrum of antimicrobial activity, potent antibiofilm efficacy, no acquired bacterial resistance or cross-resistance, low cytotoxicity, good tolerability, and an ability to promote wound healing. PVP-I represents a viable therapeutic option in wound care and biofilm management, with the potential to treat biofilm-infiltrated, critically colonised wounds. We propose a practical algorithm to guide the management of chronic, non-healing wounds due to critical colonisation or biofilm, using PVP-I.
Collapse
Affiliation(s)
- Paulo J. Alves
- Wounds Research LaboratoryUniversidade Católica PortuguesaPortoPortugal
| | | | | | - Luc G. Gryson
- Belgian Defence Military Medical ComponentBrusselsBelgium
| | - Sylvie Meaume
- Department of Geriatrics and Wound Care UnitHospital Rothschild, APHP Assistance Publique Hôpitaux de Paris, Sorbonne UniversitéParisFrance
| | - Stan J. Monstrey
- Department of Plastic SurgeryGhent University HospitalGhentBelgium
| |
Collapse
|
246
|
Czajkowska J, Junka A, Hoppe J, Toporkiewicz M, Pawlak A, Migdał P, Oleksy-Wawrzyniak M, Fijałkowski K, Śmiglak M, Markowska-Szczupak A. The Co-Culture of Staphylococcal Biofilm and Fibroblast Cell Line: The Correlation of Biological Phenomena with Metabolic NMR 1 Footprint. Int J Mol Sci 2021; 22:ijms22115826. [PMID: 34072418 PMCID: PMC8198359 DOI: 10.3390/ijms22115826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus is one of the most prevalent pathogens associated with several types of biofilm-based infections, including infections of chronic wounds. Mature staphylococcal biofilm is extremely hard to eradicate from a wound and displays a high tendency to induce recurring infections. Therefore, in the present study, we aimed to investigate in vitro the interaction between S. aureus biofilm and fibroblast cells searching for metabolites that could be considered as potential biomarkers of critical colonization and infection. Utilizing advanced microscopy and microbiological methods to examine biofilm formation and the staphylococcal infection process, we were able to distinguish 4 phases of biofilm development. The analysis of staphylococcal biofilm influence on the viability of fibroblasts allowed us to pinpoint the moment of critical colonization-12 h post contamination. Based on the obtained model we performed a metabolomics analysis by 1H NMR spectroscopy to provide new insights into the pathophysiology of infection. We identified a set of metabolites related to the switch to anaerobic metabolism that was characteristic for staphylococcal biofilm co-cultured with fibroblast cells. The data presented in this study may be thus considered a noteworthy but preliminary step in the direction of developing a new, NMR-based tool for rapid diagnosing of infection in a chronic wound.
Collapse
Affiliation(s)
- Joanna Czajkowska
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| | - Adam Junka
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy Wrocław Medical University, 50-556 Wrocław, Poland
- Correspondence: ; Tel.: +48-889-229-341
| | - Jakub Hoppe
- Poznan Science and Technology Park (PPNT), Rubiez 5, 61-612 Poznań, Poland; (J.H.); (M.Ś.)
| | - Monika Toporkiewicz
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
| | - Andrzej Pawlak
- Department of Nervous System Diseases, Kazimierza Bartla 5, 50-996 Wrocław, Poland;
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Monika Oleksy-Wawrzyniak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Marcin Śmiglak
- Poznan Science and Technology Park (PPNT), Rubiez 5, 61-612 Poznań, Poland; (J.H.); (M.Ś.)
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| |
Collapse
|
247
|
Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, Mah TF, Griffith M, Alarcon EI. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience 2021; 24:102443. [PMID: 34013169 PMCID: PMC8113887 DOI: 10.1016/j.isci.2021.102443] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biofilm formation in living organisms is associated to tissue and implant infections, and it has also been linked to the contribution of antibiotic resistance. Thus, understanding biofilm development and being able to mimic such processes is vital for the successful development of antibiofilm treatments and therapies. Several decades of research have contributed to building the foundation for developing in vitro and in vivo biofilm models. However, no such thing as an "all fit" in vitro or in vivo biofilm models is currently available. In this review, in addition to presenting an updated overview of biofilm formation, we critically revise recent approaches for the improvement of in vitro and in vivo biofilm models.
Collapse
Affiliation(s)
- Irene Guzmán-Soto
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Christopher McTiernan
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Mayte Gonzalez-Gomez
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Alex Ross
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Keshav Gupta
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Erik J. Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
- Département d'ophtalmologie, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| |
Collapse
|
248
|
Wound Repair and Extremely Low Frequency-Electromagnetic Field: Insight from In Vitro Study and Potential Clinical Application. Int J Mol Sci 2021; 22:ijms22095037. [PMID: 34068809 PMCID: PMC8126245 DOI: 10.3390/ijms22095037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Wound healing is a complex, staged process. It involves extensive communication between the different cellular constituents of various compartments of the skin and its extracellular matrix (ECM). Different signaling pathways are determined by a mutual influence on each other, resulting in a dynamic and complex crosstalk. It consists of various dynamic processes including a series of overlapping phases: hemostasis, inflammation response, new tissue formation, and tissue remodeling. Interruption or deregulation of one or more of these phases may lead to non-healing (chronic) wounds. The most important factor among local and systemic exogenous factors leading to a chronic wound is infection with a biofilm presence. In the last few years, an increasing number of reports have evaluated the effects of extremely low frequency (ELF) electromagnetic fields (EMFs) on tissue repair. Each experimental result comes from a single element of this complex process. An interaction between ELF-EMFs and healing has shown to effectively modulate inflammation, protease matrix rearrangement, neo-angiogenesis, senescence, stem-cell proliferation, and epithelialization. These effects are strictly related to the time of exposure, waveform, frequency, and amplitude. In this review, we focus on the effect of ELF-EMFs on different wound healing phases.
Collapse
|
249
|
Pedersen RR, Krömker V, Bjarnsholt T, Dahl-Pedersen K, Buhl R, Jørgensen E. Biofilm Research in Bovine Mastitis. Front Vet Sci 2021; 8:656810. [PMID: 34026893 PMCID: PMC8138050 DOI: 10.3389/fvets.2021.656810] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Bovine mastitis is one of the most important diseases in the dairy industry and has detrimental impact on the economy and welfare of the animals. Further, treatment failure results in increased antibiotic use in the dairy industry, as some of these mastitis cases for unknown reasons are not resolved despite standard antibiotic treatment. Chronic biofilm infections are notoriously known to be difficult to eradicate with antibiotics and biofilm formation could be a possible explanation for mastitis cases that are not resolved by standard treatment. This paper reviews the current literature on biofilm in bovine mastitis research to evaluate the status and methods used in the literature. Focus of the current research has been on isolates from milk samples and investigation of their biofilm forming properties in vitro. However, in vitro observations of biofilm formation are not easily comparable with the in vivo situation inside the udder. Only two papers investigate the location and distribution of bacterial biofilms inside udders of dairy cows with mastitis. Based on the current knowledge, the role of biofilm in bovine mastitis is still unclear and more in vivo investigations are needed to uncover the actual role of biofilm formation in the pathogenesis of bovine mastitis.
Collapse
Affiliation(s)
- Regitze Renee Pedersen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Volker Krömker
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kirstin Dahl-Pedersen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elin Jørgensen
- Department Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
250
|
Norman G, Shi C, Westby MJ, Price BL, McBain AJ, Dumville JC, Cullum N. Bacteria and bioburden and healing in complex wounds: A prognostic systematic review. Wound Repair Regen 2021; 29:466-477. [PMID: 33591630 DOI: 10.1111/wrr.12898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
The wound microbiome may play an important role in the wound healing process. We conducted the first systematic prognosis review investigating whether aspects of the wound microbiome are independent prognostic factors for the healing of complex wounds. We searched Medline, Embase, CINAHL and the Cochrane Library to February 2019. We included longitudinal studies which assessed the independent association of aspects of wound microbiome with healing of complex wounds while controlling for confounding factors. Two reviewers extracted data and assessed risk of bias and certainty of evidence using the GRADE approach. We synthesised studies narratively due to the clinical and methodological heterogeneity of included studies and sparse data. We identified 28 cohorts from 21 studies with a total of 38,604 participants, including people with diabetes and foot ulcers, open surgical wounds, venous leg ulcers and pressure ulcers. Risk of bias varied from low (2 cohorts) to high (17 cohorts); the great majority of participants were in cohorts at high risk of bias. Most evidence related to the association of baseline clinical wound infection with healing. Clinical infection at baseline may be associated with less likelihood of wound healing in foot ulcers in diabetes (HR from cohort with moderate risk of bias 0.53, 95% CI 0.33 to 0.83) or slower healing in open surgical wounds (HR 0.65, 95% CI 0.51 to 0.83); evidence in other wounds is more limited. Most other associations assessed showed no clear relationship with wound healing; evidence was limited and often sparse; and we documented gaps in the evidence. There is low certainty evidence that a diagnosis of wound infection may be prognostic of poorer healing in foot ulcers in diabetes, and some moderate certainty evidence for this in open surgical wounds. Low certainty evidence means that more research could change these findings.
Collapse
Affiliation(s)
- Gill Norman
- Division of Nursing, Midwifery & Social Work, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Chunhu Shi
- Division of Nursing, Midwifery & Social Work, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Maggie J Westby
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Bianca L Price
- Division of Pharmacy & Optometry, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Andrew J McBain
- Division of Pharmacy & Optometry, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Jo C Dumville
- Division of Nursing, Midwifery & Social Work, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Research and Innovation Division, Manchester University Foundation NHS Trust, Manchester, UK
| | - Nicky Cullum
- Division of Nursing, Midwifery & Social Work, School of Health Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Research and Innovation Division, Manchester University Foundation NHS Trust, Manchester, UK
| |
Collapse
|