201
|
Singh P, Srivas S, Thakur MK. Epigenetic Regulation of Memory-Therapeutic Potential for Disorders. Curr Neuropharmacol 2017; 15:1208-1221. [PMID: 28393704 PMCID: PMC5725549 DOI: 10.2174/1570159x15666170404144522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/03/2017] [Accepted: 03/25/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Memory is a vital function which declines in different physiological and pathological conditions such as aging and neurodegenerative diseases. Research in the past has reported that memory formation and consolidation require the precise expression of synaptic plasticity genes. However, little is known about the regulation of these genes. Epigenetic modification is now a well established mechanism that regulates synaptic plasticity genes and neuronal functions including memory. Therefore, we have reviewed the epigenetic regulation of memory and its therapeutic potential for memory dysfunction during aging and neurological disorders. METHOD Research reports and online contents relevant to epigenetic regulation of memory during physiological and pathological conditions have been compiled and discussed. RESULTS Epigenetic modifications include mainly DNA methylation and hydroxymethylation, histone acetylation and methylation which involve chromatin modifying enzymes. These epigenetic marks change during memory formation and impairment due to dementia, aging and neurodegeneration. As the epigenetic modifications are reversible, they can be modulated by enzyme inhibitors leading to the recovery of memory. CONCLUSION Epigenetic modifications could be exploited as a potential therapeutic target to recover memory disorders during aging and pathological conditions.
Collapse
Affiliation(s)
- Padmanabh Singh
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Sweta Srivas
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - M K Thakur
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
202
|
Gonçalves LK, da Silva IRV, Cechinel LR, Frusciante MR, de Mello AS, Elsner VR, Funchal C, Dani C. Maternal consumption of high-fat diet and grape juice modulates global histone H4 acetylation levels in offspring hippocampus: A preliminary study. Neurosci Lett 2017; 661:29-32. [PMID: 28951285 DOI: 10.1016/j.neulet.2017.09.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/21/2017] [Accepted: 09/21/2017] [Indexed: 01/10/2023]
Abstract
This study aimed to investigate the impact of maternal consumption of a hyperlipid diet and grape juice on global histone H4 acetylation levels in the offsprinǵs hippocampus at different stages of development. During pregnancy and lactation of offspring, dams were divided into 4 groups: control diet (CD), high-fat diet (HFD), control diet and purple grape juice (PGJCD) and purple grape juice and high-fat diet (PGJHFD). Male Wistar rats were euthanized at 21days of age (PN21, adolescents) and at 50days of age (PN50, adults). The maternal consumption of grape juice increased global histone H4 acetylation levels in hippocampus of adolescents pups (PN21), an indicative of enhanced transcriptional activity and increased gene expression. On the other hand, the maternal high-fat diet diminished significantly this epigenetic marker in the adult phase (PN50), suggesting gene silencing. These preliminary findings demonstrated that the maternal choices are able to induce changes on histone H4 acetylation status in hippocampus of the offspring, which may modulate the expression of specific genes. Interestingly, this response occurs in an age and stimuli-dependent manner and strongly reinforce the importance of maternal choices during gestation.
Collapse
Affiliation(s)
- Luciana Kneib Gonçalves
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Ivy Reichert Vital da Silva
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Laura Reck Cechinel
- Programa de Pós Graduação em Ciências Biológicas: Fisiologia, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Marina Rocha Frusciante
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Alexandre Silva de Mello
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Viviane Rostirola Elsner
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Claudia Funchal
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Caroline Dani
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
203
|
Bhattacharya S, Mukherjee B, Doré JJE, Yuan Q, Harley CW, McLean JH. Histone deacetylase inhibition induces odor preference memory extension and maintains enhanced AMPA receptor expression in the rat pup model. ACTA ACUST UNITED AC 2017; 24:543-551. [PMID: 28916629 PMCID: PMC5602343 DOI: 10.1101/lm.045799.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
Abstract
Histone deacetylase (HDAC) plays a role in synaptic plasticity and long-term memory formation. We hypothesized that trichostatin-A (TSA), an HDAC inhibitor, would promote long-term odor preference memory and maintain enhanced GluA1 receptor levels that have been hypothesized to support memory. We used an early odor preference learning model in neonate rat pups that normally produces only 24-h memory to test behavior and examine receptor protein expression. Our behavioral studies showed that intrabulbar infusion of TSA, prior to pairing of the conditioned stimulus (peppermint odor) with the unconditioned stimulus (tactile stimulation), prolonged 24-h odor preference memory for at least 9 d. The prolonged odor preference memory was selective for the paired odor and was also observed using a specific HDAC6 inhibitor, tubacin, supporting a role for histone acetylation in associative memory. Immunoblot analysis showed that GluA1 receptor membrane expression in the olfactory bulbs of the TSA-treated group was significantly increased at 48 h unlike control rats without TSA. Immunohistochemistry revealed significant increase of GluA1 expression in olfactory bulb glomeruli 5 d after training. These results extend previous evidence for a close relationship between enhanced GluA1 receptor membrane expression and memory expression. Together, these findings provide a new single-trial appetitive model for understanding the support and maintenance of memories of varying duration.
Collapse
Affiliation(s)
- Sriya Bhattacharya
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Bandhan Mukherjee
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Jules J E Doré
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Qi Yuan
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3X9
| | - John H McLean
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| |
Collapse
|
204
|
Kang S, Son Y, Lee S, Kim J, Kim JC, Kim JS, Jung U, Kim SH, Yang M, Moon C. Changes in epigenetic markers, DNMT1 and HDAC1/2, in the adult mouse hippocampus after cranial irradiation. Neurosci Lett 2017; 657:113-119. [DOI: 10.1016/j.neulet.2017.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/25/2017] [Accepted: 08/01/2017] [Indexed: 01/30/2023]
|
205
|
Saul D, Ninkovic M, Komrakova M, Wolff L, Simka P, Gasimov T, Menger B, Hoffmann DB, Rohde V, Sehmisch S. Effect of zileuton on osteoporotic bone and its healing, expression of bone, and brain genes in rats. J Appl Physiol (1985) 2017; 124:118-130. [PMID: 28860177 DOI: 10.1152/japplphysiol.01126.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Estrogen deficiency and aging are associated with osteoporosis, impaired bone healing, and lower cognitive performance. Close functional and physical connections occur between bone and the central nervous system. An anti-inflammatory drug, zileuton (which is an inhibitor of arachidonate 5-lipoxygenase), is known to have a positive effect on bone tissue repair and brain ischemia. We studied the effect of zileuton on osteopenic bone and its healing and on the genes considered to be crucial for the cross talks between bone and brain. Three-month-old Sprague-Dawley rats were ovariectomized or left untreated. After 8 wk, bilateral metaphyseal tibia osteotomy with plate osteosynthesis was performed in all rats. Ovariectomized rats were fed with food containing zileuton (1, 10, or 100 mg/kg body wt) for 5 wk. In tibiae, bone volume, callus and cortical volume, and gene expression of osteocalcin and alkaline phosphatase were enhanced by zileuton (10 or 100 mg); biomechanical properties and bone density were not changed. In femur, zileuton enlarged cortical volume distal and trabecular volume proximal, decreasing their density. The expression level of brain Sema3a, known to regulate bone mass positively, was downregulated after ovariectomy. In contrast, bone Sema4d, a negative regulator of bone mass, was upregulated in the tibia callus after ovariectomy, whereas zileuton treatment (10 or 100 mg) resulted in reverse effects. Here, we describe for the first time the expression of Rbbp4 mRNA and its increase in tibia after ovariectomy. Zileuton caused downregulation of Rbbp4 in the hippocampus and had an effect on bone healing, changed the expression of genes involved in cross talk between bones and brain, and may be a potent drug for further examination in estrogen deficiency-related dysfunction(s). NEW & NOTEWORTHY Zileuton, a 5-lipoxygenase inhibitor, increased bone volume, callus and cortical volume in osteotomized tibia, and trabecular and cortical volume in femur. Although the expression of Sema3a (positively regulating bone mass) in brain was downregulated and Sema4d (negatively regulating bone mass) was upregulated in tibia callus after ovariectomy, zileuton could counteract these effects. Rbbp4 (involved in age-related memory loss) was increased in tibia callus after ovariectomy.
Collapse
Affiliation(s)
- D Saul
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| | - M Ninkovic
- Department of Neurosurgery, University Medical Center Göttingen , Göttingen , Germany
| | - M Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| | - L Wolff
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| | - P Simka
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| | - T Gasimov
- Department of Neurosurgery, University Medical Center Göttingen , Göttingen , Germany
| | - B Menger
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| | - D B Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| | - V Rohde
- Department of Neurosurgery, University Medical Center Göttingen , Göttingen , Germany
| | - S Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| |
Collapse
|
206
|
Ajonijebu DC, Abboussi O, Russell VA, Mabandla MV, Daniels WMU. Epigenetics: a link between addiction and social environment. Cell Mol Life Sci 2017; 74:2735-2747. [PMID: 28255755 PMCID: PMC11107568 DOI: 10.1007/s00018-017-2493-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/14/2023]
Abstract
The detrimental effects of drug abuse are apparently not limited to individuals but may also impact the vulnerability of their progenies to develop addictive behaviours. Epigenetic signatures, early life experience and environmental factors, converge to influence gene expression patterns in addiction phenotypes and consequently may serve as mediators of behavioural trait transmission between generations. The majority of studies investigating the role of epigenetics in addiction do not consider the influence of social interactions. This shortcoming in current experimental approaches necessitates developing social models that reflect the addictive behaviour in a free-living social environment. Furthermore, this review also reports on the advancement of interventions for drug addiction and takes into account the emerging roles of histone deacetylase (HDAC) inhibitors in the etiology of drug addiction and that HDAC may be a potential therapeutic target at nucleosomal level to improve treatment outcomes.
Collapse
Affiliation(s)
- Duyilemi C Ajonijebu
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Oualid Abboussi
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| | - Vivienne A Russell
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Musa V Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - William M U Daniels
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
207
|
Schmitt A, Martins-de-Souza D, Akbarian S, Cassoli JS, Ehrenreich H, Fischer A, Fonteh A, Gattaz WF, Gawlik M, Gerlach M, Grünblatt E, Halene T, Hasan A, Hashimoto K, Kim YK, Kirchner SK, Kornhuber J, Kraus TFJ, Malchow B, Nascimento JM, Rossner M, Schwarz M, Steiner J, Talib L, Thibaut F, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World J Biol Psychiatry 2017; 18:330-356. [PMID: 27782767 DOI: 10.1080/15622975.2016.1224929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Despite progress in identifying molecular pathophysiological processes in schizophrenia, valid biomarkers are lacking for both the disease and treatment response. METHODS This comprehensive review summarises recent efforts to identify molecular mechanisms on the level of protein and gene expression and epigenetics, including DNA methylation, histone modifications and micro RNA expression. Furthermore, it summarises recent findings of alterations in lipid mediators and highlights inflammatory processes. The potential that this research will identify biomarkers of schizophrenia is discussed. RESULTS Recent studies have not identified clear biomarkers for schizophrenia. Although several molecular pathways have emerged as potential candidates for future research, a complete understanding of these metabolic pathways is required to reveal better treatment modalities for this disabling condition. CONCLUSIONS Large longitudinal cohort studies are essential that pair a thorough phenotypic and clinical evaluation for example with gene expression and proteome analysis in blood at multiple time points. This approach might identify biomarkers that allow patients to be stratified according to treatment response and ideally also allow treatment response to be predicted. Improved knowledge of molecular pathways and epigenetic mechanisms, including their potential association with environmental influences, will facilitate the discovery of biomarkers that could ultimately be effective tools in clinical practice.
Collapse
Affiliation(s)
- Andrea Schmitt
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany.,b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Daniel Martins-de-Souza
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil.,c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Schahram Akbarian
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Juliana S Cassoli
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Hannelore Ehrenreich
- e Clinical Neuroscience , Max Planck Institute of Experimental Medicine, DFG Centre for Nanoscale Microscopy & Molecular Physiology of the Brain , Göttingen , Germany
| | - Andre Fischer
- f Research Group for Epigenetics in Neurodegenerative Diseases , German Centre for Neurodegenerative Diseases (DZNE), Göttingen , Germany.,g Department of Psychiatry and Psychotherapy , University Medical Centre Göttingen , Germany
| | - Alfred Fonteh
- h Neurosciences , Huntington Medical Research Institutes , Pasadena , CA , USA
| | - Wagner F Gattaz
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Michael Gawlik
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany
| | - Manfred Gerlach
- j Centre for Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University of Würzburg , Germany
| | - Edna Grünblatt
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany.,k Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zürich , Switzerland.,l Neuroscience Centre Zurich , University of Zurich and the ETH Zurich , Switzerland.,m Zurich Centre for Integrative Human Physiology , University of Zurich , Switzerland
| | - Tobias Halene
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Alkomiet Hasan
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Kenij Hashimoto
- n Division of Clinical Neuroscience , Chiba University Centre for Forensic Mental Health , Chiba , Japan
| | - Yong-Ku Kim
- o Department of Psychiatry , Korea University, College of Medicine , Republic of Korea
| | | | - Johannes Kornhuber
- p Department of Psychiatry and Psychotherapy , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | | | - Berend Malchow
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Juliana M Nascimento
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Moritz Rossner
- r Department of Psychiatry, Molecular and Behavioural Neurobiology , LMU Munich , Germany.,s Research Group Gene Expression , Max Planck Institute of Experimental Medicine , Göttingen , Germany
| | - Markus Schwarz
- t Institute for Laboratory Medicine, LMU Munich , Germany
| | - Johann Steiner
- u Department of Psychiatry , University of Magdeburg , Magdeburg , Germany
| | - Leda Talib
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Florence Thibaut
- v Department of Psychiatry , University Hospital Cochin (site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Peter Riederer
- w Center of Psychic Health; Department of Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Germany
| | - Peter Falkai
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | | |
Collapse
|
208
|
A selective inhibitor of histone deacetylase 3 prevents cognitive deficits and suppresses striatal CAG repeat expansions in Huntington's disease mice. Sci Rep 2017; 7:6082. [PMID: 28729730 PMCID: PMC5519595 DOI: 10.1038/s41598-017-05125-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/24/2017] [Indexed: 12/03/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder whose major symptoms include progressive motor and cognitive dysfunction. Cognitive decline is a critical quality of life concern for HD patients and families. The enzyme histone deacetylase 3 (HDAC3) appears to be important in HD pathology by negatively regulating genes involved in cognitive functions. Furthermore, HDAC3 has been implicated in the aberrant transcriptional patterns that help cause disease symptoms in HD mice. HDAC3 also helps fuel CAG repeat expansions in human cells, suggesting that HDAC3 may power striatal expansions in the HTT gene thought to drive disease progression. This multifaceted role suggests that early HDAC3 inhibition offers an attractive mechanism to prevent HD cognitive decline and to suppress striatal expansions. This hypothesis was investigated by treating HdhQ111 knock-in mice with the HDAC3-selective inhibitor RGFP966. Chronic early treatment prevented long-term memory impairments and normalized specific memory-related gene expression in hippocampus. Additionally, RGFP966 prevented corticostriatal-dependent motor learning deficits, significantly suppressed striatal CAG repeat expansions, partially rescued striatal protein marker expression and reduced accumulation of mutant huntingtin oligomeric forms. These novel results highlight RGFP966 as an appealing multiple-benefit therapy in HD that concurrently prevents cognitive decline and suppresses striatal CAG repeat expansions.
Collapse
|
209
|
Valiati FE, Vasconcelos M, Lichtenfels M, Petry FS, de Almeida RMM, Schwartsmann G, Schröder N, de Farias CB, Roesler R. Administration of a Histone Deacetylase Inhibitor into the Basolateral Amygdala Enhances Memory Consolidation, Delays Extinction, and Increases Hippocampal BDNF Levels. Front Pharmacol 2017; 8:415. [PMID: 28701956 PMCID: PMC5487430 DOI: 10.3389/fphar.2017.00415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/13/2017] [Indexed: 01/28/2023] Open
Abstract
Gene expression related to the formation and modification of memories is regulated epigenetically by chromatin remodeling through histone acetylation. Memory formation and extinction can be enhanced by treatment with inhibitors of histone deacetylases (HDACs). The basolateral amygdala (BLA) is a brain area critically involved in regulating memory for inhibitory avoidance (IA). However, previous studies have not examined the effects of HDAC inhibition in the amygdala on memory for IA. Here we show that infusion of an HDAC inhibitor (HDACi), trichostatin A (TSA), into the BLA, enhanced consolidation of IA memory in rats when given at 1.5, 3, or 6 h posttraining, but not when the drug was infused immediately after training. In addition, intra-BLA administration of TSA immediately after retrieval delayed extinction learning. Moreover, we show that intra-BLA TSA in rats given IA training increased the levels of brain-derived neurotrophic factor in the dorsal hippocampus, but not in the BLA itself. These findings reveal novel aspects of the regulation of fear memory by epigenetic mechanisms in the amygdala.
Collapse
Affiliation(s)
- Fernanda E Valiati
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do SulPorto Alegre, Brazil.,Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Mailton Vasconcelos
- Institute of Psychology, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Martina Lichtenfels
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Fernanda S Petry
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do SulPorto Alegre, Brazil.,Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Rosa M M de Almeida
- Institute of Psychology, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Gilberto Schwartsmann
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital, Federal University of Rio Grande do SulPorto Alegre, Brazil.,Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Nadja Schröder
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do SulPorto Alegre, Brazil
| | - Caroline B de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital, Federal University of Rio Grande do SulPorto Alegre, Brazil.,Children's Cancer InstitutePorto Alegre, Brazil
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do SulPorto Alegre, Brazil.,Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital, Federal University of Rio Grande do SulPorto Alegre, Brazil
| |
Collapse
|
210
|
Fernandes J, Arida RM, Gomez-Pinilla F. Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobehav Rev 2017; 80:443-456. [PMID: 28666827 DOI: 10.1016/j.neubiorev.2017.06.012] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/18/2017] [Accepted: 06/26/2017] [Indexed: 02/08/2023]
Abstract
A large amount of evidence has demonstrated the power of exercise to support cognitive function, the effects of which can last for considerable time. An emerging line of scientific evidence indicates that the effects of exercise are longer lasting than previously thought up to the point to affect future generations. The action of exercise on epigenetic regulation of gene expression seem central to building an "epigenetic memory" to influence long-term brain function and behavior. In this review article, we discuss new developments in the epigenetic field connecting exercise with changes in cognitive function, including DNA methylation, histone modifications and microRNAs (miRNAs). The understanding of how exercise promotes long-term cognitive effects is crucial for directing the power of exercise to reduce the burden of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Jansen Fernandes
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Physiology-Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ricardo Mario Arida
- Department of Physiology-Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
211
|
Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 2017; 546:381-386. [PMID: 28562591 PMCID: PMC5505514 DOI: 10.1038/nature22405] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/28/2017] [Indexed: 12/17/2022]
Abstract
Metabolic production of acetyl-CoA is linked to histone acetylation and gene regulation, yet the precise mechanisms are largely unknown. Here we show that the metabolic enzyme acetyl-CoA synthetase 2 (ACSS2) is a direct regulator of histone acetylation in neurons and of spatial memory in mammals. In a neuronal cell culture model, ACSS2 increases in nuclei of differentiating neurons and localizes to upregulated neuronal genes near elevated histone acetylation. Reduction of ACSS2 lowers nuclear acetyl-CoA levels, histone acetylation, and responsive expression of the cohort of neuronal genes. In adult mice, attenuation of hippocampal ACSS2 expression impairs long-term spatial memory, a cognitive process reliant on histone acetylation. ACSS2 reduction in hippocampus also leads to defective upregulation of memory-related neuronal genes that are pre-bound by ACSS2. These results reveal a unique connection between cellular metabolism, gene regulation, and neural plasticity, establishing a link between acetyl-CoA generation “on-site” at chromatin for histone acetylation and the transcription of critical neuronal genes.
Collapse
|
212
|
Mitchnick KA, Creighton SD, Cloke JM, Wolter M, Zaika O, Christen B, Van Tiggelen M, Kalisch BE, Winters BD. Dissociable roles for histone acetyltransferases p300 and PCAF in hippocampus and perirhinal cortex-mediated object memory. GENES BRAIN AND BEHAVIOR 2017; 15:542-57. [PMID: 27251651 DOI: 10.1111/gbb.12303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
Abstract
The importance of histone acetylation for certain types of memory is now well established. However, the specific contributions of the various histone acetyltransferases to distinct memory functions remain to be determined; therefore, we employed selective histone acetyltransferase protein inhibitors and short-interference RNAs to evaluate the roles of CREB-binding protein (CBP), E1A-binding protein (p300) and p300/CBP-associated factor (PCAF) in hippocampus and perirhinal cortex (PRh)-mediated object memory. Rats were tested for short- (STM) and long-term memory (LTM) in the object-in-place task, which relies on the hippocampus and PRh for spatial memory and object identity processing, respectively. Selective inhibition of these histone acetyltransferases by small-interfering RNA and pharmacological inhibitors targeting the HAT domain produced dissociable effects. In the hippocampus, CBP or p300 inhibition impaired long-term but not short-term object memory, while inhibition of PCAF impaired memory at both delays. In PRh, HAT inhibition did not impair STM, and only CBP and PCAF inhibition disrupted LTM; p300 inhibition had no effects. Messenger RNA analyses revealed findings consistent with the pattern of behavioral effects, as all three enzymes were upregulated in the hippocampus (dentate gyrus) following learning, whereas only CBP and PCAF were upregulated in PRh. These results demonstrate, for the first time, the necessity of histone acetyltransferase activity for PRh-mediated object memory and indicate that the specific mnemonic roles of distinctive histone acetyltransferases can be dissociated according to specific brain regions and memory timeframe.
Collapse
Affiliation(s)
- K A Mitchnick
- Department of Psychology, University of Guelph, Guelph, ON, Canada.,Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - S D Creighton
- Department of Psychology, University of Guelph, Guelph, ON, Canada.,Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - J M Cloke
- Department of Psychology, University of Guelph, Guelph, ON, Canada.,Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - M Wolter
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - O Zaika
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - B Christen
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - M Van Tiggelen
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - B E Kalisch
- Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.,Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - B D Winters
- Department of Psychology, University of Guelph, Guelph, ON, Canada.,Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
213
|
A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nat Med 2017; 23:782-787. [DOI: 10.1038/nm.4311] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/07/2017] [Indexed: 02/08/2023]
|
214
|
Shivarama Shetty M, Sajikumar S. 'Tagging' along memories in aging: Synaptic tagging and capture mechanisms in the aged hippocampus. Ageing Res Rev 2017; 35:22-35. [PMID: 28065806 DOI: 10.1016/j.arr.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/12/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
Abstract
Aging is accompanied by a general decline in the physiological functions of the body with the deteriorating organ systems. Brain is no exception to this and deficits in cognitive functions are quite common in advanced aging. Though a variety of age-related alterations are observed in the structure and function throughout the brain, certain regions show selective vulnerability. Medial temporal lobe, especially the hippocampus, is one such preferentially vulnerable region and is a crucial structure involved in the learning and long-term memory functions. Hippocampal synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), are candidate cellular correlates of learning and memory and alterations in these properties have been well documented in aging. A related phenomenon called synaptic tagging and capture (STC) has been proposed as a mechanism for cellular memory consolidation and to account for temporal association of memories. Mounting evidences from behavioral settings suggest that STC could be a physiological phenomenon. In this article, we review the recent data concerning STC and provide a framework for how alterations in STC-related mechanisms could contribute to the age-associated memory impairments. The enormity of impairment in learning and memory functions demands an understanding of age-associated memory deficits at the fundamental level given its impact in the everyday tasks, thereby in the quality of life. Such an understanding is also crucial for designing interventions and preventive measures for successful brain aging.
Collapse
|
215
|
Context and Auditory Fear are Differentially Regulated by HDAC3 Activity in the Lateral and Basal Subnuclei of the Amygdala. Neuropsychopharmacology 2017; 42:1284-1294. [PMID: 27924874 PMCID: PMC5437888 DOI: 10.1038/npp.2016.274] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/04/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Abstract
Histone acetylation is a fundamental epigenetic mechanism that is dynamically regulated during memory formation. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) compete to modulate histone acetylation, allowing for rapid changes in acetylation in response to a learning event. HDACs are known to be powerful negative regulators of memory formation, but it is not clear whether this function depends on HDAC enzymatic activity per se. Here, we tested whether the enzymatic activity of an individual Class I HDAC, HDAC3, has a role in fear memory formation in subregions of the hippocampus and amygdala. We found that fear conditioning drove expression of the immediate early genes cFos and Nr4a2 in the hippocampus, which coincided with reduced HDAC3 occupancy at these promoters. Using a dominant-negative, deacetylase-dead point mutant virus (AAV-HDAC3(Y298H)-v5), we found that selectively blocking HDAC3 deacetylase activity in either the dorsal hippocampus or basal nucleus of the amygdala enhanced context fear without affecting tone fear. Blocking HDAC3 activity in the lateral nucleus of the amygdala, on the other hand, enhanced tone, but not context fear memory. These results show for the first time that the enzymatic activity of HDAC3 functions to negatively regulate fear memory formation. Further, HDAC3 activity regulates different aspects of fear memory in the basal and lateral subregions of the amygdala. Thus, the deacetylase activity of HDAC3 is a powerful negative regulator of fear memory formation in multiple subregions of the fear circuit.
Collapse
|
216
|
Ranjan V, Singh S, Siddiqui SA, Tripathi S, Khan MY, Prakash A. Differential Histone Acetylation in Sub-Regions of Bed Nucleus of the Stria Terminalis Underlies Fear Consolidation and Extinction. Psychiatry Investig 2017; 14:350-359. [PMID: 28539954 PMCID: PMC5440438 DOI: 10.4306/pi.2017.14.3.350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The hallmark of anxiety disorders is excessive fear. Previous studies have suggested that selective neural projections from Basal nucleus of stria terminalis (BNST) to amygdala and vice-versa precisely control the fear learning process. However the exact mechanism how the BNST controls fear consolidation and its extinction is largely unknown. In the present study we observed the changes in the BNST sub-regions following fear conditioning and its extinction. METHODS The change in the number of positive neurons was determined by immunohistochemistry for Acetyl H3 (Histone 3), Acetyl H4 (Histone 4), cAMP response element binding Protein (CBP) and c-fos in three sub-regions of the BNST namely the anterio-lateral BNST (STLP) and anterio-medial BNST (STMA), and lateral-ventral BNST (STLV) of rats subjected to auditory fear conditioning and extinction. RESULTS We found significant increase in the number of CBP, acetyl H3 and acetyl H4 positive neurons in the STMA and STLV but not in the STLP after fear conditioning. However, following fear extinction the number of CBP, acetyl H3 and acetyl H4 positive neurons increased significantly in the STLP but not in the STMA and STLV. Similar changes were observed in the number of c-fos positive neurons after fear consolidation and extinction. CONCLUSION The results from this study suggest that the differential histone acetylation in the different sub-regions of the BNST following fear learning and its extinction may be responsible for changes in the neuronal activation patterns resulting in either fear or less fear.
Collapse
Affiliation(s)
- Vandana Ranjan
- Department of Biochemistry, Dr. R M L Avadh University, Lucknow, India
| | - Sanjay Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | | | - Sukanya Tripathi
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Mohd Yahiya Khan
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
217
|
Bridi MS, Hawk JD, Chatterjee S, Safe S, Abel T. Pharmacological Activators of the NR4A Nuclear Receptors Enhance LTP in a CREB/CBP-Dependent Manner. Neuropsychopharmacology 2017; 42:1243-1253. [PMID: 27834392 PMCID: PMC5437882 DOI: 10.1038/npp.2016.253] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 10/15/2016] [Accepted: 11/04/2016] [Indexed: 01/20/2023]
Abstract
Nr4a nuclear receptors contribute to long-term memory formation and are required for long-term memory enhancement by a class of broad-acting drugs known as histone deacetylase (HDAC) inhibitors. Understanding the molecular mechanisms that regulate these genes and identifying ways to increase their activity may provide novel therapeutic approaches for ameliorating cognitive dysfunction. In the present study, we find that Nr4a gene expression after learning requires the cAMP-response element binding (CREB) interaction domain of the histone acetyltransferase CREB-binding protein (CBP). These gene expression deficits emerge at a time after learning marked by promoter histone acetylation in wild-type mice. Further, mutation of the CREB-CBP interaction domain reduces Nr4a promoter acetylation after learning. As memory enhancement by HDAC inhibitors requires CREB-CBP interaction and Nr4a gene function, these data support the notion that the balance of histone acetylation at the Nr4a promoters is critical for memory formation. NR4A ligands have recently been described, but the effect of these drugs on synaptic plasticity or memory has not been investigated. We find that the 'C-DIM' NR4A ligands, para-phenyl substituted di-indolylmethane compounds, enhance long-term contextual fear memory and increase the duration of long-term potentiation (LTP), a form of hippocampal synaptic plasticity. LTP enhancement by these drugs is eliminated in mice expressing a dominant negative form of NR4A and attenuated in mice with mutation of the CREB-CBP interaction domain. These data define the molecular connection between histone acetylation and Nr4a gene expression after learning. In addition, they suggest that NR4A-activating C-DIM compounds may serve as a potent and selective means to enhance memory and synaptic plasticity.
Collapse
Affiliation(s)
- Morgan S Bridi
- Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua D Hawk
- Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Snehajyoti Chatterjee
- Smilow Center for Translational Research, Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Ted Abel
- Smilow Center for Translational Research, Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
218
|
Borodinova AA, Zuzina AB, Balaban PM. Role of atypical protein kinases in maintenance of long-term memory and synaptic plasticity. BIOCHEMISTRY (MOSCOW) 2017; 82:243-256. [DOI: 10.1134/s0006297917030026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
219
|
HDAC7 Ubiquitination by the E3 Ligase CBX4 Is Involved in Contextual Fear Conditioning Memory Formation. J Neurosci 2017; 37:3848-3863. [PMID: 28283560 DOI: 10.1523/jneurosci.2773-16.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 12/18/2022] Open
Abstract
Histone acetylation, an epigenetic modification, plays an important role in long-term memory formation. Recently, histone deacetylase (HDAC) inhibitors were demonstrated to promote memory formation, which raises the intriguing possibility that they may be used to rescue memory deficits. However, additional research is necessary to clarify the roles of individual HDACs in memory. In this study, we demonstrated that HDAC7, within the dorsal hippocampus of C57BL6J mice, had a late and persistent decrease after contextual fear conditioning (CFC) training (4-24 h), which was involved in long-term CFC memory formation. We also showed that HDAC7 decreased via ubiquitin-dependent degradation. CBX4 was one of the HDAC7 E3 ligases involved in this process. Nur77, as one of the target genes of HDAC7, increased 6-24 h after CFC training and, accordingly, modulated the formation of CFC memory. Finally, HDAC7 was involved in the formation of other hippocampal-dependent memories, including the Morris water maze and object location test. The current findings facilitate an understanding of the molecular and cellular mechanisms of HDAC7 in the regulation of hippocampal-dependent memory.SIGNIFICANCE STATEMENT The current findings demonstrated the effects of histone deacetylase 7 (HDAC7) on hippocampal-dependent memories. Moreover, we determined the mechanism of decreased HDAC7 in contextual fear conditioning (CFC) through ubiquitin-dependent protein degradation. We also verified that CBX4 was one of the HDAC7 E3 ligases. Finally, we demonstrated that Nur77, as one of the important targets for HDAC7, was involved in CFC memory formation. All of these proteins, including HDAC7, CBX4, and Nur77, could be potential therapeutic targets for preventing memory deficits in aging and neurological diseases.
Collapse
|
220
|
Scott H, Smith AE, Barker GR, Uney JB, Warburton EC. Contrasting roles for DNA methyltransferases and histone deacetylases in single-item and associative recognition memory. NEUROEPIGENETICS 2017; 9:1-9. [PMID: 28367410 PMCID: PMC5364272 DOI: 10.1016/j.nepig.2017.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/27/2017] [Accepted: 02/27/2017] [Indexed: 12/17/2022]
Abstract
Recognition memory enables us to judge whether we have encountered a stimulus before and to recall associated information, including where the stimulus was encountered. The perirhinal cortex (PRh) is required for judgment of stimulus familiarity, while hippocampus (HPC) and medial prefrontal cortex (mPFC) are additionally involved when spatial information associated with a stimulus needs to be remembered. While gene expression is known to be essential for the consolidation of long-term recognition memory, the underlying regulatory mechanisms are not fully understood. Here we investigated the roles of two epigenetic mechanisms, DNA methylation and histone deacetylation, in recognition memory. Infusion of DNA methyltransferase inhibitors into PRh impaired performance in novel object recognition and object-in-place tasks while infusions into HPC or mPFC impaired object-in-place performance only. In contrast, inhibition of histone deacetylases in PRh, but not mPFC, enhanced recognition memory. These results support the emerging role of epigenetic processes in learning and memory.
Collapse
Affiliation(s)
- Hannah Scott
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Anna E. Smith
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Gareth R. Barker
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - James B. Uney
- School of Clinical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - E. Clea Warburton
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
221
|
Sorial ME, El Sayed NSED. Protective effect of valproic acid in streptozotocin-induced sporadic Alzheimer's disease mouse model: possible involvement of the cholinergic system. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:581-593. [PMID: 28188358 DOI: 10.1007/s00210-017-1357-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022]
Abstract
Sporadic Alzheimer's disease (SAD) is a slowly progressive neurological disorder that is the most common form of dementia. Cholinergic system dysfunction and amyloid beta formation are the two main underlying pathological mechanisms for the disease development. In recent studies, insulin receptor desensitization and disturbances in the downstream effects of insulin receptor signaling were observed in the brains of Alzheimer's patients. Currently, intracereberoventricular (ICV) injection of streptozotocin (STZ) is found to induce behavioral, neurochemical, and structural alterations in animals resembling those found in SAD patients. Valproic acid (VPA), a histone deacetylase inhibitor (HDACi), was recently shown to regulate the transcription of several genes in both in vivo and in vitro models of Alzheimer's disease. The aim of the current study is to investigate the potential effect of different doses of valproic acid, in an ICV-STZ-induced animal model of SAD. Streptozotocin-injected mice showed cognitive and spatial memory dysfunction in the Y-maze, object recognition test, and Morris water maze (MWM) neurobehavioral tests. The mice also exhibited a decrease in acetylcholine (ACh) and neprilysin (NEP) levels accompanied by an increase in acetylcholinesterase (AChE) activity. For the first time to our knowledge, our findings have shown that VPA is capable of restoring ACh levels in ICV-STZ-injected mice, as well as normalizing both NEP levels and AChE activity. Via this mechanism, an enhancement of cognitive functions is observed. Thus, VPA is suggested to be a promising therapeutic approach against SAD.
Collapse
Affiliation(s)
- Mirna Ezzat Sorial
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo City, 11835, Egypt
| | - Nesrine Salah El Dine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo City, 11835, Egypt. .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
222
|
Perry S, Kiragasi B, Dickman D, Ray A. The Role of Histone Deacetylase 6 in Synaptic Plasticity and Memory. Cell Rep 2017; 18:1337-1345. [PMID: 28178513 PMCID: PMC5387061 DOI: 10.1016/j.celrep.2017.01.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 10/28/2016] [Accepted: 01/12/2017] [Indexed: 02/02/2023] Open
Abstract
Histone deacetylases (HDACs) have been extensively studied as drug targets in neurodegenerative diseases, but less is known about their role in healthy neurons. We tested zinc-dependent HDACs using RNAi in Drosophila melanogaster and found memory deficits with RPD3 and HDAC6. We demonstrate that HDAC6 is required in both the larval and adult stages for normal olfactory memory retention. Neuronal expression of HDAC6 rescued memory deficits, and we demonstrate that the N-terminal deacetylase (DAC) domain is required for this ability. This suggests that deacetylation of synaptic targets associated with the first DAC domain, such as the active-zone scaffold Bruchpilot, is required for memory retention. Finally, electrophysiological experiments at the neuromuscular junction reveal that HDAC6 mutants exhibit a partial block of homeostatic plasticity, suggesting that HDAC6 may be required for the stabilization of synaptic strength. The learning deficit we observe in HDAC6 mutants could be a behavioral consequence of these synaptic defects.
Collapse
Affiliation(s)
- Sarah Perry
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA
| | - Beril Kiragasi
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Anandasankar Ray
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA; Center for Disease Vector Research, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
223
|
Epigenetics in Alzheimer's Disease: Perspective of DNA Methylation. Mol Neurobiol 2017; 55:1026-1044. [PMID: 28092081 DOI: 10.1007/s12035-016-0357-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022]
Abstract
Research over the years has shown that causes of Alzheimer's disease are not well understood, but over the past years, the involvement of epigenetic mechanisms in the developing memory formation either under pathological or physiological conditions has become clear. The term epigenetics represents the heredity of changes in phenotype that are independent of altered DNA sequences. Different studies validated that cytosine methylation of genomic DNA decreases with age in different tissues of mammals, and therefore, the role of epigenetic factors in developing neurological disorders in aging has been under focus. In this review, we summarized and reviewed the involvement of different epigenetic mechanisms especially the DNA methylation in Alzheimer's disease (AD), late-onset Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and autosomal dominant Alzheimer's disease (ADAD). Down to the minutest of details, we tried to discuss the methylation patterns like mitochondrial DNA methylation and ribosomal DNA (rDNA) methylation. Additionally, we mentioned some therapeutic approaches related to epigenetics, which could provide a potential cure for AD. Moreover, we reviewed some recent studies that validate DNA methylation as a potential biomarker and its role in AD. We hope that this review will provide new insights into the understanding of AD pathogenesis from the epigenetic perspective especially from the perspective of DNA methylation.
Collapse
|
224
|
Epigenetic regulation and chromatin remodeling in learning and memory. Exp Mol Med 2017; 49:e281. [PMID: 28082740 PMCID: PMC5291841 DOI: 10.1038/emm.2016.140] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 01/12/2023] Open
Abstract
Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms.
Collapse
|
225
|
Romano A, Koczwara JB, Gallelli CA, Vergara D, Micioni Di Bonaventura MV, Gaetani S, Giudetti AM. Fats for thoughts: An update on brain fatty acid metabolism. Int J Biochem Cell Biol 2017; 84:40-45. [PMID: 28065757 DOI: 10.1016/j.biocel.2016.12.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
Brain fatty acid (FA) metabolism deserves a close attention not only for its energetic aspects but also because FAs and their metabolites/derivatives are able to influence many neural functions, contributing to brain pathologies or representing potential targets for pharmacological and/or nutritional interventions. Glucose is the preferred energy substrate for the brain, whereas the role of FAs is more marginal. In conditions of decreased glucose supply, ketone bodies, mainly formed by FA oxidation, are the alternative main energy source. Ketogenic diets or medium-chain fatty acid supplementations were shown to produce therapeutic effects in several brain pathologies. Moreover, the positive effects exerted on brain functions by short-chain FAs and the consideration that they can be produced by intestinal flora metabolism contributed to the better understanding of the link between "gut-health" and "brain-health". Finally, attention was paid also to the regulatory role of essential polyunsaturated FAs and their derivatives on brain homeostasis.
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Justyna Barbara Koczwara
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Cristina Anna Gallelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Daniele Vergara
- Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Piazzetta F. Muratore, 73100 Lecce, Italy.
| | | | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
226
|
Qiu X, Xiao X, Li N, Li Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:60-72. [PMID: 27614213 DOI: 10.1016/j.pnpbp.2016.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that histone hypoacetylation which is partly mediated by histone deacetylase (HDAC), plays a causative role in the etiology of various clinical disorders such as cancer and central nervous diseases. HDAC inhibitors (HDACis) are natural or synthetic small molecules that can inhibit the activities of HDACs and restore or increase the level of histone acetylation, thus may represent the potential approach to treating a number of clinical disorders. This manuscript reviewed the progress of the most recent experimental application of HDACis as novel potential drugs or agents in a large number of clinical disorders including various brain disorders including neurodegenerative and neurodevelopmental cognitive disorders and psychiatric diseases like depression, anxiety, fear and schizophrenia, and cancer, endometriosis and cell reprogramming in somatic cell nuclear transfer in human and animal models of disease, and concluded that HDACis as potential novel therapeutic agents could be used alone or in adjunct to other pharmacological agents in various clinical diseases.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Xiong Xiao
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Nan Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Yuemin Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China.
| |
Collapse
|
227
|
Korzus E. Rubinstein-Taybi Syndrome and Epigenetic Alterations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:39-62. [PMID: 28523540 PMCID: PMC6863608 DOI: 10.1007/978-3-319-53889-1_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rubinstein-Taybi syndrome (RSTS) is a rare genetic disorder in humans characterized by growth and psychomotor delay, abnormal gross anatomy, and mild to severe mental retardation (Rubinstein and Taybi, Am J Dis Child 105:588-608, 1963, Hennekam et al., Am J Med Genet Suppl 6:56-64, 1990). RSTS is caused by de novo mutations in epigenetics-associated genes, including the cAMP response element-binding protein (CREBBP), the gene-encoding protein referred to as CBP, and the EP300 gene, which encodes the p300 protein, a CBP homologue. Recent studies of the epigenetic mechanisms underlying cognitive functions in mice provide direct evidence for the involvement of nuclear factors (e.g., CBP) in the control of higher cognitive functions. In fact, a role for CBP in higher cognitive function is suggested by the finding that RSTS is caused by heterozygous mutations at the CBP locus (Petrij et al., Nature 376:348-351, 1995). CBP was demonstrated to possess an intrinsic histone acetyltransferase activity (Ogryzko et al., Cell 87:953-959, 1996) that is required for CREB-mediated gene expression (Korzus et al., Science 279:703-707, 1998). The intrinsic protein acetyltransferase activity in CBP might directly destabilize promoter-bound nucleosomes, facilitating the activation of transcription. Due to the complexity of developmental abnormalities and the possible genetic compensation associated with this congenital disorder, however, it is difficult to establish a direct role for CBP in cognitive function in the adult brain. Although aspects of the clinical presentation in RSTS cases have been extensively studied, a spectrum of symptoms found in RSTS patients can be accessed only after birth, and, thus, prenatal genetic tests for this extremely rare genetic disorder are seldom considered. Even though there has been intensive research on the genetic and epigenetic function of the CREBBP gene in rodents, the etiology of this devastating congenital human disorder is largely unknown.
Collapse
Affiliation(s)
- Edward Korzus
- Department of Psychology and Neuroscience Program, University Of California Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
228
|
Sirtuin-2 inhibition affects hippocampal functions and sodium butyrate ameliorates the reduction in novel object memory, cell proliferation, and neuroblast differentiation. Lab Anim Res 2016; 32:224-230. [PMID: 28053616 PMCID: PMC5206229 DOI: 10.5625/lar.2016.32.4.224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/03/2016] [Accepted: 12/03/2016] [Indexed: 12/03/2022] Open
Abstract
We investigated the effects of the sirtuin-2 (SIRT2) inhibitor AK-7 on novel object memory, cell proliferation, and neuroblast differentiation in the dentate gyrus. In addition, we also observed the relationships with sodium butyrate, a histone deacetylase inhibitor, on the hippocampal functions. To investigate the effects of AK-7 on hippocampal functions, 10-week-old C57BL/6 mice were daily injected intraperitoneally with 20 mg/kg AK-7 alone or in combination with subcutaneous administration of 300 mg/kg sodium butyrate, a histone deacetylase inhibitor, for 21 days. A novel object recognition test was conducted on days 20 (training) and 21 (testing) of treatment. Thereafter, the animals were sacrificed for immunohistochemistry for Ki67 (cell proliferation) and doublecortin (DCX, neuroblast differentiation). AK-7 administration significantly reduced the time spent exploring new objects, while treatment in combination with sodium butyrate significantly alleviated this reduction. Additionally, AK-7 administration significantly reduced the number of Ki67-positive cells and DCX-immunoreactive neuroblasts in the dentate gyrus, while the treatment in combination with sodium butyrate ameliorated these changes. This result suggests that the reduction of SIRT2 may be closely related to age-related phenotypes including novel object memory, as well as cell proliferation and neuroblast differentiation in the dentate gyrus. In addition, sodium butyrate reverses SIRT2-related age phenotypes.
Collapse
|
229
|
Krishna K, Behnisch T, Sajikumar S. Inhibition of Histone Deacetylase 3 Restores Amyloid-β Oligomer-Induced Plasticity Deficit in Hippocampal CA1 Pyramidal Neurons. J Alzheimers Dis 2016; 51:783-91. [PMID: 26890755 DOI: 10.3233/jad-150838] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) are associated with alterations in epigenetic factors leading to cognitive decline. Histone deacetylase 3 (HDAC3) is a known critical epigenetic negative regulator of learning and memory. In this study, attenuation of long-term potentiation by amyloid-β oligomer, and its reversal by specific HDAC3 inhibitor RGFP966, was performed in rat CA1 pyramidal neurons using whole cell voltage-clamp and field recording techniques. Our findings provide the first evidence that amyloid-β oligomer-induced synaptic plasticity impairment can be prevented by inhibition of HDAC3 enzyme both at the single neuron as well as in a population of neurons, thus identifying HDAC3 as a potential target for ameliorating AD related plasticity impairments.
Collapse
Affiliation(s)
- Kumar Krishna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thomas Behnisch
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, Singapore
| |
Collapse
|
230
|
Takamatsu G, Katagiri C, Tomoyuki T, Shimizu-Okabe C, Nakamura W, Nakamura-Higa M, Hayakawa T, Wakabayashi S, Kondo T, Takayama C, Matsushita M. Tescalcin is a potential target of class I histone deacetylase inhibitors in neurons. Biochem Biophys Res Commun 2016; 482:1327-1333. [PMID: 27939885 DOI: 10.1016/j.bbrc.2016.12.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
Class I histone deacetylase (HDAC) inhibitors are believed to have positive effects on neurite outgrowth, synaptic plasticity, and neurogenesis in adult brain. However, the downstream molecular targets of class I HDAC inhibitors in neurons are not clear. Although class I HDAC inhibitors are thought to broadly promote transcription of many neuronal genes through enhancement of histone acetylation, the affected gene set may include unidentified genes that are essential for neuronal survival and function. To identify novel genes that are targets of class I HDAC inhibitors, we used a microarray to screen transcripts from neuronal cultures and evaluated changes in protein and mRNA expression following treatment with four HDAC inhibitors. We identified tescalcin (Tesc) as the most strongly up-regulated gene following treatment with class I HDAC inhibitors in neurons. Moreover, hippocampal neurons overexpressing TESC showed a greater than 5-fold increase in the total length of neurites and number of branch points compared with controls. These findings highlight a potentially important role for TESC in mediating the neuroprotective effect of class I HDAC inhibitors. TESC may also be involved in the development of brain and neurodegenerative diseases through epigenetic mechanisms.
Collapse
Affiliation(s)
- Gakuya Takamatsu
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan; Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Chiaki Katagiri
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan; Department of Neurosurgery, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Tsumuraya Tomoyuki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Wakako Nakamura
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Mariko Nakamura-Higa
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Tomoko Hayakawa
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Shigeo Wakabayashi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, 569-8686 Osaka, Japan
| | - Tsuyoshi Kondo
- Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan.
| |
Collapse
|
231
|
Schuebel K, Gitik M, Domschke K, Goldman D. Making Sense of Epigenetics. Int J Neuropsychopharmacol 2016; 19:pyw058. [PMID: 27312741 PMCID: PMC5137275 DOI: 10.1093/ijnp/pyw058] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/10/2016] [Indexed: 01/08/2023] Open
Abstract
The gene-environment interactions that underlie development and progression of psychiatric illness are poorly understood. Despite a century of progress, genetic approaches have failed to identify new treatment modalities, perhaps because of the heterogeneity of the disorders and lack of understanding of mechanisms. Recent exploration into epigenetic mechanisms in health and disease has uncovered changes in DNA methylation and chromatin structure that may contribute to psychiatric disorders. Epigenetic changes suggest a variety of new therapeutic options due to their reversible chemistry. However, distinguishing causal links between epigenetic changes and disease from changes consequent to life experience has remained problematic. Here we define epigenetics and explore aspects of epigenetics relevant to causes and mechanisms of psychiatric disease, and speculate on future directions.
Collapse
Affiliation(s)
- Kornel Schuebel
- Laboratory of Neurogenetics and Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland (Drs Schuebel, Gitik, and Goldman); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany (Dr Domschke)
| | - Miri Gitik
- Laboratory of Neurogenetics and Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland (Drs Schuebel, Gitik, and Goldman); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany (Dr Domschke)
| | - Katharina Domschke
- Laboratory of Neurogenetics and Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland (Drs Schuebel, Gitik, and Goldman); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany (Dr Domschke)
| | - David Goldman
- Laboratory of Neurogenetics and Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland (Drs Schuebel, Gitik, and Goldman); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany (Dr Domschke).
| |
Collapse
|
232
|
Wu Y, Hou F, Wang X, Kong Q, Han X, Bai B. Aberrant Expression of Histone Deacetylases 4 in Cognitive Disorders: Molecular Mechanisms and a Potential Target. Front Mol Neurosci 2016; 9:114. [PMID: 27847464 PMCID: PMC5088184 DOI: 10.3389/fnmol.2016.00114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022] Open
Abstract
Histone acetylation is a major mechanism of chromatin remodeling, contributing to epigenetic regulation of gene transcription. Histone deacetylases (HDACs) are involved in both physiological and pathological conditions by regulating the status of histone acetylation. Although histone deacetylase 4 (HDAC4), a member of the HDAC family, may lack HDAC activity, it is actively involved in regulating the transcription of genes involved in synaptic plasticity, neuronal survival, and neurodevelopment by interacting with transcription factors, signal transduction molecules and HDAC3, another member of the HDAC family. HDAC4 is highly expressed in brain and its homeostasis is crucial for the maintenance of cognitive function. Accumulated evidence shows that HDAC4 expression is dysregulated in several brain disorders, including neurodegenerative diseases and mental disorders. Moreover, cognitive impairment is a characteristic feature of these diseases. It indicates that aberrant HDAC4 expression plays a pivotal role in cognitive impairment of these disorders. This review aims to describe the current understanding of HDAC4's role in the maintenance of cognitive function and its dysregulation in neurodegenerative diseases and mental disorders, discuss underlying molecular mechanisms, and provide an outlook into targeting HDAC4 as a potential therapeutic approach to rescue cognitive impairment in these diseases.
Collapse
Affiliation(s)
- Yili Wu
- Department of Psychiatry, Jining Medical UniversityJining, China; Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical UniversityJining, China
| | - Fei Hou
- College of Science, Qufu Normal University Jining, China
| | - Xin Wang
- Department of Psychiatry, Jining Medical University Jining, China
| | - Qingsheng Kong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical UniversityJining, China; Department of Biochemistry, Jining Medical UniversityJining, China
| | - Xiaolin Han
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University Jining, China
| | - Bo Bai
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University Jining, China
| |
Collapse
|
233
|
Wang B, Zhou Y, Leng S, Zheng L, Lv H, Wang F, Tan LH, Sun Y. Genetic polymorphism of nonsyndromic cleft lip with or without cleft palate is associated with developmental dyslexia in Chinese school-aged populations. J Hum Genet 2016; 62:265-268. [PMID: 27734840 PMCID: PMC5285488 DOI: 10.1038/jhg.2016.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/17/2022]
Abstract
Developmental dyslexia (DD) is a neurodevelopment disorder characterized by reading disabilities without apparent etiologies. Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a structural craniofacial malformation featured by isolated orofacial abnormalities. Despite substantial phenotypic differences, potential linkage between these two disorders has been suggested as prevalence of DD among NSCL/P patients was much higher than that in general populations. Previous neuroimaging studies observed impaired short-term memory in patients with DD and NSCL/P, respectively. Genetic factors have a fundamental role during neurodevelopment and craniofacial morphogenesis but there lacks of evidence to support the linkage between DD and NSCL/P at genetic level. A recent genome-wide association study in Chinese populations identified a number of genetic polymorphisms associated with NSCL/P. Herein, we selected three risk variants of NSCL/P namely rs8049367, rs4791774 and rs2235371, and performed association analysis with DD in a Chinese population consisting 631 elementary school-aged children with 288 dyslexic cases without NSCL/P and 343 healthy controls. After Bonferroni correction for multiple comparisons, the T allele of rs8049367 showed significant association with DD (OR=1.41, P=0.0085). It is an intergenic variant between CREBBP and ADCY9 located at 16p13.3. The CREBBP gene was reported to have an essential role during memory formation, although ADCY9 was involved in dental development. In future studies, understanding functional effects of rs8049367 on CERBBP and ADCY9 might contribute to explain underlying etiologies shared by DD and NSCL/P.
Collapse
Affiliation(s)
- Bin Wang
- CapitalBio eHealth Science & Technology (Beijing) Co., Ltd, Beijing, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Yuxi Zhou
- CapitalBio eHealth Science & Technology (Beijing) Co., Ltd, Beijing, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Song Leng
- Health Management Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Liyuan Zheng
- CapitalBio eHealth Science & Technology (Beijing) Co., Ltd, Beijing, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Hong Lv
- CapitalBio eHealth Science & Technology (Beijing) Co., Ltd, Beijing, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Fei Wang
- CapitalBio eHealth Science & Technology (Beijing) Co., Ltd, Beijing, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Li-Hai Tan
- Center for Neurogenetics, Shenzhen Institute of Neuroscience, Shenzhen, China.,School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yimin Sun
- CapitalBio eHealth Science & Technology (Beijing) Co., Ltd, Beijing, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing, China.,The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Medical Systems Biology Research Center, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
234
|
Montagud-Romero S, Montesinos J, Pascual M, Aguilar MA, Roger-Sanchez C, Guerri C, Miñarro J, Rodríguez-Arias M. `Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:39-48. [PMID: 27180319 DOI: 10.1016/j.pnpbp.2016.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/24/2016] [Accepted: 04/28/2016] [Indexed: 12/16/2022]
Abstract
Social defeat (SD) induces a long-lasting increase in the rewarding effects of psychostimulants measured using the self-administration and conditioned place procedures (CPP). However, little is known about the epigenetic changes induced by social stress and about their role in the increased response to the rewarding effects of psychostimulants. Considering that histone acetylation regulates transcriptional activity and contributes to drug-induced behavioral changes, we addressed the hypothesis that SD induces transcriptional changes by histone modifications associated with the acquisition of place conditioning. After a fourth defeat, H3(K9) acetylation was decreased in the hippocampus, while there was an increase of HAT and a decrease of HDAC levels in the cortex. Three weeks after the last defeat, mice displayed an increase in histone H4(K12) acetylation and an upregulation of histone acetyl transferase (HAT) activity in the hippocampus. In addition, H3(K4)me3, which is closely associated with transcriptional initiation, was also augmented in the hippocampus three weeks after the last defeat. Inhibition of HAT by curcumin (100mg/kg) before each SD blocked the increase in the conditioned reinforcing effects of 1mg/kg of cocaine, while inhibition of HDAC by valproic acid (500mg/kg) before social stress potentiated cocaine-induced CPP. Preference was reinstated when animals received a priming dose of 0.5mg/kg of cocaine, an effect that was absent in untreated defeated mice. These results suggest that the experience of SD induces chromatin remodeling, alters histone acetylation and methylation, and modifies the effects of cocaine on place conditioning. They also point to epigenetic mechanisms as potential avenues leading to new treatments for the long-term effects of social stress on drug addiction.
Collapse
Affiliation(s)
- S Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - J Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - M Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - M A Aguilar
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - C Roger-Sanchez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - C Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - J Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - M Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|
235
|
Ganai SA, Banday S, Farooq Z, Altaf M. Modulating epigenetic HAT activity for reinstating acetylation homeostasis: A promising therapeutic strategy for neurological disorders. Pharmacol Ther 2016; 166:106-22. [DOI: 10.1016/j.pharmthera.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/28/2016] [Indexed: 01/30/2023]
|
236
|
Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem Int 2016; 99:110-132. [DOI: 10.1016/j.neuint.2016.06.011] [Citation(s) in RCA: 587] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/30/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
|
237
|
Mahgoub M, Adachi M, Suzuki K, Liu X, Kavalali ET, Chahrour MH, Monteggia LM. MeCP2 and histone deacetylases 1 and 2 in dorsal striatum collectively suppress repetitive behaviors. Nat Neurosci 2016; 19:1506-1512. [PMID: 27668390 PMCID: PMC5083208 DOI: 10.1038/nn.4395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/25/2016] [Indexed: 02/08/2023]
Abstract
Class I histone deacetylases (HDACs), HDAC1 and HDAC2 often associate together in protein complexes with transcriptional factors such as methyl-CpG-binding protein 2 (MeCP2). Given their high degree of sequence identity, we examined the functional redundancy of HDAC1 and HDAC2 in mature brain. We demonstrate that postnatal forebrain-specific deletion of both HDAC1 and HDAC2 in mice impacts neuronal survival and results in an excessive grooming phenotype caused by dysregulation of the obsessive-compulsive disorder-implicated gene SAP90/PSD-95-associated protein 3 (SAPAP3) in striatum. Moreover, HDAC1- and HDAC2-dependent regulation of SAPAP3 expression requires Mecp2, the gene involved in the pathophysiology of Rett syndrome. We show that postnatal forebrain-specific deletion of Mecp2 causes excessive grooming, which is rescued by restoring striatal Sapap3 expression. Our results provide novel insight into the upstream regulation of SAPAP3, and establish the essential role of striatal HDAC1, HDAC2, and MeCP2 for suppression of repetitive behaviors.
Collapse
Affiliation(s)
- Melissa Mahgoub
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Megumi Adachi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kanzo Suzuki
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xihui Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Maria H Chahrour
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa M Monteggia
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
238
|
Microinjection of histone deacetylase inhibitor into the ventrolateral orbital cortex potentiates morphine induced behavioral sensitization. Brain Res 2016; 1646:418-425. [DOI: 10.1016/j.brainres.2016.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 11/17/2022]
|
239
|
Vargas-López V, Lamprea MR, Múnera A. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment. Neurobiol Learn Mem 2016; 134 Pt B:328-38. [PMID: 27544851 DOI: 10.1016/j.nlm.2016.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/19/2016] [Accepted: 08/17/2016] [Indexed: 01/20/2023]
Abstract
Acute stress induced before spatial training impairs memory consolidation. Although non-epigenetic underpinning of such effect has been described, the epigenetic mechanisms involved have not yet been studied. Since spatial training and intense stress have opposite effects on histone acetylation balance, it is conceivable that disruption of such balance may underlie acute stress-induced spatial memory consolidation impairment and that inhibiting histone deacetylases prevents such effect. Trichostatin-A (TSA, a histone deacetylase inhibitor) was used to test its effectiveness in preventing stress' deleterious effect on memory. Male Wistar rats were trained in a spatial task in the Barnes maze; 1-h movement restraint was applied to half of them before training. Immediately after training, stressed and non-stressed animals were randomly assigned to receive either TSA (1mg/kg) or vehicle intraperitoneal injection. Twenty-four hours after training, long-term spatial memory was tested; plasma and brain tissue were collected immediately after the memory test to evaluate corticosterone levels and histone H3 acetylation in several brain areas. Stressed animals receiving vehicle displayed memory impairment, increased plasma corticosterone levels and markedly reduced histone H3 acetylation in prelimbic cortex and hippocampus. Such effects did not occur in stressed animals treated with TSA. The aforementioned results support the hypothesis that acute stress induced-memory impairment is related to histone deacetylation.
Collapse
Affiliation(s)
- Viviana Vargas-López
- Behavioral Neurophysiology Laboratory, Universidad Nacional de Colombia, Bogotá, Colombia; Physiological Sciences Department, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Marisol R Lamprea
- Behavioral Neurophysiology Laboratory, Universidad Nacional de Colombia, Bogotá, Colombia; Psychology Department, School of Human Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Alejandro Múnera
- Behavioral Neurophysiology Laboratory, Universidad Nacional de Colombia, Bogotá, Colombia; Physiological Sciences Department, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
240
|
Luo F, Hu Y, Zhao W, Zuo Z, Yu Q, Liu Z, Lin J, Feng Y, Li B, Wu L, Xu L. Maternal Exposure of Rats to Isoflurane during Late Pregnancy Impairs Spatial Learning and Memory in the Offspring by Up-Regulating the Expression of Histone Deacetylase 2. PLoS One 2016; 11:e0160826. [PMID: 27536989 PMCID: PMC4990207 DOI: 10.1371/journal.pone.0160826] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 06/06/2016] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence indicates that most general anesthetics can harm developing neurons and induce cognitive dysfunction in a dose- and time-dependent manner. Histone deacetylase 2 (HDAC2) has been implicated in synaptic plasticity and learning and memory. Our previous results showed that maternal exposure to general anesthetics during late pregnancy impaired the offspring's learning and memory, but the role of HDAC2 in it is not known yet. In the present study, pregnant rats were exposed to 1.5% isoflurane in 100% oxygen for 2, 4 or 8 hours or to 100% oxygen only for 8 hours on gestation day 18 (E18). The offspring born to each rat were randomly subdivided into 2 subgroups. Thirty days after birth, the Morris water maze (MWM) was used to assess learning and memory in the offspring. Two hours before each MWM trial, an HDAC inhibitor (SAHA) was given to the offspring in one subgroup, whereas a control solvent was given to those in the other subgroup. The results showed that maternal exposure to isoflurane impaired learning and memory of the offspring, impaired the structure of the hippocampus, increased HDAC2 mRNA and downregulated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) mRNA, N-methyl-D-aspartate receptor 2 subunit B (NR2B) mRNA and NR2B protein in the hippocampus. These changes were proportional to the duration of the maternal exposure to isoflurane and were reversed by SAHA. These results suggest that exposure to isoflurane during late pregnancy can damage the learning and memory of the offspring rats via the HDAC2-CREB -NR2B pathway. This effect can be reversed by HDAC2 inhibition.
Collapse
Affiliation(s)
- Foquan Luo
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
- * E-mail:
| | - Yan Hu
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
- Department of Anesthesiology, Jiangxi Province Traditional Chinese Medicine Hospital, Nanchang 33006, China
| | - Weilu Zhao
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, 22908, United States of America
| | - Qi Yu
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
| | - Zhiyi Liu
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
| | - Jiamei Lin
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
| | - Yunlin Feng
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
| | - Binda Li
- Department of Anesthesiology, Jiangxi Province Tumor Hospital, Nanchang 330006, China
| | - Liuqin Wu
- Department of Anesthesiology, Jiangxi Province Tumor Hospital, Nanchang 330006, China
| | - Lin Xu
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
| |
Collapse
|
241
|
Bailey ZS, Grinter MB, VandeVord PJ. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation. Front Mol Neurosci 2016; 9:64. [PMID: 27551260 PMCID: PMC4976110 DOI: 10.3389/fnmol.2016.00064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022] Open
Abstract
Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p < 0.05). This is indicative of the onset of memory impairment. Western blot analysis showed glial fibrillary acidic protein (GFAP), a known marker of activated astrocytes, was elevated in the prefrontal cortex (PFC) following blast exposure for both injury groups. Analysis of histone protein extract showed no changes in the level of any total histone proteins within the PFC. However, acetylation levels of histone H2b, H3, and H4 were decreased in both groups (p < 0.05). Co-localization immunofluorescence was used to further investigate any potential correlation between decreased histone acetylation and astrocyte activation. These experiments showed a similar decrease in H3 acetylation in astrocytes exposed to a 17 psi blast but not a 10 psi blast. Further investigation of gene expression by polymerase chain reaction (PCR) array, showed dysregulation of several cytokine and cytokine receptors that are involved in neuroinflammatory processes. We have shown aberrant histone acetylation patterns involved in blast induced astrogliosis and cognitive impairments. Further understanding of their role in the injury progression may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Zachary S Bailey
- Department of Biomedical Engineering and Mechanics, Virginia Tech Blacksburg, VA, USA
| | - Michael B Grinter
- Department of Biomedical Engineering and Mechanics, Virginia Tech Blacksburg, VA, USA
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia TechBlacksburg, VA, USA; Salem Veterans Affairs Medical CenterSalem, VA, USA
| |
Collapse
|
242
|
Deibel SH, Zelinski EL, Keeley RJ, Kovalchuk O, McDonald RJ. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline. Oncotarget 2016; 6:23181-203. [PMID: 26252151 PMCID: PMC4695111 DOI: 10.18632/oncotarget.4036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 12/31/1969] [Indexed: 12/16/2022] Open
Abstract
Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline.
Collapse
Affiliation(s)
- Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Erin L Zelinski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robin J Keeley
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
243
|
Poplawski SG, Peixoto L, Porcari GS, Wimmer ME, McNally AG, Mizuno K, Giese KP, Chatterjee S, Koberstein JN, Risso D, Speed TP, Abel T. Contextual fear conditioning induces differential alternative splicing. Neurobiol Learn Mem 2016; 134 Pt B:221-35. [PMID: 27451143 DOI: 10.1016/j.nlm.2016.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/16/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022]
Abstract
The process of memory consolidation requires transcription and translation to form long-term memories. Significant effort has been dedicated to understanding changes in hippocampal gene expression after contextual fear conditioning. However, alternative splicing by differential transcript regulation during this time period has received less attention. Here, we use RNA-seq to determine exon-level changes in expression after contextual fear conditioning and retrieval. Our work reveals that a short variant of Homer1, Ania-3, is regulated by contextual fear conditioning. The ribosome biogenesis regulator Las1l, small nucleolar RNA Snord14e, and the RNA-binding protein Rbm3 also change specific transcript usage after fear conditioning. The changes in Ania-3 and Las1l are specific to either the new context or the context-shock association, while the changes in Rbm3 occur after context or shock only. Our analysis revealed novel transcript regulation of previously undetected changes after learning, revealing the importance of high throughput sequencing approaches in the study of gene expression changes after learning.
Collapse
Affiliation(s)
- Shane G Poplawski
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucia Peixoto
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA; Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Giulia S Porcari
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathieu E Wimmer
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna G McNally
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Keiko Mizuno
- Centre for the Cellular Basis of Behaviour, King's College London, London, UK
| | - K Peter Giese
- Centre for the Cellular Basis of Behaviour, King's College London, London, UK
| | | | - John N Koberstein
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Davide Risso
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Terence P Speed
- Department of Statistics, University of California, Berkeley, CA, USA; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Mathematics and Statistics, The University of Melbourne, Victoria, Australia
| | - Ted Abel
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
244
|
Marshall P, Bredy TW. Cognitive neuroepigenetics: the next evolution in our understanding of the molecular mechanisms underlying learning and memory? NPJ SCIENCE OF LEARNING 2016; 1:16014. [PMID: 27512601 PMCID: PMC4977095 DOI: 10.1038/npjscilearn.2016.14] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/02/2016] [Accepted: 06/21/2016] [Indexed: 05/02/2023]
Abstract
A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. To date, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory. This neuroepigenetic view suggests that DNA, RNA and protein each influence one another to produce a holistic cellular state that contributes to the formation and maintenance of memory, and predicts a parallel and distributed system for the consolidation, storage and retrieval of the engram.
Collapse
Affiliation(s)
- Paul Marshall
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
| | - Timothy W Bredy
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
245
|
Authement ME, Langlois LD, Kassis H, Gouty S, Dacher M, Shepard RD, Cox BM, Nugent FS. Morphine-induced synaptic plasticity in the VTA is reversed by HDAC inhibition. J Neurophysiol 2016; 116:1093-103. [PMID: 27306674 DOI: 10.1152/jn.00238.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
Dopamine (DA) dysfunction originating from the ventral tegmental area (VTA) occurs as a result of synaptic abnormalities following consumption of drugs of abuse and underlies behavioral plasticity associated with drug abuse. Drugs of abuse can cause changes in gene expression through epigenetic mechanisms in the brain that underlie some of the lasting neuroplasticity and behavior associated with addiction. Here we investigated the function of histone acetylation and histone deacetylase (HDAC)2 in the VTA in recovery of morphine-induced synaptic modifications following a single in vivo exposure to morphine. Using a combination of immunohistochemistry, Western blot, and whole cell patch-clamp recording in rat midbrain slices, we show that morphine increased HDAC2 activity in VTA DA neurons and reduced histone H3 acetylation at lysine 9 (Ac-H3K9) in the VTA 24 h after the injection. Morphine-induced synaptic changes at glutamatergic synapses involved endocannabinoid signaling to reduce GABAergic synaptic strength onto VTA DA neurons. Both plasticities were recovered by in vitro incubation of midbrain slices with a class I-specific HDAC inhibitor (HDACi), CI-994, through an increase in acetylation of histone H3K9. Interestingly, HDACi incubation also increased levels of Ac-H3K9 and triggered GABAergic and glutamatergic plasticities in DA neurons of saline-treated rats. Our results suggest that acute morphine-induced changes in VTA DA activity and synaptic transmission engage HDAC2 activity locally in the VTA to maintain synaptic modifications through histone hypoacetylation.
Collapse
Affiliation(s)
- Michael E Authement
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Ludovic D Langlois
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Haifa Kassis
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Shawn Gouty
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthieu Dacher
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Ryan D Shepard
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Brian M Cox
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Fereshteh S Nugent
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
246
|
Ko HG, Kim JI, Sim SE, Kim T, Yoo J, Choi SL, Baek SH, Yu WJ, Yoon JB, Sacktor TC, Kaang BK. The role of nuclear PKMζ in memory maintenance. Neurobiol Learn Mem 2016; 135:50-56. [PMID: 27321162 DOI: 10.1016/j.nlm.2016.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
Recently, protein kinase M ζ (PKMζ) has emerged as an important player for maintaining memory. It has been reported that PKMζ regulates the trafficking of GluA2 in postsynaptic membranes to maintain memory. However, there has been no study on PKMζ outside the synaptic region regarding memory maintenance. Here, we found that PKMζ is transported to the nucleus in a neural activity-dependent manner. Moreover, we found that PKMζ phosphorylates CREB-binding protein (CBP) at serine residues and that PKMζ inhibition reduces the acetylation of histone H2B and H3. Finally, we showed that the amnesic effect of PKMζ inhibition can be rescued by enhancing histone acetylation level. These results suggest the possibility that nuclear PKMζ has a crucial role in memory maintenance.
Collapse
Affiliation(s)
- Hyoung-Gon Ko
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ji-Il Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Su-Eon Sim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - TaeHyun Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Juyoun Yoo
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sun-Lim Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sung Hee Baek
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Won-Jin Yu
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jong-Bok Yoon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Todd Charlton Sacktor
- Departments of Physiology and Pharmacology, Anesthesiology, and Neurology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Bong-Kiun Kaang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
247
|
Villain H, Florian C, Roullet P. HDAC inhibition promotes both initial consolidation and reconsolidation of spatial memory in mice. Sci Rep 2016; 6:27015. [PMID: 27270584 PMCID: PMC4895233 DOI: 10.1038/srep27015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/09/2016] [Indexed: 02/01/2023] Open
Abstract
Accumulating evidence suggests a critical role for epigenetic regulations in long term memory (LTM) formation. Among them, post-translational modifications of proteins, as histone acetylation, are an important regulator of chromatin remodelling and gene transcription. While the implication of histone acetylation in memory consolidation is widely accepted, less is known about its role in memory reconsolidation i.e. during memory restabilization after its reactivation. In the present study, we investigated the role of histone acetylation during the initial consolidation and the reconsolidation of spatial memory, using a weak massed learning procedure in the Morris water maze paradigm in mice. Usually a weak learning is sufficient for short term memory (STM) formation, but insufficient to upgrade STM to LTM. We found that promoting histone acetylation through intra-hippocampal infusion of a class I selective histone deacetylase (HDAC) inhibitor immediately after a subthreshold spatial learning improved LTM but not STM retention. More importantly, inhibiting HDAC activity after the reactivation of a weak memory promoted specifically LTM reconsolidation without affecting post-reactivation STM. These findings argue in favour of an important role for histone acetylation in memory consolidation, and more particularly during the reconsolidation of spatial memory in mice.
Collapse
Affiliation(s)
- Hélène Villain
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse, cedex 9, France
| | - Cédrick Florian
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse, cedex 9, France
| | - Pascal Roullet
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse, cedex 9, France
| |
Collapse
|
248
|
Gong H, Qian H, Ertl R, Astle CM, Wang GG, Harrison DE, Xu X. Histone modifications change with age, dietary restriction and rapamycin treatment in mouse brain. Oncotarget 2016; 6:15882-90. [PMID: 26021816 PMCID: PMC4599244 DOI: 10.18632/oncotarget.4137] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 11/25/2022] Open
Abstract
The risk of developing neurodegenerative disorders such as Alzheimer's disease (AD) increases dramatically with age. Understanding the underlying mechanisms of brain aging is crucial for developing preventative and/or therapeutic approaches for age-associated neurological diseases. Recently, it has been suggested that epigenetic factors, such as histone modifications, maybe be involved in brain aging and age-related neurodegenerations. In this study, we investigated 14 histone modifications in brains of a cohort of young (3 months), old (22 months), and old age-matched dietary restricted (DR) and rapamycin treated BALB/c mice. Results showed that 7 out of all measured histone markers were changed drastically with age. Intriguingly, histone methylations in brain tissues, including H3K27me3, H3R2me2, H3K79me3 and H4K20me2 tend to disappear with age but can be partially restored by both DR and rapamycin treatment. However, both DR and rapamycin treatment also have a significant impact on several other histone modifications such as H3K27ac, H4K16ac, H4R3me2, and H3K56ac, which do not change as animal ages. This study provides the first evidence that a broad spectrum of histone modifications may be involved in brain aging. Besides, this study suggests that both DR and rapamycin may slow aging process in mouse brain via these underlying epigenetic mechanisms.
Collapse
Affiliation(s)
- Huan Gong
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA.,The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, Ministry of Health, Beijing, China
| | - Hong Qian
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Robin Ertl
- The Jackson Laboratory, Bar Harbor, ME, USA.,Center for Natural and Health Sciences, Marywood University, Scranton, PA, USA
| | | | - Gang G Wang
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Xiangru Xu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| |
Collapse
|
249
|
Kurakin A, Bredesen DE. Dynamic self-guiding analysis of Alzheimer's disease. Oncotarget 2016; 6:14092-122. [PMID: 26041885 PMCID: PMC4546454 DOI: 10.18632/oncotarget.4221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 01/25/2023] Open
Abstract
We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic “guides” and structural “filters” in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Alexei Kurakin
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Dale E Bredesen
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, University of California, Los Angeles, CA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
250
|
Duan R, Liu X, Wang T, Wu L, Gao X, Zhang Z. Histone Acetylation Regulation in Sleep Deprivation-Induced Spatial Memory Impairment. Neurochem Res 2016; 41:2223-32. [PMID: 27161370 DOI: 10.1007/s11064-016-1937-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 12/11/2022]
Abstract
Sleep disorders negatively affect cognition and health. Recent evidence has indicated that chromatin remodeling via histone acetylation regulates cognitive function. This study aimed to investigate the possible roles of histone acetylation in sleep deprivation (SD)-induced cognitive impairment. Results of the Morris water maze test showed that 3 days of SD can cause spatial memory impairment in Wistar rats. SD can also decrease histone acetylation levels, increase histone deacetylase 2 (HDAC2) expression, and decrease histone acetyltransferase (CBP) expression. Furthermore, SD can reduce H3 and H4 acetylation levels in the promoters of the brain-derived neurotrophic factor (Bdnf) gene and thus significantly downregulate BDNF expression and impair the activity of key BDNF signaling pathways (pCaMKII, pErk2, and pCREB). However, treatment with the HDAC inhibitor trichostatin A attenuated all the negative effects induced by SD. Therefore, BDNF and its histone acetylation regulation may play important roles in SD-induced spatial memory impairment, whereas HDAC inhibition possibly confers protection against SD-induced impairment in spatial memory and hippocampal functions.
Collapse
Affiliation(s)
- Ruifeng Duan
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Xiaohua Liu
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Tianhui Wang
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Lei Wu
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Xiujie Gao
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Zhiqing Zhang
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China.
| |
Collapse
|