201
|
Chechekhin VI, Kulebyakin KY, Tyurin-Kuzmin PA. Specific Features of Regulation of Hormonal Sensitivity in Stem Cells. Russ J Dev Biol 2022. [DOI: 10.1134/s106236042203002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
202
|
Casadó-Anguera V, Casadó V. Unmasking allosteric binding sites: Novel targets for GPCR drug discovery. Expert Opin Drug Discov 2022; 17:897-923. [PMID: 35649692 DOI: 10.1080/17460441.2022.2085684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Unexpected non-apparent and hidden allosteric binding sites are non-classical and non-apparent allosteric centers in 3-D X-ray protein structures until orthosteric or allosteric ligands bind to them. The orthosteric center of one protomer that modulates binding centers of the other protomers within an oligomer is also an unexpected allosteric site. Furthermore, another partner protein can also produce these effects, acting as an unexpected allosteric modulator. AREAS COVERED This review summarizes both classical and non-classical allosterism. The authors focus on G protein-coupled receptor (GPCR) oligomers as a paradigm of allosteric molecules. Moreover, they show several examples of unexpected allosteric sites such as hidden allosteric sites in a protomer that appear after the interaction with other molecules and the allosterism exerted between orthosteric sites within GPCR oligomer, emphasizing on the allosteric modulations that can occur between binding sites. EXPERT OPINION The study of these new non-classical allosteric sites will expand the diversity of allosteric control on the function of orthosteric sites within proteins, whether GPCRs or other receptors, enzymes or transporters. Moreover, the design of new drugs targeting these hidden allosteric sites or already known orthosteric sites acting as allosteric sites in protein homo- or hetero-oligomers will increase the therapeutic potential of allosterism.
Collapse
Affiliation(s)
- Verònica Casadó-Anguera
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, and Institute of Biomedicine of the Universitat de Barcelona, Barcelona, Spain.,Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vicent Casadó
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, and Institute of Biomedicine of the Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
203
|
Asher WB, Terry DS, Gregorio GGA, Kahsai AW, Borgia A, Xie B, Modak A, Zhu Y, Jang W, Govindaraju A, Huang LY, Inoue A, Lambert NA, Gurevich VV, Shi L, Lefkowitz RJ, Blanchard SC, Javitch JA. GPCR-mediated β-arrestin activation deconvoluted with single-molecule precision. Cell 2022; 185:1661-1675.e16. [PMID: 35483373 PMCID: PMC9191627 DOI: 10.1016/j.cell.2022.03.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023]
Abstract
β-arrestins bind G protein-coupled receptors to terminate G protein signaling and to facilitate other downstream signaling pathways. Using single-molecule fluorescence resonance energy transfer imaging, we show that β-arrestin is strongly autoinhibited in its basal state. Its engagement with a phosphopeptide mimicking phosphorylated receptor tail efficiently releases the β-arrestin tail from its N domain to assume distinct conformations. Unexpectedly, we find that β-arrestin binding to phosphorylated receptor, with a phosphorylation barcode identical to the isolated phosphopeptide, is highly inefficient and that agonist-promoted receptor activation is required for β-arrestin activation, consistent with the release of a sequestered receptor C tail. These findings, together with focused cellular investigations, reveal that agonism and receptor C-tail release are specific determinants of the rate and efficiency of β-arrestin activation by phosphorylated receptor. We infer that receptor phosphorylation patterns, in combination with receptor agonism, synergistically establish the strength and specificity with which diverse, downstream β-arrestin-mediated events are directed.
Collapse
Affiliation(s)
- Wesley B Asher
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - G Glenn A Gregorio
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alem W Kahsai
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bing Xie
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arnab Modak
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ying Zhu
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Wonjo Jang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alekhya Govindaraju
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Li-Yin Huang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Jonathan A Javitch
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
204
|
Adhikary S, Koita O, Lebowitz JJ, Birdsong WT, Williams JT. Agonist-Specific Regulation of G Protein-Coupled Receptors after Chronic Opioid Treatment. Mol Pharmacol 2022; 101:300-308. [PMID: 35193934 PMCID: PMC9092468 DOI: 10.1124/molpharm.121.000453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/16/2022] [Indexed: 01/21/2023] Open
Abstract
Chronic treatment of animals with morphine results in a long lasting cellular tolerance in the locus coeruleus and alters the kinase dependent desensitization of opioid and nonopioid G protein-coupled receptors (GPCRs). This study examined the development of tolerance and altered regulation of kinase activity after chronic treatment of animals with clinically relevant opioids that differ in efficacy at the µ-opioid receptors (MOR). In slices from oxycodone treated animals, no tolerance to opioids was observed when measuring the MOR induced increase in potassium conductance, but the G protein receptor kinase 2/3 blocker, compound 101, no longer inhibited desensitization of somatostatin (SST) receptors. Chronic fentanyl treatment induced a rightward shift in the concentration response to [Met5]enkephalin, but there was no change in the kinase regulation of desensitization of the SST receptor. When total phosphorylation deficient MORs that block desensitization, internalization, and tolerance were virally expressed, chronic treatment with fentanyl resulted in the altered kinase regulation of SST receptors. The results suggest that sustained opioid receptor signaling initiates the process that results in altered kinase regulation of not only opioid receptors, but also other GPCRs. This study highlights two very distinct downstream adaptive processes that are specifically regulated by an agonist dependent mechanism. SIGNIFICANCE STATEMENT: Persistent signaling of MORs results in altered kinase regulation of nonopioid GPCRs after chronic treatment with morphine and oxycodone. Profound tolerance develops after chronic treatment with fentanyl without affecting kinase regulation. The homeostatic change in the kinase regulation of nonopioid GPCRs could account for the systems level in vivo development of tolerance that is seen with opioid agonists, such as morphine and oxycodone, that develop more rapidly than the tolerance induced by efficacious agonists, such as fentanyl and etorphine.
Collapse
Affiliation(s)
- Sweta Adhikary
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| | - Omar Koita
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| | - Joseph J Lebowitz
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| | - William T Birdsong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, Oregon (S.A., O.K., J.J.L., J.T.W.) and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.)
| |
Collapse
|
205
|
Marsango S, Ward RJ, Jenkins L, Butcher AJ, Al Mahmud Z, Dwomoh L, Nagel F, Schulz S, Tikhonova IG, Tobin AB, Milligan G. Selective phosphorylation of threonine residues defines GPR84-arrestin interactions of biased ligands. J Biol Chem 2022; 298:101932. [PMID: 35427647 PMCID: PMC9118924 DOI: 10.1016/j.jbc.2022.101932] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
GPR84 is an immune cell-expressed, proinflammatory receptor currently being assessed as a therapeutic target in conditions including fibrosis and inflammatory bowel disease. Although it was previously shown that the orthosteric GPR84 activators 2-HTP and 6-OAU promoted its interactions with arrestin-3, a G protein-biased agonist DL-175 did not. Here, we show that replacement of all 21 serine and threonine residues within i-loop 3 of GPR84, but not the two serines in the C-terminal tail, eliminated the incorporation of [32P] and greatly reduced receptor-arrestin-3 interactions promoted by 2-HTP. GPR84 was phosphorylated constitutively on residues Ser221 and Ser224, while various other amino acids are phosphorylated in response to 2-HTP. Consistent with this, an antiserum able to identify pSer221/pSer224 recognized GPR84 from cells treated with and without activators, whereas an antiserum able to identify pThr263/pThr264 only recognized GPR84 after exposure to 2-HTP and not DL-175. Two distinct GPR84 antagonists as well as inhibition of G protein-coupled receptor kinase 2/3 prevented phosphorylation of pThr263/pThr264, but neither strategy affected constitutive phosphorylation of Ser221/Ser224. Furthermore, mutation of residues Thr263 and Thr264 to alanine generated a variant of GPR84 also limited in 2-HTP-induced interactions with arrestin-2 and -3. By contrast, this mutant was unaffected in its capacity to reduce cAMP levels. Taken together, these results define a key pair of threonine residues, regulated only by subsets of GPR84 small molecule activators and by GRK2/3 that define effective interactions with arrestins and provide novel tools to monitor the phosphorylation and functional status of GPR84.
Collapse
Affiliation(s)
- Sara Marsango
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Richard J Ward
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura Jenkins
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Adrian J Butcher
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Zobaer Al Mahmud
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Louis Dwomoh
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Stefan Schulz
- 7TM Antibodies GmbH, Jena, Germany; Institute of Pharmacology and Toxicology, University Hospital Jena, Jena, Germany
| | - Irina G Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, United Kingdom
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Graeme Milligan
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
206
|
Hsieh CL, Yao Y, Gurevich VV, Chen J. Arrestin Facilitates Rhodopsin Dephosphorylation in Vivo. J Neurosci 2022; 42:3537-3545. [PMID: 35332081 PMCID: PMC9053844 DOI: 10.1523/jneurosci.0141-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 01/14/2023] Open
Abstract
Deactivation of G-protein-coupled receptors (GPCRs) involves multiple phosphorylations followed by arrestin binding, which uncouples the GPCR from G-protein activation. Some GPCRs, such as rhodopsin, are reused many times. Arrestin dissociation and GPCR dephosphorylation are key steps in the recycling process. In vitro evidence suggests that visual arrestin (ARR1) binding to light-activated, phosphorylated rhodopsin hinders dephosphorylation. Whether ARR1 binding also affects rhodopsin dephosphorylation in vivo is not known. We investigated this using both male and female mice lacking ARR1. Mice were exposed to bright light and placed in darkness for different periods of time, and differently phosphorylated species of rhodopsin were assayed by isoelectric focusing. For WT mice, rhodopsin dephosphorylation was nearly complete by 1 h in darkness. Surprisingly, we observed that, in the Arr1 KO rods, rhodopsin remained phosphorylated even after 3 h. Delayed dephosphorylation in Arr1 KO rods cannot be explained by cell stress induced by persistent signaling, since it is not prevented by the removal of transducin, the visual G-protein, nor can it be explained by downregulation of protein phosphatase 2A, the putative rhodopsin phosphatase. We further show that cone arrestin (ARR4), which binds light-activated, phosphorylated rhodopsin poorly, had little effect in enhancing rhodopsin dephosphorylation, whereas mice expressing binding-competent mutant ARR1-3A showed a similar time course of rhodopsin dephosphorylation as WT. Together, these results reveal a novel role of ARR1 in facilitating rhodopsin dephosphorylation in vivoSIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) are transmembrane proteins used by cells to receive and respond to a broad range of extracellular signals that include neurotransmitters, hormones, odorants, and light (photons). GPCR signaling is terminated by two sequential steps: phosphorylation and arrestin binding. Both steps must be reversed when GPCRs are recycled and reused. Dephosphorylation, which is required for recycling, is an understudied process. Using rhodopsin as a prototypical GPCR, we discovered that arrestin facilitated rhodopsin dephosphorylation in living mice.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- Ziliha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Yun Yao
- Ziliha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Jeannie Chen
- Ziliha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
207
|
Tauber M, Ben Chaim Y. The activity of the serotonergic 5-HT 1A receptor is modulated by voltage and sodium levels. J Biol Chem 2022; 298:101978. [PMID: 35469922 PMCID: PMC9136116 DOI: 10.1016/j.jbc.2022.101978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022] Open
Abstract
G protein–coupled receptors are known to play a key role in many cellular signal transduction processes, including those mediating serotonergic signaling in the nervous system. Several factors have been shown to regulate the activity of these receptors, including membrane potential and the concentration of sodium ions. Whether voltage and sodium regulate the activity of serotonergic receptors is unknown. Here, we used Xenopus oocytes as an expression system to examine the effects of voltage and of sodium ions on the potency of one subtype of serotonin (5-hydroxytryptamine [5-HT]) receptor, the 5-HT1A receptor. We found that the potency of 5-HT in activating the receptor is voltage dependent and that it is higher at resting potential than under depolarized conditions. Furthermore, we found that removal of extracellular Na+ resulted in a decrease of 5-HT potency toward the 5-HT1A receptor and that a conserved aspartate in transmembrane domain 2 is crucial for this effect. Our results suggest that this allosteric effect of Na+ does not underlie the voltage dependence of this receptor. We propose that the characterization of modulatory factors that regulate this receptor may contribute to our future understanding of various physiological functions mediated by serotonergic transmission.
Collapse
Affiliation(s)
- Merav Tauber
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Yair Ben Chaim
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel.
| |
Collapse
|
208
|
Structural Insights into the Intrinsically Disordered GPCR C-Terminal Region, Major Actor in Arrestin-GPCR Interaction. Biomolecules 2022; 12:biom12050617. [PMID: 35625550 PMCID: PMC9138321 DOI: 10.3390/biom12050617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Arrestin-dependent pathways are a central component of G protein-coupled receptor (GPCRs) signaling. However, the molecular processes regulating arrestin binding are to be further illuminated, in particular with regard to the structural impact of GPCR C-terminal disordered regions. Here, we used an integrated biophysical strategy to describe the basal conformations of the C-terminal domains of three class A GPCRs, the vasopressin V2 receptor (V2R), the growth hormone secretagogue or ghrelin receptor type 1a (GHSR) and the β2-adernergic receptor (β2AR). By doing so, we revealed the presence of transient secondary structures in these regions that are potentially involved in the interaction with arrestin. These secondary structure elements differ from those described in the literature in interaction with arrestin. This suggests a mechanism where the secondary structure conformational preferences in the C-terminal regions of GPCRs could be a central feature for optimizing arrestins recognition.
Collapse
|
209
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of overexpression of jumping translocation breakpoint (JTB) protein in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:1784-1823. [PMID: 35530281 PMCID: PMC9077082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Jumping translocation breakpoint (JTB) gene acts as a tumor suppressor or an oncogene in different malignancies, including breast cancer (BC), where it was reported as overexpressed. However, the molecular functions, biological processes and underlying mechanisms through which JTB protein causes increased cell growth, proliferation and invasion is still not fully deciphered. Our goal is to identify the functions of JTB protein by cellular proteomics approaches. MCF7 breast cancer cells were transfected with sense orientation of hJTB cDNA in HA, His and FLAG tagged CMV expression vector to overexpress hJTB and the expression levels were confirmed by Western blotting (WB). Proteins extracted from transfected cells were separated by SDS-PAGE and the in-gel digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). By comparing the proteome of cells with upregulated conditions of JTB vs control and identifying the protein dysregulation patterns, we aim to understand the function of this protein and its contribution to tumorigenesis. Gene Set Enrichment Analysis (GSEA) algorithm was performed to investigate the biological processes and pathways that are associated with the JTB protein upregulation. The results demonstrated four significantly enriched gene sets from the following significantly upregulated pathways: mitotic spindle assembly, estrogen response late, epithelial-to-mesenchymal transition (EMT) and estrogen response early. JTB protein itself is involved in mitotic spindle pathway by its role in cell division/cytokinesis, and within estrogen response early and late pathways, contributing to discrimination between luminal and mesenchymal breast cancer. Thus, the overexpressed JTB condition was significantly associated with an increased expression of ACTNs, FLNA, FLNB, EZR, MYOF, COL3A1, COL11A1, HSPA1A, HSP90A, WDR, EPPK1, FASN and FOXA1 proteins related to deregulation of cytoskeletal organization and biogenesis, mitotic spindle organization, ECM remodeling, cellular response to estrogen, proliferation, migration, metastasis, increased lipid biogenesis, endocrine therapy resistance, antiapoptosis and discrimination between different breast cancer subtypes. Other upregulated proteins for overexpressed JTB condition are involved in multiple cellular functions and pathways that become dysregulated, such as tumor microenvironment (TME) acidification, the transmembrane transport pathways, glycolytic flux, iron metabolism and oxidative stress, metabolic reprogramming, nucleocytosolic mRNA transport, transcriptional activation, chromatin remodeling, modulation of cell death pathways, stress responsive pathways, and cancer drug resistance. The downregulated proteins for overexpressed JTB condition are involved in adaptive communication between external and internal environment of cells and maintenance between pro-apoptotic and anti-apoptotic signaling pathways, vesicle trafficking and secretion, DNA lesions repair and suppression of genes involved in tumor progression, proteostasis, redox state regulation, biosynthesis of macromolecules, lipolytic pathway, carbohydrate metabolism, dysregulation of ubiquitin-mediated degradation system, cancer cell immune escape, cell-to-cell and cell-to-ECM interactions, and cytoskeletal behaviour. There were no significantly enriched downregulated pathways.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I Bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
210
|
Guzmán-Silva A, Martínez-Morales JC, Medina LDC, Romero-Ávila MT, Villegas-Comonfort S, Solís KH, García-Sáinz JA. Mutation of putative phosphorylation sites in the free fatty acid receptor 1: Effects on signaling, receptor phosphorylation, and internalization. Mol Cell Endocrinol 2022; 545:111573. [PMID: 35065200 DOI: 10.1016/j.mce.2022.111573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
Abstract
Free fatty acid receptor 1 phosphorylation sites were studied using mutants, including a) a mutant with T215V in the third intracellular loop (3IL), b) another with changes in the carboxyl terminus (C-term): T287V, T293V, S298A, and c) a mutant with all of these changes (3IL/C-term). Agonist-induced increases in intracellular calcium were similar between cells expressing wild-type or mutant receptors. In contrast, agonist-induced FFA1 receptor phosphorylation was reduced in mutants compared to wild type. Phorbol ester-induced FFA1 receptor phosphorylation was rapid and robust in cells expressing the wild-type receptor and essentially abolished in the mutants. Agonist-induced ERK 1/2 phosphorylation and receptor internalization were decreased in cells expressing the mutant receptors compared to those expressing the wild-type receptor. Our data suggest that the identified sites might participate in receptor phosphorylation, signaling, and internalization.
Collapse
Affiliation(s)
- Alejandro Guzmán-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - Juan Carlos Martínez-Morales
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - Luz Del Carmen Medina
- Departamento de Biología de la Reproducción, División de CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de México, 09340, Mexico
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - Sócrates Villegas-Comonfort
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - Karina Helivier Solís
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Ap. Postal 70-600, Ciudad de México, 04510, Mexico.
| |
Collapse
|
211
|
Perdices-Lopez C, Avendaño MS, Barroso A, Gaytán F, Ruiz-Pino F, Vázquez MJ, Leon S, Song YB, Sobrino V, Heras V, Romero-Ruiz A, Roa J, Mayor F, Murga C, Pinilla L, Kaiser UB, Tena-Sempere M. Connecting nutritional deprivation and pubertal inhibition via GRK2-mediated repression of kisspeptin actions in GnRH neurons. Metabolism 2022; 129:155141. [PMID: 35074314 PMCID: PMC10283027 DOI: 10.1016/j.metabol.2022.155141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/31/2021] [Accepted: 01/14/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Perturbations in the timing of puberty, with potential adverse consequences in later health, are increasingly common. The underlying neurohormonal mechanisms are unfolded, but nutritional alterations are key contributors. Efforts to unveil the basis of normal puberty and its metabolic control have focused on mechanisms controlling expression of Kiss1, the gene encoding the puberty-activating neuropeptide, kisspeptin. However, other regulatory phenomena remain ill-defined. Here, we address the putative role of the G protein-coupled-receptor kinase-2, GRK2, in GnRH neurons, as modulator of pubertal timing via repression of the actions of kisspeptin, in normal maturation and conditions of nutritional deficiency. METHODS Hypothalamic RNA and protein expression analyses were conducted in maturing female rats. Pharmacological studies involved central administration of GRK2 inhibitor, βARK1-I, and assessment of gonadotropin responses to kisspeptin or phenotypic and hormonal markers of puberty, under normal nutrition or early subnutrition in female rats. In addition, a mouse line with selective ablation of GRK2 in GnRH neurons, aka G-GRKO, was generated, in which hormonal responses to kisspeptin and puberty onset were monitored, in normal conditions and after nutritional deprivation. RESULTS Hypothalamic GRK2 expression increased along postnatal maturation in female rats, especially in the preoptic area, where most GnRH neurons reside, but decreased during the juvenile-to-pubertal transition. Blockade of GRK2 activity enhanced Ca+2 responses to kisspeptin in vitro, while central inhibition of GRK2 in vivo augmented gonadotropin responses to kisspeptin and advanced puberty onset. Postnatal undernutrition increased hypothalamic GRK2 expression and delayed puberty onset, the latter being partially reversed by central GRK2 inhibition. Conditional ablation of GRK2 in GnRH neurons enhanced gonadotropin responses to kisspeptin, accelerated puberty onset, and increased LH pulse frequency, while partially prevented the negative impact of subnutrition on pubertal timing and LH pulsatility in mice. CONCLUSIONS Our data disclose a novel pathway whereby GRK2 negatively regulates kisspeptin actions in GnRH neurons, as major regulatory mechanism for tuning pubertal timing in nutritionally-compromised conditions.
Collapse
Affiliation(s)
- Cecilia Perdices-Lopez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBER-OBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - María S Avendaño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofía, 14004 Córdoba, Spain.
| | - Alexia Barroso
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBER-OBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Francisco Gaytán
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBER-OBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBER-OBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Maria J Vázquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBER-OBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Silvia Leon
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Yong Bhum Song
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Veronica Sobrino
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | - Violeta Heras
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | - Antonio Romero-Ruiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBER-OBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Federico Mayor
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, 28029 Madrid, Spain; CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Murga
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, 28029 Madrid, Spain; CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Leonor Pinilla
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBER-OBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBER-OBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain; CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain; Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
212
|
Khalid E, Chang JP. Receptor-proximal effectors mediating GnRH actions in the goldfish pituitary: Involvement of G protein subunits and GRKs. Gen Comp Endocrinol 2022; 319:113991. [PMID: 35157923 DOI: 10.1016/j.ygcen.2022.113991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 11/21/2022]
Abstract
In goldfish (Carassius auratus), two endogenous isoforms of gonadotropin-releasing hormone (GnRH) stimulate luteinizing hormone (LH) and growth hormone (GH) secretion. These isoforms, GnRH2 and GnRH3, act on a shared population of cell-surface GnRH receptors (GnRHRs) expressed on both gonadotrophs and somatotrophs, and can signal through unique, yet partially overlapping, suites of intracellular effectors, in a phenomenon known as functional selectivity or biased signalling. In this study, G-protein alpha (Gα) subunits were targeted with two inhibitors, YM-254890 and BIM-46187, to ascertain the contribution of specific G-protein subunits in GnRH signalling. Results with the Gαq/11-specific inhibitor YM-254890 on primary cultures of goldfish pituitary cells revealed the use of these subunits in GnRH control of both LH and GH release, as well as GnRH-induced elevations in phospho-ERK levels. Results with the pan-Gα inhibitor BIM-46187 matched those using YM-254890 in LH release but GH responses differed, indicating additional, non-Gαq/11 subunits may be involved in somatotrophs. BIM-46187 also elevated unstimulated LH and GH release suggesting that Gα subunits regulate basal hormone secretion. Furthermore, G-protein-coupled receptor kinase (GRK2/3) inhibition reduced LH responses to GnRH2 and GnRH3, and selectively enhanced GnRH2-stimulated GH release, indicating differential use of GRK2/3 in GnRH actions on gonadotrophs and somatotrophs. These findings in a primary untransformed system provide the first direct evidence to establish Gαq/11 as an obligate driver of GnRH signalling in goldfish pituitary cells, and additionally describe the differential agonist- and cell type-selective involvement of GRK2/3 in this system.
Collapse
Affiliation(s)
- Enezi Khalid
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada.
| |
Collapse
|
213
|
Cheng H, Guo P, Su T, Jiang C, Zhu Z, Wei W, Zhang L, Wang Q. G protein-coupled receptor kinase type 2 and β-arrestin2: Key players in immune cell functions and inflammation. Cell Signal 2022; 95:110337. [PMID: 35461901 DOI: 10.1016/j.cellsig.2022.110337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
214
|
G-protein Biased Signaling Agonists of Dopamine D3 Receptor Promote Distinct Activation Patterns of ERK1/2. Pharmacol Res 2022; 179:106223. [DOI: 10.1016/j.phrs.2022.106223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 01/11/2023]
|
215
|
Pearce A, Redfern-Nichols T, Harris M, Poyner DR, Wigglesworth M, Ladds G. Determining the Effects of Differential Expression of GRKs and β-arrestins on CLR-RAMP Agonist Bias. Front Physiol 2022; 13:840763. [PMID: 35422711 PMCID: PMC9001978 DOI: 10.3389/fphys.2022.840763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Signalling of the calcitonin-like receptor (CLR) is multifaceted, due to its interaction with receptor activity modifying proteins (RAMPs), and three endogenous peptide agonists. Previous studies have focused on the bias of G protein signalling mediated by the receptor and receptor internalisation of the CLR-RAMP complex has been assumed to follow the same pattern as other Class B1 G Protein-Coupled Receptors (GPCRs). Here we sought to measure desensitisation of the three CLR-RAMP complexes in response to the three peptide agonists, through the measurement of β-arrestin recruitment and internalisation. We then delved further into the mechanism of desensitisation through modulation of β-arrestin activity and the expression of GPCR kinases (GRKs), a key component of homologous GPCR desensitisation. First, we have shown that CLR-RAMP1 is capable of potently recruiting β-arrestin1 and 2, subsequently undergoing rapid endocytosis, and that CLR-RAMP2 and -RAMP3 also utilise these pathways, although to a lesser extent. Following this we have shown that agonist-dependent internalisation of CLR is β-arrestin dependent, but not required for full agonism. Overexpression of GRK2-6 was then found to decrease receptor signalling, due to an agonist-independent reduction in surface expression of the CLR-RAMP complex. These results represent the first systematic analysis of the importance of β-arrestins and GRKs in CLR-RAMP signal transduction and pave the way for further investigation regarding other Class B1 GPCRs.
Collapse
Affiliation(s)
- Abigail Pearce
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - David R. Poyner
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Mark Wigglesworth
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, London, United Kingdom
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Graham Ladds,
| |
Collapse
|
216
|
Lymperopoulos A, Suster MS, Borges JI. Short-Chain Fatty Acid Receptors and Cardiovascular Function. Int J Mol Sci 2022; 23:3303. [PMID: 35328722 PMCID: PMC8952772 DOI: 10.3390/ijms23063303] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing experimental and clinical evidence points toward a very important role for the gut microbiome and its associated metabolism in human health and disease, including in cardiovascular disorders. Free fatty acids (FFAs) are metabolically produced and utilized as energy substrates during almost every biological process in the human body. Contrary to long- and medium-chain FFAs, which are mainly synthesized from dietary triglycerides, short-chain FFAs (SCFAs) derive from the gut microbiota-mediated fermentation of indigestible dietary fiber. Originally thought to serve only as energy sources, FFAs are now known to act as ligands for a specific group of cell surface receptors called FFA receptors (FFARs), thereby inducing intracellular signaling to exert a variety of cellular and tissue effects. All FFARs are G protein-coupled receptors (GPCRs) that play integral roles in the regulation of metabolism, immunity, inflammation, hormone/neurotransmitter secretion, etc. Four different FFAR types are known to date, with FFAR1 (formerly known as GPR40) and FFAR4 (formerly known as GPR120) mediating long- and medium-chain FFA actions, while FFAR3 (formerly GPR41) and FFAR2 (formerly GPR43) are essentially the SCFA receptors (SCFARs), responding to all SCFAs, including acetic acid, propionic acid, and butyric acid. As with various other organ systems/tissues, the important roles the SCFARs (FFAR2 and FFAR3) play in physiology and in various disorders of the cardiovascular system have been revealed over the last fifteen years. In this review, we discuss the cardiovascular implications of some key (patho)physiological functions of SCFAR signaling pathways, particularly those regulating the neurohormonal control of circulation and adipose tissue homeostasis. Wherever appropriate, we also highlight the potential of these receptors as therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA; (M.S.S.); (J.I.B.)
| | | | | |
Collapse
|
217
|
BRET-Based Biosensors to Measure Agonist Efficacies in Histamine H 1 Receptor-Mediated G Protein Activation, Signaling and Interactions with GRKs and β-Arrestins. Int J Mol Sci 2022; 23:ijms23063184. [PMID: 35328605 PMCID: PMC8953162 DOI: 10.3390/ijms23063184] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The histamine H1 receptor (H1R) is a G protein-coupled receptor (GPCR) and plays a key role in allergic reactions upon activation by histamine which is locally released from mast cells and basophils. Consequently, H1R is a well-established therapeutic target for antihistamines that relieve allergy symptoms. H1R signals via heterotrimeric Gq proteins and is phosphorylated by GPCR kinase (GRK) subtypes 2, 5, and 6, consequently facilitating the subsequent recruitment of β-arrestin1 and/or 2. Stimulation of a GPCR with structurally different agonists can result in preferential engagement of one or more of these intracellular signaling molecules. To evaluate this so-called biased agonism for H1R, bioluminescence resonance energy transfer (BRET)-based biosensors were applied to measure H1R signaling through heterotrimeric Gq proteins, second messengers (inositol 1,4,5-triphosphate and Ca2+), and receptor-protein interactions (GRKs and β-arrestins) in response to histamine, 2-phenylhistamines, and histaprodifens in a similar cellular background. Although differences in efficacy were observed for these agonists between some functional readouts as compared to reference agonist histamine, subsequent data analysis using an operational model of agonism revealed only signaling bias of the agonist Br-phHA-HA in recruiting β-arrestin2 to H1R over Gq biosensor activation.
Collapse
|
218
|
Ballet S. Call for Papers for a Virtual Special Issue on GPCR Signaling. ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE 2022. [DOI: 10.1021/acsptsci.2c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
219
|
Yue W, Gildea JJ, Xu P, Felder RA. GRK4, A Potential Link between Hypertension and Breast Cancer. JOURNAL OF CELL SCIENCE & THERAPY 2022; 13:1000343. [PMID: 37994311 PMCID: PMC10664845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Hypertension and breast cancer are two common diseases occurring in women. Clinical studies have shown increased breast cancer incidence in hypertensive women. Several lines of evidence demonstrate that G protein-coupled Receptor Kinase 4 (GRK4) could be a common risk factor for hypertension and breast cancer. This article reviews our current understanding of molecular mechanisms of GRK4 in hypertension and breast cancer.
Collapse
Affiliation(s)
- Wei Yue
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - John J Gildea
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Peng Xu
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Robin A Felder
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
220
|
Zhang F, Yuan Y, Chen Y, Chen J, Guo Y, Pu X. Molecular insights into the allosteric coupling mechanism between an agonist and two different transducers for μ-opioid receptors. Phys Chem Chem Phys 2022; 24:5282-5293. [PMID: 35170592 DOI: 10.1039/d1cp05736g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
G protein-coupled receptors (GPCRs) as the most important class of pharmacological targets regulate G-protein and β-arrestin-mediated signaling through allosteric interplay, which are responsible for different biochemical and physiological actions like therapeutic efficacy and side effects. However, the allosteric mechanism underlying preferentially recruiting one transducer versus the other has been poorly understood, limiting drug design. Motivated by this issue, we utilize accelerated molecular dynamics simulation coupled with potential of mean force (PMF), molecular mechanics Poisson Boltzmann surface area (MM/PBSA) and protein structure network (PSN) to study two ternary complex systems of a representative class A GPCR (μ-opioid receptor (μOR)) bound by an agonist and one specific transducer (G-protein and β-arrestin). The results show that no significant difference exists in the whole structure of μOR between two transducer couplings, but displays transducer-dependent changes in the intracellular binding region of μOR, where the β-arrestin coupling results in a narrower crevice with TM7 inward movement compared with the G-protein. In addition, both the G-protein and β-arrestin coupling can increase the binding affinity of the agonist to the receptor. However, the interactions between the agonist and μOR also exhibit transducer-specific changes, in particular for the interaction with ECL2 that plays an important role in recruiting β-arrestin. The allosteric network analysis further indicates that Y1483.33, F1523.37, F1563.41, N1914.49, T1603.45, Y1062.42, W2936.48, F2896.44, I2485.54 and Y2525.58 play important roles in equally activating G-protein and β-arrestin. In contrast, M1613.46 and R1653.50 devote important contributions to preferentially recruit G-protein while D1643.49 and R179ICL2 are revealed to be important for selectively activating β-arrestin. The observations provide useful information for understanding the biased activation mechanism.
Collapse
Affiliation(s)
- Fuhui Zhang
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu, Sichuan 610041, People's Republic of China
| | - Yichi Chen
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Jianfang Chen
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Yanzhi Guo
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Xuemei Pu
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| |
Collapse
|
221
|
Huang SK, Prosser RS. Dynamics and Mechanistic Underpinnings to Pharmacology of Class A GPCRs - An NMR Perspective. Am J Physiol Cell Physiol 2022; 322:C739-C753. [PMID: 35235425 DOI: 10.1152/ajpcell.00044.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
One-third of current pharmaceuticals target G protein-coupled receptors (GPCRs), the largest receptor superfamily in humans and mediators of diverse physiological processes. This review summarizes the recent progress in GPCR structural dynamics, focusing on class A receptors and insights derived from nuclear magnetic resonance (NMR) and other spectroscopic techniques. We describe the structural aspects of GPCR activation and the various pharmacological models that capture aspects of receptor signaling behaviour. Spectroscopic studies revealed that receptors and their signaling complexes are dynamic allosteric systems that sample multiple functional states under basal conditions. The distribution of states within the conformational ensemble and the kinetics of transitions between states are regulated through the binding of ligands, allosteric modulators, and the membrane environment. This ensemble view of GPCRs provides a mechanistic framework for understanding many of the pharmacological phenomena associated with receptor signaling, such as basal activity, efficacy, and functional bias.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
222
|
Millette MA, Roy S, Salesse C. Farnesylation and lipid unsaturation are critical for the membrane binding of the C-terminal segment of G-Protein Receptor Kinase 1. Colloids Surf B Biointerfaces 2022; 211:112315. [PMID: 35026543 DOI: 10.1016/j.colsurfb.2021.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Many proteins are modified by the covalent addition of different types of lipids, such as myristoylation, palmitoylation and prenylation. Lipidation is expected to promote membrane association of proteins. Visual phototransduction involves many lipid-modified proteins. The G-Protein-coupled receptor of rod photoreceptors, rhodopsin, is inactivated by G-Protein-coupled Receptor Kinase 1 (GRK1). The C-terminus of GRK1 is farnesylated and its truncation has been shown to result in a very high decrease of its enzymatic activity, most likely because of the loss of its membrane localization. Little information is available on the membrane binding of GRK1 as well as of most prenylated proteins. Measurements of the membrane binding of the non-farnesylated and farnesylated C-terminal segment of GRK1 were thus performed using lipids typical of those found in rod outer segment disk membranes. Their random coil secondary structure was determined using circular dichroism and infrared spectroscopy. The non-farnesylated C-terminal segment of GRK1 has no surface activity. In contrast, the farnesylated C-terminal segment of GRK1 shows a particularly strong binding to lipid monolayers bearing at least one unsaturated fatty acyl chain. No binding is observed in the presence of monolayers of saturated phospholipids, in agreement with the low affinity of farnesylated Ras proteins for lipids in the liquid-ordered state. Altogether, these data demonstrate that the farnesyl group of the C-terminal segment of GRK1 is mandatory for its membrane binding, which is favored by particular lipids or lipid mixtures. This information will also be useful for the understanding of the membrane binding of other prenylated proteins.
Collapse
Affiliation(s)
- Marc-Antoine Millette
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Sarah Roy
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
223
|
Hwang JH, Kube JC, Smith SB. Lubabegron fumarate acts as a β-adrenergic receptor antagonist in cultured bovine intramuscular and subcutaneous adipocytes. J Anim Sci 2022; 100:6545494. [PMID: 35262701 PMCID: PMC9030222 DOI: 10.1093/jas/skac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/07/2022] [Indexed: 11/12/2022] Open
Abstract
We hypothesized that lubabegron fumarate (LUB) (Experior, Elanco Animal Health, Greenfield, IN) would act as an antagonist to β-adrenergic receptor (β-AR) subtypes in primary bovine subcutaneous (s.c.) and intramuscular (i.m.) adipocytes differentiated in culture. This study employed LUB, dobutamine (DOB, a selective β1-agonist), salbutamol (SAL, a selective β2-agonist), and propranolol (PRO, a non-selective β-AR antagonist). Preadipocytes were isolated by standard techniques from bovine longissimus muscle and overlying s.c. adipose tissue and differentiated to adipocytes for 14 d. The adipocyte source x stage of differentiation interaction was significant for β-adrenergic receptors-1 (ADRB1) (P = 0.001) and ADRB2 (P = 0.01) in that expression of ADRB1 and ADRB2 was greater in s.c. adipocytes than in s.c. preadipocytes; expression of the ADRB1-3 did not change after differentiation of i.m. adipocytes. CCATT/enhancer-binding protein alpha (CEBPA) expression increased upon differentiation in both s.c. and i.m. adipocytes (P = 0.006). The source x stage of differentiation interaction was significant for peroxisome proliferator-activated receptor gamma (PPARG) (P ≤ 0.001) and fatty acid binding protein-4 (FABP4) (P = 0.004). Expression of PPARG increased after differentiation of s.c. preadipocytes to adipocytes, but PPARG expression did not change with differentiation of i.m. preadipocytes to adipocytes. FABP4 expression increased after differentiation of both s.c. and i.m. adipocytes, but FABP4 expression increased to a greater extent in s.c. adipocytes. In s.c. adipocytes, DOB elevated cAMP and glycerol production and protein kinase A (PKA) activity, and SAL increased PKA activity; these effects were abolished by LUB and PRO (P < 0.001). Incubation of i.m. adipocytes with SAL increased cAMP production and PKA activity, which was attenuated by LUB and PRO (P ≤ 0.006). In s.c. adipocytes, SAL, LUB + SAL, and LUB + DOB upregulated hormone sensitive lipase (HSL) (P < 0.001) and perilipin (P = 0.002) gene expression. In i.m. adipocytes, DOB and LUB + DOB increased HSL gene expression (P = 0.001) and LUB + SAL depressed adipose triglyceride lipase expression below control levels (P = 0.001). These results demonstrate that LUB is a β-AR antagonist at the β1-AR and β2-AR subtypes in s.c. adipocytes, and that s.c. and i.m. exhibit different responses to β-AA and LUB.
Collapse
Affiliation(s)
- Jinhee H Hwang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - John C Kube
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN 46140, USA
| | - Stephen B Smith
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
224
|
Martínez-Morales JC, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Roles of Receptor Phosphorylation and Rab Proteins in G Protein-Coupled Receptor Function and Trafficking. Mol Pharmacol 2022; 101:144-153. [PMID: 34969830 DOI: 10.1124/molpharm.121.000429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
The G protein-coupled receptors form the most abundant family of membrane proteins and are crucial physiologic players in the homeostatic equilibrium, which we define as health. They also participate in the pathogenesis of many diseases and are frequent targets of therapeutic intervention. Considering their importance, it is not surprising that different mechanisms regulate their function, including desensitization, resensitization, internalization, recycling to the plasma membrane, and degradation. These processes are modulated in a highly coordinated and specific way by protein kinases and phosphatases, ubiquitin ligases, protein adaptors, interaction with multifunctional complexes, molecular motors, phospholipid metabolism, and membrane distribution. This review describes significant advances in the study of the regulation of these receptors by phosphorylation and endosomal traffic (where signaling can take place); we revisited the bar code hypothesis and include two additional observations: 1) that different phosphorylation patterns seem to be associated with internalization and endosome sorting for recycling or degradation, and 2) that, surprisingly, phosphorylation of some G protein-coupled receptors appears to be required for proper receptor insertion into the plasma membrane. SIGNIFICANCE STATEMENT: G protein-coupled receptor phosphorylation is an early event in desensitization/signaling switching, endosomal traffic, and internalization. These events seem crucial for receptor responsiveness, cellular localization, and fate (recycling/degradation) with important pharmacological/therapeutic implications. Phosphorylation sites vary depending on the cells in which they are expressed and on the stimulus that leads to such covalent modification. Surprisingly, evidence suggests that phosphorylation also seems to be required for proper insertion into the plasma membrane for some receptors.
Collapse
Affiliation(s)
- Juan Carlos Martínez-Morales
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México (J.C.M.-M., M.T.R.-Á, J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Avanzados-Instituto Politécnico Nacional, Ciudad de México, México (G.R.-C.)
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México (J.C.M.-M., M.T.R.-Á, J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Avanzados-Instituto Politécnico Nacional, Ciudad de México, México (G.R.-C.)
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México (J.C.M.-M., M.T.R.-Á, J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Avanzados-Instituto Politécnico Nacional, Ciudad de México, México (G.R.-C.)
| | - Jesús Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México (J.C.M.-M., M.T.R.-Á, J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Avanzados-Instituto Politécnico Nacional, Ciudad de México, México (G.R.-C.)
| |
Collapse
|
225
|
Sex- and β-arrestin-dependent effects of kappa opioid receptor-mediated ethanol consumption. Pharmacol Biochem Behav 2022; 216:173377. [PMID: 35364122 PMCID: PMC9064988 DOI: 10.1016/j.pbb.2022.173377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/18/2022] [Accepted: 03/25/2022] [Indexed: 01/14/2023]
Abstract
The kappa opioid receptor is a known regulator of ethanol consumption, but the molecular mechanisms behind its actions have been underexplored. The scaffolding protein β-arrestin 2 has previously been implicated in driving ethanol consumption at the related delta opioid receptor and has also been suggested to be a driver behind other negative kappa opioid receptor mediated effects. Here, we used kappa opioid agonists with different efficacies for recruiting β-arrestin 2 and knockout animals to determine whether there is a role for β-arrestin 2 in the modulation of voluntary ethanol consumption by the kappa opioid receptor. We find that an agonist with low β-arrestin 2 efficacy more consistently lowers ethanol consumption than agonists with high efficacy for β-arrestin 2. However, knockdown of β-arrestin 2 amplifies the ethanol consumption-promoting effects of the arrestin-recruiting kappa agonists U50,488 and nalfurafine. We control for potentially confounding sedative effects at the kappa opioid receptor and find that β-arrestin 2 is not necessary for kappa opioid receptor-mediated sedation, and that sedation does not correlate with effects on ethanol consumption. Overall, the results suggest a complex relationship between agonist profile, sex, and kappa opioid receptor modulation of ethanol consumption, with little role for kappa opioid receptor-mediated sedation.
Collapse
|
226
|
Paul S, Dinesh Kumar SM, Syamala SS, Balakrishnan S, Vijayan V, Arumugaswami V, Sudhakar S. Identification, tissue specific expression analysis and functional characterization of arrestin gene (ARRDC) in the earthworm Eudrilus eugeniae: a molecular hypothesis behind worm photoreception. Mol Biol Rep 2022; 49:4225-4236. [PMID: 35211863 DOI: 10.1007/s11033-022-07256-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The arrestin domain containing proteins (ARRDCs) are crucial adaptor proteins assist in signal transduction and regulation of sensory physiology. The molecular localization of the ARRDC gene has been confined mainly to the mammalian system while in invertebrates the expression pattern was not addressed significantly. The present study reports the identification, tissue specific expression and functional characterization of an ARRDC transcript in earthworm, Eudrilus eugeniae. METHODS AND RESULTS The coding region of earthworm ARRDC transcript was 1146 bp in length and encoded a protein of 381 amino acid residues. The worm ARRDC protein consists of conserved N-terminal and C-terminal regions and showed significant homology with the ARRDC3 sequence of other species. The tissue specific expression analysis through whole mount in-situ hybridization denoted the expression of ARRDC transcript in the central nervous system of the worm which includes cerebral ganglion and ventral nerve cord. Besides, the expression of ARRDC gene was observed in the epidermal region of earthworm skin. The functional characterization of ARRDC gene was assessed through siRNA silencing and the gene was found to play key role in the light sensing ability and photophobic movement of the worm. CONCLUSIONS The neuronal and dermal expression patterns of ARRDC gene and its functional characterization hypothesized the role of the gene in assisting the photosensory cells to regulate the process of photoreception and phototransduction in the worm.
Collapse
Affiliation(s)
- Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | - Sudalai Mani Dinesh Kumar
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - Sandhya Soman Syamala
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | | | - Vijithkumar Vijayan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | | | - Sivasubramaniam Sudhakar
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India.
| |
Collapse
|
227
|
Wallukat G, Mattecka S, Wenzel K, Schrödl W, Vogt B, Brunner P, Sheriff A, Kunze R. C-Reactive Protein (CRP) Blocks the Desensitization of Agonistic Stimulated G Protein Coupled Receptors (GPCRs) in Neonatal Rat Cardiomyocytes. J Clin Med 2022; 11:jcm11041058. [PMID: 35207331 PMCID: PMC8878432 DOI: 10.3390/jcm11041058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Recently, C-reactive protein (CRP) was shown to affect intracellular calcium signaling and blood pressure in vitro and in vivo, respectively. The aim of the present study was to further investigate if a direct effect on G-protein coupled receptor (GPCR) signaling by CRP can be observed by using CRP in combination with different GPCR agonists on spontaneously beating cultured neonatal rat cardiomyocytes. All used agonists (isoprenaline, clenbuterol, phenylephrine, angiotensin II and endothelin 1) affected the beat rate of cardiomyocytes significantly and after washing them out and re-stimulation the cells developed a pronounced desensitization of the corresponding receptors. CRP did not affect the basal beating-rate nor the initial increase/decrease in beat-rate triggered by different agonists. However, CRP co-incubated cells did not exhibit desensitization of the respective GPCRs after the stimulation with the different agonists. This lack of desensitization was independent of the GPCR type, but it was dependent on the CRP concentration. Therefore, CRP interferes with the desensitization of GPCRs and has to be considered as a novel regulator of adrenergic, angiotensin-1 and endothelin receptors.
Collapse
Affiliation(s)
- Gerd Wallukat
- Berlin Cures GmbH, BBB Campus, 13125 Berlin, Germany; (G.W.); (K.W.)
| | - Stephan Mattecka
- Pentracor GmbH, 16761 Hennigsdorf, Germany; (S.M.); (B.V.); (P.B.); (A.S.)
| | - Katrin Wenzel
- Berlin Cures GmbH, BBB Campus, 13125 Berlin, Germany; (G.W.); (K.W.)
| | - Wieland Schrödl
- Institute of Bacteriology and Mycology Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Birgit Vogt
- Pentracor GmbH, 16761 Hennigsdorf, Germany; (S.M.); (B.V.); (P.B.); (A.S.)
| | - Patrizia Brunner
- Pentracor GmbH, 16761 Hennigsdorf, Germany; (S.M.); (B.V.); (P.B.); (A.S.)
| | - Ahmed Sheriff
- Pentracor GmbH, 16761 Hennigsdorf, Germany; (S.M.); (B.V.); (P.B.); (A.S.)
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité University Medicine, 12200 Berlin, Germany
| | - Rudolf Kunze
- Pentracor GmbH, 16761 Hennigsdorf, Germany; (S.M.); (B.V.); (P.B.); (A.S.)
- Correspondence:
| |
Collapse
|
228
|
Cui Y, Kassmann M, Nickel S, Zhang C, Alenina N, Anistan YM, Schleifenbaum J, Bader M, Welsh DG, Huang Y, Gollasch M. Myogenic Vasoconstriction Requires Canonical G q/11 Signaling of the Angiotensin II Type 1 Receptor. J Am Heart Assoc 2022; 11:e022070. [PMID: 35132870 PMCID: PMC9245832 DOI: 10.1161/jaha.121.022070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Blood pressure and tissue perfusion are controlled in part by the level of intrinsic (myogenic) arterial tone. However, many of the molecular determinants of this response are unknown. We previously found that mice with targeted disruption of the gene encoding the angiotensin II type 1a receptor (AT1AR) (Agtr1a), the major murine angiotensin II type 1 receptor (AT1R) isoform, showed reduced myogenic tone; however, uncontrolled genetic events (in this case, gene ablation) can lead to phenotypes that are difficult or impossible to interpret. Methods and Results We tested the mechanosensitive function of AT1R using tamoxifen-inducible smooth muscle-specific AT1aR knockout (smooth muscle-Agtr1a-/-) mice and studied downstream signaling cascades mediated by Gq/11 and/or β-arrestins. FR900359, Sar1Ile4Ile8-angiotensin II (SII), TRV120027 and TRV120055 were used as selective Gq/11 inhibitor and biased agonists to activate noncanonical β-arrestin and canonical Gq/11 signaling of the AT1R, respectively. Myogenic and Ang II-induced constrictions were diminished in the perfused renal vasculature, mesenteric and cerebral arteries of smooth muscle-Agtr1a-/- mice. Similar effects were observed in arteries of global mutant Agtr1a-/- but not Agtr1b-/- mice. FR900359 decreased myogenic tone and angiotensin II-induced constrictions whereas selective biased targeting of AT1R-β-arrestin signaling pathways had no effects. Conclusions This study demonstrates that myogenic arterial constriction requires Gq/11-dependent signaling pathways of mechanoactivated AT1R but not G protein-independent, noncanonical pathways in smooth muscle cells.
Collapse
Affiliation(s)
- Yingqiu Cui
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany
| | - Mario Kassmann
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany.,Department of Internal Medicine and Geriatrics University Medicine Greifswald Germany
| | - Sophie Nickel
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany
| | - Chenglin Zhang
- Heart and Vascular Institute and School of Biomedical Sciences Chinese University of Hong Kong China
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine Berlin Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin Berlin Germany
| | - Yoland Marie Anistan
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany.,Department of Internal Medicine and Geriatrics University Medicine Greifswald Germany
| | - Johanna Schleifenbaum
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine Berlin Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Charité - Universitätsmedizin Berlin Berlin Germany.,Institute for Biology University of Lübeck Germany
| | - Donald G Welsh
- Department of Physiology and Pharmacology Robarts, Research Institute Western University London Ontario Canada
| | - Yu Huang
- Heart and Vascular Institute and School of Biomedical Sciences Chinese University of Hong Kong China.,Department of Biomedical Sciences Campus VirchowCity University of Hong Kong China
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany.,Department of Internal Medicine and Geriatrics University Medicine Greifswald Germany.,Medical Clinic for Nephrology and Internal Intensive Care Campus VirchowCharité - Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
229
|
Liccardo F, Luini A, Di Martino R. Endomembrane-Based Signaling by GPCRs and G-Proteins. Cells 2022; 11:528. [PMID: 35159337 PMCID: PMC8834376 DOI: 10.3390/cells11030528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) and G-proteins have a range of roles in many physiological and pathological processes and are among the most studied signaling proteins. A plethora of extracellular stimuli can activate the GPCR and can elicit distinct intracellular responses through the activation of specific transduction pathways. For many years, biologists thought that GPCR signaling occurred entirely on the plasma membrane. However, in recent decades, many lines of evidence have proved that the GPCRs and G-proteins may reside on endomembranes and can start or propagate signaling pathways through the organelles that form the secretory route. How these alternative intracellular signaling pathways of the GPCR and G-proteins influence the physiological and pathological function of the endomembranes is still under investigation. Here, we review the general role and classification of GPCRs and G-proteins with a focus on their signaling pathways in the membrane transport apparatus.
Collapse
Affiliation(s)
- Federica Liccardo
- Cardiovascular Research Institute, University of California San Francisco (UCSF), 555 Mission Bay Blvd., San Francisco, CA 94158, USA;
| | - Alberto Luini
- Istituto per L’endocrinologia e L’oncologia Sperimentale “Gaetano Salvatore” (IEOS)—Sede Secondaria, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Rosaria Di Martino
- Istituto per L’endocrinologia e L’oncologia Sperimentale “Gaetano Salvatore” (IEOS)—Sede Secondaria, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
230
|
Chandler B, Todd L, Smith SO. Magic angle spinning NMR of G protein-coupled receptors. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:25-43. [PMID: 35282868 PMCID: PMC10718405 DOI: 10.1016/j.pnmrs.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
G protein-coupled receptors (GPCRs) have a simple seven transmembrane helix architecture which has evolved to recognize a diverse number of chemical signals. The more than 800 GPCRs encoded in the human genome function as receptors for vision, smell and taste, and mediate key physiological processes. Consequently, these receptors are a major target for pharmaceuticals. Protein crystallography and electron cryo-microscopy have provided high resolution structures of many GPCRs in both active and inactive conformations. However, these structures have not sparked a surge in rational drug design, in part because GPCRs are inherently dynamic and the structural changes induced by ligand or drug binding to stabilize inactive or active conformations are often subtle rearrangements in packing or hydrogen-bonding interactions. NMR spectroscopy provides a sensitive probe of local structure and dynamics at specific sites within these receptors as well as global changes in receptor structure and dynamics. These methods can also capture intermediate states and conformations with low populations that provide insights into the activation pathways. We review the use of solid-state magic angle spinning NMR to address the structure and activation mechanisms of GPCRs. The focus is on the large and diverse class A family of receptors. We highlight three specific class A GPCRs in order to illustrate how solid-state, as well as solution-state, NMR spectroscopy can answer questions in the field involving how different GPCR classes and subfamilies are activated by their associated ligands, and how small molecule drugs can modulate GPCR activation.
Collapse
Affiliation(s)
- Bianca Chandler
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Lauren Todd
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
231
|
Ma S, Li Z, Yang Y, Zhang L, Li M, Du L. Fluorescent Ligand-Based Discovery of Small-Molecule Sulfonamide Agonists for GPR120. Front Chem 2022; 10:816014. [PMID: 35174139 PMCID: PMC8841740 DOI: 10.3389/fchem.2022.816014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022] Open
Abstract
As a critical member of G protein-coupled receptors (GPCRs), G protein-coupled receptor 120 (GPR120) is a potential target for many physiological diseases, such as type 2 diabetes mellitus, inflammation, and obesity. Considering that small-molecule fluorescent ligands can combine the advantages of visualization, high sensitivity and selectivity, we initially undertook an effort to develop a series of fluorescent ligands to track GPR120 and establish a method to screen GPR120 agonists. The representative fluorescent ligand N1 possesses suitable optical property, equitable biological activity, and high fluorescence imaging feasibility, therefore, based on compound N1, we subsequently founded a bioluminescence resonance energy transfer (BRET) competition binding assay to screen three series of sulfonamide GPR120 agonists we developed herein. The activity evaluation results revealed that compound D5 was a potent GPR120 agonist with high activity and selectivity. Moreover, compound D5 exhibited a significant glucose-lowering effect in db/db mice, which indicates its potential application in the treatment of type 2 diabetes mellitus in vivo. It is anticipated that our fluorescent ligand-based method is a useful toolbox and will find broad applications in the discovery of small-molecule agonists for GPR120.
Collapse
|
232
|
Perez I, Berndt S, Agarwal R, Castro MA, Vishnivetskiy SA, Smith JC, Sanders CR, Gurevich VV, Iverson TM. A Model for the Signal Initiation Complex Between Arrestin-3 and the Src Family Kinase Fgr. J Mol Biol 2022; 434:167400. [PMID: 34902430 PMCID: PMC8752512 DOI: 10.1016/j.jmb.2021.167400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 02/01/2023]
Abstract
Arrestins regulate a wide range of signaling events, most notably when bound to active G protein-coupled receptors (GPCRs). Among the known effectors recruited by GPCR-bound arrestins are Src family kinases, which regulate cellular growth and proliferation. Here, we focus on arrestin-3 interactions with Fgr kinase, a member of the Src family. Previous reports demonstrated that Fgr exhibits high constitutive activity, but can be further activated by both arrestin-dependent and arrestin-independent pathways. We report that arrestin-3 modulates Fgr activity with a hallmark bell-shaped concentration-dependence, consistent with a role as a signaling scaffold. We further demonstrate using NMR spectroscopy that a polyproline motif within arrestin-3 interacts directly with the SH3 domain of Fgr. To provide a framework for this interaction, we determined the crystal structure of the Fgr SH3 domain at 1.9 Å resolution and developed a model for the GPCR-arrestin-3-Fgr complex that is supported by mutagenesis. This model suggests that Fgr interacts with arrestin-3 at multiple sites and is consistent with the locations of disease-associated Fgr mutations. Collectively, these studies provide a structural framework for arrestin-dependent activation of Fgr.
Collapse
Affiliation(s)
- Ivette Perez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Rupesh Agarwal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, USA
| | - Manuel A Castro
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | | | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA.
| | - T M Iverson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA; Vanderbilt Institute of Chemical Biology, Nashville, TN 37232-0146, USA.
| |
Collapse
|
233
|
Agonist-induced phosphorylation of orthologues of the orphan receptor GPR35 functions as an activation sensor. J Biol Chem 2022; 298:101655. [PMID: 35101446 PMCID: PMC8892012 DOI: 10.1016/j.jbc.2022.101655] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/29/2022] Open
Abstract
G protein-coupled receptor 35 (GPR35) is poorly characterized but nevertheless has been revealed to have diverse roles in areas including lower gut inflammation and pain. The development of novel reagents and tools will greatly enhance analysis of GPR35 functions in health and disease. Here, we used mass spectrometry, mutagenesis, and [32P] orthophosphate labeling to identify that all five hydroxy-amino acids in the C-terminal tail of human GPR35a became phosphorylated in response to agonist occupancy of the receptor and that, apart from Ser294, each of these contributed to interactions with arretin-3, which inhibits further G protein-coupled receptor signaling. We found that Ser303 was key to such interactions; the serine corresponding to human GPR35a residue 303 also played a dominant role in arrestin-3 interactions for both mouse and rat GPR35. We also demonstrated that fully phospho-site–deficient mutants of human GPR35a and mouse GPR35 failed to interact effectively with arrestin-3, and the human phospho-deficient variant was not internalized from the surface of cells in response to agonist treatment. Even in cells stably expressing species orthologues of GPR35, a substantial proportion of the expressed protein(s) was determined to be immature. Finally, phospho-site–specific antisera targeting the region encompassing Ser303 in human (Ser301 in mouse) GPR35a identified only the mature forms of GPR35 and provided effective sensors of the activation status of the receptors both in immunoblotting and immunocytochemical studies. Such antisera may be useful tools to evaluate target engagement in drug discovery and target validation programs.
Collapse
|
234
|
Plouffe B, Karamitri A, Flock T, Gallion JM, Houston S, Daly CA, Bonnefond A, Guillaume JL, Le Gouill C, Froguel P, Lichtarge O, Deupi X, Jockers R, Bouvier M. Structural Elements Directing G Proteins and β-Arrestin Interactions with the Human Melatonin Type 2 Receptor Revealed by Natural Variants. ACS Pharmacol Transl Sci 2022; 5:89-101. [PMID: 35846981 PMCID: PMC9281605 DOI: 10.1021/acsptsci.1c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
G protein-coupled receptors (GPCRs) can engage distinct subsets of signaling pathways, but the structural determinants of this functional selectivity remain elusive. The naturally occurring genetic variants of GPCRs, selectively affecting different pathways, offer an opportunity to explore this phenomenon. We previously identified 40 coding variants of the MTNR1B gene encoding the melatonin MT2 receptor (MT2). These mutations differently impact the β-arrestin 2 recruitment, ERK activation, cAMP production, and Gαi1 and Gαz activation. In this study, we combined functional clustering and structural modeling to delineate the molecular features controlling the MT2 functional selectivity. Using non-negative matrix factorization, we analyzed the signaling signatures of the 40 MT2 variants yielding eight clusters defined by unique signaling features and localized in distinct domains of MT2. Using computational homology modeling, we describe how specific mutations can selectively affect the subsets of signaling pathways and offer a proof of principle that natural variants can be used to explore and understand the GPCR functional selectivity.
Collapse
Affiliation(s)
- Bianca Plouffe
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, H3T 1J4 Montréal, Québec, Canada,Institute
for Research in Immunology and Cancer, Université
de Montréal, H3T 1J4 Montréal, Québec, Canada,The Wellcome-Wolfson
Institute for Experimental Medicine, Queen’s
University Belfast, BT9 7BL Belfast, U.K.
| | - Angeliki Karamitri
- Université
de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Tilman Flock
- Laboratory
of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland,Department
of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Jonathan M. Gallion
- Program
in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, 77030 Houston, Texas, United States
| | - Shane Houston
- The Wellcome-Wolfson
Institute for Experimental Medicine, Queen’s
University Belfast, BT9 7BL Belfast, U.K.
| | - Carole A. Daly
- The Wellcome-Wolfson
Institute for Experimental Medicine, Queen’s
University Belfast, BT9 7BL Belfast, U.K.
| | - Amélie Bonnefond
- Université
de Lille, INSERM/CNRS UMR 1283/8199—EGID, Institut Pasteur
de Lille, CHU de Lille, 59045 Lille, France
| | - Jean-Luc Guillaume
- Université
de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Christian Le Gouill
- Institute
for Research in Immunology and Cancer, Université
de Montréal, H3T 1J4 Montréal, Québec, Canada
| | - Phillipe Froguel
- Université
de Lille, INSERM/CNRS UMR 1283/8199—EGID, Institut Pasteur
de Lille, CHU de Lille, 59045 Lille, France
| | - Olivier Lichtarge
- Program
in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, 77030 Houston, Texas, United States,Department
of Molecular and Human Genetics, Baylor
College of Medicine, 77030 Houston, Texas, United States
| | - Xavier Deupi
- Laboratory
of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland,Condensed
Matter Theory Group, Division of Scientific Computing, Theory, and
Data, Paul Scherrer Institute, 5232 Villigen, Switzerland,. Phone: +41-563103337
| | - Ralf Jockers
- Université
de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France,. Phone: +33-140516434
| | - Michel Bouvier
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, H3T 1J4 Montréal, Québec, Canada,Institute
for Research in Immunology and Cancer, Université
de Montréal, H3T 1J4 Montréal, Québec, Canada,. Phone: 1-514-343-6319
| |
Collapse
|
235
|
Hoare SRJ, Tewson PH, Sachdev S, Connor M, Hughes TE, Quinn AM. Quantifying the Kinetics of Signaling and Arrestin Recruitment by Nervous System G-Protein Coupled Receptors. Front Cell Neurosci 2022; 15:814547. [PMID: 35110998 PMCID: PMC8801586 DOI: 10.3389/fncel.2021.814547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Neurons integrate inputs over different time and space scales. Fast excitatory synapses at boutons (ms and μm), and slow modulation over entire dendritic arbors (seconds and mm) are all ultimately combined to produce behavior. Understanding the timing of signaling events mediated by G-protein-coupled receptors is necessary to elucidate the mechanism of action of therapeutics targeting the nervous system. Measuring signaling kinetics in live cells has been transformed by the adoption of fluorescent biosensors and dyes that convert biological signals into optical signals that are conveniently recorded by microscopic imaging or by fluorescence plate readers. Quantifying the timing of signaling has now become routine with the application of equations in familiar curve fitting software to estimate the rates of signaling from the waveform. Here we describe examples of the application of these methods, including (1) Kinetic analysis of opioid signaling dynamics and partial agonism measured using cAMP and arrestin biosensors; (2) Quantifying the signaling activity of illicit synthetic cannabinoid receptor agonists measured using a fluorescent membrane potential dye; (3) Demonstration of multiplicity of arrestin functions from analysis of biosensor waveforms and quantification of the rates of these processes. These examples show how temporal analysis provides additional dimensions to enhance the understanding of GPCR signaling and therapeutic mechanisms in the nervous system.
Collapse
Affiliation(s)
- Sam R. J. Hoare
- Pharmechanics LLC, Owego, NY, United States
- *Correspondence: Sam R. J. Hoare
| | | | - Shivani Sachdev
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | |
Collapse
|
236
|
Lee D, Kwon HB. Current and future techniques for detecting oxytocin: Focusing on genetically-encoded GPCR sensors. J Neurosci Methods 2022; 366:109407. [PMID: 34763021 PMCID: PMC11877391 DOI: 10.1016/j.jneumeth.2021.109407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/12/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Oxytocin is a neuropituitary hormone that is involved in a wide range of psychosocial behaviors. Despite its psychophysiological importance as a neuromodulator in the CNS, effective techniques capable of monitoring oxytocin dynamics or testing related behavioral consequences are limited. Along with an explosive advancement in synthetic biology, high-performance genetically-encoded neuromodulator sensors are being developed. Here we comprehensively review the current methodologies available for detecting oxytocin in neuroscience. Their strengths and weaknesses are discussed, and a graphical summary is plotted for better comparison of techniques. We also suggest future directions for next generation oxytocin sensor development and their working principles.
Collapse
Affiliation(s)
- Dongmin Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
237
|
Tran K, Sainsily X, Côté J, Coquerel D, Couvineau P, Saibi S, Haroune L, Besserer-Offroy É, Flynn-Robitaille J, Resua Rojas M, Murza A, Longpré JM, Auger-Messier M, Lesur O, Bouvier M, Marsault É, Boudreault PL, Sarret P. Size-Reduced Macrocyclic Analogues of [Pyr 1]-apelin-13 Showing Negative Gα 12 Bias Still Produce Prolonged Cardiac Effects. J Med Chem 2022; 65:531-551. [PMID: 34982553 DOI: 10.1021/acs.jmedchem.1c01708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported a series of macrocyclic analogues of [Pyr1]-apelin-13 (Ape13) with increased plasma stability and potent APJ agonist properties. Based on the most promising compound in this series, we synthesized and then evaluated novel macrocyclic compounds of Ape13 to identify agonists with specific pharmacological profiles. These efforts led to the development of analogues 39 and 40, which possess reduced molecular weight (MW 1020 Da vs Ape13, 1534 Da). Interestingly, compound 39 (Ki 0.6 nM), which does not activate the Gα12 signaling pathway while maintaining potency and efficacy similar to Ape13 to activate Gαi1 (EC50 0.8 nM) and β-arrestin2 recruitment (EC50 31 nM), still exerts cardiac actions. In addition, analogue 40 (Ki 5.6 nM), exhibiting a favorable Gα12-biased signaling and an increased in vivo half-life (t1/2 3.7 h vs <1 min of Ape13), produces a sustained cardiac response up to 6 h after a single subcutaneous bolus injection.
Collapse
Affiliation(s)
- Kien Tran
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Xavier Sainsily
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Jérôme Côté
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - David Coquerel
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Pierre Couvineau
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montreal H3T 1J4, Québec, Canada
| | - Sabrina Saibi
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Lounès Haroune
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Élie Besserer-Offroy
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California 90095, United States
| | | | - Martin Resua Rojas
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Alexandre Murza
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Mannix Auger-Messier
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Olivier Lesur
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Michel Bouvier
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montreal H3T 1J4, Québec, Canada
| | - Éric Marsault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| |
Collapse
|
238
|
Pluhackova K, Wilhelm FM, Müller DJ. Lipids and Phosphorylation Conjointly Modulate Complex Formation of β 2-Adrenergic Receptor and β-arrestin2. Front Cell Dev Biol 2022; 9:807913. [PMID: 35004696 PMCID: PMC8733679 DOI: 10.3389/fcell.2021.807913] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of human membrane proteins that bind extracellular ligands at their orthosteric binding pocket to transmit signals to the cell interior. Ligand binding evokes conformational changes in GPCRs that trigger the binding of intracellular interaction partners (G proteins, G protein kinases, and arrestins), which initiate diverse cellular responses. It has become increasingly evident that the preference of a GPCR for a certain intracellular interaction partner is modulated by a diverse range of factors, e.g., ligands or lipids embedding the transmembrane receptor. Here, by means of molecular dynamics simulations of the β2-adrenergic receptor and β-arrestin2, we study how membrane lipids and receptor phosphorylation regulate GPCR-arrestin complex conformation and dynamics. We find that phosphorylation drives the receptor’s intracellular loop 3 (ICL3) away from a native negatively charged membrane surface to interact with arrestin. If the receptor is embedded in a neutral membrane, the phosphorylated ICL3 attaches to the membrane surface, which widely opens the receptor core. This opening, which is similar to the opening in the G protein-bound state, weakens the binding of arrestin. The loss of binding specificity is manifested by shallower arrestin insertion into the receptor core and higher dynamics of the receptor-arrestin complex. Our results show that receptor phosphorylation and the local membrane composition cooperatively fine-tune GPCR-mediated signal transduction. Moreover, the results suggest that deeper understanding of complex GPCR regulation mechanisms is necessary to discover novel pathways of pharmacological intervention.
Collapse
Affiliation(s)
- Kristyna Pluhackova
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Florian M Wilhelm
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| |
Collapse
|
239
|
Nanoluciferase-based complementation assay for systematic profiling of GPCR–GRK interactions. Methods Cell Biol 2022; 169:309-321. [DOI: 10.1016/bs.mcb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
240
|
Winkle AJ, Nassal DM, Shaheen R, Thomas E, Mohta S, Gratz D, Weinberg SH, Hund TJ. Emerging therapeutic targets for cardiac hypertrophy. Expert Opin Ther Targets 2022; 26:29-40. [PMID: 35076342 PMCID: PMC8885901 DOI: 10.1080/14728222.2022.2031974] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Cardiac hypertrophy is associated with adverse outcomes across cardiovascular disease states. Despite strides over the last three decades in identifying molecular and cellular mechanisms driving hypertrophy, the link between pathophysiological stress stimuli and specific myocyte/heart growth profiles remains unclear. Moreover, the optimal strategy for preventing pathology in the setting of hypertrophy remains controversial. AREAS COVERED This review discusses molecular mechanisms underlying cardiac hypertrophy with a focus on factors driving the orientation of myocyte growth and the impact on heart function. We highlight recent work showing a novel role for the spectrin-based cytoskeleton, emphasizing regulation of myocyte dimensions but not hypertrophy per se. Finally, we consider opportunities for directing the orientation of myocyte growth in response to hypertrophic stimuli as an alternative therapeutic approach. Relevant publications on the topic were identified through Pubmed with open-ended search dates. EXPERT OPINION To define new therapeutic avenues, more precision is required when describing changes in myocyte and heart structure/function in response to hypertrophic stimuli. Recent developments in computational modeling of hypertrophic networks, in concert with more refined experimental approaches will catalyze translational discovery to advance the field and further our understanding of cardiac hypertrophy and its relationship with heart disease.
Collapse
Affiliation(s)
- Alex J. Winkle
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Drew M. Nassal
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Rebecca Shaheen
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Evelyn Thomas
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Shivangi Mohta
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Seth H. Weinberg
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Thomas J. Hund
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
241
|
Mantas I, Saarinen M, Xu ZQD, Svenningsson P. Update on GPCR-based targets for the development of novel antidepressants. Mol Psychiatry 2022; 27:534-558. [PMID: 33589739 PMCID: PMC8960420 DOI: 10.1038/s41380-021-01040-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Traditional antidepressants largely interfere with monoaminergic transport or degradation systems, taking several weeks to have their therapeutic actions. Moreover, a large proportion of depressed patients are resistant to these therapies. Several atypical antidepressants have been developed which interact with G protein coupled receptors (GPCRs) instead, as direct targeting of receptors may achieve more efficacious and faster antidepressant actions. The focus of this review is to provide an update on how distinct GPCRs mediate antidepressant actions and discuss recent insights into how GPCRs regulate the pathophysiology of Major Depressive Disorder (MDD). We also discuss the therapeutic potential of novel GPCR targets, which are appealing due to their ligand selectivity, expression pattern, or pharmacological profiles. Finally, we highlight recent advances in understanding GPCR pharmacology and structure, and how they may provide new avenues for drug development.
Collapse
Affiliation(s)
- Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
242
|
Hauser AS. Personalized Medicine Through GPCR Pharmacogenomics. COMPREHENSIVE PHARMACOLOGY 2022:191-219. [DOI: 10.1016/b978-0-12-820472-6.00100-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
243
|
Millan MJ. Agomelatine for the treatment of generalized anxiety disorder: focus on its distinctive mechanism of action. Ther Adv Psychopharmacol 2022; 12:20451253221105128. [PMID: 35795687 PMCID: PMC9251978 DOI: 10.1177/20451253221105128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Generalized anxiety disorder (GAD), the most frequently diagnosed form of anxiety, is usually treated by cognitive-behavioural approaches or medication; in particular, benzodiazepines (acutely) and serotonin or serotonin/noradrenaline reuptake inhibitors (long term). Efficacy, compliance, and acceptability are, however, far from ideal, reinforcing interest in alternative options. Agomelatine, clinically employed in the treatment of major depression, expresses anxiolytic properties in rodents and was effective in the treatment of GAD (including severely ill patients) in several double-blind, short-term (12 weeks) and relapse-prevention (6 months) studies. At active doses, the incidence of adverse effects was no higher than for placebo. Agomelatine possesses a unique binding profile, behaving as a melatonin (MT1/MT2) receptor agonist and 5-HT2C receptor antagonist, yet recognizing neither monoamine transporters nor GABAA receptors. Extensive evidence supports a role for 5-HT2C receptors in the induction of anxious states, and their blockade likely plays a primary role in mediating the anxiolytic actions of agomelatine, including populations in the amygdala and bed nucleus of stria terminalis, as well as the hippocampus. Recruitment of MT receptors in the suprachiasmatic nucleus, thalamic reticular nucleus, and hippocampus appears to fulfil a complimentary role. Downstream of 5-HT2C and MT receptors, modulation of stress-sensitive glutamatergic circuits and altered release of the anxiogenic neuropeptides, corticotrophin-releasing factor, and vasopressin, may be implicated in the actions of agomelatine. To summarize, agomelatine exerts its anxiolytic actions by mechanisms clearly distinct from those of other agents currently employed for the management of GAD. PLAIN LANGUAGE SUMMARY How agomelatine helps in the treatment of anxiety disorders. INTRODUCTION • Anxiety disorders have a significant negative impact on quality of life.• The most common type of anxiety disorder, called generalized anxiety disorder (GAD), is associated with nervousness and excessive worry.• These symptoms can lead to additional symptoms like tiredness, sleeplessness, irritability, and poor attention.• GAD is generally treated through either cognitive-behavioural therapy or medication. However, widely used drugs like benzodiazepines and serotonin reuptake inhibitors have adverse effects.• Agomelatine, a well-established antidepressant drug, has shown anxiety-lowering ('anxiolytic') properties in rats and has been shown to effectively treat GAD with minimal side effects.• However, exactly how it acts on the brain to manage GAD is not yet clear.• Thus, this review aims to shed light on agomelatine's mechanism of action in treating GAD. METHODS • The authors reviewed studies on how agomelatine treats anxiety in animals.• They also looked at clinical studies on the effects of agomelatine in people with GAD. RESULTS • The study showed that agomelatine 'blocks' a receptor in nerve cells, which plays a role in causing anxiety, called the 5-HT2C receptor.• Blocking this receptor, especially in specific brain regions such as nerve cells of the amygdala, bed nucleus of stria terminalis, and hippocampus, produced the anxiety reduction seen during agomelatine treatment.• Agomelatine also activates the melatonin (MT) receptor, which is known to keep anxiety in check, promote sleep, and maintain the sleep cycle.• Agomelatine should thus tackle sleep disturbances commonly seen in patients with GAD.• Beyond 5-HT2C and MT receptors, signalling molecules in nerve cells that are known to be involved in anxiety disorders (called 'neurotransmitters' and 'neuropeptides') are also affected by agomelatine. CONCLUSION • Agomelatine's anxiolytic effects are caused by mechanisms that are distinct from those of other medications currently used to treat GAD.• This explains its therapeutic success and minimal adverse side effects.
Collapse
Affiliation(s)
- Mark J Millan
- Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Sciences, Glasgow University, 28 Hillhead Street, Glasgow G12 8QB, UK
| |
Collapse
|
244
|
Visualizing G protein-coupled receptor homomers using photoactivatable dye localization microscopy. Methods Cell Biol 2022; 169:27-41. [DOI: 10.1016/bs.mcb.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
245
|
Translational advances of melanocortin drugs: Integrating biology, chemistry and genetics. Semin Immunol 2022; 59:101603. [PMID: 35341670 DOI: 10.1016/j.smim.2022.101603] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 01/15/2023]
Abstract
Melanocortin receptors have emerged as important targets with a very unusual versatility, as their widespread distribution on multiple tissues (e.g. skin, adrenal glands, brain, immune cells, exocrine glands) together with the variety of physiological processes they control (pigmentation, cortisol release, satiety mechanism, inflammation, secretions), place this family of receptors as genuine therapeutic targets for many disorders. This review focuses in the journey of the development of melanocortin receptors as therapeutic targets from the discovery of their existence in the early 1990 s to the approval of the first few drugs of this class. Two major areas of development characterise the current state of melanocortin drug development: their role in obesity, recently culminated with the approval of setmelanotide, and their potential for the treatment of chronic inflammatory and autoimmune diseases like rheumatoid arthritis, multiple sclerosis or fibrosis. The pro-resolving nature of these drugs offers the advantage of acting by mimicking the way our body naturally resolves inflammation, expecting fewer side effects and a more balanced (i.e. non-immunosuppressive) response from them. Here we also review the approaches followed for the design and development of novel compounds, the importance of the GPCR nature of these receptors in the process of drug development, therapeutic value, current challenges and successes, and the potential for the implementation of precision medicine approaches through the incorporation of genetics advances.
Collapse
|
246
|
Biased M1 muscarinic receptor mutant mice show accelerated progression of prion neurodegenerative disease. Proc Natl Acad Sci U S A 2021; 118:2107389118. [PMID: 34893539 PMCID: PMC8685681 DOI: 10.1073/pnas.2107389118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 01/14/2023] Open
Abstract
The M1 muscarinic acetylcholine receptor (M1-receptor) plays a crucial role in learning and memory and is a validated drug target for the treatment of Alzheimer’s disease (AD). Furthermore, M1-receptor ligands have been demonstrated to display disease-modifying effects in preclinical models of neurodegenerative disease. By employing a genetic mouse model expressing a G protein–biased M1-receptor in combination with a mouse model of terminal neurodegenerative disease, we demonstrate here that the M1-receptor exerts an inherent neuroprotective activity that is dependent on its phosphorylation status. Thus, in AD drug development programs, M1-receptor ligands that maintain the receptor phosphorylation status will be more likely to lead to beneficial neuroprotective outcomes. There are currently no treatments that can slow the progression of neurodegenerative diseases, such as Alzheimer’s disease (AD). There is, however, a growing body of evidence that activation of the M1 muscarinic acetylcholine receptor (M1-receptor) can not only restore memory loss in AD patients but in preclinical animal models can also slow neurodegenerative disease progression. The generation of an effective medicine targeting the M1-receptor has however been severely hampered by associated cholinergic adverse responses. By using genetically engineered mouse models that express a G protein–biased M1-receptor, we recently established that M1-receptor mediated adverse responses can be minimized by ensuring activating ligands maintain receptor phosphorylation/arrestin-dependent signaling. Here, we use these same genetic models in concert with murine prion disease, a terminal neurodegenerative disease showing key hallmarks of AD, to establish that phosphorylation/arrestin-dependent signaling delivers neuroprotection that both extends normal animal behavior and prolongs the life span of prion-diseased mice. Our data point to an important neuroprotective property inherent to the M1-receptor and indicate that next generation M1-receptor ligands designed to drive receptor phosphorylation/arrestin-dependent signaling would potentially show low adverse responses while delivering neuroprotection that will slow disease progression.
Collapse
|
247
|
Membrane trafficking and positioning of mGluRs at presynaptic and postsynaptic sites of excitatory synapses. Neuropharmacology 2021; 200:108799. [PMID: 34592242 DOI: 10.1016/j.neuropharm.2021.108799] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
The plethora of functions of glutamate in the brain are mediated by the complementary actions of ionotropic and metabotropic glutamate receptors (mGluRs). The ionotropic glutamate receptors carry most of the fast excitatory transmission, while mGluRs modulate transmission on longer timescales by triggering multiple intracellular signaling pathways. As such, mGluRs mediate critical aspects of synaptic transmission and plasticity. Interestingly, at synapses, mGluRs operate at both sides of the cleft, and thus bidirectionally exert the effects of glutamate. At postsynaptic sites, group I mGluRs act to modulate excitability and plasticity. At presynaptic sites, group II and III mGluRs act as auto-receptors, modulating release properties in an activity-dependent manner. Thus, synaptic mGluRs are essential signal integrators that functionally couple presynaptic and postsynaptic mechanisms of transmission and plasticity. Understanding how these receptors reach the membrane and are positioned relative to the presynaptic glutamate release site are therefore important aspects of synapse biology. In this review, we will discuss the currently known mechanisms underlying the trafficking and positioning of mGluRs at and around synapses, and how these mechanisms contribute to synaptic functioning. We will highlight outstanding questions and present an outlook on how recent technological developments will move this exciting research field forward.
Collapse
|
248
|
Cholesterol-dependent endocytosis of GPCRs: implications in pathophysiology and therapeutics. Biophys Rev 2021; 13:1007-1017. [DOI: 10.1007/s12551-021-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
|
249
|
Li Y, Sun Y, Wu N, Ma H. GRK2 promotes activation of lung fibroblast cells and contributes to pathogenesis of pulmonary fibrosis through increasing Smad3 expression. Am J Physiol Cell Physiol 2021; 322:C63-C72. [PMID: 34852209 DOI: 10.1152/ajpcell.00347.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary fibrosis is a chronic, progressive, and irreversible interstitial lung disease. Transforming growth factor beta1 (TGF-β1) plays a major role in lung fibroblast cell differentiation to myofibroblast cells and production of extracellular matrix, which are hallmarks of pulmonary fibrosis. G protein-coupled receptor kinase-2 (GRK2) has been shown to play controversial roles in TGF-β1-induced signal transduction in different cell types; however, the roles of GRK2 in TGF-β1-induced activation of lung fibroblast cells and development of pulmonary fibrosis have not been revealed. In this study, we found that GRK2 levels were induced in lungs and isolated fibroblast cells in a murine model of pulmonary fibrosis, as well as TGF-β1-treated lung fibroblasts. GRK2 levels were not changed in lungs in the injury phase of pulmonary fibrosis. Post-treatment with GRK2 inhibitor reduced ECM accumulation in lungs in bleomycin-challenged mice, suggesting that GRK2 activation contributes to the progressive phase of pulmonary fibrosis. Inhibition or downregulation of GRK2 attenuates fibronectin, collagen, and α-smooth muscle actin expression in TGF-β1-induced lung fibroblast cells or myofibroblast cells isolated from pulmonary fibrosis patients. Further, we showed that GRK2 regulates Smad3 expression, indicating that inhibition of GRK2 attenuates ECM accumulation through downregulation of Smad3 expression. This study reveals that GRK2 is a therapeutic target in treating pulmonary fibrosis and inhibition of GRK2 dampens pulmonary fibrosis by suppression of Smad3 expression, eventually attenuating TGF-β1 signal pathway and ECM accumulation.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Anesthesia, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Sun
- Department of Respiratory and Critical Care Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Nan Wu
- Department of Anesthesia, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Haichun Ma
- Department of Anesthesia, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
250
|
Role of Receptors in Relation to Plaques and Tangles in Alzheimer's Disease Pathology. Int J Mol Sci 2021; 22:ijms222312987. [PMID: 34884789 PMCID: PMC8657621 DOI: 10.3390/ijms222312987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the identification of Aβ plaques and NFTs as biomarkers for Alzheimer’s disease (AD) pathology, therapeutic interventions remain elusive, with neither an absolute prophylactic nor a curative medication available to impede the progression of AD presently available. Current approaches focus on symptomatic treatments to maintain AD patients’ mental stability and behavioral symptoms by decreasing neuronal degeneration; however, the complexity of AD pathology requires a wide range of therapeutic approaches for both preventive and curative treatments. In this regard, this review summarizes the role of receptors as a potential target for treating AD and focuses on the path of major receptors which are responsible for AD progression. This review gives an overall idea centering on major receptors, their agonist and antagonist and future prospects of viral mimicry in AD pathology. This article aims to provide researchers and developers a comprehensive idea about the different receptors involved in AD pathogenesis that may lead to finding a new therapeutic strategy to treat AD.
Collapse
|