201
|
Tumour-derived extracellular vesicles in blood of metastatic cancer patients associate with overall survival. Br J Cancer 2020; 122:801-811. [PMID: 31937922 PMCID: PMC7078322 DOI: 10.1038/s41416-019-0726-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Circulating tumour cells (CTCs) in blood associate with overall survival (OS) of cancer patients, but they are detected in extremely low numbers. Large tumour-derived extracellular vesicles (tdEVs) in castration-resistant prostate cancer (CRPC) patients are present at around 20 times higher frequencies than CTCs and have equivalent prognostic power. In this study, we explored the presence of tdEVs in other cancers and their association with OS. METHODS The open-source ACCEPT software was used to automatically enumerate tdEVs in digitally stored CellSearch® images obtained from previously reported CTC studies evaluating OS in 190 CRPC, 450 metastatic colorectal cancer (mCRC), 179 metastatic breast cancer (MBC) and 137 non-small cell lung cancer (NSCLC) patients before the initiation of a new treatment. RESULTS Presence of unfavourable CTCs and tdEVs is predictive of OS, with respective hazard ratios (HRs) of 2.4 and 2.2 in CRPC, 2.7 and 2.2 in MBC, 2.3 and 1.9 in mCRC and 2.0 and 2.4 in NSCLC, respectively. CONCLUSIONS tdEVs have equivalent prognostic value as CTCs in the investigated metastatic cancers. CRPC, mCRC, and MBC (but not NSCLC) patients with favourable CTC counts can be further prognostically stratified using tdEVs. Our data suggest that tdEVs could be used in clinical decision-making.
Collapse
|
202
|
Moloney BM, Gilligan KE, Joyce DP, O’Neill CP, O’Brien KP, Khan S, Glynn CL, Waldron RM, Maguire CM, Holian E, Naughton E, Elhadi M, Grealish AB, Malone C, McDermott E, Dockery P, Ritter T, Prina-Mello A, Kerin MJ, Dwyer RM. Investigating the Potential and Pitfalls of EV-Encapsulated MicroRNAs as Circulating Biomarkers of Breast Cancer. Cells 2020; 9:cells9010141. [PMID: 31936142 PMCID: PMC7016709 DOI: 10.3390/cells9010141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) shuttle microRNA (miRNA) throughout the circulation and are believed to represent a fingerprint of the releasing cell. We isolated and characterized serum EVs of breast tumour-bearing animals, breast cancer (BC) patients, and healthy controls. EVs were characterized using transmission electron microscopy (TEM), protein quantification, western blotting, and nanoparticle tracking analysis (NTA). Absolute quantitative (AQ)-PCR was employed to analyse EV-miR-451a expression. Isolated EVs had the appropriate morphology and size. Patient sera contained significantly more EVs than did healthy controls. In tumour-bearing animals, a correlation between serum EV number and tumour burden was observed. There was no significant relationship between EV protein yield and EV quantity determined by NTA, highlighting the requirement for direct quantification. Using AQ-PCR to relate miRNA copy number to EV yield, a significant increase in miRNA-451a copies/EV was detected in BC patient sera, suggesting potential as a novel biomarker of breast cancer.
Collapse
Affiliation(s)
- Brian M. Moloney
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Katie E. Gilligan
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Doireann P. Joyce
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Clodagh P. O’Neill
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Killian P. O’Brien
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Sonja Khan
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Claire L. Glynn
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Ronan M. Waldron
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Ciarán M. Maguire
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM) and Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity Translational Medicine Institute, Trinity College Dublin, James Street, Dublin D08 W9RT, Ireland
| | - Emma Holian
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Erin Naughton
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Mohamed Elhadi
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Andrea B. Grealish
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Carmel Malone
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Emma McDermott
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Peter Dockery
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM) and Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity Translational Medicine Institute, Trinity College Dublin, James Street, Dublin D08 W9RT, Ireland
| | - Michael J. Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
| | - Róisín M. Dwyer
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 YR71, Ireland
- Correspondence:
| |
Collapse
|
203
|
Petit I, Levy A, Aberdam D. Purification of Extracellular Microvesicles Secreted by Dermal Fibroblasts. Methods Mol Biol 2020; 2154:63-72. [PMID: 32314208 DOI: 10.1007/978-1-0716-0648-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extracellular vesicles (EVs) secreted by all cells are key players in information transfer within a tissue or organism. With their highly cell-specific protein and RNA content, EVs can propagate cellular signals and modulate distant cells' behavior. Dermal fibroblasts are supportive cells for all skin cells and the roles of their EVs start to come to light only recently. In this chapter, we describe a protocol to isolate small EVs from primary human fibroblast culture using classical differential centrifugation methodology.
Collapse
Affiliation(s)
- Isabelle Petit
- INSERM U938, CRSA, Hôpital Saint-Antoine, Sorbonne Université, Paris, France.
- INSERM U976, Hôpital Saint-Louis, Université de Paris, Paris, France.
| | - Ayelet Levy
- INSERM U976, Hôpital Saint-Louis, Université de Paris, Paris, France
| | - Daniel Aberdam
- INSERM U976, Hôpital Saint-Louis, Université de Paris, Paris, France
| |
Collapse
|
204
|
Pistono C, Bister N, Stanová I, Malm T. Glia-Derived Extracellular Vesicles: Role in Central Nervous System Communication in Health and Disease. Front Cell Dev Biol 2020. [PMID: 33569385 DOI: 10.3389/cell.2020.623771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Glial cells are crucial for the maintenance of correct neuronal functionality in a physiological state and intervene to restore the equilibrium when environmental or pathological conditions challenge central nervous system homeostasis. The communication between glial cells and neurons is essential and extracellular vesicles (EVs) take part in this function by transporting a plethora of molecules with the capacity to influence the function of the recipient cells. EVs, including exosomes and microvesicles, are a heterogeneous group of biogenetically distinct double membrane-enclosed vesicles. Once released from the cell, these two types of vesicles are difficult to discern, thus we will call them with the general term of EVs. This review is focused on the EVs secreted by astrocytes, oligodendrocytes and microglia, aiming to shed light on their influence on neurons and on the overall homeostasis of the central nervous system functions. We collect evidence on neuroprotective and homeostatic effects of glial EVs, including neuronal plasticity. On the other hand, current knowledge of the detrimental effects of the EVs in pathological conditions is addressed. Finally, we propose directions for future studies and we evaluate the potential of EVs as a therapeutic treatment for neurological disorders.
Collapse
Affiliation(s)
- Cristiana Pistono
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nea Bister
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Iveta Stanová
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
205
|
Logozzi M, Di Raimo R, Mizzoni D, Fais S. Immunocapture-based ELISA to characterize and quantify exosomes in both cell culture supernatants and body fluids. Methods Enzymol 2020; 645:155-180. [PMID: 33565970 PMCID: PMC7346819 DOI: 10.1016/bs.mie.2020.06.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immunocapture-based ELISA for extracellular vesicles (EVs)/exosomes, originally described in 2009 by Logozzi and colleagues, allows to capture, detect, characterize and quantify extracellular vesicles in both human body fluids and cell culture supernatants. It is based on the use of two antibodies directed one against a typical exosomal housekeeping protein and the second against either another exosomal housekeeping protein or a potential disease marker: the first antibody is used for the capture of exosomes, the second for the quantification and characterization of the captured vesicles. In fact, with this method it is possible both to characterize and count exosomes and to detect the presence of disease, including tumor, biomarkers. This needs of course to preliminary obtain an EVs purification from the clinical sample; the most agreed method to get to an EVs purification is the repeated rounds of ultracentrifugation, that, while far to be perfect, is the methodological approach allowing to not exclude EVs subpopulation from the separation procedure and to analyze a full range of EVs from both qualitative and quantitative point of view. The immunocapture-based approach has proven to be highly useful in screening, diagnosis and prognosis of tumors, in plasma samples. One amazing information provided by this method is that cancer patients have always significantly higher levels of EVs, in particular of exosomes, independently from the histological nature of the tumor. One microenvironmental factor that is fully involved in the increased exosome release by tumors is the extracellular acidity. However, few pre-clinical data suggest that plasmatic levels of exosomes may correlate with the tumor mass. Some recent clinical reports suggest also that circulating exosomes represent the real delivery system for some known tumor markers that are presently on trial (e.g., PSA). Here we review the pros and cons of the immunocapture-based technique in quantitative and qualitative evaluation of EVs in both health and disease.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
206
|
Božič D, Hočevar M, Kononenko V, Jeran M, Štibler U, Fiume I, Pajnič M, Pađen L, Kogej K, Drobne D, Iglič A, Pocsfalvi G, Kralj-Iglič V. Pursuing mechanisms of extracellular vesicle formation. Effects of sample processing. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2020. [DOI: 10.1016/bs.abl.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
207
|
O’Meara T, Kong Y, Chiarella J, Price RW, Chaudhury R, Liu X, Spudich S, Robertson K, Emu B, Lu L. Exosomal MicroRNAs Associate With Neuropsychological Performance in Individuals With HIV Infection on Antiretroviral Therapy. J Acquir Immune Defic Syndr 2019; 82:514-522. [PMID: 31714431 PMCID: PMC6857839 DOI: 10.1097/qai.0000000000002187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neurocognitive dysfunction remains prevalent among people living with HIV (PLWH), even after viral suppression on combination antiretroviral therapy (cART). We investigated associations between neuropsychological performance (NP) and patterns of circulating exosomal microRNA (exo-miRNA) expression in PLWH on cART. SETTING A cross-sectional examination of plasma exo-miRNA among PLWH on cART with systemic viral suppression and volunteers without HIV infection. METHODS Thirty-one PLWH who started cART during early infection (n = 19) or chronic infection (n = 12) participated in phlebotomy and an 11-test neuropsychological battery after >1 year on treatment. NP higher- or lower-performing participants were categorized based on normalized neuropsychological scores. Total RNA was extracted from purified exosomes of 31 PLWH and 5 volunteers without HIV and subject to small RNA sequencing. Differential expression of exo-miRNAs was examined and biological functions were predicted. RESULTS Eleven exo-miRNAs were up-regulated in NP lower-performing (n = 18) relative to higher-performing PLWH (n = 13). A high proportion of the differentiating exo-miRNA target the axon guidance KEGG pathway and neurotrophin tyrosine receptor kinase signaling Gene Ontology pathway. Differential expression analysis of exo-miRNAs between NP lower- (n = 7) and higher-performing (n = 12) PLWH within the early infection group alone confirmed largely consistent findings. CONCLUSIONS Plasma exo-miRNA content differed between NP higher- and lower-performing PLWH. Several differentially expressed exo-miRNAs were predicted to be involved in inflammation and neurodegeneration pathways. Exo-miRNA in plasma may indicate cross-talk between the circulation and central nervous system and thus may be clinically relevant for neurocognitive dysfunction in PLWH.
Collapse
Affiliation(s)
| | - Yong Kong
- Yale School of Public Health, New Haven, CT
| | | | - Richard W. Price
- University of California San Francisco School of Medicine,
San Francisco, CA
| | - Rabib Chaudhury
- Yale School of Engineering and Applied Sciences, New Haven,
CT
| | | | | | - Kevin Robertson
- University of North Carolina School of Medicine, Chapel
Hill, NC
| | | | - Lingeng Lu
- Yale School of Public Health, New Haven, CT
| |
Collapse
|
208
|
Identification and Validation Model for Informative Liquid Biopsy-Based microRNA Biomarkers: Insights from Germ Cell Tumor In Vitro, In Vivo and Patient-Derived Data. Cells 2019; 8:cells8121637. [PMID: 31847394 PMCID: PMC6952794 DOI: 10.3390/cells8121637] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
Liquid biopsy-based biomarkers, such as microRNAs, represent valuable tools for patient management, but often do not make it to integration in the clinic. We aim to explore issues impeding this transition, in the setting of germ cell tumors, for which novel biomarkers are needed. We describe a model for identifying and validating clinically relevant microRNAs for germ cell tumor patients, using both in vitro, in vivo (mouse model) and patient-derived data. Initial wide screening of candidate microRNAs is performed, followed by targeted profiling of potentially relevant biomarkers. We demonstrate the relevance of appropriate (negative) controls, experimental conditions (proliferation), and issues related to sample origin (serum, plasma, cerebral spinal fluid) and pre-analytical variables (hemolysis, contaminants, temperature), all of which could interfere with liquid biopsy-based studies and their conclusions. Finally, we show the value of our identification model in a specific scenario, contradicting the presumed role of miR-375 as marker of teratoma histology in liquid biopsy setting. Our findings indicate other putative microRNAs (miR-885-5p, miR-448 and miR-197-3p) fulfilling this clinical need. The identification model is informative to identify the best candidate microRNAs to pursue in a clinical setting.
Collapse
|
209
|
Circulating Extracellular Vesicles Containing Xenobiotic Metabolizing CYP Enzymes and Their Potential Roles in Extrahepatic Cells Via Cell-Cell Interactions. Int J Mol Sci 2019; 20:ijms20246178. [PMID: 31817878 PMCID: PMC6940889 DOI: 10.3390/ijms20246178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
The cytochrome P450 (CYP) family of enzymes is known to metabolize the majority of xenobiotics. Hepatocytes, powerhouses of CYP enzymes, are where most drugs are metabolized into non-toxic metabolites. Additional tissues/cells such as gut, kidneys, lungs, blood, and brain cells express selective CYP enzymes. Extrahepatic CYP enzymes, especially in kidneys, also metabolize drugs into excretable forms. However, extrahepatic cells express a much lower level of CYPs than hepatocytes. It is possible that the liver secretes CYP enzymes, which circulate via plasma and are eventually delivered to extrahepatic cells (e.g., brain cells). CYP circulation likely occurs via extracellular vesicles (EVs), which carry important biomolecules for delivery to distant cells. Recent studies have revealed an abundance of several CYPs in plasma EVs and other cell-derived EVs, and have demonstrated the role of CYP-containing EVs in xenobiotic-induced toxicity via cell–cell interactions. Thus, it is important to study the mechanism for packaging CYP into EVs, their circulation via plasma, and their role in extrahepatic cells. Future studies could help to find novel EV biomarkers and help to utilize EVs in novel interventions via CYP-containing EV drug delivery. This review mainly covers the abundance of CYPs in plasma EVs and EVs derived from CYP-expressing cells, as well as the potential role of EV CYPs in cell–cell communication and their application with respect to novel biomarkers and therapeutic interventions.
Collapse
|
210
|
Le Goff M, Lagadic-Gossmann D, Latour R, Podechard N, Grova N, Gauffre F, Chevance S, Burel A, Appenzeller BMR, Ulmann L, Sergent O, Le Ferrec E. PAHs increase the production of extracellular vesicles both in vitro in endothelial cells and in vivo in urines from rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113171. [PMID: 31539851 DOI: 10.1016/j.envpol.2019.113171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Environmental contaminants, to which humans are widely exposed, cause or worsen several diseases, like cardiovascular diseases and cancers. Among these molecules, polycyclic aromatic hydrocarbons (PAHs) stand out since they are ubiquitous pollutants found in ambient air and diet. Because of their toxic effects, public Health agencies promote development of research studies aiming at increasing the knowledge about PAHs and the discovery of biomarkers of exposure and/or effects. Extracellular vesicles (EVs), including small extracellular vesicles (S-EVs or exosomes) and large extracellular vesicles (L-EVs or microvesicles), are delivery systems for multimolecular messages related to the nature and status of the originating cells. Because they are produced by all cells and detected within body fluids, EV releases could act as cell responses and thereby serve as biomarkers. To test whether EVs can serve as biomarkers of PAHs exposure, we evaluate the effects of these pollutants on EV production using an in vitro approach (human endothelial cell line, HMEC-1) and an in vivo approach (urine samples from PAHs-exposed rats). Our study indicates that, i) PAH exposure increases in vitro the EV production by endothelial cells and in vivo the release of EVs in urine, and that the stimulating effects of PAHs concern both S-EVs and L-EVs; ii) PAH exposure and more particularly exposure to B[a]P, can influence the composition of exosomes produced by endothelial cells; iii) the aryl hydrocarbon receptor, a cytosolic receptor associated to most deleterious effects of PAHs, would be involved in the PAH effects on the release of S-EVs, but not L-EVs. These results suggest that EVs may have utility for monitoring exposure to PAHs, and more particularly to B[a]P, considered as reference PAH, and to detect the related early cellular response prior to end-organ damages.
Collapse
Affiliation(s)
- Manon Le Goff
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France; EA 2160 Mer Molécules Santé - MIMMA, IUML FR-3473 CNRS, Le Mans Université, Laval, F-53020, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Remi Latour
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg; Calbinotox, Faculty of Science and Technology-Lorraine University, Campus Aiguillettes, B.P. 70239, F-54506, Vandoeuvre-lès-Nancy, France
| | - Fabienne Gauffre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR_6226, F-35000, Rennes, France
| | - Soizic Chevance
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR_6226, F-35000, Rennes, France
| | - Agnès Burel
- Univ Rennes, Biosit - UMS 3480, US_S 018, F-35000, Rennes, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, 1 A-B Thomas Edisson, Luxembourg
| | - Lionel Ulmann
- EA 2160 Mer Molécules Santé - MIMMA, IUML FR-3473 CNRS, Le Mans Université, Laval, F-53020, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
211
|
Abstract
PURPOSE OF REVIEW The age-related accumulation of bone marrow adipose tissue (BMAT) negatively impacts bone metabolism and hematopoiesis. This review provides an overview about BMAT-secreted factors as biomarkers for BMAT accumulation and osteoporosis risk. RECENT FINDINGS The adipokines leptin and adiponectin are regulators of BMAT. It remains to be clarified if locally produced adipokines substantially contribute to their peripheral serum levels and if they influence bone metabolism beyond that of extraosseous adipokine production. Existing data also suggests that BMAT disturbs bone metabolism primarily through palmitate-mediated toxic effects on osteoblasts and osteocytes, including dysregulated autophagy and apoptosis. BMAT-secreted factors are important modulators of bone metabolism. However, the majority of our understanding about MAT-secreted factors and their paracrine and endocrine effects is derived from in vitro studies and animal experiments. Therefore, more research is needed before BMAT-secreted biomarkers can be applied in medical practice.
Collapse
Affiliation(s)
- Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15/1, 8036, Graz, Austria.
| |
Collapse
|
212
|
Matsumoto A, Takahashi Y, Chang HY, Wu YW, Yamamoto A, Ishihama Y, Takakura Y. Blood concentrations of small extracellular vesicles are determined by a balance between abundant secretion and rapid clearance. J Extracell Vesicles 2019; 9:1696517. [PMID: 31807238 PMCID: PMC6882433 DOI: 10.1080/20013078.2019.1696517] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Small extracellular vesicles (sEVs) are important mediators of cell–cell communication with respect to diverse physiological processes. To further understand their physiological roles, understanding blood sEV homoeostasis in a quantitative manner is desired. In this study, we propose novel kinetic approaches to estimate the secretion and clearance of mouse plasma–derived sEVs (MP-sEVs) based on the hypothesis that blood sEV concentrations are determined by a balance between the secretion and clearance of sEVs. Using our specific and sensitive sEV labelling technology, we succeeded in analysing MP-sEV clearance from the blood after intravenous administration into mice. This revealed the rapid disappearance of MP-sEVs with a half-life of approximately 7 min. Moreover, the plasma sEV secretion rate, which is presently impossible to directly evaluate, was calculated as 18 μg/min in mice based on pharmacokinetic (PK) analysis. Next, macrophage-depleted mice were prepared as a model of disrupted sEV homoeostasis with retarded sEV clearance. MP-sEV concentrations were increased in macrophage-depleted mice, which probably reflected a shift in the balance of secretion and clearance. Moreover, the increased MP-sEV concentration in macrophage-depleted mice was successfully simulated using calculated clearance rate constant, secretion rate constant and volume of distribution, suggesting the validity of our PK approaches. These results demonstrate that blood sEV concentration homoeostasis can be explained by the dynamics of rapid secretion/clearance.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hsin-Yi Chang
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yi-Wen Wu
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Aki Yamamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
213
|
Burnouf T, Agrahari V, Agrahari V. Extracellular Vesicles As Nanomedicine: Hopes And Hurdles In Clinical Translation. Int J Nanomedicine 2019; 14:8847-8859. [PMID: 32009783 PMCID: PMC6859699 DOI: 10.2147/ijn.s225453] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
The clinical development of cell therapies is revealing that extracellular vesicles (EVs) may become very instrumental as subcellular therapeutic adjuncts in human medicine. EVs are released by various types of cells, grown in culture, such as mesenchymal stromal cells, or obtained from patients or allogeneic donors. Some EV populations (especially species of exosomes and shed microvesicles) exhibit inherent roles in cell-cell communication, thanks to their ca. 30~1000-nm nanosize and the physiological expression of cell-specific markers on their lipid bilayer membranes. Biomedical engineers are now attempting to exploit this cellular crosstalk capacity to use EVs as smart drug delivery systems that display substantial benefits in targeting, safety, and pharmacokinetics compared to synthetic nanocarriers. In parallel, the development of a set of nano-instrumentation, biochemical tools, and preclinical assays needed for optimal characterization of both naïve and drug-loaded EVs is ongoing. Although many hurdles remain, owing to the complexity of EV populations, translation of this “subcellular therapy” platform into reality is at hand and may soon change the landscape of the therapeutic arsenal in place to treat human degenerative and metabolic pathologies as well as diseases like cancer. This article provides objective opinions, balanced between unrealistic hopes of the capacity of EVs to resolve multiple clinical issues and concrete hurdles that have to be overcome to ensure that EVs are not lost in the translation phase, so that EVs can fulfill their promise by becoming a reliable therapeutic modality.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Vibhuti Agrahari
- Bernard J. Dunn School of Pharmacy, Shenandoah University, Winchester, VA, USA
| | - Vivek Agrahari
- CONRAD, Eastern Virginia Medical School, Arlington, VA, USA
| |
Collapse
|
214
|
Abraham A, Krasnodembskaya A. Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem Cells Transl Med 2019; 9:28-38. [PMID: 31647191 PMCID: PMC6954712 DOI: 10.1002/sctm.19-0205] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a serious and potentially fatal acute inflammatory lung condition which currently has no specific treatments targeting its pathophysiology. However, mesenchymal stem cells have been shown to have very promising therapeutic potential, and recently, it has been established that their effect is largely due to the transfer of extracellular vesicles (EVs). EVs have been shown to transfer a variety of substances such as mRNA, miRNA, and even organelles such as mitochondria in order to ameliorate ARDS in preclinical models. In addition, the fact that they have been proven to have the same effect as their parent cells combined with their numerous advantages over whole cell administration means that they are a promising candidate for clinical application that merits further research.
Collapse
Affiliation(s)
- Aswin Abraham
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Anna Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| |
Collapse
|
215
|
Serrano-Pertierra E, Blanco-López MC. Extracellular Vesicles: From Biology to Biomedical Applications. Bioengineering (Basel) 2019; 6:bioengineering6030079. [PMID: 31489953 PMCID: PMC6783948 DOI: 10.3390/bioengineering6030079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022] Open
|
216
|
Secretome of Adipose Tissue-Derived Stem Cells (ASCs) as a Novel Trend in Chronic Non-Healing Wounds: An Overview of Experimental In Vitro and In Vivo Studies and Methodological Variables. Int J Mol Sci 2019; 20:ijms20153721. [PMID: 31366040 PMCID: PMC6696601 DOI: 10.3390/ijms20153721] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022] Open
Abstract
Wound healing is a complex process with a linear development that involves many actors in a multistep timeline commonly divided into four stages: Hemostasis, inflammation, proliferation, and remodeling. Chronic non-healing wounds fail to progress beyond the inflammatory phase, thus precluding the next steps and, ultimately, wound repair. Many intrinsic or extrinsic factors may contribute to such an occurrence, including patient health conditions, age-related diseases, metabolic deficiencies, advanced age, mechanical pressure, and infections. Great interest is being focused on the adipose tissue-derived stem cell’s (ASC) paracrine activity for its potential therapeutic impact on chronic non-healing wounds. In this review, we summarize the results of in vitro and in vivo experimental studies on the pro-wound healing effects of ASC-secretome and/or extracellular vesicles (EVs). To define an overall picture of the available literature data, experimental conditions and applied methodologies are described as well as the in vitro and in vivo models chosen in the reported studies. Even if a comparative analysis of the results obtained by the different groups is challenging due to the large variability of experimental conditions, the available findings are undoubtedly encouraging and fully support the use of cell-free therapies for the treatment of chronic non-healing wounds.
Collapse
|
217
|
Zebrowska A, Skowronek A, Wojakowska A, Widlak P, Pietrowska M. Metabolome of Exosomes: Focus on Vesicles Released by Cancer Cells and Present in Human Body Fluids. Int J Mol Sci 2019; 20:ijms20143461. [PMID: 31337156 PMCID: PMC6678201 DOI: 10.3390/ijms20143461] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Exosomes and other classes of extracellular vesicles (EVs) have gained interest due to their role in cell-to-cell communication. Knowledge of the molecular content of EVs may provide important information on features of parental cells and mechanisms of cross-talk between cells. To study functions of EVs it is essential to know their composition, that includes proteins, nucleic acids, and other classes biomolecules. The metabolome, set of molecules the most directly related to the cell phenotype, is the least researched component of EVs. However, the metabolome of EVs circulating in human blood and other bio-fluids is of particular interest because of its potential diagnostic value in cancer and other health conditions. On the other hand, the metabolome of EVs released to culture media in controlled conditions in vitro could shed light on important aspects of communication between cells in model systems. This paper summarizes the most common approaches implemented in EV metabolomics and integrates currently available data on the composition of the metabolome of EVs obtained in different models with particular focus on human body fluids and cancer cells.
Collapse
Affiliation(s)
- Aneta Zebrowska
- Maria Sklodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-100 Gliwice, Poland
| | - Agata Skowronek
- Maria Sklodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-100 Gliwice, Poland
| | - Anna Wojakowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 44-100 Poznan, Poland
| | - Piotr Widlak
- Maria Sklodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-100 Gliwice, Poland
| | - Monika Pietrowska
- Maria Sklodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-100 Gliwice, Poland.
| |
Collapse
|
218
|
Balachandran B, Yuana Y. Extracellular vesicles-based drug delivery system for cancer treatment. COGENT MEDICINE 2019. [DOI: 10.1080/2331205x.2019.1635806] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Banuja Balachandran
- Division of Imaging, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Yuana Yuana
- Division of Imaging, University Medical Centre Utrecht, Utrecht, The Netherlands
- Faculty of Biomedical Engineering, Technical University Eindhoven, Eindhoven, The Netherlands
| |
Collapse
|
219
|
Tatischeff I. Dictyostelium: A Model for Studying the Extracellular Vesicle Messengers Involved in Human Health and Disease. Cells 2019; 8:E225. [PMID: 30857191 PMCID: PMC6468606 DOI: 10.3390/cells8030225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
Cell-derived extracellular vesicles (EVs) are newly uncovered messengers for intercellular communication. They are released by almost all cell types in the three kingdoms, Archeabacteria, Bacteria and Eukaryotes. They are known to mediate important biological functions and to be increasingly involved in cell physiology and in many human diseases, especially in oncology. The aim of this review is to recapitulate the current knowledge about EVs and to summarize our pioneering work about Dictyostelium discoideum EVs. However, many challenges remain unsolved in the EV research field, before any EV application for theranostics (diagnosis, prognosis, and therapy) of human cancers, can be efficiently implemented in the clinics. Dictyostelium might be an outstanding eukaryotic cell model for deciphering the utmost challenging problem of EV heterogeneity, and for unraveling the still mostly unknown mechanisms of their specific functions as mediators of intercellular communication.
Collapse
Affiliation(s)
- Irène Tatischeff
- Honorary CNRS (Centre de la Recherche Scientifique, Paris, France) and UPMC (Université Pierre et Marie Curie, Paris, France) Research Director, Founder of RevInterCell, a Scientific Consulting Service, 91400 Orsay, France.
| |
Collapse
|