201
|
Zhu L, Cui X, Jiang L, Fang F, Liu B. Application and prospect of microfluidic devices for rapid assay of cell activities in the tumor microenvironment. BIOMICROFLUIDICS 2024; 18:031506. [PMID: 38899164 PMCID: PMC11185871 DOI: 10.1063/5.0206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
The global impact of cancer on human health has raised significant concern. In this context, the tumor microenvironment (TME) plays a pivotal role in the tumorigenesis and malignant progression. In order to enhance the accuracy and efficacy of therapeutic outcomes, there is an imminent requirement for in vitro models that can accurately replicate the intricate characteristics and constituents of TME. Microfluidic devices exhibit notable advantages in investigating the progression and treatment of tumors and have the potential to become a novel methodology for evaluating immune cell activities in TME and assist clinicians in assessing the prognosis of patients. In addition, it shows great advantages compared to traditional cell experiments. Therefore, the review first outlines the applications and advantages of microfluidic chips in facilitating tumor cell culture, constructing TME and investigating immune cell activities. Second, the roles of microfluidic devices in the analysis of circulating tumor cells, tumor prognosis, and drug screening have also been mentioned. Moreover, a forward-looking perspective is discussed, anticipating the widespread clinical adoption of microfluidic devices in the future.
Collapse
Affiliation(s)
- Linjing Zhu
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lingling Jiang
- Department of Oral Comprehensive Therapy, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Fang Fang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Boyang Liu
- Author to whom correspondence should be addressed:
| |
Collapse
|
202
|
Ramirez JA, Jiménez MC, Ospina V, Rivera BS, Fiorentino S, Barreto A, Restrepo LM. The secretome from human-derived mesenchymal stem cells augments the activity of antitumor plant extracts in vitro. Histochem Cell Biol 2024; 161:409-421. [PMID: 38402366 PMCID: PMC11045572 DOI: 10.1007/s00418-024-02265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/26/2024]
Abstract
Cancer is understood as a multifactorial disease that involve multiple cell types and phenotypes in the tumor microenvironment (TME). The components of the TME can interact directly or via soluble factors (cytokines, chemokines, growth factors, extracellular vesicles, etc.). Among the cells composing the TME, mesenchymal stem cells (MSCs) appear as a population with debated properties since it has been seen that they can both promote or attenuate tumor progression. For various authors, the main mechanism of interaction of MSCs is through their secretome, the set of molecules secreted into the extracellular milieu, recruiting, and influencing the behavior of other cells in inflammatory environments where they normally reside, such as wounds and tumors. Natural products have been studied as possible cancer treatments, appealing to synergisms between the molecules in their composition; thus, extracts obtained from Petiveria alliacea (Anamu-SC) and Caesalpinia spinosa (P2Et) have been produced and studied previously on different models, showing promising results. The effect of plant extracts on the MSC secretome has been poorly studied, especially in the context of the TME. Here, we studied the effect of Anamu-SC and P2Et extracts in the human adipose-derived MSC (hAMSC)-tumor cell interaction as a TME model. We also investigated the influence of the hAMSC secretome, in combination with these natural products, on tumor cell hallmarks such as viability, clonogenicity, and migration. In addition, hAMSC gene expression and protein synthesis were evaluated for some key factors in tumor progression in the presence of the extracts by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Multiplex, respectively. It was found that the presence of the hAMSC secretome did not affect the cytotoxic or clonogenicity-reducing activities of the natural extracts on cancer cells, and even this secretome can inhibit the migration of these tumor cells, in addition to the fact that the profile of molecules can be modified by natural products. Overall, our findings demonstrate that hAMSC secretome participation in TME interactions can favor the antitumor activities of natural products.
Collapse
Affiliation(s)
- J A Ramirez
- Grupo Ingeniería de Tejidos y Terapías Celulares, Facultad de Medicina, Universidad de Antioquia, Carrera 51 A No 62-42, Medellín, Colombia
| | - M C Jiménez
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7 No 40-62, Bogotá, Colombia
| | - V Ospina
- Grupo Ingeniería de Tejidos y Terapías Celulares, Facultad de Medicina, Universidad de Antioquia, Carrera 51 A No 62-42, Medellín, Colombia
| | - B S Rivera
- Grupo Ingeniería de Tejidos y Terapías Celulares, Facultad de Medicina, Universidad de Antioquia, Carrera 51 A No 62-42, Medellín, Colombia
| | - S Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7 No 40-62, Bogotá, Colombia
| | - A Barreto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7 No 40-62, Bogotá, Colombia.
| | - L M Restrepo
- Grupo Ingeniería de Tejidos y Terapías Celulares, Facultad de Medicina, Universidad de Antioquia, Carrera 51 A No 62-42, Medellín, Colombia
| |
Collapse
|
203
|
Zhang Y, He H, He L, Shi B. IL-6 Accelerates the Proliferation and Metastasis of Pancreatic Cancer Cells via the miR-455-5p/IGF-1R Axis. Cancer Biother Radiopharm 2024; 39:255-263. [PMID: 36595346 DOI: 10.1089/cbr.2022.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Pancreatic cancer (PaC) is a highly malignant gastrointestinal tumor with invasive and metastatic characteristics. Interleukin-6 (IL-6), a negative prognostic marker, contributes to PaC progression. However, the mechanism of IL-6 in PaC is not yet fully understood. Methods: miR-455-5p levels were first tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in PaC tissues or cells. Subsequently, PaC cell-related functions were identified through CCK-8, Transwell, and Western blotting. Changes in miR-455-5p and IGF-1R expression were confirmed using RT-qPCR and Western blotting. miR-455-5p methylation was assessed by bisulfite sequencing PCR. Results: The authors discovered that miR-455-5p was expressed at low levels in PaC tissues and cells, and miR-455-5p expression was observably reduced by IL-6 in PaC cells. In addition, IL-6 dramatically induces miR-455-5p methylation in PaC cells. Functionally, the data revealed that IL-6 could facilitate the malignant properties of PaC cells, including proliferation, epithelial-mesenchymal transition, and metastasis. The authors found that miR-455-5p could suppress the progression of PaC cells by downregulating IGF-1R in PaC cells. Mechanistically, IL-6 downregulated miR-455-5p and upregulated IGF-1R, and miR-455-5p reduced IGF-1R expression through targeted binding. Conclusions: The authors demonstrated that the miR-455-5p/IGF-1R axis is necessary for the induction of IL-6 in PaC progression. The results here may provide a theoretical basis for the application of the IL-6/miR-455-5p/IGF-1R axis in the clinical therapy of PaC.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Gynaecology and Obstetrics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Huan He
- Department of Gastroenterology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Lanying He
- Department of Gastroenterology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Bing Shi
- Department of Gastroenterology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
204
|
Sun K, Zheng Y, Yang X, Jia W. A novel transformer-based aggregation model for predicting gene mutations in lung adenocarcinoma. Med Biol Eng Comput 2024; 62:1427-1440. [PMID: 38233683 DOI: 10.1007/s11517-023-03004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
In recent years, predicting gene mutations on whole slide imaging (WSI) has gained prominence. The primary challenge is extracting global information and achieving unbiased semantic aggregation. To address this challenge, we propose a novel Transformer-based aggregation model, employing a self-learning weight aggregation mechanism to mitigate semantic bias caused by the abundance of features in WSI. Additionally, we adopt a random patch training method, which enhances model learning richness by randomly extracting feature vectors from WSI, thus addressing the issue of limited data. To demonstrate the model's effectiveness in predicting gene mutations, we leverage the lung adenocarcinoma dataset from Shandong Provincial Hospital for prior knowledge learning. Subsequently, we assess TP53, CSMD3, LRP1B, and TTN gene mutations using lung adenocarcinoma tissue pathology images and clinical data from The Cancer Genome Atlas (TCGA). The results indicate a notable increase in the AUC (Area Under the ROC Curve) value, averaging 4%, attesting to the model's performance improvement. Our research offers an efficient model to explore the correlation between pathological image features and molecular characteristics in lung adenocarcinoma patients. This model introduces a novel approach to clinical genetic testing, expected to enhance the efficiency of identifying molecular features and genetic testing in lung adenocarcinoma patients, ultimately providing more accurate and reliable results for related studies.
Collapse
Affiliation(s)
- Kai Sun
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Xinbo Yang
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Weikuan Jia
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|
205
|
Lin H, Wang J, Shi Q, Wu M. Significance of NKX2-1 as a biomarker for clinical prognosis, immune infiltration, and drug therapy in lung squamous cell carcinoma. PeerJ 2024; 12:e17338. [PMID: 38708353 PMCID: PMC11069361 DOI: 10.7717/peerj.17338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Background This study was performed to determine the biological processes in which NKX2-1 is involved and thus its role in the development of lung squamous cell carcinoma (LUSC) toward improving the prognosis and treatment of LUSC. Methods Raw RNA sequencing (RNA-seq) data of LUSC from The Cancer Genome Atlas (TCGA) were used in bioinformatics analysis to characterize NKX2-1 expression levels in tumor and normal tissues. Survival analysis of Kaplan-Meier curve, the time-dependent receiver operating characteristic (ROC) curve, and a nomogram were used to analyze the prognosis value of NKX2-1 for LUSC in terms of overall survival (OS) and progression-free survival (PFS). Then, differentially expressed genes (DEGs) were identified, and Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA) were used to clarify the biological mechanisms potentially involved in the development of LUSC. Moreover, the correlation between the NKX2-1 expression level and tumor mutation burden (TMB), tumor microenvironment (TME), and immune cell infiltration revealed that NKX2-1 participates in the development of LUSC. Finally, we studied the effects of NKX2-1 on drug therapy. To validate the protein and gene expression levels of NKX2-1 in LUSC, we employed immunohistochemistry(IHC) datasets, The Gene Expression Omnibus (GEO) database, and qRT-PCR analysis. Results NKX2-1 expression levels were significantly lower in LUSC than in normal lung tissue. It significantly differed in gender, stage and N classification. The survival analysis revealed that high expression of NKX2-1 had shorter OS and PFS in LUSC. The multivariate Cox regression hazard model showed the NKX2-1 expression as an independent prognostic factor. Then, the nomogram predicted LUSC prognosis. There are 51 upregulated DEGs and 49 downregulated DEGs in the NKX2-1 high-level groups. GO, KEGG and GSEA analysis revealed that DEGs were enriched in cell cycle and DNA replication.The TME results show that NKX2-1 expression was positively associated with mast cells resting, neutrophils, monocytes, T cells CD4 memory resting, and M2 macrophages but negatively associated with M1 macrophages. The TMB correlated negatively with NKX2-1 expression. The pharmacotherapy had great sensitivity in the NKX2-1 low-level group, the immunotherapy is no significant difference in the NKX2-1 low-level and high-level groups. The analysis of GEO data demonstrated concurrence with TCGA results. IHC revealed NKX2-1 protein expression in tumor tissues of both LUAD and LUSC. Meanwhile qRT-PCR analysis indicated a significantly lower NKX2-1 expression level in LUSC compared to LUAD. These qRT-PCR findings were consistent with co-expression analysis of NKX2-1. Conclusion We conclude that NKX2-1 is a potential biomarker for prognosis and treatment LUSC. A new insights of NKX2-1 in LUSC is still needed further research.
Collapse
Affiliation(s)
- Huiyue Lin
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juyong Wang
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minmin Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
206
|
Chen S, Sun J, Zhou H, Lei H, Zang D, Chen J. New roles of tumor-derived exosomes in tumor microenvironment. Chin J Cancer Res 2024; 36:151-166. [PMID: 38751437 PMCID: PMC11090792 DOI: 10.21147/j.issn.1000-9604.2024.02.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Throughout tumorigenesis, the co-evolution of tumor cells and their surrounding microenvironment leads to the development of malignant phenotypes. Cellular communication within the tumor microenvironment (TME) plays a critical role in influencing various aspects of tumor progression, including invasion and metastasis. The release of exosomes, a type of extracellular vesicle, by most cell types in the body, is an essential mediator of intercellular communication. A growing body of research indicates that tumor-derived exosomes (TDEs) significantly expedite tumor progression through multiple mechanisms, inducing epithelial-mesenchymal transition and macrophage polarization, enhancing angiogenesis, and aiding in the immune evasion of tumor cells. Herein, we describe the formation and characteristics of the TME, and summarize the contents of TDEs and their diverse functions in modulating tumor development. Furthermore, we explore potential applications of TDEs in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Shiqian Chen
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jinzhe Sun
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Huan Zhou
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Hongbin Lei
- Department of Radiotherapy, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Dan Zang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jun Chen
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
207
|
Santos DL, São Marcos BDF, de Sousa GF, Cruz LCDO, Barros BRDS, Nogueira MCDBL, Oliveira THDA, Silva AJD, Santos VEP, de Melo CML, de Freitas AC. Immunological Response against Breast Lineage Cells Transfected with Human Papillomavirus (HPV). Viruses 2024; 16:717. [PMID: 38793599 PMCID: PMC11125976 DOI: 10.3390/v16050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer is the most common neoplasm worldwide. Viral infections are involved with carcinogenesis, especially those caused by oncogenic Human Papillomavirus (HPV) genotypes. Despite the detection of HPV in breast carcinomas, the virus's activity against this type of cancer remains controversial. HPV infection promotes remodeling of the host's immune response, resulting in an immunosuppressive profile. This study assessed the individual role of HPV oncogenes in the cell line MDA-MB-231 transfected with the E5, E6, and E7 oncogenes and co-cultured with peripheral blood mononuclear cells. Immunophenotyping was conducted to evaluate immune system modulation. There was an increase in CD4+ T cell numbers when compared with non-transfected and transfected MDA-MB-231, especially in the Treg profile. Pro-inflammatory intracellular cytokines, such as IFN-γ, TNF-α, and IL-17, were impaired by transfected cells, and a decrease in the cytolytic activity of the CD8+ and CD56+ lymphocytes was observed in the presence of HPV oncogenes, mainly with E6 and E7. The E6 and E7 oncogenes decrease monocyte expression, activating the expected M1 profile. In the monocytes found, a pro-inflammatory role was observed according to the cytokines released in the supernatant. In conclusion, the MDA-MB-231 cell lineage transfected with HPV oncogenes can downregulate the number and function of lymphocytes and monocytes.
Collapse
Affiliation(s)
- Daffany Luana Santos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| | - Bianca de França São Marcos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| | - Georon Ferreira de Sousa
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Leonardo Carvalho de Oliveira Cruz
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Bárbara Rafaela da Silva Barros
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Mariane Cajuba de Britto Lira Nogueira
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Vitória Academic Center, Federal University of Pernambuco, Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão 55608-680, Pernambuco, Brazil
| | | | - Anna Jessica Duarte Silva
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| | - Vanessa Emanuelle Pereira Santos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| | - Cristiane Moutinho Lagos de Melo
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.); (M.C.d.B.L.N.); (C.M.L.d.M.)
- Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária, Recife 50670-901, Pernambuco, Brazil; (D.L.S.); (B.d.F.S.M.); (A.J.D.S.); (V.E.P.S.)
| |
Collapse
|
208
|
Guo Y, Hu P, Shi J. Nanomedicine Remodels Tumor Microenvironment for Solid Tumor Immunotherapy. J Am Chem Soc 2024; 146:10217-10233. [PMID: 38563421 DOI: 10.1021/jacs.3c14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Although immunotherapy is relatively effective in treating hematological malignancies, their efficacy against solid tumors is still suboptimal or even noneffective presently. Compared to hematological cancers, solid tumors exhibit strikingly different immunosuppressive microenvironment, severely deteriorating the efficacy of immunotherapy: (1) chemical features such as hypoxia and mild acidity suppress the activity of immune cells, (2) the pro-tumorigenic domestication of immune cells in the microenvironment within the solid tumors further undermines the effectiveness of immunotherapy, and (3) the dense physical barrier of solid tumor tissues prevents the effective intratumoral infiltration and contact killing of active immune cells. Therefore, we believe that reversing the immunosuppressive microenvironment are of critical priority for the immunotherapy against solid tumors. Due to their unique morphologies, structures, and compositions, nanomedicines have become powerful tools for achieving this goal. In this Perspective, we will first briefly introduce the immunosuppressive microenvironment of solid tumors and then summarize the most recent progresses in nanomedicine-based immunotherapy for solid tumors by remodeling tumor immune-microenvironment in a comprehensive manner. It is highly expected that this Perspective will aid in advancing immunotherapy against solid tumors, and we are highly optimistic on the future development in this burgeoning field.
Collapse
Affiliation(s)
- Yuedong Guo
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Ping Hu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| |
Collapse
|
209
|
Zhang C, Tan H, Xu H, Ding J, Chen H, Liu X, Sun F. Pan-cancer identified ARPC1B as a promising target for tumor immunotherapy and prognostic biomarker, particularly in READ. Heliyon 2024; 10:e28005. [PMID: 38689995 PMCID: PMC11059418 DOI: 10.1016/j.heliyon.2024.e28005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
ARPC1B encodes the protein known as actin-related protein 2/3 complex subunit 1 B (ARPC1B), which controls actin polymerization in the human body. Although ARPC1B has been linked to several human malignancies, its function in these cancers remains unclear. TCGA, GTEx, CCLE, Xena, CellMiner, TISIDB, and molecular signature databases were used to analyze ARPC1B expression in cancers. Visualization of data was primarily achieved using R language, version 4.0. Nineteen tumors exhibited high levels of ARPC1B expression, which were associated with different tumor stages and significantly affected the prognosis of various cancers. The level of ARPC1B expression substantially connected the narrative of ARPC1B expression with several TMB cancers and showed significant changes in MSI. Additionally, tolerance to numerous anticancer medications has been linked to high ARPC1B gene expression. Using Gene Set Variation Analysis/Gene Set Enrichment Analysisanalysis and concentrating on Rectum adenocarcinoma (READ), we thoroughly examined the molecular processes of the ARPC1B gene in pan-cancer. Using WGCNA, we examined the co-expression network of READ and ARPC1B. Meanwhile, ten specimens were selected for immunohistochemical examination, which showed high expression of ARPC1B in READ. Human pan-cancer samples show higher ARPC1B expression than healthy tissues. In many malignancies, particularly READ, ARPC1B overexpression is associated with immune cell infiltration and a poor prognosis. These results imply that the molecular biomarker ARPC1B may be used to assess the prognosis and immune infiltration of patients with READ.
Collapse
Affiliation(s)
- Chenxiong Zhang
- Department of Proctology, Yubei Hospital of Traditional Chinese Medicine, Chongqing Yubei District, Chongqing, 401120, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510403, China
| | - Hao Tan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510403, China
| | - Han Xu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510403, China
| | - Jiaming Ding
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, 528400, China
| | - Huijuan Chen
- Department of Proctology, Yubei Hospital of Traditional Chinese Medicine, Chongqing Yubei District, Chongqing, 401120, China
| | - Xiaohong Liu
- Department of Proctology, Yubei Hospital of Traditional Chinese Medicine, Chongqing Yubei District, Chongqing, 401120, China
| | - Feng Sun
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510403, China
| |
Collapse
|
210
|
Ten A, Kumeiko V, Farniev V, Gao H, Shevtsov M. Tumor Microenvironment Modulation by Cancer-Derived Extracellular Vesicles. Cells 2024; 13:682. [PMID: 38667297 PMCID: PMC11049026 DOI: 10.3390/cells13080682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in the process of tumorigenesis, regulating the growth, metabolism, proliferation, and invasion of cancer cells, as well as contributing to tumor resistance to the conventional chemoradiotherapies. Several types of cells with relatively stable phenotypes have been identified within the TME, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), neutrophils, and natural killer (NK) cells, which have been shown to modulate cancer cell proliferation, metastasis, and interaction with the immune system, thus promoting tumor heterogeneity. Growing evidence suggests that tumor-cell-derived extracellular vesicles (EVs), via the transfer of various molecules (e.g., RNA, proteins, peptides, and lipids), play a pivotal role in the transformation of normal cells in the TME into their tumor-associated protumorigenic counterparts. This review article focuses on the functions of EVs in the modulation of the TME with a view to how exosomes contribute to the transformation of normal cells, as well as their importance for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vladislav Farniev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China;
| | - Maxim Shevtsov
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str., 2, 197341 St. Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str., 22, 81675 Munich, Germany
| |
Collapse
|
211
|
Zhang X, Yang J, Feng Q, Gu L, Qin G, Cheng C, Hou S, Shi Z. The immune landscape and prognostic analysis of CXCL8 immune-related genes in cervical squamous cell carcinoma. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38597597 DOI: 10.1002/tox.24283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Cervical squamous cell carcinoma (CESC), one of the most common malignancies in women, imposes a significant burden on women's health worldwide. Despite extensive research, the molecular and pathogenic mechanisms of cervical squamous cell carcinoma and CESC remain unclear. This study aimed to explore the immune-related genes, immune microenvironment infiltration, and prognosis of CESC, providing a theoretical basis for guiding clinical treatment. Initially, by mining four gene sets and immune-related gene sets from public databases, 14 immune-related genes associated with CESC were identified. Through univariate and multivariate COX regression analyses, as well as lasso regression analysis, four CESC-independent prognostic genes were identified, and a prognostic model was constructed, dividing them into high and low-risk groups. The correlation between these genes and immune cells and immune functions were explored through ssGSEA enrichment analysis, revealing a close association between the high-risk group and processes such as angiogenesis and epithelial-mesenchymal transition. Furthermore, using public databases and qRT-PCR experiments, significant differences in CXCL8 expression between normal cervical cells and cervical cancer cells were discovered. Subsequently, a CXCL8 knockdown plasmid was constructed, and the efficiency of CXCL8 knockdown was validated in two CESC cell lines, MEG-01 and HCE-1. Through CCK-8, scratch, and Transwell assays, it was confirmed that CXCL8 knockdown could inhibit the proliferation, invasion, and migration abilities of CESC cells. Targeting CXCL8 holds promise for personalized therapy for CESC, providing a strong theoretical basis for achieving clinical translation.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jian Yang
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qianqian Feng
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Liping Gu
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Gongzhao Qin
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chen Cheng
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shunyu Hou
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhouhong Shi
- Department of Gynaecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
212
|
Yi L, Gai Y, Chen Z, Tian K, Liu P, Liang H, Xu X, Peng Q, Luo X. Macrophage colony-stimulating factor and its role in the tumor microenvironment: novel therapeutic avenues and mechanistic insights. Front Oncol 2024; 14:1358750. [PMID: 38646440 PMCID: PMC11027505 DOI: 10.3389/fonc.2024.1358750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
The tumor microenvironment is a complex ecosystem where various cellular and molecular interactions shape the course of cancer progression. Macrophage colony-stimulating factor (M-CSF) plays a pivotal role in this context. This study delves into the biological properties and functions of M-CSF in regulating tumor-associated macrophages (TAMs) and its role in modulating host immune responses. Through the specific binding to its receptor colony-stimulating factor 1 receptor (CSF-1R), M-CSF orchestrates a cascade of downstream signaling pathways to modulate macrophage activation, polarization, and proliferation. Furthermore, M-CSF extends its influence to other immune cell populations, including dendritic cells. Notably, the heightened expression of M-CSF within the tumor microenvironment is often associated with dismal patient prognoses. Therefore, a comprehensive investigation into the roles of M-CSF in tumor growth advances our comprehension of tumor development mechanisms and unveils promising novel strategies and approaches for cancer treatment.
Collapse
Affiliation(s)
- Li Yi
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Yihan Gai
- School of Stomatology, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Zhuo Chen
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Kecan Tian
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Pengfei Liu
- School of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Hongrui Liang
- School of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Xinyu Xu
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Qiuyi Peng
- School of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Xiaoqing Luo
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| |
Collapse
|
213
|
Lai J, Lin P, Zhuang J, Xie Z, Zhou H, Yang D, Chen Z, Jiang D, Huang J. Development and internal validation of a nomogram based on peripheral blood inflammatory markers for predicting prognosis in nasopharyngeal carcinoma. Cancer Med 2024; 13:e7135. [PMID: 38549496 PMCID: PMC10979185 DOI: 10.1002/cam4.7135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 03/16/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Inflammatory markers, including the product of neutrophil count, platelet count, and monocyte count divided by lymphocyte count (PIV) and the platelet-to-white blood cell ratio (PWR), have not been previously reported as prognostic factors in nasopharyngeal carcinoma (NPC) patients. In order to predict overall survival (OS) in NPC patients, our goal was to create and internally evaluate a nomogram based on inflammatory markers (PIV, PWR). METHODS A retrospective study was done on patients who received an NPC diagnosis between January 2015 and December 2018. After identifying independent prognostic indicators linked to OS using Cox proportional hazards regression analysis, we created a nomogram with the factors we had chosen. RESULTS A total of 630 NPC patients in all were split into training (n = 441) and validation sets (n = 189) after being enrolled in a population-based study in 2015-2018 and monitored for a median of 5.9 years. In the training set, the age, PIV, and PWR, selected as independent predictors for OS via multivariate Cox's regression model, were chosen to develop a nomogram. Both training and validation cohorts had C-indices of 0.850 (95% confidence interval [CI]: 0.768-0.849) and 0.851 (95% CI: 0.765-0.877). Furthermore, compared with traditional TNM staging, our nomogram demonstrated greater accuracy in predicting patient outcomes. The risk stratification model derived from our prediction model may facilitate personalized treatment strategies for NPC patients. CONCLUSION Our findings confirmed the prognostic significance of the PWR and PIV in NPC. High PIV levels (>363.47) and low PWR (≤36.42) values are associated with worse OS in NPC patients.
Collapse
Affiliation(s)
- Jing Lai
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Peixin Lin
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Jiafeng Zhuang
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Zhiwei Xie
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Hechao Zhou
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Donghong Yang
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Zihong Chen
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Danxian Jiang
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Jing Huang
- Department of Head and Neck OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| |
Collapse
|
214
|
Bai Y, Cui G, Sun X, Wei M, Liu Y, Guo J, Yang Y. Angiopoietin-Related Protein 4-Transcript 3 Increases the Proliferation, Invasion, and Migration of Hepatocellular Carcinoma Cells and Inhibits Apoptosis. DNA Cell Biol 2024; 43:175-184. [PMID: 38466955 DOI: 10.1089/dna.2023.0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
To investigate the functional differences of angiopoietin-related protein 4 (ANGPTL4) transcripts in hepatocellular carcinoma (HCC) cells. By transfecting ANGPTL4-Transcript 1 and ANGPTL4-Transcript 3 overexpression vectors into HepG2 and Huh7 cell lines with ANGPTL4 knockdown, the effects of overexpression of two transcripts on cell viability, invasion, migration, and apoptosis were analyzed. The expression of two transcripts was compared in human liver cancer tissue, and their effects on tumor development were validated in vivo experiments in mice. Compared with control, the overexpression of ANGPTL4-Transcript 1 had no significant effect on viability, invasion, healing, and apoptosis of HepG2 and Huh7 cells. However, these two cell lines overexpressing ANGPTL4-Transcript 3 showed remarkably enhanced cell viability, invasive and healing ability, and decreased apoptosis ability. Furthermore, the mRNA level of ANGPTL4-Transcript 3 was significantly increased in human HCC tissues and promoted tumor growth compared with Transcript 1. Different transcripts of gene ANGPTL4 have distinct effects on HCC. The abnormally elevated Transcript 3 with the specific ability of promoting HCC proliferation, infiltration, and migration is expected to become a new biological marker and more precise intervention target for HCC.
Collapse
Affiliation(s)
- Yun Bai
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanghua Cui
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoke Sun
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meiqi Wei
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanying Liu
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialu Guo
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Yang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
215
|
Xu J, Zhang X, Yang G, Sun W, Wang W, Mi C. Analysis of differentially expressed proteins in lymph fluids related to lymphatic metastasis in a breast cancer rabbit model guided by contrast‑enhanced ultrasound. Oncol Lett 2024; 27:143. [PMID: 38385114 PMCID: PMC10879953 DOI: 10.3892/ol.2024.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/13/2023] [Indexed: 02/23/2024] Open
Abstract
The aim of the present study was to identify differentially expressed proteins in the lymph fluid of rabbits with breast cancer lymphatic metastasis compared with healthy rabbits and to analyze and verify these proteins using proteomics technologies. In the process of breast cancer metastasis, the composition of the lymph fluid will also change. Rabbits with breast cancer lymph node metastasis and normal rabbits were selected for analysis. Lymph fluid was extracted under the guidance of percutaneous contrast-enhanced ultrasound. Label-free quantitative proteomics was used to detect and compare differences between the rabbit cancer model and healthy rabbits and differential protein expression results were obtained. Bioinformatics analysis was performed using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analysis software, selecting the most significantly differentially expressed proteins. Finally, parallel reaction monitoring technology was applied for validation. A total of 547 significantly differentially expressed proteins were found in the present study, which included 371 upregulated proteins and 176 downregulated proteins. The aforementioned genes were mainly involved in various cellular and metabolic pathways, including upregulated proteins, such as biliverdin reductase A and isocitrate dehydrogenase 2 and downregulated proteins, such as pyridoxal kinase. The upregulated proteins protein disulfide-isomerase 3, protein kinase cAMP-dependent type I regulatory subunit α and ATP-binding cassette sub-family C member 4 participated in immune regulation, endocrine regulation and anti-tumor drug resistance regulation, respectively. Compared with healthy rabbits, rabbits with breast cancer metastasis differentially expressed of a number of different proteins in their lymph, which participate in the pathophysiological process of tumor occurrence and metastasis. Through further research, these differential proteins can be used as predictive indicators of breast cancer metastasis and new therapeutic targets.
Collapse
Affiliation(s)
- Jiachao Xu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750003, P.R. China
| | - Xin Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750003, P.R. China
| | - Guangfei Yang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750003, P.R. China
| | - Wei Sun
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750003, P.R. China
| | - Wen Wang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750003, P.R. China
| | - Chengrong Mi
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750003, P.R. China
| |
Collapse
|
216
|
Sasagawa S, Kumai J, Wakamatsu T, Yui Y. Improvement of histone deacetylase inhibitor efficacy by SN38 through TWIST1 suppression in synovial sarcoma. CANCER INNOVATION 2024; 3:e113. [PMID: 38946933 PMCID: PMC11212284 DOI: 10.1002/cai2.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 07/02/2024]
Abstract
Background Synovial sarcoma (SS) is an SS18-SSX fusion gene-driven soft tissue sarcoma with mesenchymal characteristics, associated with a poor prognosis due to frequent metastasis to a distant organ, such as the lung. Histone deacetylase (HDAC) inhibitors (HDACis) are arising as potent molecular targeted drugs, as HDACi treatment disrupts the SS oncoprotein complex, which includes HDACs, in addition to general HDACi effects. To provide further molecular evidence for the advantages of HDACi treatment and its limitations due to drug resistance induced by the microenvironment in SS cells, we examined cellular responses to HDACi treatment in combination with two-dimensional (2D) and 3D culture conditions. Methods Using several SS cell lines, biochemical and cell biological assays were performed with romidepsin, an HDAC1/2 selective inhibitor. SN38 was concomitantly used as an ameliorant drug with romidepsin treatment. Cytostasis, apoptosis induction, and MHC class I polypeptide-related sequence A/B (MICA/B) induction were monitored to evaluate the drug efficacy. In addition to the conventional 2D culture condition, spheroid culture was adopted to evaluate the influence of cell-mass microenvironment on chemoresistance. Results By monitoring the cellular behavior with romidepsin and/or SN38 in SS cells, we observed that responsiveness is diverse in each cell line. In the apoptotic inducible cells, co-treatment with SN38 enhanced cell death. In nonapoptotic inducible cells, cytostasis and MICA/B induction were observed, and SN38 improved MICA/B induction further. As a novel efficacy of SN38, we revealed TWIST1 suppression in SS cells. In the spheroid (3D) condition, romidepsin efficacy was severely restricted in TWIST1-positive cells. We demonstrated that TWIST1 downregulation restored romidepsin efficacy even in spheroid form, and concomitant SN38 treatment along with romidepsin reproduced the reaction. Conclusions The current study demonstrated the benefits and concerns of using HDACi for SS treatment in 2D and 3D culture conditions and provided molecular evidence that concomitant treatment with SN38 can overcome drug resistance to HDACi by suppressing TWIST1 expression.
Collapse
Affiliation(s)
- Satoru Sasagawa
- Molecular Biology Laboratory, Research InstituteNozaki Tokushukai HospitalDaitoOsakaJapan
| | - Jun Kumai
- Sarcoma Treatment Laboratory, Research InstituteNozaki Tokushukai HospitalDaitoOsakaJapan
| | - Toru Wakamatsu
- Department of Musculoskeletal Oncology ServiceOsaka International Cancer InstituteOsakaJapan
| | - Yoshihiro Yui
- Sarcoma Treatment Laboratory, Research InstituteNozaki Tokushukai HospitalDaitoOsakaJapan
| |
Collapse
|
217
|
Jin Q, Jiang H, Yue N, Zhang L, Li C, Dong C, Zeng P, Yue L, Wu C. The prognostic value of CD8 + CTLs, CD163 + TAMs, and PDL1 expression in the tumor microenvironment of primary central nervous system lymphoma. Leuk Lymphoma 2024; 65:472-480. [PMID: 38198635 DOI: 10.1080/10428194.2023.2296364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
To explore immune cell infiltration and PDL1 expression in the tumor microenvironment (TME) of primary central nervous system lymphoma (PCNSL), we performed immunohistochemical staining on paraffin-embedded tumor tissues from 34 patients diagnosed with PCNSL. CD8 and CD163 positive cells were manually counted, and PDL1 expression was quantified by the H-score scoring method in the tumor center and around the tumor. The Kaplan-Meier method was used to analyze the prognostic value of the TME. We found obvious infiltration of CD8+ CTLs and CD163+ TAMs in the TME of PCNSL patients. And PDL1 was expressed in the tumor center as well as around the tumor. Survival analysis showed that high CD8+ CTLs levels and high intratumoral PDL1 expression were significantly correlated with longer OS. High CD8+ CTLs and CD163+ TAMs levels were associated with longer PFS.
Collapse
Affiliation(s)
- Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Haoyun Jiang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ningning Yue
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chi Dong
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, China
| | - Pengyun Zeng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lingling Yue
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
218
|
Dong C, Hui P, Wu Z, Li J, Man X. CircRNA LOC729852 promotes bladder cancer progression by regulating macrophage polarization and recruitment via the miR-769-5p/IL-10 axis. J Cell Mol Med 2024; 28:e18225. [PMID: 38506082 PMCID: PMC10951884 DOI: 10.1111/jcmm.18225] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
Circular RNAs (circRNAs) function as tumour promoters or suppressors in bladder cancer (BLCA) by regulating genes involved in macrophage recruitment and polarization. However, the underlying mechanisms are largely unknown. The aim of this study was to determine the biological role of circLOC729852 in BLCA. CircLOC729852 was upregulated in BLCA tissues and correlated with increased proliferation, migration and epithelial mesenchymal transition (EMT) of BCLA cells. MiR-769-5p was identified as a target for circLOC729852, which can upregulate IL-10 expression by directly binding to and suppressing miR-769-5p. Furthermore, our results indicated that the circLOC729852/miR-769-5p/IL-10 axis modulates autophagy signalling in BLCA cells and promotes the recruitment and M2 polarization of TAMs by activating the JAK2/STAT3 signalling pathway. In addition, circLOC729852 also promoted the growth of BLCA xenografts and M2 macrophage infiltration in vivo. Thus, circLOC729852 functions as an oncogene in BLCA by inducing secretion of IL-10 by the M2 TAMs, which then facilitates tumour cell growth and migration. Taken together, circLOC729852 is a potential diagnostic biomarker and therapeutic target for BLCA.
Collapse
Affiliation(s)
- Changming Dong
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningPR China
| | - Pengyu Hui
- Department of UrologyThe Second Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiChina
| | - Zhengqi Wu
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jianfeng Li
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiaojun Man
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningPR China
| |
Collapse
|
219
|
Bhuyan G, Hazarika P, Rabha AM. Evaluation of the significance of tumor stromal patterns and peri-tumoral inflammation in head and neck squamous cell carcinoma with special reference to the Yamamoto-Kohama classification. INDIAN J PATHOL MICR 2024; 67:340-348. [PMID: 38427768 DOI: 10.4103/ijpm.ijpm_426_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/26/2023] [Indexed: 03/03/2024] Open
Abstract
INTRODUCTION Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide with 878,348 new cases. Cancer-associated fibroblasts (CAFs) are the predominant cell type in tumor stroma and are important promoters of tumor progression. OBJECTIVE The aim of the study was to evaluate the pattern of desmoplastic stromal reaction and peri-tumoral inflammatory infiltrate with the histological grade and clinical data. MATERIALS AND METHODS A total of 60 cases of HNSCC were included in the study. The hematoxylin and eosin (H and E)-stained sections from all cases were examined by two experienced pathologists for the grade, nature of stomal reaction (SR), peri-tumoral inflammatory infiltration, Yamamoto-Kohama classification grade, worst pattern of invasion (WPOI), depth of invasion (DOI), and other histopathological parameters. Correlation analysis was conducted using the Chi-square test. P- value less than 0.05 was considered statistically significant. RESULTS Immature SR was not observed in any of the well-differentiated squamous cell carcinoma (SCC) cases. However, one (3.7%) case of moderately differentiated SCC and two (28.6%) cases of poorly differentiated SCC showed signs of immature SR. In the case of the higher grades of the YK classification, specifically grades 4C and 4D, a more profound depth of tumor cell invasion, equal to or exceeding 10 mm, was evident in six (66.67%) and two (28.57%) cases, respectively. Additionally, among the seven (11.7%) cases classified as poorly differentiated carcinoma, three (42.85%) displayed a WPOI score of 5. CONCLUSION SR and the tumor invasive pattern in HNSCC are related to prognosis and may indicate tumor aggressiveness.
Collapse
Affiliation(s)
- Geet Bhuyan
- Department of Pathology, Jorhat Medical College and Hospital, Jorhat, Assam, India
| | - Prabir Hazarika
- Department of Pathology, Tezpur Medical College and Hospital, Jorhat, Assam, India
| | - Anju M Rabha
- Department of Pathology, Tezpur Medical College and Hospital, Jorhat, Assam, India
| |
Collapse
|
220
|
Ding Z, Ding Q, Li H. The prognostic biomarker TPGS2 is correlated with immune infiltrates in pan-cancer: a bioinformatics analysis. Transl Cancer Res 2024; 13:1458-1478. [PMID: 38617524 PMCID: PMC11009813 DOI: 10.21037/tcr-23-113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 10/20/2023] [Indexed: 04/16/2024]
Abstract
Background Tubulin polyglutamylase complex subunit 2 (TPGS2) is an element of the neuronal polyglutamylase complex that plays a role in the post-translational addition of glutamate residues to C-terminal tubulin tails. Recent research has shown that TPGS2 is associated with some tumors, but the roles of TPGS2 in tumor immunity remain unclear. Methods The research data were mainly sourced from The Cancer Genome Atlas. The data were analyzed to identify potential correlations between TPGS2 expression and survival, gene alterations, the tumor mutational burden (TMB), microsatellite instability (MSI), immune infiltration, and various immune-related genes across various cancers. The Wilcoxon rank-sum test was used to identify the significance. A log-rank test and univariate Cox regression analysis were performed to assess the survival state of the patients. Spearman's correlation coefficients were used to show the correlations. Results TPGS2 exhibited abnormal expression patterns in most types of cancers, and has promising prognostic potential in adrenocortical carcinoma and liver hepatocellular carcinoma. Further, TPGS2 expression was significantly correlated with molecular and immune subtypes. Moreover, the single-cell analyses showed that the expression of TPGS2 was associated with the cell cycle, metastasis, invasion, inflammation, and DNA damage. In addition, the immune cell infiltration analysis and gene-set enrichment analysis demonstrated that a variety of immune cells and immune processes were associated with TPGS2 expression in various cancers. Further, immune regulators, including immunoinhibitors, immunostimulators, the major histocompatibility complex, chemokines, and chemokine receptors, were correlated with TPGS2 expression in different cancer types. Finally, the TMB and MSI, which have been identified as powerful predictors of immunotherapy, were shown to be correlated with the expression of TPGS2 across human cancers. Conclusions TPGS2 is aberrantly expressed in most cancer tissues and might be associated with immune cell infiltration in the tumor microenvironment. TPGS2 could serve not only as a biomarker for predicting clinical outcomes, but also as a promising biomarker for evaluating and developing new approaches to immunotherapy in many types of cancers, especially colon adenocarcinoma and stomach adenocarcinoma.
Collapse
Affiliation(s)
- Zujun Ding
- Department of General Surgery, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qing Ding
- Department of Pharmacy, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Li
- Department of General Surgery, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
221
|
Ren L, Li Y, Feng Y, Zhang Z, Yang H, Li M. CLCN3 in mediating the proliferation of human ovarian cancer cells. Transl Cancer Res 2024; 13:1443-1457. [PMID: 38617512 PMCID: PMC11009797 DOI: 10.21037/tcr-23-1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/28/2023] [Indexed: 04/16/2024]
Abstract
Background Chloride channel-3 (CLCN3), a crucial component of the voltage-gated chloride channel family, is implicated in numerous physiological and pathophysiological processes. This study aimed to investigate the characteristics of CLCN3 in pancancer and its influence on the immune response through the use of a range of databases. Concurrently, we assessed the impact of CLCN3 on the proliferation of ovarian cancer (OC) cells and explored its potential mechanisms. Methods We employed the Tumor Immune Estimation Resource (TIMER) 2.0 and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases to examine the messenger RNA (mRNA) and the protein expression of CLCN3 across various cancers. The prognostic significance of CLCN3 was evaluated using the Gene Expression Profiling Interactive Analysis 2.0 (GEPIA 2.0) database. The University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN) facilitated the analysis of CLCN3 promoter methylation levels. The association between CLCN3 expression and tumor-infiltrating immune cells was investigated using various algorithms. The cBioportal database facilitated the analysis of CLCN3 mutations and mutation sites across various cancers. The Tumor-Immune System Interactions Database (TISIDB) database was employed to explore the correlation between CLCN3 expression and immune or molecular subtypes across a variety of cancer types. We collected ovarian tissue samples, encompassing both normal ovarian and OC tissues. The human OC cell lines, SKOV3 cells and OVCAR433 cells, were cultured. CLCN3 expression was determined via reverse-transcription quantitative polymerase chain reaction (RT-qPCR), while phosphatidylinositol 3-kinase/Akt kinase (PI3K/AKT) expression was detected using Western blot. We utilized small interfering RNA (siRNA) technology to suppress CLCN3 expression. The proliferative capacity of SKOV3 and OVCAR433 cells was assessed using the Cell Counting Kit 8 (CCK-8) assay. Results CLCN3 demonstrated an aberrant expression in a number of cancer types and was markedly reduced in OC tissues. Poor prognosis in cervical squamous cell cancer and myeloid leukemia was linked to excessive expression of CLCN3. The examination of immune cell infiltration, which included CD8+ T cells, B cells, T regulatory cells, and cancer-associated fibroblast cells, showed a strong association with aberrant CLCN3 expression. Following the use of siRNA technology, the ability of the ovarian carcinoma cell line SKOV3 and OVCAR433 to proliferate as well as the expression of PI3K/AKT both increased. Conclusions CLCN3 is a possible biomarker for immune-related processes and the prognosis of cancer, and the PI3K/AKT signaling pathway may affect OC cells' ability to proliferate.
Collapse
Affiliation(s)
- Lufei Ren
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuyang Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
| | - Yifan Feng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
| | - Zhe Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
| | - Huijun Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
| | - Min Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
| |
Collapse
|
222
|
Zhang Y, Huo M, Li W, Zhang H, Liu Q, Jiang J, Fu Y, Huang C. Exosomes in tumor-stroma crosstalk: Shaping the immune microenvironment in colorectal cancer. FASEB J 2024; 38:e23548. [PMID: 38491832 DOI: 10.1096/fj.202302297r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Colorectal cancer (CRC) is a multifaceted disease characterized by a complex interaction between tumor cells and the surrounding microenvironment. Within this intricate landscape, exosomes have emerged as pivotal players in the tumor-stroma crosstalk, influencing the immune microenvironment of CRC. These nano-sized vesicles, secreted by both tumoral and stromal cells, serve as molecular transporters, delivering a heterogeneous mix of biomolecules such as RNAs, proteins, and lipids. In the CRC context, exosomes exert dual roles: they promote tumor growth, metastasis, and immune escape by altering immune cell functions and activating oncogenic signaling pathways and offer potential as biomarkers for early CRC detection and treatment targets. This review delves into the multifunctional roles of exosomes in the CRC immune microenvironment, highlighting their potential implications for future therapeutic strategies and clinical outcomes.
Collapse
Affiliation(s)
- Yawei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingyu Huo
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenchao Li
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianwu Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Changjun Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
223
|
Zhou Y, Wu W, Cai W, Zhang D, Zhang W, Luo Y, Cai F, Shi Z. Prognostic prediction using a gene signature developed based on exhausted T cells for liver cancer patients. Heliyon 2024; 10:e28156. [PMID: 38533068 PMCID: PMC10963654 DOI: 10.1016/j.heliyon.2024.e28156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/04/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is a solid primary malignancy with poor prognosis. This study discovered key prognostic genes based on T cell exhaustion and used them to develop a prognostic prediction model for LIHC. Methods SingleR's annotations combined with Seurat was used to automatically annotate the single-cell clustering results of the LIHC dataset GSE166635 downloaded from the Gene Expression Omnibus (GEO) database and to identify clusters related to exhausted T cells. Patients were classified using ConsensusClusterPlus package. Next, weighted gene co-expression network analysis (WGCNA) package was employed to distinguish key gene module, based on which least absolute shrinkage and selection operator (Lasso) and multi/univariate cox analysis were performed to construct a RiskScore system. Kaplan-Meier (KM) analysis and receiver operating characteristic curve (ROC) were employed to evaluate the efficacy of the model. To further optimize the risk model, a nomogram capable of predicting immune infiltration and immunotherapy sensitivity in different risk groups was developed. Expressions of genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence and Cell Counting Kit-8 (CCK-8) were performed for analyzing cell functions. Results We obtained 18,413 cells and clustered them into 7 immune and non-immune cell subpopulations. Based on highly variable genes among T cell exhaustion clusters, 3 molecular subtypes (C1, C2 and C3) of LIHC were defined, with C3 subtype showing the highest score of exhausted T cells and a poor prognosis. The Lasso and multivariate cox analysis selected 7 risk genes from the green module, which were closely associated with the C3 subtype. All the patients were divided into low- and high-risk groups based on the medium value of RiskScore, and we found that high-risk patients had higher immune infiltration and immune escape and poorer prognosis. The nomogram exhibited a strong performance for predicting long-term LIHC prognosis. In vitro experiments revealed that the 7 risk genes all had a higher expression in HCC cells, and that both liver HCC cell numbers and cell viability were reduced by knocking down MMP-9. Conclusion We developed a RiskScore model for predicting LIHC prognosis based on the scRNA-seq and RNA-seq data. The RiskScore as an independent prognostic factor could improve the clinical treatment for LIHC patients.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Infectious, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanrui Wu
- Department of Vasointerventional, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wei Cai
- Department of Infectious, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Dong Zhang
- Department of Infectious, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weiwei Zhang
- Department of Infectious, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yunling Luo
- Department of Infectious, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Fujing Cai
- Department of Infectious, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhenjing Shi
- Department of Vasointerventional, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
224
|
Katari V, Dalal K, Adapala RK, Guarino BD, Kondapalli N, Paruchuri S, Thodeti CK. A TRP to Pathological Angiogenesis and Vascular Normalization. Compr Physiol 2024; 14:5389-5406. [PMID: 39109978 PMCID: PMC11998386 DOI: 10.1002/cphy.c230014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Uncontrolled angiogenesis underlies various pathological conditions such as cancer, age-related macular degeneration (AMD), and proliferative diabetic retinopathy (PDR). Hence, targeting pathological angiogenesis has become a promising strategy for the treatment of cancer and neovascular ocular diseases. However, current pharmacological treatments that target VEGF signaling have met with limited success either due to acquiring resistance against anti-VEGF therapies with serious side effects including nephrotoxicity and cardiovascular-related adverse effects in cancer patients or retinal vasculitis and intraocular inflammation after intravitreal injection in patients with AMD or PDR. Therefore, there is an urgent need to develop novel strategies which can control multiple aspects of the pathological microenvironment and regulate the process of abnormal angiogenesis. To this end, vascular normalization has been proposed as an alternative for antiangiogenesis approach; however, these strategies still focus on targeting VEGF or FGF or PDGF which has shown adverse effects. In addition to these growth factors, calcium has been recently implicated as an important modulator of tumor angiogenesis. This article provides an overview on the role of major calcium channels in endothelium, TRP channels, with a special focus on TRPV4 and its downstream signaling pathways in the regulation of pathological angiogenesis and vascular normalization. We also highlight recent findings on the modulation of TRPV4 activity and endothelial phenotypic transformation by tumor microenvironment through Rho/YAP/VEGFR2 mechanotranscriptional pathways. Finally, we provide perspective on endothelial TRPV4 as a novel VEGF alternative therapeutic target for vascular normalization and improved therapy. © 2024 American Physiological Society. Compr Physiol 14:5389-5406, 2024.
Collapse
Affiliation(s)
- Venkatesh Katari
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Kesha Dalal
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Ravi K. Adapala
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Brianna D. Guarino
- Vascular Research Lab, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Narendrababu Kondapalli
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Sailaja Paruchuri
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Charles K. Thodeti
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
225
|
Souza VGP, Telkar N, Lam WL, Reis PP. Comprehensive Analysis of Lung Adenocarcinoma and Brain Metastasis through Integrated Single-Cell Transcriptomics. Int J Mol Sci 2024; 25:3779. [PMID: 38612588 PMCID: PMC11012108 DOI: 10.3390/ijms25073779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly prevalent and lethal form of lung cancer, comprising approximately half of all cases. It is often diagnosed at advanced stages with brain metastasis (BM), resulting in high mortality rates. Current BM management involves complex interventions and conventional therapies that offer limited survival benefits with neurotoxic side effects. The tumor microenvironment (TME) is a complex system where cancer cells interact with various elements, significantly influencing tumor behavior. Immunotherapies, particularly immune checkpoint inhibitors, target the TME for cancer treatment. Despite their effectiveness, it is crucial to understand metastatic lung cancer and the specific characteristics of the TME, including cell-cell communication mechanisms, to refine treatments. Herein, we investigated the tumor microenvironment of brain metastasis from lung adenocarcinoma (LUAD-BM) and primary tumors across various stages (I, II, III, and IV) using single-cell RNA sequencing (scRNA-seq) from publicly available datasets. Our analysis included exploring the immune and non-immune cell composition and the expression profiles and functions of cell type-specific genes, and investigating the interactions between different cells within the TME. Our results showed that T cells constitute the majority of immune cells present in primary tumors, whereas microglia represent the most dominant immune cell type in BM. Interestingly, microglia exhibit a significant increase in the COX pathway. Moreover, we have shown that microglia primarily interact with oligodendrocytes and endothelial cells. One significant interaction was identified between DLL4 and NOTCH4, which demonstrated a relevant association between endothelial cells and microglia and between microglia and oligodendrocytes. Finally, we observed that several genes within the HLA complex are suppressed in BM tissue. Our study reveals the complex molecular and cellular dynamics of BM-LUAD, providing a path for improved patient outcomes with personalized treatments and immunotherapies.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
226
|
Luan Q, Pulido I, Isagirre A, Carretero J, Zhou J, Shimamura T, Papautsky I. Deciphering fibroblast-induced drug resistance in non-small cell lung carcinoma through patient-derived organoids in agarose microwells. LAB ON A CHIP 2024; 24:2025-2038. [PMID: 38410967 PMCID: PMC11209828 DOI: 10.1039/d3lc01044a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Patient-derived organoids (PDOs) serve as invaluable 3D tumor models, retaining the histological complexity and genetic heterogeneity found in primary tumors. However, the limitation of small sample volumes and the lack of tailored platforms have hindered the research using PDOs. Within the tumor microenvironment, cancer-associated fibroblasts play a pivotal role in influencing drug sensitivity. In this study, we introduce an agarose microwell platform designed for PDO-based tumor and tumor microenvironment models, enabling rapid drug screening and resistance studies with small sample volumes. These microwells, constructed using 3D printing molds, feature a U-shaped bottom and 200 μm diameter. We successfully generated co-culture spheroids of non-small cell lung carcinoma (NSCLC) cells, including NCI-H358 or A549, and NSCLC PDOs F231 or F671 with fibroblast cell line, WI-38. Our results demonstrate the production of uniformly-sized spheroids (coefficient of variation <30%), high viability (>80% after 1 week), and fibroblast-induced drug resistance. The PDOs maintained their viability (>81% after 2 weeks) and continued to proliferate. Notably, when exposed to adagrasib, a KRASG12C inhibitor, we observed reduced cytotoxicity in KRASG12C-mutant spheroids when co-cultured with fibroblasts or their supernatant. The fibroblast supernatant sustained proliferative signals in tumor models. Taking into account the physical features, viability, and drug resistance acquired through supernatants from the fibroblasts, our platform emerges as a suitable platform for in vitro tumor modeling and the evaluation of drug efficacy using patient-derived tissues.
Collapse
Affiliation(s)
- Qiyue Luan
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, 851 S. Morgan Street, 218 SEO, Chicago, IL 60607, USA.
| | - Ines Pulido
- Department of Surgery, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Angelique Isagirre
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, 851 S. Morgan Street, 218 SEO, Chicago, IL 60607, USA.
| | - Julian Carretero
- Departament de Fisiologia, Facultat de Farmacia, Universitat de Valencia, Burjassot, 46010, Spain
| | - Jian Zhou
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, 851 S. Morgan Street, 218 SEO, Chicago, IL 60607, USA.
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Takeshi Shimamura
- Department of Surgery, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, 851 S. Morgan Street, 218 SEO, Chicago, IL 60607, USA.
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
227
|
Liu Z, Han S, Luo Y, Zhao Z, Ni L, Chai L, Tang H. PERP May Affect the Prognosis of Lung Adenocarcinoma by Inhibiting Apoptosis. Cancer Manag Res 2024; 16:199-214. [PMID: 38525370 PMCID: PMC10961073 DOI: 10.2147/cmar.s443490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Background PERP, a member of the peripheral myelin protein gene family, is a new therapeutic target in cancer. The relationships between PERP and immune cell infiltration in lung cancer have not been studied. Therefore, the role of PERP in the tumour microenvironment (TME) of lung cancer needs to be further explored. Methods In this study, we explored the association between PERP expression and clinical characteristics by analysing data from the TCGA database. Cox regression and Kaplan‒Meier methods were used to investigate the relationship between the expression of PERP and overall survival in patients with lung adenocarcinoma (LUAD). The relationship between PERP expression and the degree of infiltration of specific immune cell subsets in LUAD was evaluated using the TIMER database and GEPIA. We also performed GO enrichment analysis and KEGG enrichment analysis to reveal genes coexpressed with PERP using the Coexpedia database. Finally, we verified the expression and function of PERP in LUAD tissues and the A549 cell line by RT‒PCR, Western blot, CCK-8, IHC, and wound healing assays. The mouse model was used to study the in vivo effects of PERP. Results According to our results, PERP expression was significantly higher in LUAD tissues and associated with the clinical characteristics of the disease. Survival was independently associated with PERP in LUAD patients. We further verified that PERP might regulate B-cell infiltration in LUAD to affect the prognosis of LUAD. To identify PERP-related signalling pathways in LUAD, we performed a genome-aggregation analysis (GSEA) between low and high PERP expression datasets. LUAD cells express higher levels of PERP than paracarcinoma cells, and PERP inhibits the proliferation and metastasis of A549 cells through apoptosis. Conclusion PERP may affect the prognosis of lung adenocarcinoma by inhibiting apoptosis and is associated with immune cell infiltration.
Collapse
Affiliation(s)
- Zhongxiang Liu
- Department of Pulmonary and Critical Care Medicine, the Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, the First Affiliated Hospital of Jiangsu Vocational College of Medicine, Yancheng, 224000, People’s Republic of China
| | - Shuhua Han
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Yuhong Luo
- College of Life Science and Technology, Guangxi University, Nanning, 530004, People’s Republic of China
| | - Zhangyan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, People’s Republic of China
| | - Lingyu Ni
- China School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, People’s Republic of China
| | - Linlin Chai
- Department of Pathology, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, The First Affiliated Hospital of Jiangsu Vocational College of Medicine, Yancheng, 224000, People’s Republic of China
| | - Haicheng Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, People’s Republic of China
| |
Collapse
|
228
|
Gui J, Zhu Y, Chen X, Gong T, Zhang Z, Yu R, Fu Y. Systemic platelet inhibition with localized chemotherapy by an injectable ROS-scavenging gel against postsurgical breast cancer recurrence and metastasis. Acta Biomater 2024; 177:388-399. [PMID: 38307476 DOI: 10.1016/j.actbio.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Early solid tumors benefit from surgical resection, but residual stubborn microtumors, pro-inflammatory microenvironment and activated platelets at the postoperative wound site are prone to recurrence and metastasis, resulting in poor prognosis. Here, we developed a dual-pronged strategy consisting of (i) in-situ forming ROS-scavenging gels loaded with anticancer drugs at the postoperative wound site to improve the tumor microenvironment and inhibit the recurrence of residual microtumors after orthotopic surgery, and (ii) systemic administration of clopidegrol via albumin nanoparticles for inhibiting activated platelets in the circulation thus inhibiting tumor remote migration. In a mouse model of postoperative recurrence and metastasis of orthotopic 4T1 breast cancer, the dual-pronged strategy greatly inhibited postoperative orthotopic tumor recurrence and reduced lung metastasis. This work provides an effective strategy for the postoperative intervention and treatment of solid tumors to inhibit postoperative tumor recurrence and metastasis, which has the potential to improve the prognosis and survival of patients with postoperative solid tumors. STATEMENT OF SIGNIFICANCE: Early-stage solid tumors benefit from surgical resection. However, the presence of residual microtumors, pro-inflammatory tumor microenvironment, and activated platelets at the postoperative wound site lead to recurrence and metastasis, ultimately resulting in poor prognosis. Here, we have devised a dual-pronged approach that includes (i) in-situ forming ROS-scavenging gels loaded with anticancer drugs (TM@Gel) at the wound site after surgery to enhance the tumor microenvironment (TME) and hinder the reappearance of residual microtumors, and (ii) systemic administration of clopidegrol through albumin nanoparticles (HHP) for inhibiting activated platelets in the circulation thus impeding tumor distant migration. This work provides a viable option for postoperative intervention and treatment of solid tumors to suppress postoperative tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Jiajia Gui
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yueting Zhu
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Chen
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ruilian Yu
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Yao Fu
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
229
|
Sadeghi M, Dehnavi S, Sharifat M, Amiri AM, Khodadadi A. Innate immune cells: Key players of orchestra in modulating tumor microenvironment (TME). Heliyon 2024; 10:e27480. [PMID: 38463798 PMCID: PMC10923864 DOI: 10.1016/j.heliyon.2024.e27480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
The tumor microenvironment (TME) with vital role in cancer progression is composed of various cells such as endothelial cells, immune cells, and mesenchymal stem cells. In particular, innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, innate lymphoid cells, γδT lymphocytes, and natural killer cells can either promote or suppress tumor progression when present in the TME. An increase in research on the cross-talk between the TME and innate immune cells will lead to new approaches for anti-tumoral therapeutic interventions. This review primarily focuses on the biology of innate immune cells and their main functions in the TME. In addition, it summarizes several innate immune-based immunotherapies that are currently tested in clinical trials.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moosa Sharifat
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
230
|
Ramalingam PS, Elangovan S, Mekala JR, Arumugam S. Liver X Receptors (LXRs) in cancer-an Eagle's view on molecular insights and therapeutic opportunities. Front Cell Dev Biol 2024; 12:1386102. [PMID: 38550382 PMCID: PMC10972936 DOI: 10.3389/fcell.2024.1386102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 01/03/2025] Open
Abstract
Cancer has become a serious health burden that results in high incidence and mortality rates every year, mainly due to various molecular alterations inside the cell. Liver X receptors (LXRs) dysregulation is one among them that plays a vital role in cholesterol metabolism, lipid metabolism and inflammation and also plays a crucial role in various diseases such as obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular diseases, Type 2 diabetes, osteoporosis, and cancer. Studies report that the activation of LXRs inhibits cancer growth by inhibiting cellular proliferation, inducing apoptosis and autophagy, regulating cholesterol metabolism, various signalling pathways such as Wnt, and PI3K/AKT, modulating the expression levels of cell-cycle regulators, and promoting antitumor immunity inside the tumor microenvironment. In this review, we have discussed the role, structure, and functions of LXRs and also summarized their ligands along with their mechanism of action. In addition, the role of LXRs in various cancers, tumor immunity and tumor microenvironment (TME) along with the importance of precision medicine in LXR-targeted therapies has been discussed to emphasize the LXRs as potent targets for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
| | - Sujatha Elangovan
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Guntur, Andhra Pradesh, India
| | - Sivakumar Arumugam
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
231
|
Wei H, Wu X, Huang L, Long C, Lu Q, Huang Z, Huang Y, Li W, Pu J. LncRNA MEG3 Reduces the Ratio of M2/M1 Macrophages Through the HuR/CCL5 Axis in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:543-562. [PMID: 38496248 PMCID: PMC10943271 DOI: 10.2147/jhc.s449090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
Objective Tumor-associated macrophages play a crucial role in the development of hepatocellular carcinoma (HCC). Our study aimed to investigate the relationship between long coding RNA (lncRNA) maternally expressed gene 3 (MEG3), RNA-binding protein human antigen R (HuR), and messenger RNA C-C motif chemokine 5 (CCL5) in the modulation of M1 and M2 macrophage polarization in HCC. Methods To induce M1 or M2 polarization, LPS/IFNγ- or IL4/IL13 were used to treat bone marrow derived macrophages (BMDMs). The localization of MEG3 in M1 and M2 macrophages was assessed using fluorescence in situ hybridization assay. Expression levels of MEG3, HuR, CCL5, M1, and M2 markers were measured by RT-qPCR or immunofluorescence staining. Flow cytometry was performed to determine the proportion of F4/80+CD206+ and F4/80+CD68+ cells. RNA pulldown assay was performed to detect the binding of lncRNA MEG3 and HuR. The impacts of HuR on CCL5 stability and activity of CCL5 promoter were evaluated using actinomycin D treatment and luciferase reporter assay. Cell migration, invasiveness, and angiogenesis were assessed using transwell migration and invasion assays and a tube formation assay. A mixture of Huh-7 cells and macrophages were injected into nude mice to explore the effect of MEG3 on tumorigenesis. Results MEG3 promoted M1-like polarization while dampening M2-like polarization of BMDMs. MEG3 bound to HuR in M1 and M2 macrophages. HuR downregulated CCL5 by inhibiting CCL5 transcription in macrophages. In addition, overexpression of MEG3 suppressed cell metastasis, invasion, and angiogenesis by obstructing macrophage M2 polarization. MEG3 inhibited tumorigenesis in HCC via promotion of M1-like polarization and inhibition of M2-like polarization. Rescue experiments showed that depletion of CCL5 in M2 macrophages reversed MEG3-induced suppressive effect on cell migration, invasion, and tube formation. Conclusion MEG3 suppresses HCC progression by promoting M1-like while inhibiting M2-like macrophage polarization via binding to HuR and thus upregulating CCL5.
Collapse
Affiliation(s)
- Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Xianjian Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Lizheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Chen Long
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Qi Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Zheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Yanyan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| |
Collapse
|
232
|
Liu YC, Chen P, Chang R, Liu X, Jhang JW, Enkhbat M, Chen S, Wang H, Deng C, Wang PY. Artificial tumor matrices and bioengineered tools for tumoroid generation. Biofabrication 2024; 16:022004. [PMID: 38306665 DOI: 10.1088/1758-5090/ad2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
The tumor microenvironment (TME) is critical for tumor growth and metastasis. The TME contains cancer-associated cells, tumor matrix, and tumor secretory factors. The fabrication of artificial tumors, so-called tumoroids, is of great significance for the understanding of tumorigenesis and clinical cancer therapy. The assembly of multiple tumor cells and matrix components through interdisciplinary techniques is necessary for the preparation of various tumoroids. This article discusses current methods for constructing tumoroids (tumor tissue slices and tumor cell co-culture) for pre-clinical use. This article focuses on the artificial matrix materials (natural and synthetic materials) and biofabrication techniques (cell assembly, bioengineered tools, bioprinting, and microfluidic devices) used in tumoroids. This article also points out the shortcomings of current tumoroids and potential solutions. This article aims to promotes the next-generation tumoroids and the potential of them in basic research and clinical application.
Collapse
Affiliation(s)
- Yung-Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Ping Chen
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ray Chang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Jhe-Wei Jhang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Myagmartsend Enkhbat
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Shan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
| | - Peng-Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| |
Collapse
|
233
|
Yu X, Yang J, Xu J, Pan H, Wang W, Yu X, Shi S. Histone lactylation: from tumor lactate metabolism to epigenetic regulation. Int J Biol Sci 2024; 20:1833-1854. [PMID: 38481814 PMCID: PMC10929197 DOI: 10.7150/ijbs.91492] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/19/2024] [Indexed: 01/25/2025] Open
Abstract
The Warburg Effect is one of the most well-known cancer hallmarks. This metabolic pattern centered on lactate has extremely complex effects on various aspects of tumor microenvironment, including metabolic remodeling, immune suppression, cancer cell migration, and drug resistance development. Based on accumulating evidence, metabolites are likely to participate in the regulation of biological processes in the microenvironment and to form a feedback loop. Therefore, further revealing the key mechanism of lactate-mediated oncological effects is a reasonable scientific idea. The discovery and refinement of histone lactylation in recent years has laid a firm foundation for the above idea. Histone lactylation is a post-translational modification that occurs at lysine sites on histones. Specific enzymes, known as "writers" and "erasers", catalyze the addition or removal, respectively, of lactacyl group at target lysine sites. An increasing number of investigations have reported this modification as key to multiple cellular procedures. In this review, we discuss the close connection between histone lactylation and a series of biological processes in the tumor microenvironment, including tumorigenesis, immune infiltration, and energy metabolism. Finally, this review provides insightful perspectives, identifying promising avenues for further exploration and potential clinical application in this field of research.
Collapse
Affiliation(s)
- Xiaoning Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Haoqi Pan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No.270 Dong' An Road, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No.270 Dong' An Road, 200032, Shanghai, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No.270 Dong' An Road, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No.270 Dong' An Road, 200032, Shanghai, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
234
|
Liu J, Chen P, Zhou J, Li H, Pan Z. Prognostic impact of lactylation-associated gene modifications in clear cell renal cell carcinoma: Insights into molecular landscape and therapeutic opportunities. ENVIRONMENTAL TOXICOLOGY 2024; 39:1360-1373. [PMID: 37972232 DOI: 10.1002/tox.24040] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) stands as a challenging subtype of kidney cancer, frequently complicating patient prognosis due to factors like postsurgical recurrences or late-stage diagnoses. In this study, we employed bioinformatics to investigate lactylation modifications in ccRCC, focusing on the TCGA-KIRC cohort. Out of 328 lactylation-associated genes, 31 emerged as differentially expressed, with 16 showing a marked correlation with overall survival. These genes exhibited strong protein-protein interactions and significant expression correlations. Intriguingly, a notable loss of gene copy numbers suggests potential implications in tumor progression. Utilizing unsupervised clustering, KIRC samples were grouped into two distinct subcategories, each showcasing different survival outcomes. While pathway enrichment highlighted an aggressive, inflammation-driven profile for subgroup 2, subgroup 1 was characterized by metabolic prominence. Furthermore, subgroup 2 presented an intensified inflammatory response, hinting at potential immune exhaustion. Capitalizing on machine learning, we developed a risk model using the TCGA-KIRC dataset, efficiently categorizing ccRCC patients into high- and low-risk clusters. Notably, those in the low-risk group indicated a more favorable survival trajectory. Clinical evaluations further corroborated these findings, linking better outcomes with reduced risk scores. Additionally, observed mutation patterns allude to a potential association between elevated risk scores and cytokine storms. TIDE analysis illuminated possible immunotherapeutic benefits for the low-risk group, underscored by an evident rise in microsatellite instability. Finally, our drug sensitivity evaluations revealed distinct therapeutic responses between the groups. In summary, this research underscores the pivotal role of lactylation modifications in ccRCC and introduces a promising prognostic model. These revelations pave the way for enhanced prognostic precision, presenting a promising path toward personalized treatment strategies and enriching our comprehension of the multifaceted molecular landscape of the disease.
Collapse
Affiliation(s)
- Jinsha Liu
- Department of Laboratory Medicine, Meizhou Meixian District Hospital of Traditional Chinese Medicine, Meizhou, China
| | - Pang Chen
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Zhou
- School of Medicine, Nanchang University, Nanchang, China
| | - Haoguang Li
- School of Medicine, Nanchang University, Nanchang, China
| | - Zifeng Pan
- Department of Laboratory Medicine, Meizhou Meixian District Hospital of Traditional Chinese Medicine, Meizhou, China
| |
Collapse
|
235
|
Yin C, Li J, Li S, Yang X, Lu Y, Wang C, Liu B. LncRNA-HOXC-AS2 regulates tumor-associated macrophage polarization through the STAT1/SOCS1 and STAT1/CIITA pathways to promote the progression of non-small cell lung cancer. Cell Signal 2024; 115:111031. [PMID: 38168631 DOI: 10.1016/j.cellsig.2023.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Tumor-associated macrophages (TAMs) mainly exhibit the characteristics of M2-type macrophages, and the regulation of TAM polarization is a new target for cancer therapy, among which lncRNAs are key regulatory molecules. This study aimed to explore the effects of lncRNA-HOXC-AS2 on non-small cell lung cancer (NSCLC) by regulating TAM polarization. THP-1 cells were used to differentiate into macrophages, and TAMs were obtained by coculture with A549 cells. The M1/M2 cell phenotype and HOXC-AS2 expression were detected, and A549-derived exosomes (A549-exo) were used to elucidate the effects of A549 on macrophage polarization and HOXC-AS2 expression. Then, by interfering with HOXC-AS2 or STAT1, the effects of HOXC-AS2 regulation of STAT1 on the TAM phenotype and STAT1/SOCS1 and STAT1/CIITA pathways were analyzed, and the proliferation and metastasis of NSCLC cells in the coculture system were also detected. Results showed that HOXC-AS2 expression in M2 macrophages and TAMs was significantly higher than that in M1 macrophages, and A549-exo promoted HOXC-AS2 expression and M2 polarization. Intervention HOXC-AS2 resulted in increased M1 marker expression, decreased M2 marker expression, and activation of STAT1/SOCS1 and STAT1/CIITA pathways in TAMs. In addition, HOXC-AS2 was mainly expressed in the cytoplasm of TAMs and could bind to STAT1. Further experiments confirmed that intervention HOXC-AS2 promoted the M1 polarization of TAMs by targeting STAT1 and weakened the promoting effects of TAMs on the proliferation and metastasis of NSCLC. In conclusion, HOXC-AS2 inhibited the activation of STAT1/SOCS1 and STAT1/CIITA pathways and promoted M2 polarization of TAMs by binding with STAT1, thus promoting NSCLC.
Collapse
Affiliation(s)
- Cunli Yin
- School of Medicine, University of Electronic Science and Technology of China, China
| | - Jing Li
- Department of General Internal Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China Chengdu, China
| | - Siru Li
- School of Medicine, University of Electronic Science and Technology of China, China
| | - Xi Yang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, China
| | - Yingchun Lu
- School of Medicine, University of Electronic Science and Technology of China, China
| | - Chunyu Wang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, China
| | - Bin Liu
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China Chengdu, China.
| |
Collapse
|
236
|
Ouyang Y, Gu Y, Zhang X, Huang Y, Wei X, Tang F, Zhang S. AMPKα2 promotes tumor immune escape by inducing CD8+ T-cell exhaustion and CD4+ Treg cell formation in liver hepatocellular carcinoma. BMC Cancer 2024; 24:276. [PMID: 38424484 PMCID: PMC10905944 DOI: 10.1186/s12885-024-12025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Adenosine monophosphate-activated protein kinase (AMPK) is associated with the development of liver hepatocellular carcinoma (LIHC). AMPKα2, an α2 subunit of AMPK, is encoded by PRKAA2, and functions as the catalytic core of AMPK. However, the role of AMPKα2 in the LIHC tumor immune environment is unclear. METHODS RNA-seq data were obtained from the Cancer Genome Atlas and Genotype-Tissue Expression databases. Using the single-cell RNA-sequencing dataset for LIHC obtained from the China National Genebank Database, the communication between malignant cells and T cells in response to different PRKAA2 expression patterns was evaluated. In addition, the association between PRKAA2 expression and T-cell evolution during tumor progression was explored using Pseudotime analysis, and the role of PRKAA2 in metabolic reprogramming was explored using the R "scMetabolis" package. Functional experiments were performed in LIHC HepG2 cells. RESULTS AMPK subunits were expressed in tissue-specific and substrate-specific patterns. PRKAA2 was highly expressed in LIHC tissues and was associated with poor patient prognosis. Tumors with high PRKAA2 expression displayed an immune cold phenotype. High PRKAA2 expression significantly promoted LIHC immune escape. This result is supported by the following evidence: 1) the inhibition of major histocompatibility complex class I (MHC-I) expression through the regulation of interferon-gamma activity in malignant cells; 2) the promotion of CD8+ T-cell exhaustion and the formation of CD4+ Treg cells in T cells; 3) altered interactions between malignant cells and T cells in the tumor immune environment; and 4) induction of metabolic reprogramming in malignant cells. CONCLUSIONS Our study indicate that PRKAA2 may contribute to LIHC progression by promoting metabolic reprogramming and tumor immune escape through theoretical analysis, which offers a theoretical foundation for developing PRKAA2-based strategies for personalized LIHC treatment.
Collapse
Affiliation(s)
- Yan Ouyang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yan Gu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Xinhai Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Ya Huang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Xianpeng Wei
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Fuzhou Tang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.
| | - Shichao Zhang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
237
|
Huang P, Ning X, Kang M, Wang R. Ferroptosis-Related Genes Are Associated with Radioresistance and Immune Suppression in Head and Neck Cancer. Genet Test Mol Biomarkers 2024; 28:100-113. [PMID: 38478802 PMCID: PMC10979683 DOI: 10.1089/gtmb.2023.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024] Open
Abstract
Background: Ferroptosis is associated with tumor development; however, its contribution to radioresistant head and neck cancer (HNC) remains unclear. In this study, we used bioinformatics analysis and in vitro testing to explore ferroptosis-related genes associated with HNCs radiosensitivity. Materials and Methods: GSE9714, GSE90761, and The Cancer Genome Atlas (TCGA) datasets were searched to identify ferroptosis-related differentially expressed genes between radioresistant and radiosensitive HNCs or radiation-treated and nonradiation-treated HNCs. A protein-protein interaction analysis on identified hub genes was then performed. Receiver operating characteristic curves and Kaplan-Meier survival analysis were used to assess the diagnostic and prognostic potential of the hub genes. Cell counting kit-8, transwell assay, and flow cytometry were applied to examine the role of hub gene collagen type IV, alpha1 chain (COL4A1) on the proliferation, migration, invasion, and apoptosis of TU686 cells. Results: Hub genes MMP10, MMP1, COL4A1, IFI27, and INHBA showed diagnostic potential for HNC and were negatively correlated with overall survival and disease-free survival in the TCGA dataset. Also, IL-1B, IFI27, INHBA, and COL4A1 mRNA levels were significantly increased in TCGA patients with advanced clinical stages or receiving radiotherapy, whereas COL4A1, MMP10, and INHBA expressions were negatively correlated with immune infiltration. Furthermore, the knockdown of COL4A1 inhibited cell proliferation, migration, and invasion while promoting apoptosis in TU686 cells. Conclusion: Ferroptosis-related hub genes, such as COL4A1, are potential diagnostic and prognostic indicators as well as therapeutic targets for HNC.
Collapse
Affiliation(s)
- Ping Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Oncology, LiuZhou Traditional Chinese Medical Hospital Affiliated to Guangxi University of Chinese Medicine, Liuzhou, China
| | - Xuejian Ning
- Department of Oncology, LiuZhou Traditional Chinese Medical Hospital Affiliated to Guangxi University of Chinese Medicine, Liuzhou, China
| | - Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - RenSheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
238
|
Lin S, Zhu B. Exosome-transmitted FOSL1 from cancer-associated fibroblasts drives colorectal cancer stemness and chemo-resistance through transcriptionally activating ITGB4. Mol Cell Biochem 2024; 479:665-677. [PMID: 37160555 DOI: 10.1007/s11010-023-04737-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/09/2023] [Indexed: 05/11/2023]
Abstract
Cancer-associated fibroblasts (CAFs) have been proved to facilitate colorectal cancer (CRC) development, either with boosting chemo-resistance by communicating with CRC cells in the tumor microenvironment. However, the underlying molecular mechanisms remain largely unclear. Relative expressions of FOSL1 and ITGB4, either with their correlations in CRC tissues, were assessed using qRT-PCR analysis. Also, Kaplan-Meier survival analysis was employed for evaluating the prognosis. Identification of CAFs was determined by the detection of specific makers (α-SMA, FAP, and FSP1) using western blot and immunofluorescence staining. Cell proliferation, self-renewal capacity, and cell apoptosis were estimated by CCK-8, sphere-formation, and flow cytometry assays. Transcriptional regulation of FOSL1 on integrin β4 (ITGB4) was confirmed using ChIP and dual-luciferase reporter assays. Increased FOSL1 and ITGB4 in CRC tissues were both positively correlated with the poor prognosis of CRC patients. Interestingly, FOSL1 was enriched in the CAFs isolated from CRC stroma, instead of ITGB4. CRC cells under a co-culture system with CAFs-conditioned medium (CAFs-CM) exhibited increased FOSL1, promotive cell proliferation, and reduced apoptosis, while these effects could be blocked by exosome inhibitor (GW4869). Moreover, CAFs-derived exosomal FOSL1 was validated to enhance proliferative ability and oxaliplatin resistance of CRC cells. Our results uncovered that CAFs-derived exosomes could transfer FOSL1 to CRC cells, thereby promoting CRC cell proliferation, stemness, and oxaliplatin resistance by transcriptionally activating ITGB4.
Collapse
Affiliation(s)
- Shanshan Lin
- Department of Rehabilitation Medicine, Jiangmen Central Hospital, Jiangmen, 529099, Guangdong Province, China
| | - Bo Zhu
- Department of Surgical Oncology, Zhongshan City People's Hospital, No. 2 Sunwen East Road, Zhongshan City, Guangdong Province, China.
| |
Collapse
|
239
|
Song X, Hou K, Zhou H, Yang J, Cao T, Zhang J. Liver organoids and their application in liver cancer research. Regen Ther 2024; 25:128-137. [PMID: 38226058 PMCID: PMC10788409 DOI: 10.1016/j.reth.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024] Open
Abstract
Liver cancer, a common and intractable liver-related disease, is a malignant tumor with a high morbidity, which needs a high treatment cost but still lacks perfect clinical treatment methods. Looking for an effective platform for liver cancer study and drug screening is urgent and important. Traditional analytical methods for liver disease studies mainly rely on the 2D cell culture and animal experiments, which both cannot fully recapitulate physiological and pathological processes of human liver. For example, cell culture can only show basic functions of cells in vitro, while animal models always hold the problem of species divergence. The organoids, a 3D invitro culture system emerged in recent years, is a cell-bound body with different cell types and has partial tissue functions. The organoid technology can reveal the growth state, structure, function and characteristics of the tissue or organ, and plays an important role in reconstructing invitro experimental models that can truly simulate the human liver. In this paper, we will give a brief introduction of liver organoids and review their applications in liver cancer research, especially in liver cancer pathogenesis, drug screening, precision medicine, regenerative medicine, and other fields. We have also discussed advantages and disadvantages of organoids, as well as future directions and perspectives towards liver organoids.
Collapse
Affiliation(s)
- Xinyu Song
- Binzhou Medical University, 264003 Yantai, Shandong, China
| | - Kaifei Hou
- Binzhou Medical University, 264003 Yantai, Shandong, China
| | - Hongyan Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 250300 Jinan, Shandong, China
| | - Jingyi Yang
- Binzhou Medical University, 264003 Yantai, Shandong, China
| | - Ting Cao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, Zhejiang, China
| | - Jiayu Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, 264003 Yantai, Shandong, China
| |
Collapse
|
240
|
Zhang Y, Zhou T, Tang Q, Feng B, Liang Y. Identification of glycosyltransferase-related genes signature and integrative analyses in patients with ovarian cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:12-25. [PMID: 38496354 PMCID: PMC10944358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Glycosyltransferases (GT) play a crucial role in glycosylation reactions, and aberrant expression of glycosyltransferase-related genes (GTs) leads to abnormal glycosylation, which is associated with tumor progression. However, the prognostic value of aberrant expression of GTs in ovarian cancer (OC) and the correlation between GTs and tumor microenvironment (TME) remain unknown. METHODS TCGA and GSE53963 databases were used to obtain data on OC patient samples. The association of GTs with OC was analyzed. Molecular subtypes were identified by consensus unsupervised clustering, followed by immune infiltration and functional enrichment analyses. Survival analysis was performed using Kaplan-Meier curves and log-rank tests. Least Absolute Shrinkage and Selection Operator (LASSO) and multifactorial cox regression were used to screen for signature genes associated with OC and used to establish prognostic models. RESULT OC patients were categorized into 5 GTs clusters using consensus unsupervised cluster analysis. Clusters D and E showed significant differences between survival, signaling pathways and immune infiltration. Then, a risk model was developed based on the 12 signature genes, which provides a more accurate evaluation of the prognosis of OC patients. We categorized patients into high-risk and low-risk groups based on the risk score and found that the survival of patients in the high-risk group was significantly lower than that in the low-risk group. Moreover, the risk score was significantly correlated with tumor microenvironment, immune infiltration, and chemotherapy sensitivity. CONCLUSION Overall, we performed a comprehensive analysis of GTs in OC patients and developed a risk model for OC. Our findings will provide a new insight to OC prognosis and treatment.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, The People’s Republic of China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune MedicineHefei, Anhui, The People’s Republic of China
| | - Tong Zhou
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, The People’s Republic of China
- Medical College of Soochow UniversitySuzhou, Jiangsu, The People’s Republic of China
| | - Qingqin Tang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, The People’s Republic of China
| | - Bin Feng
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, The People’s Republic of China
| | - Yuting Liang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, The People’s Republic of China
| |
Collapse
|
241
|
Fei Y, Wu Y, Chen L, Yu H, Pan L. Comprehensive pan-carcinoma analysis of ITGB1 distortion and its potential clinical significance for cancer immunity. Discov Oncol 2024; 15:47. [PMID: 38402311 PMCID: PMC10894187 DOI: 10.1007/s12672-024-00901-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
The human protein-coding gene ITGB1 (Integrin 1), also known as CD29, has a length of 58048 base pairs. The Integrin family's most prevalent subunit, it participates in the transmission of numerous intracellular signaling pathways. A thorough examination of ITGB1's functions in human malignancies, however, is inadequate and many of their relationships to the onset and development of human cancers remain unknown. In this work, we examined ITGB1's role in 33 human cancers. Finally, a multi-platform analysis revealed that three of the 33 malignancies had significantly altered ITGB1 expression in tumor tissues in comparison to normal tissues. In addition, it was discovered through survival analysis that ITGB1 was a stand-alone prognostic factor in a number of cancers. ITGB1 expression was linked to immune cell infiltration in colon cancer, according to an investigation of immune infiltration in pan-cancer. In the gene co-expression research, ITGB1 showed a positive connection with the majority of the cell proliferation and EMT indicators, indicating that ITGB1 may have an essential function in controlling cancer metastasis and proliferation. Our pan-cancer analysis of ITGB1 gives evidence in favor of a further investigation into its oncogenic function in various cancer types.
Collapse
Affiliation(s)
- Yuchang Fei
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Jiashan, Jiashan Hospital Affiliated of Jiaxing University, Jiashan, Zhejiang, China.
| | - Yulun Wu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luting Chen
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Huan Yu
- The Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lei Pan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
242
|
|
243
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
244
|
Lin Z, Meng F, Ma Y, Zhang C, Zhang Z, Yang Z, Li Y, Hou L, Xu Y, Liang X, Zhang X. In situ immunomodulation of tumors with biosynthetic bacteria promote anti-tumor immunity. Bioact Mater 2024; 32:12-27. [PMID: 37790917 PMCID: PMC10542607 DOI: 10.1016/j.bioactmat.2023.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy potently revives T cell's response to cancer. However, patients suffered with tumors that had inadequate infiltrated immune cells only receive limited therapeutic benefits from ICB therapy. Synthetic biology promotes the alternative strategy of harnessing tumor-targeting bacteria to synthesize therapeutics to modulate immunity in situ. Herein, we engineered attenuated Salmonella typhimurium VNP20009 with gene circuits to synthetize granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 7 (IL-7) within tumors, which recruited dendritic cells (DCs) and enhanced T cell priming to elicit anti-tumor response. The bacteria-produced GM-CSF stimulated the maturation of bone marrow-derived dendritic cells (BMDCs), while IL-7 promoted the proliferation of spleen isolated T cells and inhibited cytotoxicity T cell apoptosis in vitro. Virtually, engineered VNP20009 prefer to colonize in tumors, and inhibited tumor growth by enhancing DCs and T cell infiltration. Moreover, the tumor-toxic GZMB+ CD8+ T cell and IFN-γ+ CD8+ T cell populations conspicuously increased with the treatment of engineered bacteria. The combination of GM-CSF-IL-7-VNP20009 with PD-1 antibody synergistically stunted the tumor progress and stasis.
Collapse
Affiliation(s)
- Zhongda Lin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Fanqiang Meng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yumeng Ma
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chi Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zhirang Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zhaoxin Yang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yuan Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Linlin Hou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yuzhong Xu
- Department of Clinical Laboratory, Shenzhen Baoan Hospital, The Second Affiliated Hospital of Shenzhen University, Shenzhen, 518101, China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| |
Collapse
|
245
|
Mohammad TAM, Hussein FN, Abbas AN, Jaafar HM, Salam BB. Ex vivo treatment with poly (I:C) alleviates the exhausted phenotype of tumor-infiltrating TCD8 + cells of gastric cancer patients. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1189-1196. [PMID: 37639020 DOI: 10.1007/s00210-023-02689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Gastric cancer is associated with the phenotypic and functional exhaustion of TCD8+ cells. On the other hand, Toll-like receptor (TLR) agonists are known to reinforce immune responses when used as adjuvants in cancer immunotherapies. Since the compromised signaling of pro-inflammatory pathways is usually associated with T cell exhaustion, the aim of the present study was to evaluate the impact of polyinosinic-polycytidylic acid (poly (I:C))-mediated TLR3 activation in restoring the normal phenotype and function of tumor-infiltrating TCD8+ cells. Peripheral blood and tumor-infiltrating TCD8+ cells of 35 gastric cancer patients were in vitro treated with increasing concentrations of poly (I:C) and the expressions of programmed death-1 (PD-1) and lymphocyte-activation gene 3 (LAG3) on these cells were examined. The peripheral TCD8+ cells of gastric cancer patients showed higher expressions of PD-1 and LAG3 along with lower proliferation compared to TCD8+ cells of the age-matched healthy control individuals. The in vitro treatment of TCD8+ cells with 100 μg/mL concentration of poly (I:C) alleviated the expression of PD-1 and LAG3 inhibitory checkpoint molecules on both peripheral and tumor-infiltrating TCD8+ cells. The mentioned dose of poly (I:C) improved the proliferation of TCD8+ cells in response to a polyclonal activator. Besides, the releases of Interferon gamma (IFN-γ) and Tumor necrosis factor alpha (TNF-α) were increased in the poly (I:C)-treated TCD8+ cells. Poly (I:C) demonstrated a potential to reduce the phenotypic and functional exhaustion of the peripheral and tumor-infiltrating TCD8+ cells and caused them to undergo more proliferation and cytokine release.
Collapse
Affiliation(s)
- Talar Ahmad Merza Mohammad
- Hawlar Medical University, College of Pharmacy, Department of Clinical Pharmacy, Kurdistan Region, Erbil, Iraq.
| | - Farhad Nehmatullah Hussein
- Hawlar Medical University, College of Pharmacy, Department of Clinical Pharmacy, Kurdistan Region, Erbil, Iraq
| | | | - Halmat M Jaafar
- Hawlar Medical University, College of Pharmacy, Department of Clinical Pharmacy, Kurdistan Region, Erbil, Iraq
| | - Brwa Bakr Salam
- Hawlar Medical University, College of Pharmacy, Department of Clinical Pharmacy, Kurdistan Region, Erbil, Iraq
| |
Collapse
|
246
|
Padathpeedika Khalid J, Mary Martin T, Prathap L, Abhimanyu Nisargandha M, Boopathy N, Kishore Kumar MS. Exploring Tumor-Promoting Qualities of Cancer-Associated Fibroblasts and Innovative Drug Discovery Strategies With Emphasis on Thymoquinone. Cureus 2024; 16:e53949. [PMID: 38468988 PMCID: PMC10925941 DOI: 10.7759/cureus.53949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
Tumor epithelial development and chemoresistance are highly promoted by the tumor microenvironment (TME), which is mostly made up of the cancer stroma. This is due to several causes. Cancer-associated fibroblasts (CAFs) stand out among them as being essential for the promotion of tumors. Understanding the fibroblastic population within a single tumor is made more challenging by the undeniable heterogeneity within it, even though particular stromal alterations are still up for debate. Numerous chemical signals released by tumors improve the connections between heterotypic fibroblasts and CAFs, promoting the spread of cancer. It becomes essential to have a thorough understanding of this complex microenvironment to effectively prevent solid tumor growth. Important new insights into the role of CAFs in the TME have been revealed by recent studies. The objective of this review is to carefully investigate the relationship between CAFs in tumors and plant secondary metabolites, with a focus on thymoquinone (TQ). The literature published between 2010 and 2023 was searched in PubMed and Google Scholar with keywords such as TQ, TME, cancer-associated fibroblasts, mechanism of action, and flavonoids. The results showed a wealth of data substantiating the activity of plant secondary metabolites, particularly TQ's involvement in blocking CAF operations. Scrutinized research also clarified the wider effect of flavonoids on pathways related to cancer. The present study highlights the complex dynamics of the TME and emphasizes the critical role of CAFs. It also examines the possible interventions provided by secondary metabolites found in plants, with TQ playing a vital role in regulating CAF function based on recent literature.
Collapse
Affiliation(s)
- Jabir Padathpeedika Khalid
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Taniya Mary Martin
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Milind Abhimanyu Nisargandha
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Nisha Boopathy
- Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Meenakshi Sundaram Kishore Kumar
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
247
|
Li X, Wu D, Li Q, Gu J, Gao W, Zhu X, Yin W, Zhu R, Zhu L, Jiao N. Host-microbiota interactions contributing to the heterogeneous tumor microenvironment in colorectal cancer. Physiol Genomics 2024; 56:221-234. [PMID: 38073489 DOI: 10.1152/physiolgenomics.00103.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
Colorectal cancer (CRC) exhibits pronounced heterogeneity and is categorized into four widely accepted consensus molecular subtypes (CMSs) with unique tumor microenvironments (TMEs). However, the intricate landscape of the microbiota and host-microbiota interactions within these TMEs remains elusive. Using RNA-sequencing data from The Cancer Genome Atlas, we analyzed the host transcriptomes and intratumoral microbiome profiles of CRC samples. Distinct host genes and microbial genera were identified among the CMSs. Immune microenvironments were evaluated using CIBERSORTx and ESTIMATE, and microbial coabundance patterns were assessed with FastSpar. Through LASSO penalized regression, we explored host-microbiota associations for each CMS. Our analysis revealed distinct host gene signatures within the CMSs, which encompassed ferroptosis-related genes and specific immune microenvironments. Moreover, we identified 293, 153, 66, and 109 intratumoral microbial genera with differential abundance, and host-microbiota associations contributed to distinct TMEs, characterized by 829, 1,270, 634, and 1,882 robust gene-microbe associations for each CMS in CMS1-CMS4, respectively. CMS1 featured inflammation-related HSF1 activation and gene interactions within the endothelin pathway and Flammeovirga. Integrin-related genes displayed positive correlations with Sutterella in CMS2, whereas CMS3 spotlighted microbial associations with biosynthetic and metabolic pathways. In CMS4, genes involved in collagen biosynthesis showed positive associations with Sutterella, contributing to disruptions in homeostasis. Notably, immune-rich subtypes exhibited pronounced ferroptosis dysregulation, potentially linked to tissue microbial colonization. This comprehensive investigation delineates the diverse landscapes of the TME within each CMS, incorporating host genes, intratumoral microbiota, and their complex interactions. These findings shed light on previously uncharted mechanisms underpinning CRC heterogeneity and suggest potential therapeutic targets.NEW & NOTEWORTHY This study determined the following: 1) providing a comprehensive landscape of consensus molecular subtype (CMS)-specific tumor microenvironments (TMEs); 2) constructing CMS-specific networks, including host genes, intratumoral microbiota, and enriched pathways, analyzing their associations to uncover unique patterns that demonstrate the intricate interplay within the TME; and 3) revealing a connection between immune-rich subtypes and ferroptosis activation, suggesting a potential regulatory role of the microbiota in ferroptosis dysregulation of the colorectal cancer TME.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Dingfeng Wu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qiuyu Li
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jinglan Gu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wenxing Gao
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xinyue Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Wenjing Yin
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Ruixin Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Lixin Zhu
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Na Jiao
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
248
|
Sun J, Li Y, Chen R, Xie Y, Wei J, Li B. Exploring the role of lactylation-related genes in osteosarcoma: A deep dive into prognostic significance and therapeutic potential. ENVIRONMENTAL TOXICOLOGY 2024; 39:1001-1017. [PMID: 38009602 DOI: 10.1002/tox.24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023]
Abstract
Osteosarcoma (OS), notorious for its complex pathogenesis and formidable prognosis, represents a significant medical quandary. This research embarked on a quest to unravel the implications of lactylation-related genes (LRGs) in OS, offering a novel lens through which to interpret its intricacies. A meticulous evaluation of 329 LRGs within the TARGET dataset spotlighted 27 paramount genes, intricately intertwined with survival. These genes highlighted metabolic processes-particularly amino acid metabolism-as key players, as evidenced in both GO and KEGG analyses. Utilizing consensus clustering and principal component analysis, the 93 OS samples were segmented into two distinct groups, differing notably in overall and event-free survival. Cluster 2 demonstrated a heightened immune response, contrasting the other cluster. Machine learning techniques, like generalized boosted model, CoxBoost, and RSF, spotlighted MYC and GOT2 as critical genes. Using multivariate Cox regression, a risk model was developed, categorizing patients into high and low-risk groups, each displaying varied survival patterns. Additionally, a contrast was observed between MYC and GOT2's associations with HLA molecules, emphasizing their distinct roles in antigen presentation. Potential therapeutic avenues were identified for each risk group, with special attention to mutations in MYC, particularly amplifications, hinting at its role in tumor progression. Finally, delving deeper into the role of MYC, Western blot analyses exhibited amplified myc protein levels in OS cells U-2 and MG-63 when juxtaposed against human osteoblastic cells Hfob1.19. A focused knockdown of myc in OS cells subsequently confirmed its influence on cell proliferation and migration, with reduced myc expression resulting in inhibited cell activities. Furthermore, immunofluorescence assays corroborated myc's heightened expression in OS cells relative to normal osteoblastic cells. In summary, this study accentuates the vital role of LRGs and specifically MYC in OS, ushering in a horizon of tailored therapeutic strategies.
Collapse
Affiliation(s)
- Jingdong Sun
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yong Li
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Rui Chen
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yi Xie
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jie Wei
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Binbin Li
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
249
|
Goyal F, Chattopadhyay A, Navik U, Jain A, Reddy PH, Bhatti GK, Bhatti JS. Advancing Cancer Immunotherapy: The Potential of mRNA Vaccines As a Promising Therapeutic Approach. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300255] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 01/11/2025]
Abstract
AbstractmRNA vaccines have long been recognized for their ability to induce robust immune responses. The discovery that mRNA vaccines may also contribute to antitumor immunity has made them a promising therapeutic approach against cancer. Recent advances in understanding of immune system are precious in developing therapeutic strategies that target pathways involved in tumor survival and progression, leading to the most reliable therapeutic strategies in cancer treatment history. Among all traditional cancer treatments, cancer immunotherapies are less toxic and more effective, even in advanced or recurrent stages of cancer. Recent advancements in genomics and machine learning algorithms give new insight into vaccine development. mRNA vaccines are designed to interfere with stimulator of interferon genes (STING) and tumor‐infiltrating lymphocytes pathways, activating more CD8+ T‐cells involved in destroying tumor cells and inhibiting tumor growth. A stronger immune response can be achieved by incorporating immunological adjuvants alongside mRNA. Nonformulated or vehicle‐based mRNA vaccines, when combined with adjuvants, efficiently express tumor antigens through antigen‐presenting cells and stimulate both innate and adaptive immune responses. Codelivery with additional immunotherapeutic agents, such as checkpoint inhibitors, further enhances the efficacy of mRNA vaccines. This article focuses on the current clinical approaches and challenges to consider when developing mRNA‐based vaccine technology for cancer treatment.
Collapse
Affiliation(s)
- Falak Goyal
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Anandini Chattopadhyay
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Umashanker Navik
- Department of Pharmacology School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Aklank Jain
- Department of Zoology Central University of Punjab Bathinda Punjab 151401 India
| | - P. Hemachandra Reddy
- Department of Internal Medicine Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Public Health Graduate School of Biomedical Sciences Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Neurology Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Speech Language, and Hearing Sciences Texas Tech University Health Sciences Center Lubbock TX 79430 USA
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology University Institute of Applied Health Sciences Chandigarh University Mohali 140413 India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| |
Collapse
|
250
|
Shao L, Zhu Z, Jia X, Ma Y, Dong C. A bioinformatic analysis found low expression and clinical significance of ATF4 in breast cancer. Heliyon 2024; 10:e24669. [PMID: 38312639 PMCID: PMC10835298 DOI: 10.1016/j.heliyon.2024.e24669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Background Activating Transcription Factor 4 (ATF4) expression exhibits differential patterns across different types of tumors. Besides, the pathogenesis of breast cancer is complex, and the exact relationship between ATF4 and ATF4 remains uncertain. Methods The analysis of ATF4 expression was conducted by utilizing The Cancer Genome Atlas (TCGA) pan-cancer data, while the gene expression profile of breast cancer was checked by the comprehensive database-Gene Expression Omnibus database. In order to gain a more comprehensive understanding of the specific cell types that exhibit ATF4 expression within the microenvironment of breast cancer, we conducted a single-cell analysis of ATF4 using two distinct datasets of human breast cancer (GSE114717 and GSE11088, respectively). The spatial distribution of ATF4 within a tissue was demonstrated based on datasets obtained from the Human Protein Atlas (HPA) and SpatialDB. The clinical prognostic significance of ATF4 was assessed by analyzing clinical survival data obtained from TCGA, GSE4830, and GSE25055 datasets. We used the R package clusterProfiler to carry out an enrichment analysis of ATF4. We assessed how ATF4 impacts the growth and movement of breast cancer cell lines. We manipulated ATF4 levels using plasmid transfection techniques. Results The expression of ATF4 was found to be suboptimal and demonstrated a significant correlation with enhanced disease-specific survival (p = 0.012) and overall survival (p = 0.032) in breast cancer as well as other malignancies. We conducted an analysis to investigate the interaction between the infiltration level of immune cells and the expression of ATF4, using samples obtained from TCGA with known immune cell infiltration scores. Furthermore, a notable positive correlation exists between the elevated expression of ATF4 and immune-related genomes, specifically those associated with chemokine as well as immunity. Subsequent examination revealed a notable augmentation in the cytodifferentiation of T cells into regulatory T (Treg) cells within tissues exhibiting elevated levels of ATF4 expression. ATF4 exhibits notable upregulation in the MDA-MB-231 cell, thereby exerting a substantial impact on cell proliferation and migration upon its knockdown. Conversely, the overexpression of ATF4 in the MCF7 Luminal A breast cancer cell line can also modulate cellular function. Conclusions Our study suggests that ATF4 helps T cells differentiate into Treg cells in breast cancer. ATF4 can represent a clinically useful biomarker to predict the overall survival rate, especially in patients with different subtypes of breast cancer. Provide certain guidance value for the development of targeted drugs or inhibitors targeting ATF4.
Collapse
Affiliation(s)
- Lujing Shao
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Zhounan Zhu
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Xinyan Jia
- Jinzhou Medical University, Jinzhou, Liaoning, 121000, PR China
| | - Yabin Ma
- Department of Pharmacy, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Chunyan Dong
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|