201
|
Involvement of angiogenesis in cancer-associated acinar-to-ductal metaplasia lesion of pancreatic cancer invasive front. J Cancer Res Clin Oncol 2023:10.1007/s00432-022-04554-5. [PMID: 36592214 DOI: 10.1007/s00432-022-04554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE This study aimed to demonstrate the involvement of angiogenesis in cancer-associated acinar-to-ductal metaplasia (CA-ADM) lesion of invasive front pancreatic ductal adenocarcinoma (PDAC) and investigate the possible mechanism. METHODS Tissue samples from 128 patients with PDAC and 36 LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre mice were analyzed. Immunohistochemical assay was performed using HE, anti-CK19 and anti-amylase to confirm the presence of CA-ADM lesions, using anti-CD34 and anti-CD31 to measure microvessel density (MVD), and using anti-CD68, anti-CD163, anti-iNOS, or anti-MMP9 to evaluate the immune microenvironment. We performed multiplex immunohistochemical assay to detect the co-expression of MMP9 and CD68 on macrophage. We examined clinical outcomes and other clinicopathological factors to determine the significance of high-level MVD of CA-ADM on survival and liver metastasis. We performed tube formation assay to evaluate the effect of macrophage on angiogenic capacity in vitro. RESULTS Angiogenesis was significantly abundant in CA-ADM lesions compared with that in PDAC lesions in human and mouse tissues. High-level MVD in CA-ADM lesions was an independent predictor of poor prognosis (P = 0.0047) and the recurrence of liver metastasis (P = 0.0027). More CD68-positive and CD163-positive macrophages were detected in CA-ADM lesions than in PDAC. The percentage of CD68-positive macrophages was positively correlated with MVD in CA-ADM lesions. Multiplex-immunostaining revealed that MMP9 was expressed in CD68-positive macrophages of CA-ADM lesions. In CA-ADM lesions, the percentage of macrophages was positively correlated with MMP9 expression, which positively correlated with microvessel density. CONCLUSION CA-ADM related angiogenesis is a promising predictive marker for poor prognosis of PDAC and may provide an attractive therapeutic target for PDAC.
Collapse
|
202
|
Guo Z, de Araujo-Souza PS, Cohen SJ. Editorial: Reviews in cancer genetics. Front Oncol 2023; 13:1141161. [PMID: 36910601 PMCID: PMC9997709 DOI: 10.3389/fonc.2023.1141161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Affiliation(s)
- Zhanjun Guo
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Shmuel Jaffe Cohen
- Laboratory of Immuno-HPB and Transplant Surgery, Division of Surgery, Tel Aviv Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
203
|
Wang W, Zhao H, Wang S. Identification of a novel immune-related gene signature for prognosis and the tumor microenvironment in patients with uveal melanoma combining single-cell and bulk sequencing data. Front Immunol 2023; 14:1099071. [PMID: 36793711 PMCID: PMC9922847 DOI: 10.3389/fimmu.2023.1099071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction Uveal melanoma (UVM) is the most invasive intraocular malignancy in adults with a poor prognosis. Growing evidence revealed that immune-related gene is related to tumorigenesis and prognosis. This study aimed to construct an immune-related prognostic signature for UVM and clarify the molecular and immune classification. Methods Based on The Cancer Genome Atlas (TCGA) database, single-sample gene set enrichment (ssGSEA) and hierarchical clustering analysis were performed to identify the immune infiltration pattern of UVM and classify patients into two immunity clusters. Then, we proposed univariate and multivariate Cox regression analysis to identify immune-related genes that related to overall survival (OS) and validated in the Gene Expression Omnibus (GEO) external validation cohort. The molecular and immune classification in the immune-related gene prognostic signature defined subgroups were analyzed. Results The immune-related gene prognostic signature was constructed based on S100A13, MMP9, and SEMA3B genes. The prognostic value of this risk model was validated in three bulk RNA sequencing datasets and one single-cell sequencing dataset. Patients in the low-risk group had better OS than those in the high-risk group. The receiver-operating characteristic (ROC) analysis revealed its strong predictive ability for UVM patients. Lower expression of immune checkpoint genes was presented in the low-risk group. Functional studies showed that S100A13 knockdown via siRNA inhibited UVM cell proliferation, migration, and invasion in vitro, with the increased expression of reactive oxygen species (ROS) related markers in UVM cell lines. Discussion The immune-related gene prognostic signature is an independent predictive factor for the survival of patients with UVM and provides new information about cancer immunotherapy in UVM.
Collapse
Affiliation(s)
- Wanpeng Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Hunan, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Sha Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Hunan, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
204
|
Dong M, Zhang G, Meng J, Liu B, Jiang D, Liu F. MMP9-Associated Tumor Stem Cells, CCL1-Silenced Dendritic Cells, and Cytokine-Induced Killer Cells Have a Remarkable Therapeutic Efficacy for Acute Myeloid Leukemia by Activating T Cells. Stem Cells Int 2023; 2023:2490943. [PMID: 37200633 PMCID: PMC10188259 DOI: 10.1155/2023/2490943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/15/2023] [Accepted: 04/06/2023] [Indexed: 05/20/2023] Open
Abstract
Purpose Dendritic cells (DC) are specialized antigen-presenting cells, and cytokine-induced killer (CIK) cells have a specific killing activity to a variety of tumors. However, the underlining mechanism and function of DC-CIK cells in acute myeloid leukemia (AML) remain largely elusive. Methods Gene expression profiles of leukemia patients were obtained from TCGA, DC cell components were evaluated using the quanTIseq method, and cancer stem cell scores were estimated using machine learning methods. The transcriptomes were obtained in DC-CIK cells from normal and AML patients by high-throughput sequencing. Large differentially expressed mRNAs were verified by RT-qPCR assay, and MMP9 and CCL1 were selected for subsequent studies in vivo and in vitro experiments. Results Significant positive correlations were found with DC versus cancer stem cells (p = 0.008) and the expression of MMP9 versus cancer stem cells (p = 0.018). MMP9 and CCL1 were found to be highly expressed in DC-CIK cells from AML patients. DC-CIK cells with MMP9 and CCL1 knockout alone had little effect on leukemia cells, while knockdown of MMP9 and CCL1 in DC-CIK cells increased cytotoxicity, suppressed proliferation, and induced apoptosis of leukemia cells. In addition, we proved that MMP9- and CCL1-silenced DC-CIK cells significantly elevated the CD3+CD4+ and CD3+CD8+ cells and lowered the CD4+PD-1+ and CD8+PD-1+ T cells. Meanwhile, blockage of MMP9 and CCL1 in DC-CIK cells dramatically increased IL-2 and IFN-γ, increased CD107aþ (LAMP-1) and granzyme B (GZMB), and downregulated PD-1, CTLA4, TIM3, and LAG3 T cells from AML patients and AML model mice. Furthermore, activated T cells in DC-CIK cells knocking down MMP9 and CCL1 also prevented proliferation and accelerated apoptosis of AML cells. Conclusion Our findings demonstrated that blockage of MMP9 and CCL1 in DC-CIK cells could markedly enhance the therapeutic efficiency in AML via activating T cells.
Collapse
Affiliation(s)
- Min Dong
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570000, China
| | - Guozhen Zhang
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570000, China
| | - Jie Meng
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570000, China
| | - Biou Liu
- Department of Hematology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Duanfeng Jiang
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570000, China
| | - Feng Liu
- Department of Hematology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| |
Collapse
|
205
|
Ghareghomi S, Atabaki V, Abdollahzadeh N, Ahmadian S, Hafez Ghoran S. Bioactive PI3-kinase/Akt/mTOR Inhibitors in Targeted Lung Cancer Therapy. Adv Pharm Bull 2023; 13:24-35. [PMID: 36721812 PMCID: PMC9871280 DOI: 10.34172/apb.2023.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023] Open
Abstract
One of the central signaling pathways with a regulatory effect on cell proliferation and survival is Akt/mTOR. In many human cancer types, for instance, lung cancer, the overexpression of Akt/mTOR has been reported. For this reason, either targeting cancer cells by synthetic or natural products affecting the Akt/mTOR pathway down-regulation is a useful strategy in cancer therapy. Direct inhibition of the signaling pathway or modulation of each related molecule could have significant feedback on the growth and proliferation of cancer cells. A variety of secondary metabolites has been identified to directly inhibit the AKT/mTOR signaling, which is important in the field of drug discovery. Naturally occurring nitrogenous and phenolic compounds can emerge as two pivotal classes of natural products possessing anticancer abilities. Herein, we have summarized the alkaloids and flavonoids for lung cancer treatment together with all the possible mechanisms of action relying on the Akt/mTOR pathway down-regulation. This review suggested that in search of new drugs, phytochemicals could be considered as promising scaffolds to be developed into efficient drugs for the treatment of cancer. In this review, the terms "Akt/mTOR", "Alkaloid", "flavonoid", and "lung cancer" were searched without any limitation in search criteria in Scopus, PubMed, Web of Science, and Google scholar engines.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Vahideh Atabaki
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Naseh Abdollahzadeh
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.,Corresponding Authors: Salar Hafez Ghoran and Shahin Ahmadian, and
| | - Salar Hafez Ghoran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Corresponding Authors: Salar Hafez Ghoran and Shahin Ahmadian, and
| |
Collapse
|
206
|
Basavarajappa GM, Rehman A, Shiroorkar PN, Sreeharsha N, Anwer MK, Aloufi B. Therapeutic effects of Crataegus monogyna inhibitors against breast cancer. Front Pharmacol 2023; 14:1187079. [PMID: 37180727 PMCID: PMC10174464 DOI: 10.3389/fphar.2023.1187079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Breast cancer is a silent killer disorder among women and a serious economic burden in healthcare management. Every 19 s, a woman is diagnosed with breast cancer, and every 74 s, a woman worldwide passes away from the disease. Despite the increase in progressive research, advanced treatment approaches, and preventive measures, breast cancer rates continue to increase. This study provides a combination of data mining, network pharmacology, and docking analysis that surely could revolutionize cancer treatment by exploiting prestigious phytochemicals. Crataegus monogyna is a small, rounded deciduous tree with glossy, deeply lobed leaves and flat sprays of cream flowers, followed by dark red berries in autumn. Various studies demonstrated that C. monogyna is therapeutically effective against breast cancer. However, the particular molecular mechanism is still unknown. This study is credited for locating bioactive substances, metabolic pathways, and target genes for breast cancer treatment. According to the current investigation, which examined compound-target genes-pathway networks, it was found that the bioactive compounds of C. monogyna may operate as a viable solution against breast cancer by altering the target genes implicated in the disease pathogenesis. The expression level of target genes was analyzed using GSE36295 microarray data. Docking analysis and molecular dynamic simulation studies further strengthened the current findings by validating the effective activity of the bioactive compounds against putative target genes. In summary, we propose that six key compounds, luteolin, apigenin, quercetin, kaempferol, ursolic acid, and oleanolic acid, contributed to the development of breast cancer by affecting the MMP9 and PPARG proteins. Integration of network pharmacology and bioinformatics revealed C. monogyna's multitarget pharmacological mechanisms against breast cancer. This study provides convincing evidence that C. monogyna might partially alleviate breast cancer and ultimately lays a foundation for further experimental research on the anti-breast cancer activity of C. monogyna.
Collapse
Affiliation(s)
| | - Abdur Rehman
- College of Life Sciences, Northwest A&F University, Yangling, China
- *Correspondence: Nagaraja Sreeharsha, ; Abdur Rehman,
| | | | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India
- *Correspondence: Nagaraja Sreeharsha, ; Abdur Rehman,
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Alkharj, Saudi Arabia
| | - Bandar Aloufi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
207
|
Wu C, Sun C, Han X, Ye Y, Qin Y, Liu S. Sanyin Formula Enhances the Therapeutic Efficacy of Paclitaxel in Triple-Negative Breast Cancer Metastases through the JAK/STAT3 Pathway in Mice. Pharmaceuticals (Basel) 2022; 16:9. [PMID: 36678509 PMCID: PMC9867389 DOI: 10.3390/ph16010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Sanyin formula (SYF) is used as a complementary treatment for triple-negative breast cancer (TNBC). The purpose of this study was to identify the potential functional components and clarify the underlying molecular mechanisms of SYF in TNBC. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to identify the main components of SYF extracts. Network pharmacology and bioinformatic analyses were carried out to identify potential candidate targets of SYF in TNBC. Cell proliferation was determined with a Celigo imaging cytometer. Wound-healing and Transwell assays were adopted to evaluate cell migration. A Transwell cell-invasion assay was performed with Matrigel-coated membranes. In vivo bioluminescence imaging (BLI) and pathological analyses illustrated the effect of SYF on cancer cell metastasis in tumour-bearing mice. The inhibitory mechanism of SYF was investigated via quantitative PCR (qPCR) and Western blotting. We found that 3,4-dihydroxyphenyllactic acid, kaempferol, p-coumaric acid, and vanillic acid may be the active components of SYF. Molecular docking confirmed that kaempferol, p-coumaric acid, vanillic acid, and 3,4-dihydroxyphenyllactic acid bound stably to proteins such as AKR1C3, MMPs, and STAT3. SYF extract suppressed TNBC cell proliferation, migration, invasion, and metastasis by inhibiting JAK/STAT3 signalling and then regulating downstream genes, such as MMP-2/MMP-9. SYF regulates the expression of genes involved in cell proliferation, migration, and invasion by regulating the JAK/STAT3 signalling pathway and finally inhibits tumour cell metastasis in TNBC. The present study clarifies the mechanism by which SYF inhibits TNBC metastasis and lays an experimental foundation for the continued clinical development of SYF targeting the JAK/STAT3 pathway.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Chenping Sun
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Xianghui Han
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Yiyi Ye
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Yuenong Qin
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Sheng Liu
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| |
Collapse
|
208
|
Zhu MM, Ma Y, Tang M, Pan L, Liu WL. Hypoxia-induced upregulation of matrix metalloproteinase 9 increases basement membrane degradation by downregulating collagen type IV alpha 1 chain. Physiol Res 2022. [DOI: 10.33549/physiolres.934930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypoxia can cause basement membrane (BM) degradation in tissues. Matrix metalloproteinase 9 (MMP-9) is involved in various human cancers as well as BM degradation by downregulating type IV collagen (COL4). This study investigated the role of MMP-9 in hypoxia-mediated BM degradation in rat bone marrow based on its regulation of collagen type IV alpha 1 chain (COL4A1). Eighty male rats were randomly divided into four groups based on exposure to hypoxic conditions at a simulated altitude of 7,000 m, control (normoxia) and 3, 7, and 10 days of hypoxia exposure. BM degradation in bone marrow was determined by transmission electron microscopy. MMP-9 levels were assessed by western blot and real-time PCR, and COL4A1 levels were assessed by western blot and immunohistochemistry. Microvessels BMs in bone marrow exposed to acute hypoxia were observed by electron microscopy. MMP-9 expression increased, COL4A1 protein expression decreased, and BM degradation occurred in the 10-, 7-, and 3-day hypoxia groups compared with that in the control group (all P < 0.05). Hypoxia increased MMP-9 levels, which in turn downregulated COL4A1, thereby increasing BM degradation. MMP-9 upregulation significantly promoted BM degradation and COL4A1 downregulation. Our results suggest that MMP-9 is related to acute hypoxia-induced BM degradation in bone marrow by regulating COL4A1.
Collapse
Affiliation(s)
| | | | | | | | - WL Liu
- Affiliated Hospital of Qinghai University, Xining 810001, China;
| |
Collapse
|
209
|
Lee MG, Lee SG, Nam KS. Ginkgolide B Suppresses TPA-induced Metastatic Potential in MCF-7 Human Breast Cancer Cells by Inhibiting MAPK/AP-1 Signaling. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
210
|
Monea M, Pop AM. The Use of Salivary Levels of Matrix Metalloproteinases as an Adjuvant Method in the Early Diagnosis of Oral Squamous Cell Carcinoma: A Narrative Literature Review. Curr Issues Mol Biol 2022; 44:6306-6322. [PMID: 36547091 PMCID: PMC9776994 DOI: 10.3390/cimb44120430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive malignancy with increased mortality, in which the early diagnosis is the most important step in increasing patients' survival rate. Extensive research has evaluated the role of saliva as a source of diagnostic biomarkers, among which matrix metalloproteinases (MMPs) have shown a valuable potential for detecting even early stages of OSCC. The aim of this review was to present recent clinical data regarding the significance of salivary MMPs in the detection of early malignant transformation of the oral mucosa. A narrative review was conducted on articles published in PubMed, Cochrane Library, Web of Science, EBSCO and SciELO databases, using specific terms. Our search revealed that MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-12 and MMP-13 had significantly higher levels in saliva from patients with OSCC compared to controls. However, the strength of evidence is limited, as most information regarding their use as adjuvant diagnostic tools for OSCC comes from studies with a low number of participants, variable methodologies for saliva sampling and diagnostic assays, and insufficient adjustment for all covariates. MMP-1, MMP-3 and MMP-9 were considered the most promising candidates for salivary diagnosis of OSCC, but larger studies are needed in order to validate their clinical application.
Collapse
Affiliation(s)
- Monica Monea
- Department of Odontology and Oral Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
- Correspondence:
| | - Anca Maria Pop
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| |
Collapse
|
211
|
Devel L, Guedeney N, Bregant S, Chowdhury A, Jean M, Legembre P. Role of metalloproteases in the CD95 signaling pathways. Front Immunol 2022; 13:1074099. [PMID: 36544756 PMCID: PMC9760969 DOI: 10.3389/fimmu.2022.1074099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
CD95L (also known as FasL or CD178) is a member of the tumor necrosis family (TNF) superfamily. Although this transmembrane ligand has been mainly considered as a potent apoptotic inducer in CD95 (Fas)-expressing cells, more recent studies pointed out its role in the implementation of non-apoptotic signals. Accordingly, this ligand has been associated with the aggravation of inflammation in different auto-immune disorders and in the metastatic occurrence in different cancers. Although it remains to decipher all key factors involved in the ambivalent role of this ligand, accumulating clues suggest that while the membrane bound CD95L triggers apoptosis, its soluble counterpart generated by metalloprotease-driven cleavage is responsible for its non-apoptotic functions. Nonetheless, the metalloproteases (MMPs and ADAMs) involved in the CD95L shedding, the cleavage sites and the different stoichiometries and functions of the soluble CD95L remain to be elucidated. To better understand how soluble CD95L triggers signaling pathways from apoptosis to inflammation or cell migration, we propose herein to summarize the different metalloproteases that have been described to be able to shed CD95L, their cleavage sites and the biological functions associated with the released ligands. Based on these new findings, the development of CD95/CD95L-targeting therapeutics is also discussed.
Collapse
Affiliation(s)
- Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Nicolas Guedeney
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Sarah Bregant
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Animesh Chowdhury
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Mickael Jean
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Patrick Legembre
- CRIBL UMR CNRS 7276 INSERM 1262, Université de Limoges, Rue Marcland, Limoges, France
| |
Collapse
|
212
|
Aliyah AN, Lintangsari G, Maran GG, Hermawan A, Meiyanto E. Cinnamon oil as a co-chemotherapy agent through inhibition of cell migration and MMP-9 expression on 4T1 cells. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:921-928. [PMID: 34126659 DOI: 10.1515/jcim-2020-0165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES The long-term and high-dose use of doxorubicin as chemotherapy for triple-negative breast cancer (TNBC) patients induces epithelial-to-mesenchymal transition (EMT) and stimulates cancer metastasis. Cinnamaldehyde is a major compound of cinnamon oil (CO) suppressing Snail and NFκB activity that are involved in cell migration. This study aims to explore the activity of CO as a co-chemotherapeutic agent on 4T1 breast cancer cells. METHODS The CO was obtained by water and steam distillation and was characterized phytochemically by gas chromatography-mass spectrometry (GC-MS). Cytotoxic activity of single CO or in combination with doxorubicin was observed by MTT assay. Cell migration and MMP-9 expression were measured by scratch wound healing and gelatin zymography assays. The intracellular reactive oxygen species (ROS) levels were observed by 2',7'-dichlorofluorescin diacetate (DCFDA) staining flowcytometry. RESULTS The phytochemical analysis with GC-MS showed that CO contains 14 compounds with cinnamaldehyde as the major compound. CO exhibited cytotoxicity on 4T1 cells with the IC50 value of 25 μg/mL and its combination with doxorubicin decreased cell viability and inhibited cell migration compared to a single use. Furthermore, the combination of CO and doxorubicin inhibited MMP-9 expression and elevated intracellular ROS levels compared to control. CONCLUSIONS CO has the potential to be developed as a co-chemotherapy agent through inhibition of cell migration, and intracellular ROS levels elevation.
Collapse
Affiliation(s)
- Alma Nuril Aliyah
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ghina Lintangsari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Gergorius Gena Maran
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Adam Hermawan
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
213
|
Lynn SA, Soubigou F, Dewing JM, Smith A, Ballingall J, Sass T, Nica I, Watkins C, Gupta B, Almuhtaseb H, Lash SC, Yuen HM, Cree A, Newman TA, Lotery AJ, Ratnayaka JA. An Exploratory Study Provides Insights into MMP9 and Aβ Levels in the Vitreous and Blood across Different Ages and in a Subset of AMD Patients. Int J Mol Sci 2022; 23:14603. [PMID: 36498929 PMCID: PMC9736887 DOI: 10.3390/ijms232314603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP9) and total amyloid-beta (Aβ) are prospective biomarkers of ocular ageing and retinopathy. These were quantified by ELISA in the vitreous and blood from controls (n = 55) and in a subset of age-related macular degeneration (AMD) patients (n = 12) for insights and possible additional links between the ocular and systemic compartments. Vitreous MMP9 levels in control and AMD groups were 932.5 ± 240.9 pg/mL and 813.7 ± 157.6 pg/mL, whilst serum levels were 2228 ± 193 pg/mL and 2386.8 ± 449.4 pg/mL, respectively. Vitreous Aβ in control and AMD groups were 1173.5 ± 117.1 pg/mL and 1275.6 ± 332.9 pg/mL, whilst plasma Aβ were 574.3 ± 104.8 pg/mL and 542.2 ± 139.9 pg/mL, respectively. MMP9 and Aβ showed variable levels across the lifecourse, indicating no correlation to each other or with age nor AMD status, though the smaller AMD cohort was a limiting factor. Aβ and MMP9 levels in the vitreous and blood were unrelated to mean arterial pressure. Smoking, another modifiable risk, showed no association with vitreous Aβ. However, smoking may be linked with vitreous (p = 0.004) and serum (p = 0.005) MMP9 levels in control and AMD groups, though this did not reach our elevated (p = 0.001) significance. A bioinformatics analysis revealed promising MMP9 and APP/Aβ partners for further scrutiny, many of which are already linked with retinopathy.
Collapse
Affiliation(s)
- Savannah A. Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK
| | - Flavie Soubigou
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK
| | - Jennifer M. Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK
| | - Amanda Smith
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Joanna Ballingall
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Thea Sass
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Isabela Nica
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Catrin Watkins
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Bhaskar Gupta
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Hussein Almuhtaseb
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Stephen C. Lash
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Ho Ming Yuen
- Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, MP 801, Tremona Road, Southampton SO16 6YD, UK
| | - Angela Cree
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK
| | - Tracey A. Newman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
214
|
NDRG1 in Cancer: A Suppressor, Promoter, or Both? Cancers (Basel) 2022; 14:cancers14235739. [PMID: 36497221 PMCID: PMC9737586 DOI: 10.3390/cancers14235739] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
N-myc downregulated gene-1 (NDRG1) has been variably reported as a metastasis suppressor, a biomarker of poor outcome, and a facilitator of disease progression in a range of different cancers. NDRG1 is poorly understood in cancer due to its context-dependent and pleiotropic functions. Within breast cancer, NDRG1 is reported to be either a facilitator of, or an inhibitor of tumour progression and metastasis. The wide array of roles played by NDRG1 are dependent on post-translational modifications and subcellular localization, as well as the cellular context, for example, cancer type. We present an update on NDRG1, and its association with hallmarks of cancer such as hypoxia, its interaction with oncogenic proteins such as p53 as well its role in oncogenic and metastasis pathways in breast and other cancers. We further comment on its functional implications as a metastasis suppressor and promoter, its clinical relevance, and discuss its therapeutic targetability in different cancers.
Collapse
|
215
|
Hu X, Zhang D, Zeng Z, Huang L, Lin X, Hong S. Aptamer-Based Probes for Cancer Diagnostics and Treatment. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111937. [PMID: 36431072 PMCID: PMC9695321 DOI: 10.3390/life12111937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/23/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Aptamers are single-stranded DNA or RNA oligomers that have the ability to generate unique and diverse tertiary structures that bind to cognate molecules with high specificity. In recent years, aptamer researches have witnessed a huge surge, owing to its unique properties, such as high specificity and binding affinity, low immunogenicity and toxicity, and simplicity of synthesis with negligible batch-to-batch variation. Aptamers may bind to targets, such as various cancer biomarkers, making them applicable for a wide range of cancer diagnosis and treatment. In cancer diagnostic applications, aptamers are used as molecular probes instead of antibodies. They have the potential to detect various cancer-associated biomarkers. For cancer therapeutic purposes, aptamers can serve as therapeutic or delivery agents. The chemical stabilization and modification strategies for aptamers may expand their serum half-life and shelf life. However, aptamer-based probes for cancer diagnosis and therapy still face several challenges for successful clinical translation. A deeper understanding of nucleic acid chemistry, tissue distribution, and pharmacokinetics is required in the development of aptamer-based probes. This review summarizes their application in cancer diagnostics and treatments based on different localization of target biomarkers, as well as current challenges and future prospects.
Collapse
|
216
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
217
|
Lang J, Guo Z, Xing S, Sun J, Qiu B, Shu Y, Wang Z, Liu G. Inhibitory role of puerarin on the A549 lung cancer cell line. Transl Cancer Res 2022; 11:4117-4125. [PMID: 36523310 PMCID: PMC9745364 DOI: 10.21037/tcr-22-2246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023]
Abstract
BACKGROUND Although more and more drugs had been proved to be effective in controlling tumor cells, lung cancer was still the leading cause of cancer-related deaths all over the world. This study aimed to investigate the effect and mechanism of puerarin on the invasion and metastasis of A549 lung cancer cell line. METHODS A medium containing puerarin was prepared according to the gradient concentration, and 10, 20, and 40 µmol/L were selected as the experimental group (low, medium, and high concentration groups, respectively) according to the cytotoxicity experiment. Meanwhile, 0 µmol/L was used as the control group. RESULTS Following administration, metastasis-related indexes were detected by the cell scratch test, cell migration test, gene difference detection, and western blotting. 24 hours after administration, the cell scratch and Transwell showed that the migration ability of A549 cells decreased with the increasing puerarin concentration. The polymerase chain reaction (PCR) and western blotting results demonstrated that the expression of the cell invasion and metastasis-related factor, matrix metallopeptidase 9 (MMP9), was negatively correlated with drug concentration. Further investigation demonstrated that the phosphorylation of extracellular signal-regulated kinase (ERK) was also inhibited. CONCLUSIONS Puerarin can inhibit the expression of invasion and metastasis-related factors by inhibiting the phosphorylation of ERK.
Collapse
Affiliation(s)
- Jie Lang
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Zhizhen Guo
- Department of Nephrology, Kailuan General Hospital, Tangshan, China
| | - Shushan Xing
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Jian Sun
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Bin Qiu
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Yu Shu
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Zhiqiang Wang
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Guixiang Liu
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| |
Collapse
|
218
|
Li X, Zha L, Li B, Sun R, Liu J, Zeng H. Clinical significance of MMP-9 overexpression in endometrial cancer: A PRISMA-compliant meta-analysis. Front Oncol 2022; 12:925424. [PMID: 36387161 PMCID: PMC9645803 DOI: 10.3389/fonc.2022.925424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/06/2022] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Several studies have found that MMP-9, one of the extracellular matrix-degrading proteinases, was involved in EC's (endometrial cancer) clinical progression and prognosis. However, the results involving the associations of MMP-9 expression with risk, clinical features and prognosis of EC were conflicting. Therefore, we performed a systematic review and meta-analysis to clarify the correlation of MMP-9 expression with EC. METHODS Relative studies involving the associations between MMP-9 expression and EC were retrieved from PubMed, Embase, Web of Science and CNKI (China National Knowledge Infrastructure) electronic databases. OR (odds ratio) with 95% CI (confidence interval) was applied to evaluate the associations of MMP-9 expression with risk and clinical features of EC. Furthermore, we evaluated the role of MMP-9 expression in prognosis of EC using HR and 95% CI. The funnel plots and Begg test were used to assess the publication bias. RESULTS A total of 28 eligible studies were acquired from Pubmed, Embase, Web of science and CNKI databases. We found MMP-9 overexpression was significantly associated with the risk of EC (OR = 11.02, 95% CI = 7.51-16.16, P < 0.05). In the meantime, MMP-9 overexpression was significantly associated with the tumor grade, FIGO stage, lymph node metastasis and myometrial invasion (Tumor grade: OR = 1.68, 95% CI = 1.09-2.58, P < 0.05; FIGO stage: OR = 3.25, 95% CI = 1.73-6.08, P < 0.05; Lymph node metastasis: OR = 2.98, 95% CI = 1.27-7.03, P < 0.05; Myometrial invasion: OR = 2.42, 95% CI = 1.42-4.12, P < 0.05) in Asians. In addition, the overall results showed that MMP-9 overexpression predicted a worse prognosis of EC (OR = 1.82, 95% CI = 1.01-2.62, P < 0.05). CONCLUSIONS MMP-9 overexpression might be a potential predictor of poor clinical progression and prognosis of EC.
Collapse
Affiliation(s)
- Xia Li
- Department of Critical Medicine, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Zha
- Department of Gynaecology and Obstetrics, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Li
- Department of Critical Medicine, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rong Sun
- Department of Critical Medicine, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianhua Liu
- Department of Critical Medicine, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongwei Zeng
- Department of Critical Medicine, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
219
|
Zhang J, Gao J, Cui J, Wang Y, Jin Y, Zhang D, Lin D, Lin J. Tumor-associated macrophages in tumor progression and the role of traditional Chinese medicine in regulating TAMs to enhance antitumor effects. Front Immunol 2022; 13:1026898. [PMID: 36311793 PMCID: PMC9611775 DOI: 10.3389/fimmu.2022.1026898] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose To emphasize the importance of tumor-associated macrophages (TAMs) in tumor immunity and to describe the ways in which extracts from Traditional Chinese Medicine (TCM) achieve tumor therapy by modulating macrophages. Significance By summarizing these available data, this review focused on TAMs and TCM and can build the foundation for future research on antitumor therapeutics. Methods In this review, we summarized the key functions of TAMs in cancer development and overviewed literature on TCM targeting TAMs together with other immune cells aiming to enhance antitumor immunity. Conclusions With an indispensable role in antitumor immunity, TAMs contribute to tumor progression, migration, invasion, angiogenesis, lymphangiogenesis, and immunosuppressive microenvironment. In recent years, TCM has gradually gained attention as a potential antitumor adjunctive therapy in preclinical and clinical trials. TCM is also a regulator of cytokine secretion and cell surface molecule expression in balancing the tumor microenvironment (TME), especially macrophage activation and polarization. Therefore, it is believed that TCM could serve as modifiers with immunomodulatory capability.
Collapse
Affiliation(s)
- Jiatong Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingwen Cui
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- The Preventive Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Degui Lin, ; Jiahao Lin,
| | - Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Degui Lin, ; Jiahao Lin,
| |
Collapse
|
220
|
ZHU MM, MA Y, TANG M, PAN L, LIU WL. Hypoxia-induced upregulation of matrix metalloproteinase 9 increases basement membrane degradation by downregulating collagen type IV alpha 1 chain. Physiol Res 2022; 71:825-834. [PMID: 36281728 PMCID: PMC9814978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hypoxia can cause basement membrane (BM) degradation in tissues. Matrix metalloproteinase 9 (MMP-9) is involved in various human cancers as well as BM degradation by downregulating type IV collagen (COL4). This study investigated the role of MMP-9 in hypoxia-mediated BM degradation in rat bone marrow based on its regulation of collagen type IV alpha 1 chain (COL4A1). Eighty male rats were randomly divided into four groups based on exposure to hypoxic conditions at a simulated altitude of 7,000 m, control (normoxia) and 3, 7, and 10 days of hypoxia exposure. BM degradation in bone marrow was determined by transmission electron microscopy. MMP-9 levels were assessed by western blot and real-time PCR, and COL4A1 levels were assessed by western blot and immunohistochemistry. Microvessels BMs in bone marrow exposed to acute hypoxia were observed by electron microscopy. MMP-9 expression increased, COL4A1 protein expression decreased, and BM degradation occurred in the 10-, 7-, and 3-day hypoxia groups compared with that in the control group (all P < 0.05). Hypoxia increased MMP-9 levels, which in turn downregulated COL4A1, thereby increasing BM degradation. MMP-9 upregulation significantly promoted BM degradation and COL4A1 downregulation. Our results suggest that MMP-9 is related to acute hypoxia-induced BM degradation in bone marrow by regulating COL4A1.
Collapse
Affiliation(s)
- Ming-Ming ZHU
- Affiliated Hospital of Qinghai University, Xining, China
| | - Yi MA
- Qinghai University, Xining, China,Qinghai University High Altitude Medicine Research Center, Key Laboratory of High-Altitude Medicine Ministry of Education Qinghai Provincial Key Laboratory of Plateau Medicine Application Basics Xining, China
| | - Meng TANG
- The First People’s Hospital of Yibin, Yibin, China
| | - Li PAN
- Xi’an Daxing Hospital, Xi’an, China
| | | |
Collapse
|
221
|
Sabra RT, Abdellatef AA, Abdel-Sattar E, Fathy M, Meselhy MR, Hayakawa Y. Russelioside A, a Pregnane Glycoside from Caralluma tuberculate, Inhibits Cell-Intrinsic NF-κB Activity and Metastatic Ability of Breast Cancer Cells. Biol Pharm Bull 2022; 45:1564-1571. [PMID: 36184517 DOI: 10.1248/bpb.b22-00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a potential target for inflammatory-breast cancer treatment as it participates in its pathogenesis, such as tumor initiation, progression, survival, metastasis, and recurrence. In this study, we aimed to discover a novel anti-cancer treatment from natural products by targeting NF-κB activity. Using the 4T1-NFκB-luciferase reporter cell line, we tested three pregnane glycosides extracted from the herb Caralluma tuberculata and discovered that Russelioside A markedly suppressed NF-κB activity in breast cancer. Russelioside A inhibited NF-κB (p65) transcriptional activity and its phosphorylation. Following NF-κB inhibition, Russelioside A exerted anti-proliferative and anti-metastatic effects in breast cancer cells in vitro. Moreover, it inhibited the NF-κB constitutive expression of downstream pathways, such as VEGF-b, MMP-9, and IL-6 in 4T1 cells. In addition, it reduced the metastatic capacity in a 4T1 breast cancer model in vivo. Collectively, our conclusions reveal that Russelioside A is an attractive natural compound for treating triple-negative breast cancer growth and metastasis through regulating NF-κB activation.
Collapse
Affiliation(s)
- Rahma Tharwat Sabra
- Institute of Natural Medicine, University of Toyama.,Biochemistry Department, Faculty of Pharmacy, Minia University
| | | | | | - Moustafa Fathy
- Biochemistry Department, Faculty of Pharmacy, Minia University
| | | | | |
Collapse
|
222
|
Jou E, Rodriguez-Rodriguez N, McKenzie ANJ. Emerging roles for IL-25 and IL-33 in colorectal cancer tumorigenesis. Front Immunol 2022; 13:981479. [PMID: 36263033 PMCID: PMC9573978 DOI: 10.3389/fimmu.2022.981479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide, and is largely refractory to current immunotherapeutic interventions. The lack of efficacy of existing cancer immunotherapies in CRC reflects the complex nature of the unique intestinal immune environment, which serves to maintain barrier integrity against pathogens and harmful environmental stimuli while sustaining host-microbe symbiosis during homeostasis. With their expression by barrier epithelial cells, the cytokines interleukin-25 (IL-25) and IL-33 play key roles in intestinal immune responses, and have been associated with inappropriate allergic reactions, autoimmune diseases and cancer pathology. Studies in the past decade have begun to uncover the important roles of IL-25 and IL-33 in shaping the CRC tumour immune microenvironment, where they may promote or inhibit tumorigenesis depending on the specific CRC subtype. Notably, both IL-25 and IL-33 have been shown to act on group 2 innate lymphoid cells (ILC2s), but can also stimulate an array of other innate and adaptive immune cell types. Though sometimes their functions can overlap they can also produce distinct phenotypes dependent on the differential distribution of their receptor expression. Furthermore, both IL-25 and IL-33 modulate pathways previously known to contribute to CRC tumorigenesis, including angiogenesis, tumour stemness, invasion and metastasis. Here, we review our current understanding of IL-25 and IL-33 in CRC tumorigenesis, with specific focus on dissecting their individual function in the context of distinct subtypes of CRC, and the potential prospects for targeting these pathways in CRC immunotherapy.
Collapse
Affiliation(s)
- Eric Jou
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
223
|
Yu D, Liu Z. The research progress in the interaction between Candida albicans and cancers. Front Microbiol 2022; 13:988734. [PMID: 36246294 PMCID: PMC9554461 DOI: 10.3389/fmicb.2022.988734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Candida albicans is an opportunistic pathogenic fungus, which tends to infect the host with defective immune function including cancer patients. A growing number of studies have shown that C. albicans infection increases the host susceptibility to cancer such as oral, gastric, and colorectal cancer. Cancer and anti-cancer treatment may also affect the colonization of C. albicans. C. albicans may promote the development of cancer by damaging mucosal epithelium, inducing the production of carcinogens, triggering chronic inflammation including Th17 cell-mediated immune response. In this article, we aim to elaborate the interaction between C. albicans and cancers development and summarize the potential molecular mechanisms, so as to provide theoretical basis for prevention, diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Dalang Yu
- School of Basic Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Zhiping Liu,
| |
Collapse
|
224
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Mechanism underlying circRNA dysregulation in the TME of digestive system cancer. Front Immunol 2022; 13:951561. [PMID: 36238299 PMCID: PMC9550895 DOI: 10.3389/fimmu.2022.951561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a new series of noncoding RNAs (ncRNAs) that have been reported to be expressed in eukaryotic cells and have a variety of biological functions in the regulation of cancer pathogenesis and progression. The TME, as a microscopic ecological environment, consists of a variety of cells, including tumor cells, immune cells and other normal cells, ECM and a large number of signaling molecules. The crosstalk between circRNAs and the TME plays a complicated role in affecting the malignant behaviors of digestive system cancers. Herein, we summarize the mechanisms underlying aberrant circRNA expression in the TME of the digestive system cancers, including immune surveillance, angiogenesis, EMT, and ECM remodelling. The regulation of the TME by circRNA is expected to be a new therapeutic method.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| |
Collapse
|
225
|
Hao L, Chen Q, Chen X, Zhou Q. The Role of Gender-Related Immune Genes in Childhood Acute Myeloid Leukemia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3235238. [PMID: 36193320 PMCID: PMC9525781 DOI: 10.1155/2022/3235238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
The study of immune genes and immune cells is highly focused in recent years. To find immunological genes with prognostic value, the current study examines childhood acute myeloid leukemia according to gender. The TARGET database was used to gather the "mRNA expression profile data" and relevant clinical data of children with AML. To normalize processing and find differentially expressed genes (DEG) between male and female subgroups, the limma software package is utilized. We identified prognostic-related genes and built models using LASSO, multivariate Cox, and univariate Cox analysis. The prognostic significance of prognostic genes was then examined through the processing of survival analysis and risk score (RS) calculation. We investigated the connections between immune cells and prognostic genes as well as the connections between prognostic genes and medications. Finally, five immune genes from the TARGET database have been identified. These immune genes are considerably correlated to the prognosis of male patients.
Collapse
Affiliation(s)
- Lu Hao
- Science and Education Department, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Qiuyan Chen
- Science and Education Department, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Xi Chen
- Central Laboratory, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qing Zhou
- Central Laboratory, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
226
|
Candido S, Tomasello B, Lavoro A, Falzone L, Gattuso G, Russo A, Paratore S, McCubrey JA, Libra M. Bioinformatic analysis of the LCN2-SLC22A17-MMP9 network in cancer: The role of DNA methylation in the modulation of tumor microenvironment. Front Cell Dev Biol 2022; 10:945586. [PMID: 36211450 PMCID: PMC9532607 DOI: 10.3389/fcell.2022.945586] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Several features of cancer cells such as proliferation, invasion, metastatic spreading, and drug resistance are affected by their interaction with several tumor microenvironment (TME) components, including neutrophil gelatinase-associated lipocalin (NGAL), solute carrier family 22 member 17 (SLC22A17), and matrix metallopeptidase 9 (MMP9). These molecules play a key role in tumor growth, invasion, and iron-dependent metabolism of cancer cells. However, the precise epigenetic mechanisms underlying the gene regulation of Lipocalin 2 (LCN2), SLC22A17, and MMP9 in cancer still remain unclear. To this purpose, computational analysis was performed on TCGA and GTEx datasets to evaluate the expression and DNA methylation status of LCN2, SLC22A17, and MMP9 genes in different tumor types. Correlation analysis between gene/isoforms expression and DNA methylation levels of LCN2, SLC22A17, and MMP9 was performed to investigate the role of DNA methylation in the modulation of these genes. Protein network analysis was carried out using reverse phase protein arrays (RPPA) data to identify protein-protein interactions of the LCN2-SLC22A17-MMP9 network. Furthermore, survival analysis was performed according to gene expression and DNA methylation levels. Our results demonstrated that LCN2 and MMP9 were mainly upregulated in most tumor types, whereas SLC22A17 was largely downregulated, representing a specific hallmark signature for all gastrointestinal tumors. Notably, the expression of LCN2, SLC22A17, and MMP9 genes was negatively affected by promoter methylation. Conversely, intragenic hypermethylation was associated with the overexpression of SLC22A17 and MMP9 genes. Protein network analysis highlighted the role of the LCN2-SLC22A17-MMP9 network in TME by the interaction with fibronectin 1 and claudin 7, especially in rectal tumors. Moreover, the impact of expression and methylation status of LCN2, SLC22A17, and MMP9 on overall survival and progression free interval was tumor type-dependent. Overall, our analyses provide a detailed overview of the expression and methylation status of LCN2, SLC22A17, and MMP9 in all TCGA tumors, indicating that the LCN2-SLC22A17-MMP9 network was strictly regulated by DNA methylation within TME. Our findings pave the way for the identification of novel DNA methylation hotspots with diagnostic and prognostic values and suitable for epi-drug targeting.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Russo
- Pathological Anatomy Unit, ARNAS Garibaldi Hospital, Catania, Italy
| | - Sabrina Paratore
- Pathological Anatomy Unit, ARNAS Garibaldi Hospital, Catania, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
227
|
Chen Y, Wang B, Zhao Z, Li M, Wang F. PRSS2 overexpression relates to poor prognosis and promotes proliferation, migration and invasion in gastric cancer. Tissue Cell 2022; 79:101949. [DOI: 10.1016/j.tice.2022.101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022]
|
228
|
Allen JL, Hames RA, Mastroianni NM, Greenstein AE, Weed SA. Evaluation of the matrix metalloproteinase 9 (MMP9) inhibitor Andecaliximab as an Anti-invasive therapeutic in Head and neck squamous cell carcinoma. Oral Oncol 2022; 132:106008. [PMID: 35803110 DOI: 10.1016/j.oraloncology.2022.106008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Locoregional and lymphovascular involvement of invasive head and neck squamous cell carcinoma (HNSCC) complicates curative treatment. Matrix metalloproteinase (MMP) 9 is a negative prognostic marker in HNSCC and targets multiple extracellular matrix (ECM) substrates, where it contributes to breaching basement membrane and stromal barriers enabling invasive spread. Andecaliximab (ADX) is a second-generation MMP9 inhibitor well tolerated in clinical trials of gastric and pancreatic adenocarcinoma. The impact of selective MMP9 targeting by ADX in HNSCC has not been evaluated. MATERIALS AND METHODS Established and patient-derived xenograft (PDX) cell lines were utilized in HNSCC invasion assays to determine the inhibitory ability of MMP9-mediated invasion by ADX. MMP9 expression was confirmed using immunohistochemistry (IHC) and immunoblotting. ECM degradation was evaluated with confocal microscopy. Cell invasion from tumor spheroids was monitored by phase microscopy. Histological evaluation was used to determine ADX efficacy in three-dimensional organotypic cultures containing cancer associated fibroblasts (CAFs). RESULTS MMP9 was expressed in all established and PDX-derived cell lines. While the broad spectrum clinical MMP inhibitor marimastat (BB2516) blocked HNSCC invadopodia function and tumor spheroid invasion, ADX treatment failed to inhibit invadopodia-based matrix degradation, tumor cell or fibroblast-driven ECM invasion in collagen I-based matrices. CONCLUSION ADX monotherapy was ineffective at blocking initial MMP-dependent events of HNSCC invasion, likely due to redundant functions of additional non-targeted MMPs produced by tumor cells and microenvironment. Combination of ADX with existing and emerging therapies targeting additional MMP activation pathways may warrant future investigation.
Collapse
Affiliation(s)
- Jessica L Allen
- Program in Cancer Cell Biology, Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, United States
| | - River A Hames
- Program in Cancer Cell Biology, Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, United States
| | - Natalie M Mastroianni
- Program in Cancer Cell Biology, Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, United States
| | | | - Scott A Weed
- Program in Cancer Cell Biology, Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, United States.
| |
Collapse
|
229
|
Sparić R, Andjić M, Babović I, Nejković L, Mitrović M, Štulić J, Pupovac M, Tinelli A. Molecular Insights in Uterine Leiomyosarcoma: A Systematic Review. Int J Mol Sci 2022; 23:ijms23179728. [PMID: 36077127 PMCID: PMC9456512 DOI: 10.3390/ijms23179728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022] Open
Abstract
Uterine fibroids (UFs) are the most common benign tumors of female genital diseases, unlike uterine leiomyosarcoma (LMS), a rare and aggressive uterine cancer. This narrative review aims to discuss the biology and diagnosis of LMS and, at the same time, their differential diagnosis, in order to distinguish the biological and molecular origins. The authors performed a Medline and PubMed search for the years 1990–2022 using a combination of keywords on the topics to highlight the many genes and proteins involved in the pathogenesis of LMS. The mutation of these genes, in addition to the altered expression and functions of their enzymes, are potentially biomarkers of uterine LMS. Thus, the use of this molecular and protein information could favor differential diagnosis and personalized therapy based on the molecular characteristics of LMS tissue, leading to timely diagnoses and potential better outcomes for patients.
Collapse
Affiliation(s)
- Radmila Sparić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Mladen Andjić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Correspondence: (M.A.); (A.T.)
| | - Ivana Babović
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Lazar Nejković
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Gynecology and Obstetrics Narodni Front, 11000 Belgrade, Serbia
| | - Milena Mitrović
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Štulić
- Clinic of Gynecology and Obstetrics Narodni Front, 11000 Belgrade, Serbia
| | - Miljan Pupovac
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology, and CERICSAL (CEntro di Ricerca Clinico SALentino), “Verisdelli Ponti Hospital”, Via Giuseppina Delli Ponti, 73020 Scorrano, LE, Italy
- Correspondence: (M.A.); (A.T.)
| |
Collapse
|
230
|
Lin YH, Liu YC, Chen CY, Chi HC, Wu MH, Huang PS, Chang CC, Lin TK, Yeh CT, Lin KH. LPAL2 Suppresses Tumor Growth and Metastasis of Hepatocellular Carcinoma by Modulating MMP9 Expression. Cells 2022; 11:cells11162610. [PMID: 36010685 PMCID: PMC9406458 DOI: 10.3390/cells11162610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor metastasis is a complex process modulated by both intrinsic and extrinsic factors that ultimately result in poorer patient outcomes, including diminished survival. Pseudogene-derived long non-coding RNAs (lncRNA) play important roles in cancer progression. In the current study, we found that the pseudogene-derived lncRNA LPAL2 is downregulated in hepatocellular carcinoma (HCC) tissues, and further showed that elevated LPAL2 expression is positively correlated with survival outcome. The knockdown of LPAL2 in hepatoma cells induced tumor formation, migration, invasion, sphere formation, and drug resistance. Metalloproteinase 9 (MMP9) was identified as an LPAL2-regulated target gene, consistent with clinical findings that LPAL2 expression is significantly associated with MMP9 expression. Furthermore, patients with a higher expression of LPAL2 and lower expression of MMP9 (LPAL2-high/MMP9-low) had a higher survival rate than those with other combinations. Collectively, our findings establish LPAL2 as a novel tumor suppressor in HCC, and suggest targeting LPAL2 and MMP9 as a therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Yu-Chin Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 244, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsiang-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40447, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 406040, Taiwan
| | - Meng-Han Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Po-Shuan Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia-yi, Chia-yi 613, Taiwan
| | - Tzu-Kang Lin
- Neurosurgery, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Neurosurgery, Department of Surgery, Fu Jen Catholic University Hospital, New Taipei City 24352, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Correspondence: (C.-T.Y.); (K.-H.L.); Tel./Fax: +886-3-3281200 (ext. 8102) (C.-T.Y.); +886-3-2118263 (K.-H.L.)
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Neurosurgery, Department of Surgery, Fu Jen Catholic University Hospital, New Taipei City 24352, Taiwan
- Correspondence: (C.-T.Y.); (K.-H.L.); Tel./Fax: +886-3-3281200 (ext. 8102) (C.-T.Y.); +886-3-2118263 (K.-H.L.)
| |
Collapse
|
231
|
Cathepsin K: A Versatile Potential Biomarker and Therapeutic Target for Various Cancers. Curr Oncol 2022; 29:5963-5987. [PMID: 36005209 PMCID: PMC9406569 DOI: 10.3390/curroncol29080471] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer, a common malignant disease, is one of the predominant causes of diseases that lead to death. Additionally, cancer is often detected in advanced stages and cannot be radically cured. Consequently, there is an urgent need for reliable and easily detectable markers to identify and monitor cancer onset and progression as early as possible. Our aim was to systematically review the relevant roles of cathepsin K (CTSK) in various possible cancers in existing studies. CTSK, a well-known key enzyme in the bone resorption process and most studied for its roles in the effective degradation of the bone extracellular matrix, is expressed in various organs. Nowadays, CTSK has been involved in various cancers such as prostate cancer, breast cancer, bone cancer, renal carcinoma, lung cancer and other cancers. In addition, CTSK can promote tumor cells proliferation, invasion and migration, and its mechanism may be related to RANK/RANKL, TGF-β, mTOR and the Wnt/β-catenin signaling pathway. Clinically, some progress has been made with the use of cathepsin K inhibitors in the treatment of certain cancers. This paper reviewed our current understanding of the possible roles of CTSK in various cancers and discussed its potential as a biomarker and/or novel molecular target for various cancers.
Collapse
|
232
|
Archaea Carotenoids: Natural Pigments with Unexplored Innovative Potential. Mar Drugs 2022; 20:md20080524. [PMID: 36005527 PMCID: PMC9410494 DOI: 10.3390/md20080524] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
For more than 40 years, marine microorganisms have raised great interest because of their major ecological function and their numerous applications for biotechnology and pharmacology. Particularly, Archaea represent a resource of great potential for the identification of new metabolites because of their adaptation to extreme environmental conditions and their original metabolic pathways, allowing the synthesis of unique biomolecules. Studies on archaeal carotenoids are still relatively scarce and only a few works have focused on their industrial scale production and their biotechnological and pharmacological properties, while the societal demand for these bioactive pigments is growing. This article aims to provide a comprehensive review of the current knowledge on carotenoid metabolism in Archaea and the potential applications of these pigments in biotechnology and medicine. After reviewing the ecology and classification of these microorganisms, as well as their unique cellular and biochemical characteristics, this paper highlights the most recent data concerning carotenoid metabolism in Archaea, the biological properties of these pigments, and biotechnological considerations for their production at industrial scale.
Collapse
|
233
|
Baidya SK, Banerjee S, Adhikari N, Jha T. Selective Inhibitors of Medium-Size S1' Pocket Matrix Metalloproteinases: A Stepping Stone of Future Drug Discovery. J Med Chem 2022; 65:10709-10754. [PMID: 35969157 DOI: 10.1021/acs.jmedchem.1c01855] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among various matrix metalloproteinases (MMPs), MMPs having medium-size S1' pockets are established as promising biomolecular targets for executing crucial roles in cancer, cardiovascular diseases, and neurodegenerative diseases. However, no such MMP inhibitors (MMPIs) are available to date as drug candidates despite a lot of continuous research work for more than three decades. Due to a high degree of structural resemblance among these MMPs, designing selective MMPIs is quite challenging. However, the variability and uniqueness of the S1' pockets of these MMPs make them promising targets for designing selective MMPIs. In this perspective, the overall structural aspects of medium-size S1' pocket MMPs including the unique binding patterns of enzyme-inhibitor interactions have been discussed in detail to acquire knowledge regarding selective inhibitor designing. This overall knowledge will surely be a curtain raiser for the designing of selective MMPIs as drug candidates in the future.
Collapse
Affiliation(s)
- Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
234
|
VandenHeuvel SN, Farris HA, Noltensmeyer DA, Roy S, Donehoo DA, Kopetz S, Haricharan S, Walsh AJ, Raghavan S. Decellularized organ biomatrices facilitate quantifiable in vitro 3D cancer metastasis models. SOFT MATTER 2022; 18:5791-5806. [PMID: 35894795 DOI: 10.1039/d1sm01796a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metastatic cancers are chemoresistant, involving complex interplay between disseminated cancer cell aggregates and the distant organ microenvironment (extracellular matrix and stromal cells). Conventional metastasis surrogates (scratch/wound healing, Transwell migration assays) lack 3D architecture and ECM presence. Metastasis studies can therefore significantly benefit from biomimetic 3D in vitro models recapitulating the complex cascade of distant organ invasion and colonization by collective clusters of cells. We aimed to engineer reproducible and quantifiable 3D models of highly therapy-resistant cancer processes: (i) colorectal cancer liver metastasis; and (ii) breast cancer lung metastasis. Metastatic seeds are engineered using 3D tumor spheroids to recapitulate the 3D aggregation of cancer cells both in the tumor and in circulation throughout the metastatic cascade of many cancers. Metastatic soil was engineered by decellularizing porcine livers and lungs to generate biomatrix scaffolds, followed by extensive materials characterization. HCT116 colorectal and MDA-MB-231 breast cancer spheroids were generated on hanging drop arrays to initiate clustered metastatic seeding into liver and lung biomatrix scaffolds, respectively. Between days 3-7, biomatrix cellular colonization was apparent with increased metabolic activity and the presence of cellular nests evaluated via multiphoton microscopy. HCT116 and MDA-MB-231 cells colonized liver and lung biomatrices, and at least 15% of the cells invaded more than 20 μm from the surface. Engineered metastases also expressed increased signatures of genes associated with the metastatic epithelial to mesenchymal transition (EMT). Importantly, inhibition of matrix metalloproteinase-9 inhibited metastatic invasion into the biomatrix. Furthermore, metastatic nests were significantly more chemoresistant (>3 times) to the anti-cancer drug oxaliplatin, compared to 3D spheroids. Together, our data indicated that HCT116 and MDA-MB-231 spheroids invade, colonize, and proliferate in livers and lungs establishing metastatic nests in 3D settings in vitro. The metastatic nature of these cells was confirmed with functional readouts regarding EMT and chemoresistance. Modeling the dynamic metastatic cascade in vitro has potential to identify therapeutic targets to treat or prevent metastatic progression in chemoresistant metastatic cancers.
Collapse
Affiliation(s)
| | - Heather A Farris
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Dillon A Noltensmeyer
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Sanjana Roy
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Del A Donehoo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Svasti Haricharan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Alex J Walsh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
235
|
A Sulfated Polysaccharide from Red Algae ( Gelidium crinale) to Suppress Cells Metastasis and MMP-9 Expression of HT1080 Cells. Foods 2022; 11:foods11152360. [PMID: 35954126 PMCID: PMC9368188 DOI: 10.3390/foods11152360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Sulfated polysaccharides from red algae have a variety of biological activities, especially antitumor activities. Matrix metalloproteinase-9 (MMP-9) is a proteolytic metalloenzyme that degrades the central part of the extracellular matrix (ECM) and promotes tumor metastasis. In this research, we have investigated the influence and mechanism of GNP (sulfated polysaccharide from Gelidium crinale) on tumor metastasis and MMP-9 expression of human fibrosarcoma (HT1080) cells. The results inflected that the concentration of GNP below 100 μg/mL has no toxicity to HT1080 cells, but showed excellent activity in inhibiting cells migration and invasion. In addition, GNP effectively inhibits the mRNA of MMP-9 and reduces its expression and activity by regulating nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPK) and mTOR/PI3K/Akt signaling pathways. GNP has great potential as MMP-9 inhibitor and could be developed as a functional food or drug to prevent tumor metastasis.
Collapse
|
236
|
Hadjimichael AC, Foukas AF, Papadimitriou E, Kaspiris A, Peristiani C, Chaniotakis I, Kotsari M, Pergaris A, Theocharis S, Sarantis P, Christopoulou M, Psyrri A, Mavrogenis AF, Savvidou OD, Papagelopoulos PJ, Armakolas A. Doxycycline inhibits the progression of metastases in early-stage osteosarcoma by downregulating the expression of MMPs, VEGF and ezrin at primary sites. Cancer Treat Res Commun 2022; 32:100617. [PMID: 36027697 DOI: 10.1016/j.ctarc.2022.100617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Osteosarcoma (OS) is the most common primary osseous malignant tumour, with high propensity to metastasise in lungs. Pulmonary micro-metastases are present in up to 80% of patients at initial diagnosis and they are associated with significantly worse prognosis. Doxycycline (Dox) is a synthetic tetracycline that has been shown to have anti-cancer properties in vitro and in vivo, and inhibit angiogenesis - effects that may prove beneficial for several types of cancer. The aim of the present work was to study how Dox affects OS cell growth in vitro and in vivo and OS-driven pulmonary metastasis in vivo. METHODS In vitro, the effect of Dox was measured in MG-63 and 143B human OS cell viability, apoptosis, invasion and migration. In vivo, highly metastatic 143B cells were orthotopically implanted into the tibia of SCID mice. The tumour growth and pulmonary metastases between Dox treated and untreated, non-amputated and early amputated xenografts were examined. RESULTS In vitro, Dox decreased viability, inhibited invasion, migration, and induced the apoptosis of OS cells. In vivo, Dox significantly enhanced tumour necrosis at primary OS sites, similarly to its in vitro effect, and downregulated the expression of Ki67, MMP2, MMP9, VEGFA and ezrin. It also decreased circulating VEGFA and MMP9 protein levels, in line with the decreased metastatic burden in Dox-treated mice (non-amputated and early-amputated). CONCLUSIONS Reprofiling of Dox can prevent the evolvement of pulmonary micro-metastases to clinically detectable macro-metastases and suppress the lethal progress of OS by inhibiting the expression of MMPs, VEGFA and ezrin at primary sites.
Collapse
Affiliation(s)
- Argyris C Hadjimichael
- Department of Orthopaedics, St Mary's Hospital, Imperial College Healthcare NHS Trust, Praed Street, W2 1NY, London, UK.
| | - Athanasios F Foukas
- Third Department of Orthopaedic surgery, "KAT" General Hospital of Athens, 2, Nikis Street, 14561, Kifissia, Greece.
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504, Patras, Greece.
| | - Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504, Patras, Greece.
| | - Chrysostomi Peristiani
- Medical School, National and Kapodistrian University of Athens,75, Mikras Asias Street, Goudi, 11527, Athens, Greece.
| | - Ioannis Chaniotakis
- Healthcare Directorate of the Hellenic Air Force General Staff, Athens, 3, P. Kanellopoulou Street, 11525, Athens, Greece.
| | - Maria Kotsari
- Physiology Laboratory, Athens Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Physiology Lab, Bld 16, Goudi, 11527, Athens, Greece..
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece.
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece.
| | - Panagiotis Sarantis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece.
| | - Magdalini Christopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504, Patras, Greece.
| | - Amanda Psyrri
- Section of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital,1 Rimini Street, Chaidari, 12462, Athens, Greece.
| | - Andreas F Mavrogenis
- First Department of Orthopaedic Surgery, National and Kapodistrian University of Athens, Faculty of Medicine, Attikon University hospital, Athens,1 Rimini Street, Chaidari,12462, Athens, Greece..
| | - Olga D Savvidou
- First Department of Orthopaedic Surgery, National and Kapodistrian University of Athens, Faculty of Medicine, Attikon University hospital, Athens,1 Rimini Street, Chaidari,12462, Athens, Greece..
| | - Panayiotis J Papagelopoulos
- First Department of Orthopaedic Surgery, National and Kapodistrian University of Athens, Faculty of Medicine, Attikon University hospital, Athens,1 Rimini Street, Chaidari,12462, Athens, Greece..
| | - Athanasios Armakolas
- Physiology Laboratory, Athens Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Physiology Lab, Bld 16, Goudi, 11527, Athens, Greece..
| |
Collapse
|
237
|
Ivanova EL, Costa B, Eisemann T, Lohr S, Boskovic P, Eichwald V, Meckler J, Jugold M, Orian-Rousseau V, Peterziel H, Angel P. CD44 expressed by myeloid cells promotes glioma invasion. Front Oncol 2022; 12:969787. [PMID: 35992852 PMCID: PMC9386454 DOI: 10.3389/fonc.2022.969787] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/07/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors in adulthood with a median survival of only 15 months. This poor prognosis is related to GBM’s ability to extensively infiltrate the surrounding brain parenchyma resulting in diffuse spread of neoplastic cells in the brain, responsible for high rate of recurrence. CD44 (Cluster of Differentiation 44) is a transmembrane protein, overexpressed in multiple cancer types, including gliomas, and implicated in cell motility, proliferation and angiogenesis. Multiple studies have investigated the role of CD44 in GBM cells and have highlighted a link between tumor malignancy and CD44 expression. However up to date, little is known of the role of CD44 on cells from the tumor microenvironment (TME). Here, we have investigated a potential role of CD44 in the TME in regards to GBM invasiveness. Using an ex-vivo organotypic brain slice invasion assay, we show that absence of CD44 from the TME impairs the ability of glioma cells to invade the surrounding brain parenchyma. By deleting CD44 in the astrocytic, endothelial and myeloid compartments, we show that it is specifically CD44 expression in myeloid cells that is responsible for the observed phenotype. Combining in vivo studies in cell-specific knock-out mice and in vitro analyses on primary microglia we demonstrate that myeloid CD44 is implicated in Toll Like Receptor 2 signaling and is a major regulator of Matrix metalloproteinase 9 expression.
Collapse
Affiliation(s)
- Ekaterina L. Ivanova
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Costa
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tanja Eisemann
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabrina Lohr
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pavle Boskovic
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Viktoria Eichwald
- Core Facility Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jasmin Meckler
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Jugold
- Core Facility Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Veronique Orian-Rousseau
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Heike Peterziel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
- *Correspondence: Peter Angel,
| |
Collapse
|
238
|
Integrated and dual-responsive lipopeptide nanovector with parallel effect to tumor and micro-environment regulation by efficient gene and drug co-delivery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
239
|
Bechlem K, Berredjem M, Djouad SE, Sothea TO, Bouacida S, Marminon C, Hadda TB, Lebreton J, Bouzina A. Novel N-acylsulfamoyl-oxazolidin-2ones: Synthesis, antitumor activity, X-ray crystallographic study, molecular docking and POM analyses. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
240
|
Le MN, Wuertz BR, Biel MA, Thompson RL, Ondrey FG. Effects of methylene blue photodynamic therapy on oral carcinoma and leukoplakia cells. Laryngoscope Investig Otolaryngol 2022; 7:982-987. [PMID: 36000031 PMCID: PMC9392394 DOI: 10.1002/lio2.772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Methylene blue (MB) is a readily available and affordable substrate that can be used as a photosensitizer for photodynamic therapy (PDT). The objective of this study was to determine if PDT with MB can downregulate matrix metalloproteinases (MMPs) related to oral carcinoma. Methods Cell cultures of oral squamous cell carcinoma (CA-9-22), oral leukoplakia (MSK-Leuk1), and immortalized keratinocytes (Rhek-1A) were photosensitized with MB and treated with PDT. MMP-9 gene expression was interrogated via qRT-PCR. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to confirm the efficacy of MB PDT. Results MMP-9 gene expression was found to be significantly decreased in oral carcinoma, leukoplakia, and immortalized keratinocytes with use of MB PDT. Conclusion This work demonstrates that MB-mediated PDT can downregulate MMPs which are critical to the invasion and metastasis of oral cancer. These results suggest that MB PDT could be a clinically significant and cost-effective treatment for oral leukoplakia and carcinoma. Level of Evidence NA.
Collapse
Affiliation(s)
- Mina N. Le
- Department of Otolaryngology – Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Beverly R. Wuertz
- Department of Otolaryngology – Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Merrill A. Biel
- Department of Otolaryngology – Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Rachel L. Thompson
- Department of Otolaryngology – Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Frank G. Ondrey
- Department of Otolaryngology – Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
241
|
Pignatelli P, Romei FM, Bondi D, Giuliani M, Piattelli A, Curia MC. Microbiota and Oral Cancer as A Complex and Dynamic Microenvironment: A Narrative Review from Etiology to Prognosis. Int J Mol Sci 2022; 23:ijms23158323. [PMID: 35955456 PMCID: PMC9368704 DOI: 10.3390/ijms23158323] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
A complex balanced equilibrium of the bacterial ecosystems exists in the oral cavity that can be altered by tobacco smoking, psychological stressors, bad dietary habit, and chronic periodontitis. Oral dysbiosis can promote the onset and progression of oral squamous cell carcinoma (OSCC) through the release of toxins and bacterial metabolites, stimulating local and systemic inflammation, and altering the host immune response. During the process of carcinogenesis, the composition of the bacterial community changes qualitatively and quantitatively. Bacterial profiles are characterized by targeted sequencing of the 16S rRNA gene in tissue and saliva samples in patients with OSCC. Capnocytophaga gingivalis, Prevotella melaninogenica, Streptococcus mitis, Fusobacterium periodonticum, Prevotella tannerae, and Prevotella intermedia are the significantly increased bacteria in salivary samples. These have a potential diagnostic application to predict oral cancer through noninvasive salivary screenings. Oral lactic acid bacteria, which are commonly used as probiotic therapy against various disorders, are valuable adjuvants to improve the response to OSCC therapy.
Collapse
Affiliation(s)
- Pamela Pignatelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy
- Correspondence:
| | - Federica Maria Romei
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (F.M.R.); (M.C.C.)
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Michele Giuliani
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences (Unicamillus), 00131 Rome, Italy;
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena, 65013 Città Saint’Angelo, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (F.M.R.); (M.C.C.)
| |
Collapse
|
242
|
Robin HP, Trudeau CN, Robbins AJ, Chung EJ, Rahman E, Strickland OLG, Jordan S, Licari FW, Winden DR, Reynolds PR, Arroyo JA. Inflammation and Invasion in Oral Squamous Cell Carcinoma Cells Exposed to Electronic Cigarette Vapor Extract. Front Oncol 2022; 12:917862. [PMID: 35936727 PMCID: PMC9354529 DOI: 10.3389/fonc.2022.917862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Electronic cigarettes (eCig) represent a new avenue of tobacco exposure that involves heating oil-based liquids and the delivery of aerosolized flavors with or without nicotine, yet little is known about their overall health impact. The oral cavity is an anatomic gateway for exposure that can be compromised by activating myriad of signaling networks. Oral squamous cell carcinoma (OSSC) is a common malignancy affecting 30,000 people in the United States each year. Our objective was to determine the impact of eCig and nicotine on gingival OSSC invasion and their secretion of pro-inflammatory molecules. Gingiva-derived Ca9-22 cells and tongue-derived Cal27 cells were exposed to eCig vapor extract (EVE) generated from Red Hot or Green Apple (Apple) flavored eCig solution +/- nicotine for 6 hours. Isolation of protein lysates and collection conditioned media was done after treatment. Real-time cellular invasion was assessed using a RTCA DP instrument. Protein expression was determined using western blot. Compared to controls, we observed: elevated NF-kB, TNF-α, ERK, JNK, MMP-13 and cell invasion by Ca9-22 treated with Apple EVE; increased TNF-α and JNK by Ca9-22 treated with Red Hot EVE; and increased TNF-α and JNK by Cal27 cells treated with both Apple and Red Hot EVE. We conclude that eCig flavoring and nicotine orchestrated differential cell invasion and inflammatory effects. This study provides an important initial step in dissecting mechanisms of cancerous invasion and molecular avenues employed by OSCC.
Collapse
Affiliation(s)
- Hannah P. Robin
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Courtney N. Trudeau
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Adam J. Robbins
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Emily J. Chung
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Erum Rahman
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | | | - Scott Jordan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Frank W. Licari
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Duane R. Winden
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Paul R. Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
| | - Juan A. Arroyo
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
- *Correspondence: Juan A. Arroyo,
| |
Collapse
|
243
|
In Silico Target Identification of Galangin, as an Herbal Flavonoid against Cholangiocarcinoma. Molecules 2022; 27:molecules27144664. [PMID: 35889537 PMCID: PMC9351686 DOI: 10.3390/molecules27144664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a heterogenous group of malignancies in the bile duct, which proliferates aggressively. CCA is highly prevalent in Northeastern Thailand wherein it is associated with liver fluke infection, or Opisthorchis viverrini (OV). Most patients are diagnosed in advanced stages, when the cancer has metastasized or severely progressed, thereby limiting treatment options. Several studies investigate the effect of traditional Thai medicinal plants that may be potential therapeutic options in combating CCA. Galangin is one such herbal flavonoid that has medicinal properties and exhibits anti-tumor properties in various cancers. In this study, we investigate the role of Galangin in inhibiting cell proliferation, invasion, and migration in OV-infected CCA cell lines. We discovered that Galangin reduced cell viability and colony formation by inducing apoptosis in CCA cell lines in a dose-dependent manner. Further, Galangin also effectively inhibited invasion and migration in OV-infected CCA cells by reduction of MMP2 and MMP9 enzymatic activity. Additionally, using proteomics, we identified proteins affected post-treatment with Galangin. Enrichment analysis revealed that several kinase pathways were affected by Galangin, and the signature corroborated with that of small molecule kinase inhibitors. Hence, we identified putative targets of Galangin using an in silico approach which highlighted c-Met as candidate target. Galangin effectively inhibited c-Met phosphorylation and subsequent signaling in in vitro CCA cells. In addition, Galangin was able to inhibit HGF, a mediator of c-Met signaling, by suppressing HGF-stimulated invasion, as well as migration and MMP9 activity. This shows that Galangin can be a useful anti-metastatic therapeutic strategy in a subtype of CCA patients.
Collapse
|
244
|
TRIM66 Promotes Malignant Progression of Non-Small-Cell Lung Cancer Cells via Targeting MMP9. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6058720. [PMID: 35912155 PMCID: PMC9334090 DOI: 10.1155/2022/6058720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer has a higher incidence and mortality rate than other cancers, and over 80% of lung cancer cases were classified as non-small-cell lung cancer (NSCLC). TRIM66 is one of the crucial members of TRIM, which has a deep connection with the behavior of various malignant tumors. But it remains uncertain regarding its exact function and underlying mechanism in NSCLC. In our study, qRT-PCR and Western blot were employed to validate that TRIM66 was overexpressed in NSCLC. The migration, invasion, and epithelial-mesenchymal transformation (EMT) progression of NSCLC cells were determined by Western blotting and Transwell experiments after knocking down TRIM66, and it was found that knockdown TRIM66 inhibited the migration, invasion, and EMT processes of NSCLC cells. Next, the binding relationship between TRIM66 and MMP9 was verified by Co-IP assay. After determining the interaction between them, rescue assays showed that overexpression of MMP9 was capable to promote the migration, invasion, and EMT of NSCLC cells. However, the transfection of si-TRIM66 could reverse this facilitating effectiveness. To sum up, we concluded that by targeting MMP9, TRIM66 could exert a cancer-promoting role in the progression of NSCLC cells.
Collapse
|
245
|
Yan Q, Jia L, Wen B, Wu Y, Zeng Y, Wang Q. Clostridium butyricum Protects Against Pancreatic and Intestinal Injury After Severe Acute Pancreatitis via Downregulation of MMP9. Front Pharmacol 2022; 13:919010. [PMID: 35924043 PMCID: PMC9342915 DOI: 10.3389/fphar.2022.919010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Evidence have shown that gut microbiota plays an important role in the development of severe acute pancreatitis (SAP). In addition, matrix metalloproteinase-9 (MMP9) plays an important role in intestinal injury in SAP. Thus, we aimed to determine whether gut microbiota could regulate the intestinal injury during SAP via modulating MMP9.Methods: In this study, the fecal samples of patients with SAP (n = 72) and healthy controls (n = 32) were analyzed by 16S rRNA gene sequencing. In addition, to investigate the association between gut microbiota and MMP9 in intestinal injury during SAP, we established MMP9 stable knockdown Caco2 and HT29 cells in vitro and generated a MMP9 knockout (MMP9−/−) mouse model of SAP in vivo.Results: We found that the abundance of Clostridium butyricum (C. butyricum) was significantly decreased in the SAP group. In addition, overexpression of MMP9 notably downregulated the expressions of tight junction proteins and upregulated the expressions of p-p38 and p-ERK in Caco2 and HT29 cells (p < 0.05). However, C. butyricum or butyrate treatment remarkably upregulated the expressions of tight junction proteins and downregulated the expressions of MMP9, p-p38 and p-ERK in MMP9-overexpressed Caco2 and HT29 cells (p < 0.05). Importantly, C. butyricum or butyrate could not affect the expressions of tight junction proteins, and MMP9, p-p38 and p-ERK proteins in MMP9-knockdown cells compared with MMP9-knockdown group. Consistently, C. butyricum or butyrate could not attenuate pancreatic and intestinal injury during SAP in MMP9−/− mice compared with the SAP group.Conclusion: Collectively, C. butyricum could protect against pancreatic and intestinal injury after SAP via downregulation of MMP9 in vitro and in vivo.
Collapse
Affiliation(s)
- Qingqing Yan
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lin Jia
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Lin Jia,
| | - Biyan Wen
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Nan Chang University, Nanchang, China
| | - Yanbo Zeng
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Qing Wang
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
246
|
Kurt-Celep I, Zheleva-Dimitrova D, Gevrenova R, Uba AI, Zengin G, Yıldıztugay E, Picot-Allain CMN, Lorenzo JM, Mahomoodally MF, Montesano D. An In-Depth Study on the Metabolite Profile and Biological Properties of Primula auriculata Extracts: A Fascinating Sparkle on the Way from Nature to Functional Applications. Antioxidants (Basel) 2022; 11:1377. [PMID: 35883868 PMCID: PMC9312287 DOI: 10.3390/antiox11071377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/26/2022] Open
Abstract
The biological activity of the aerial part and rhizomes of Primula auriculata were assessed for the first time. The biological activities (antioxidant properties, enzyme inhibition, and AGE inhibition) as well as the phenolic and flavonoid contents of the ethyl acetate, ethanol, hydro-ethanol and water extracts of P. auriculata aerial parts and rhizomes were determined. Cell viability assays and gelatin zymography were also performed for MMP-2/-9 to determine the molecular mechanisms of action. The gene expression for MMPs was described with RT-PCR. The levels of various proteins, including phospho-Nf-κB, BCL-2, BAX, p-53, and cyclin D1 as well as RAGE were measured using Western blot analysis. The hydro-ethanol extract of the aerial part possessed the highest phenolic (56.81 mg GAE/g) and flavonoid (63.92 mg RE/g) contents. In-depth profiling of the specialized metabolites by ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) allowed for the identification and annotation of 65 compounds, including phenolic acids and glycosides, flavones, flavonols, chalcones, dihydrochalcones, and saponins. The hydro-ethanol extract of the aerial parts (132.65, 180.87, 172.46, and 108.37 mg TE/g, for the DPPH, ABTS, CUPRAC, and FRAP assays, respectively) and the ethanol extract of the rhizomes (415.06, 638.30, 477.77, and 301.02 mg TE/g, for the DPPH, ABTS, CUPRAC, and FRAP assays, respectively) exhibited the highest free radical scavenging and reducing activities. The ethanol and hydro-ethanol extracts of both the P. auriculata aerial part and rhizomes exhibited higher inhibitory activity against acetylcholinesterase, while the hydro-ethanol extracts (1.16 mmol ACAE/g, for both the aerial part and rhizomes extracts) were more active in the inhibition of α-glucosidase. After the treatment of an HT-29 colorectal cancer cell line with the extracts, the apoptosis mechanism was initiated, the integrity of the ECM was remodeled, and cell proliferation was also taken under control. In this way, Primula extracts were shown to be potential drug sources in the treatment of colorectal cancer. They were also detected as natural MMP inhibitors. The findings presented in the present study appraise the bioactivity of P. auriculata, an understudied species. Additional assessment is required to evaluate the cytotoxicity of P. auriculata as well as its activity in ex vivo systems.
Collapse
Affiliation(s)
- Inci Kurt-Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey;
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria; (D.Z.-D.); (R.G.)
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria; (D.Z.-D.); (R.G.)
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083 Istanbul, Turkey;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Evren Yıldıztugay
- Department of Biotechnology, Science Faculty, Selcuk University, 42079 Konya, Turkey;
| | - Carene Marie Nancy Picot-Allain
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80837 Réduit, Mauritius; (C.M.N.P.-A.); (M.F.M.)
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80837 Réduit, Mauritius; (C.M.N.P.-A.); (M.F.M.)
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
247
|
Circulating proteins as predictive and prognostic biomarkers in breast cancer. Clin Proteomics 2022; 19:25. [PMID: 35818030 PMCID: PMC9275040 DOI: 10.1186/s12014-022-09362-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Breast cancer (BC) is the most common cancer and among the leading causes of cancer death in women. It is a heterogeneous group of tumours with numerous morphological and molecular subtypes, making predictions of disease evolution and patient outcomes difficult. Therefore, biomarkers are needed to help clinicians choose the best treatment for each patient. For the last years, studies have increasingly focused on biomarkers obtainable by liquid biopsy. Circulating proteins (from serum or plasma) can be used for inexpensive and minimally invasive determination of disease risk, early diagnosis, treatment adjusting, prognostication and disease progression monitoring. We provide here a review of the main published studies on serum proteins in breast cancer and elaborate on the potential of circulating proteins to be predictive and/or prognostic biomarkers in breast cancer.
Collapse
|
248
|
Zhang M, Zhao J, Dong H, Xue W, Xing J, Liu T, Yu X, Gu Y, Sun B, Lu H, Zhang Y. DNA Methylation-Specific Analysis of G Protein-Coupled Receptor-Related Genes in Pan-Cancer. Genes (Basel) 2022; 13:genes13071213. [PMID: 35885996 PMCID: PMC9320183 DOI: 10.3390/genes13071213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor heterogeneity presents challenges for personalized diagnosis and treatment of cancer. The identification method of cancer-specific biomarkers has important applications for the diagnosis and treatment of cancer types. In this study, we analyzed the pan-cancer DNA methylation data from TCGA and GEO, and proposed a computational method to quantify the degree of specificity based on the level of DNA methylation of G protein-coupled receptor-related genes (GPCRs-related genes) and to identify specific GPCRs DNA methylation biomarkers (GRSDMs) in pan-cancer. Then, a ridge regression-based method was used to discover potential drugs through predicting the drug sensitivities of cancer samples. Finally, we predicted and verified 8 GRSDMs in adrenocortical carcinoma (ACC), rectum adenocarcinoma (READ), uveal Melanoma (UVM), thyroid carcinoma (THCA), and predicted 4 GRSDMs (F2RL3, DGKB, GRK5, PIK3R6) which were sensitive to 12 potential drugs. Our research provided a novel approach for the personalized diagnosis of cancer and informed individualized treatment decisions.
Collapse
Affiliation(s)
- Mengyan Zhang
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Jiyun Zhao
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Huili Dong
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Wenhui Xue
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Jie Xing
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Ting Liu
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
| | - Xiuwen Yu
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
| | - Yue Gu
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510089, China;
| | - Haibo Lu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150000, China
- Correspondence: (H.L.); (Y.Z.); Tel.: +86-131-2590-0189 (Y.Z.)
| | - Yan Zhang
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510089, China;
- Correspondence: (H.L.); (Y.Z.); Tel.: +86-131-2590-0189 (Y.Z.)
| |
Collapse
|
249
|
Li S, Pritchard DM, Yu LG. Regulation and Function of Matrix Metalloproteinase-13 in Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:3263. [PMID: 35805035 PMCID: PMC9265061 DOI: 10.3390/cancers14133263] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Matrix metalloproteinase-13 (MMP-13) is a member of the Matrix metalloproteinases (MMPs) family of endopeptidases. MMP-13 is produced in low amounts and is well-regulated during normal physiological conditions. Its expression and secretion are, however, increased in various cancers, where it plays multiple roles in tumour progression and metastasis. As an interstitial collagenase, MMP-13 can proteolytically cleave not only collagens I, II and III, but also a range of extracellular matrix proteins (ECMs). Its action causes ECM remodelling and often leads to the release of various sequestered growth and angiogenetic factors that promote tumour cell growth, invasion and angiogenesis. This review summarizes our current understanding of the regulation of MMP-13 expression and secretion and discusses the actions of MMP-13 in cancer progression and metastasis.
Collapse
Affiliation(s)
- Shun Li
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| | - David Mark Pritchard
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| | - Lu-Gang Yu
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
250
|
Yuan Y, Zhang H, Li D, Li Y, Lin F, Wang Y, Song H, Liu X, Li F, Zhang J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett 2022; 545:215813. [DOI: 10.1016/j.canlet.2022.215813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|