201
|
He J, Carroll J, Ding S, Fearnley IM, Walker JE. Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase. Proc Natl Acad Sci U S A 2017; 114:9086-9091. [PMID: 28784775 PMCID: PMC5576841 DOI: 10.1073/pnas.1711201114] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membranes of mitochondria can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane and ATP synthesis, and cell death. Pore opening can be inhibited by cyclosporin A mediated via cyclophilin D. It has been proposed that the pore is associated with the dimeric ATP synthase and the oligomycin sensitivity conferral protein (OSCP), a component of the enzyme's peripheral stalk, provides the site at which cyclophilin D interacts. Subunit b contributes a central α-helical structure to the peripheral stalk, extending from near the top of the enzyme's catalytic domain and crossing the membrane domain of the enzyme via two α-helices. We investigated the possible involvement of the subunit b and the OSCP in the PTP by generating clonal cells, HAP1-Δb and HAP1-ΔOSCP, lacking the membrane domain of subunit b or the OSCP, respectively, in which the corresponding genes, ATP5F1 and ATP5O, had been disrupted. Both cell lines preserve the characteristic properties of the PTP; therefore, the membrane domain of subunit b does not contribute to the PTP, and the OSCP does not provide the site of interaction with cyclophilin D. The membrane subunits ATP6, ATP8, and subunit c have been eliminated previously from possible participation in the PTP; thus, the only subunits of ATP synthase that could participate in pore formation are e, f, g, diabetes-associated protein in insulin-sensitive tissues (DAPIT), and the 6.8-kDa proteolipid.
Collapse
Affiliation(s)
- Jiuya He
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Joe Carroll
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Shujing Ding
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Ian M Fearnley
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - John E Walker
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
202
|
Inhibition of Bcl-xL prevents pro-death actions of ΔN-Bcl-xL at the mitochondrial inner membrane during glutamate excitotoxicity. Cell Death Differ 2017; 24:1963-1974. [PMID: 28777375 PMCID: PMC5635221 DOI: 10.1038/cdd.2017.123] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
ABT-737 is a pharmacological inhibitor of the anti-apoptotic activity of B-cell lymphoma-extra large (Bcl-xL) protein; it promotes apoptosis of cancer cells by occupying the BH3-binding pocket. We have shown previously that ABT-737 lowers cell metabolic efficiency by inhibiting ATP synthase activity. However, we also found that ABT-737 protects rodent brain from ischemic injury in vivo by inhibiting formation of the pro-apoptotic, cleaved form of Bcl-xL, ΔN-Bcl-xL. We now report that a high concentration of ABT-737 (1 μM), or a more selective Bcl-xL inhibitor WEHI-539 (5 μM) enhances glutamate-induced neurotoxicity while a low concentration of ABT-737 (10 nM) or WEHI-539 (10 nM) is neuroprotective. High ABT-737 markedly increased ΔN-Bcl-xL formation, aggravated glutamate-induced death and resulted in the loss of mitochondrial membrane potential and decline in ATP production. Although the usual cause of death by ABT-737 is thought to be related to activation of Bax at the outer mitochondrial membrane due to sequestration of Bcl-xL, we now find that low ABT-737 not only prevents Bax activation, but it also inhibits the decline in mitochondrial potential produced by glutamate toxicity or by direct application of ΔN-Bcl-xL to mitochondria. Loss of mitochondrial inner membrane potential is also prevented by cyclosporine A, implicating the mitochondrial permeability transition pore in death aggravated by ΔN-Bcl-xL. In keeping with this, we find that glutamate/ΔN-Bcl-xL-induced neuronal death is attenuated by depletion of the ATP synthase c-subunit. C-subunit depletion prevented depolarization of mitochondrial membranes in ΔN-Bcl-xL expressing cells and substantially prevented the morphological change in neurites associated with glutamate/ΔN-Bcl-xL insult. Our findings suggest that low ABT-737 or WEHI-539 promotes survival during glutamate toxicity by preventing the effect of ΔN-Bcl-xL on mitochondrial inner membrane depolarization, highlighting ΔN-Bcl-xL as an important therapeutic target in injured brain.
Collapse
|
203
|
Javadov S, Jang S, Parodi-Rullán R, Khuchua Z, Kuznetsov AV. Mitochondrial permeability transition in cardiac ischemia-reperfusion: whether cyclophilin D is a viable target for cardioprotection? Cell Mol Life Sci 2017; 74:2795-2813. [PMID: 28378042 PMCID: PMC5977999 DOI: 10.1007/s00018-017-2502-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Growing number of studies provide strong evidence that the mitochondrial permeability transition pore (PTP), a non-selective channel in the inner mitochondrial membrane, is involved in the pathogenesis of cardiac ischemia-reperfusion and can be targeted to attenuate reperfusion-induced damage to the myocardium. The molecular identity of the PTP remains unknown and cyclophilin D is the only protein commonly accepted as a major regulator of the PTP opening. Therefore, cyclophilin D is an attractive target for pharmacological or genetic therapies to reduce ischemia-reperfusion injury in various animal models and humans. Most animal studies demonstrated cardioprotective effects of PTP inhibition; however, a recent large clinical trial conducted by international groups demonstrated that cyclosporine A, a cyclophilin D inhibitor, failed to protect the heart in patients with myocardial infarction. These studies, among others, raise the question of whether cyclophilin D, which plays an important physiological role in the regulation of cell metabolism and mitochondrial bioenergetics, is a viable target for cardioprotection. This review discusses previous studies to provide comprehensive information on the physiological role of cyclophilin D as well as PTP opening in the cell that can be taken into consideration for the development of new PTP inhibitors.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico
| | - Rebecca Parodi-Rullán
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico
| | - Zaza Khuchua
- Cincinnati Children's Research Foundation, University of Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, 54229, USA
| | - Andrey V Kuznetsov
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
204
|
Szymański J, Janikiewicz J, Michalska B, Patalas-Krawczyk P, Perrone M, Ziółkowski W, Duszyński J, Pinton P, Dobrzyń A, Więckowski MR. Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. Int J Mol Sci 2017; 18:ijms18071576. [PMID: 28726733 PMCID: PMC5536064 DOI: 10.3390/ijms18071576] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
Abstract
Studying organelles in isolation has been proven to be indispensable for deciphering the underlying mechanisms of molecular cell biology. However, observing organelles in intact cells with the use of microscopic techniques reveals a new set of different junctions and contact sites between them that contribute to the control and regulation of various cellular processes, such as calcium and lipid exchange or structural reorganization of the mitochondrial network. In recent years, many studies focused their attention on the structure and function of contacts between mitochondria and other organelles. From these studies, findings emerged showing that these contacts are involved in various processes, such as lipid synthesis and trafficking, modulation of mitochondrial morphology, endoplasmic reticulum (ER) stress, apoptosis, autophagy, inflammation and Ca2+ handling. In this review, we focused on the physical interactions of mitochondria with the endoplasmic reticulum and plasma membrane and summarized present knowledge regarding the role of mitochondria-associated membranes in calcium homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Jędrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Justyna Janikiewicz
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Bernadeta Michalska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Mariasole Perrone
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Wiesław Ziółkowski
- Department of Bioenergetics and Nutrition, Gdańsk University of Physical Education and Sport, 80-336 Gdańsk, Poland.
| | - Jerzy Duszyński
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Agnieszka Dobrzyń
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Mariusz R Więckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| |
Collapse
|
205
|
Wang X, Zhang X, Wu D, Huang Z, Hou T, Jian C, Yu P, Lu F, Zhang R, Sun T, Li J, Qi W, Wang Y, Gao F, Cheng H. Mitochondrial flashes regulate ATP homeostasis in the heart. eLife 2017; 6. [PMID: 28692422 PMCID: PMC5503511 DOI: 10.7554/elife.23908] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/16/2017] [Indexed: 01/01/2023] Open
Abstract
The maintenance of a constant ATP level (‘set-point’) is a vital homeostatic function shared by eukaryotic cells. In particular, mammalian myocardium exquisitely safeguards its ATP set-point despite 10-fold fluctuations in cardiac workload. However, the exact mechanisms underlying this regulation of ATP homeostasis remain elusive. Here we show mitochondrial flashes (mitoflashes), recently discovered dynamic activity of mitochondria, play an essential role for the auto-regulation of ATP set-point in the heart. Specifically, mitoflashes negatively regulate ATP production in isolated respiring mitochondria and, their activity waxes and wanes to counteract the ATP supply-demand imbalance caused by superfluous substrate and altered workload in cardiomyocytes. Moreover, manipulating mitoflash activity is sufficient to inversely shift the otherwise stable ATP set-point. Mechanistically, the Bcl-xL-regulated proton leakage through F1Fo-ATP synthase appears to mediate the coupling between mitoflash production and ATP set-point regulation. These findings indicate mitoflashes appear to constitute a digital auto-regulator for ATP homeostasis in the heart. DOI:http://dx.doi.org/10.7554/eLife.23908.001 A small molecule called ATP is often referred to as the primary “energy currency” of living cells. It is required to power tasks as diverse as the general housekeeping processes that keep all cells alive to the programmed cell death response that dismantles any cells that are no longer needed. It is also crucial that cells maintain a constant level of ATP at all times, even when the supply of and demand for ATP fluctuate. This control is particularly important in the mammalian heart where the rates of ATP production and consumption change ten-fold during intense exercise. Despite intensive research over the past decades, it was still not known how cells keep ATP levels constant. In many cell types, including heart muscle cells, ATP is mainly produced inside compartments called mitochondria. Each heart muscle cell contains between 5,000 and 8,000 mitochondria. Recent experiments have shown that ATP production in mitochondria is interrupted by ten-second bursts called “mitochondrial flashes” (or mitoflashes for short), during which the mitochondria release chemicals called reactive oxygen species. The mitoflashes are tightly linked with energy usage, and Wang, Zhang, Wu et al. have now explored if and how mitoflashes regulate ATP levels in the heart. Experiments on isolated mitochondria from mouse heart muscle cells showed that mitoflashes inhibit the production of ATP. When the intact heart muscle cells were given excess of the building blocks needed to produce ATP – mitoflashes occurred more often. Conversely, when the cells were forced to contract more quickly, which increased demand for ATP, the mitoflashes occurred less often. Importantly, the level of ATP inside the cells actually remained constant in the experiments. Furthermore, inhibiting mitoflashes with antioxidants increased the ATP concentration in heart muscle cells. Lastly, Wang et al. demonstrated that mitoflashes could be triggered under certain conditions. Overall, these experiments uncovered a way in which highly active cells can maintain a constant level of ATP. Future studies are needed to understand exactly how mitoflashes are initiated and how they in turn inhibit ATP production. A better understanding of these processes might uncover molecules that could be targeted by drugs to the control of the rate of ATP production to treat heart failure. DOI:http://dx.doi.org/10.7554/eLife.23908.002
Collapse
Affiliation(s)
- Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xing Zhang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Di Wu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhanglong Huang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Tingting Hou
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chongshu Jian
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Peng Yu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fujian Lu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rufeng Zhang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Tao Sun
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jinghang Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Wenfeng Qi
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yanru Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Feng Gao
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
206
|
Baev AY, Elustondo PA, Negoda A, Pavlov EV. Osmotic regulation of the mitochondrial permeability transition pore investigated by light scattering, fluorescence and electron microscopy techniques. Anal Biochem 2017; 552:38-44. [PMID: 28693989 DOI: 10.1016/j.ab.2017.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023]
Abstract
Mitochondrial permeability transition (PT) is a phenomenon of an increase of the inner membrane permeability in response to an excessive matrix calcium accumulation. PTP is caused by the opening of the large weakly selective channel. Molecular composition and regulation of permeability transition pore (PTP) are not well understood. Here we used isolated mitochondria to investigate dependence of PTP activation on the osmotic pressure. We found that in low osmotic strength solution calcium-induced PTP is significantly inhibited. We propose that this effect is linked to the changes in the curvature of the mitochondrial inner membrane. This interpretation is consistent with the idea about the importance of ATP synthase dimerization in modulation of the PTP activity.
Collapse
Affiliation(s)
- Artyom Y Baev
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; Educational-Experimental Centre of High Technologies, Tashkent, Uzbekistan.
| | - Pia A Elustondo
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Alexander Negoda
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Evgeny V Pavlov
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Basic Sciences, New York University, College of Dentistry, 345 East 24th Street, New York, NY 10010, USA.
| |
Collapse
|
207
|
Camara AKS, Zhou Y, Wen PC, Tajkhorshid E, Kwok WM. Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Front Physiol 2017; 8:460. [PMID: 28713289 PMCID: PMC5491678 DOI: 10.3389/fphys.2017.00460] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/16/2017] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are the key source of ATP that fuels cellular functions, and they are also central in cellular signaling, cell division and apoptosis. Dysfunction of mitochondria has been implicated in a wide range of diseases, including neurodegenerative and cardiac diseases, and various types of cancer. One of the key proteins that regulate mitochondrial function is the voltage-dependent anion channel 1 (VDAC1), the most abundant protein on the outer membrane of mitochondria. VDAC1 is the gatekeeper for the passages of metabolites, nucleotides, and ions; it plays a crucial role in regulating apoptosis due to its interaction with apoptotic and anti-apoptotic proteins, namely members of the Bcl-2 family of proteins and hexokinase. Therefore, regulation of VDAC1 is crucial not only for metabolic functions of mitochondria, but also for cell survival. In fact, multiple lines of evidence have confirmed the involvement of VDAC1 in several diseases. Consequently, modulation or dysregulation of VDAC1 function can potentially attenuate or exacerbate pathophysiological conditions. Understanding the role of VDAC1 in health and disease could lead to selective protection of cells in different tissues and diverse diseases. The purpose of this review is to discuss the role of VDAC1 in the pathogenesis of diseases and as a potentially effective target for therapeutic management of various pathologies.
Collapse
Affiliation(s)
- Amadou K S Camara
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, United States.,Cardiovascular Center, Medical College of WisconsinMilwaukee, WI, United States
| | - YiFan Zhou
- Department of Assay Development, HD BiosciencesShanghai, China
| | - Po-Chao Wen
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, United States.,Cardiovascular Center, Medical College of WisconsinMilwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, WI, United States
| |
Collapse
|
208
|
Brüggemann M, Gromes A, Poss M, Schmidt D, Klümper N, Tolkach Y, Dietrich D, Kristiansen G, Müller SC, Ellinger J. Systematic Analysis of the Expression of the Mitochondrial ATP Synthase (Complex V) Subunits in Clear Cell Renal Cell Carcinoma. Transl Oncol 2017; 10:661-668. [PMID: 28672194 PMCID: PMC5496479 DOI: 10.1016/j.tranon.2017.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 01/16/2023] Open
Abstract
Mitochondrial dysfunction is common in cancer and the mitochondrial electron transport chain is often affected in carcinogenesis. To date, little is known about the expression of the ATP synthase subunits in clear cell renal cell carcinoma (ccRCC). The NextBio database was used to determine an expression profile of the ATP synthase subunits based on published microarray studies. We observed down-regulation of 23 out of 29 subunits of the ATP synthase. Differential expression was validated exemplarily for 12 genes (ATP5A1, ATP5B, ATPAF1, ATP5C1, ATP5D, ATP5O, ATP5F1, ATP5G1, ATP5G2, ATP5G3, ATP5I, ATP5S; screening cohort ccRCC n = 18 and normal renal tissue n = 10) using real-time PCR. Additional eight genes (ATP5A1, ATP5B, ATPAF1, ATP5F1, ATP5G1, ATP5G2, ATP5G3, ATP5S) were internally validated within an enlarged cohort (ccRCC n = 74; normal renal tissue n = 36). Furthermore, down-regulation of ATP5A1, ATPAF1, ATP5G1/G2/G3 was confirmed on the protein level using Western Blot and immunohistochemistry. We observed that altered expression of ATPAF1 and ATP5G1/G2/G3 was correlated with overall survival in patients with ccRCC. In conclusion, down-regulation of many ATP Synthase subunits occurs in ccRCC and is the basis for the reduced activity of the mitochondrial electron chain. Alteration of the expression of ATP5A1, ATPAF1, and ATP5G1/G2/G3 is characteristic for ccRCC and may be prognostic for ccRCC patients' outcome.
Collapse
Affiliation(s)
- Maria Brüggemann
- University Hospital Bonn, Department of Urology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Arabella Gromes
- University Hospital Bonn, Department of Urology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Mirjam Poss
- University Hospital Bonn, Department of Urology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Doris Schmidt
- University Hospital Bonn, Department of Urology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Niklas Klümper
- University Hospital Bonn, Department of Urology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Yuri Tolkach
- University Hospital Bonn, Institute of Pathology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Dimo Dietrich
- University Hospital Bonn, Institute of Pathology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany; University Hospital Bonn, Department of Otorhinolaryngology/Head and Neck Surgery, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Glen Kristiansen
- University Hospital Bonn, Institute of Pathology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Stefan C Müller
- University Hospital Bonn, Department of Urology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Jörg Ellinger
- University Hospital Bonn, Department of Urology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany.
| |
Collapse
|
209
|
Abstract
Current models theorizing on what the mitochondrial permeability transition (mPT) pore is made of, implicate the c-subunit rings of ATP synthase complex. However, two very recent studies, one on atomistic simulations and in the other disrupting all genes coding for the c subunit disproved those models. As a consequence of this, the structural elements of the pore remain unknown. The purpose of the present short-review is to (i) briefly review the latest findings, (ii) serve as an index for more comprehensive reviews regarding mPT specifics, (iii) reiterate on the potential pitfalls while investigating mPT in conjunction to bioenergetics, and most importantly (iv) suggest to those in search of mPT pore identity, to also look elsewhere.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary.
| |
Collapse
|
210
|
Chinopoulos C. ATP synthase complex and the mitochondrial permeability transition pore: poles of attraction. EMBO Rep 2017. [PMID: 28630136 DOI: 10.15252/embr.201744412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
211
|
Daiber A, Di Lisa F, Oelze M, Kröller‐Schön S, Steven S, Schulz E, Münzel T. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br J Pharmacol 2017; 174:1670-1689. [PMID: 26660451 PMCID: PMC5446573 DOI: 10.1111/bph.13403] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/22/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases are associated with and/or caused by oxidative stress. This concept has been proven by using the approach of genetic deletion of reactive species producing (pro-oxidant) enzymes as well as by the overexpression of reactive species detoxifying (antioxidant) enzymes leading to a marked reduction of reactive oxygen and nitrogen species (RONS) and in parallel to an amelioration of the severity of diseases. Likewise, the development and progression of cardiovascular diseases is aggravated by overexpression of RONS producing enzymes as well as deletion of antioxidant RONS detoxifying enzymes. Thus, the consequences of the interaction (redox crosstalk) of superoxide/hydrogen peroxide produced by mitochondria with other ROS producing enzymes such as NADPH oxidases (Nox) are of outstanding importance and will be discussed including the consequences for endothelial nitric oxide synthase (eNOS) uncoupling as well as the redox regulation of the vascular function/tone in general (soluble guanylyl cyclase, endothelin-1, prostanoid synthesis). Pathways and potential mechanisms leading to this crosstalk will be analysed in detail and highlighted by selected examples from the current literature including hypoxia, angiotensin II-induced hypertension, nitrate tolerance, aging and others. The general concept of redox-based activation of RONS sources via "kindling radicals" and enzyme-specific "redox switches" will be discussed providing evidence that mitochondria represent key players and amplifiers of the burden of oxidative stress. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Andreas Daiber
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Fabio Di Lisa
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Matthias Oelze
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Swenja Kröller‐Schön
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Sebastian Steven
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- Center of Thrombosis and HemostasisMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Eberhard Schulz
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Thomas Münzel
- Center for Cardiology, Laboratory of Molecular CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| |
Collapse
|
212
|
Esparza-Moltó PB, Nuevo-Tapioles C, Cuezva JM. Regulation of the H +-ATP synthase by IF1: a role in mitohormesis. Cell Mol Life Sci 2017; 74:2151-2166. [PMID: 28168445 PMCID: PMC5425498 DOI: 10.1007/s00018-017-2462-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/18/2023]
Abstract
The mitochondrial H+-ATP synthase is a primary hub of cellular homeostasis by providing the energy required to sustain cellular activity and regulating the production of signaling molecules that reprogram nuclear activity needed for adaption to changing cues. Herein, we summarize findings regarding the regulation of the activity of the H+-ATP synthase by its physiological inhibitor, the ATPase inhibitory factor 1 (IF1) and their functional role in cellular homeostasis. First, we outline the structure and the main molecular mechanisms that regulate the activity of the enzyme. Next, we describe the molecular biology of IF1 and summarize the regulation of IF1 expression and activity as an inhibitor of the H+-ATP synthase emphasizing the role of IF1 as a main driver of energy rewiring and cellular signaling in cancer. Findings in transgenic mice in vivo indicate that the overexpression of IF1 is sufficient to reprogram energy metabolism to an enhanced glycolysis and activate reactive oxygen species (ROS)-dependent signaling pathways that promote cell survival. These findings are placed in the context of mitohormesis, a program in which a mild mitochondrial stress triggers adaptive cytoprotective mechanisms that improve lifespan. In this regard, we emphasize the role played by the H+-ATP synthase in modulating signaling pathways that activate the mitohormetic response, namely ATP, ROS and target of rapamycin (TOR). Overall, we aim to highlight the relevant role of the H+-ATP synthase and of IF1 in cellular physiology and the need of additional studies to decipher their contributions to aging and age-related diseases.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Cristina Nuevo-Tapioles
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
213
|
Bonora M, Morganti C, Morciano G, Pedriali G, Lebiedzinska-Arciszewska M, Aquila G, Giorgi C, Rizzo P, Campo G, Ferrari R, Kroemer G, Wieckowski MR, Galluzzi L, Pinton P. Mitochondrial permeability transition involves dissociation of F 1F O ATP synthase dimers and C-ring conformation. EMBO Rep 2017; 18:1077-1089. [PMID: 28566520 DOI: 10.15252/embr.201643602] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/22/2017] [Accepted: 04/25/2017] [Indexed: 11/09/2022] Open
Abstract
The impact of the mitochondrial permeability transition (MPT) on cellular physiology is well characterized. In contrast, the composition and mode of action of the permeability transition pore complex (PTPC), the supramolecular entity that initiates MPT, remain to be elucidated. Specifically, the precise contribution of the mitochondrial F1FO ATP synthase (or subunits thereof) to MPT is a matter of debate. We demonstrate that F1FO ATP synthase dimers dissociate as the PTPC opens upon MPT induction. Stabilizing F1FO ATP synthase dimers by genetic approaches inhibits PTPC opening and MPT Specific mutations in the F1FO ATP synthase c subunit that alter C-ring conformation sensitize cells to MPT induction, which can be reverted by stabilizing F1FO ATP synthase dimers. Destabilizing F1FO ATP synthase dimers fails to trigger PTPC opening in the presence of mutants of the c subunit that inhibit MPT The current study does not provide direct evidence that the C-ring is the long-sought pore-forming subunit of the PTPC, but reveals that PTPC opening requires the dissociation of F1FO ATP synthase dimers and involves the C-ring.
Collapse
Affiliation(s)
- Massimo Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Claudia Morganti
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Gaia Pedriali
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | - Giorgio Aquila
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Cardiovascular Institute, University of Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Cardiovascular Institute, University of Ferrara, Ferrara, Italy
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,INSERM, U1138, Paris, France.,Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France .,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, Ferrara, Italy .,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
214
|
Herrera-Cruz MS, Simmen T. Cancer: Untethering Mitochondria from the Endoplasmic Reticulum? Front Oncol 2017; 7:105. [PMID: 28603693 PMCID: PMC5445141 DOI: 10.3389/fonc.2017.00105] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/05/2017] [Indexed: 01/18/2023] Open
Abstract
Following the discovery of the mitochondria-associated membrane (MAM) as a hub for lipid metabolism in 1990 and its description as one of the first examples for membrane contact sites at the turn of the century, the past decade has seen the emergence of this structure as a potential regulator of cancer growth and metabolism. The mechanistic basis for this hypothesis is that the MAM accommodates flux of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. This flux then determines mitochondrial ATP production, known to be low in many tumors as part of the Warburg effect. However, low mitochondrial Ca2+ flux also reduces the propensity of tumor cells to undergo apoptosis, another cancer hallmark. Numerous regulators of this flux have been recently identified as MAM proteins. Not surprisingly, many fall into the groups of tumor suppressors and oncogenes. Given the important role that the MAM could play in cancer, it is expected that proteins mediating its formation are particularly implicated in tumorigenesis. Examples for such proteins are mitofusin-2 and phosphofurin acidic cluster sorting protein 2 that likely act as tumor suppressors. This review discusses how these proteins that mediate or regulate ER–mitochondria tethering are (or are not) promoting or inhibiting tumorigenesis. The emerging picture of MAMs in cancer seems to indicate that in addition to the downregulation of mitochondrial Ca2+ import, MAM defects are but one way how cancer cells control mitochondria metabolism and apoptosis.
Collapse
Affiliation(s)
- Maria Sol Herrera-Cruz
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Thomas Simmen
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
215
|
Giorgio V, Burchell V, Schiavone M, Bassot C, Minervini G, Petronilli V, Argenton F, Forte M, Tosatto S, Lippe G, Bernardi P. Ca 2+ binding to F-ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Rep 2017; 18:1065-1076. [PMID: 28507163 DOI: 10.15252/embr.201643354] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023] Open
Abstract
F-ATP synthases convert the electrochemical energy of the H+ gradient into the chemical energy of ATP with remarkable efficiency. Mitochondrial F-ATP synthases can also undergo a Ca2+-dependent transformation to form channels with properties matching those of the permeability transition pore (PTP), a key player in cell death. The Ca2+ binding site and the mechanism(s) through which Ca2+ can transform the energy-conserving enzyme into a dissipative structure promoting cell death remain unknown. Through in vitro, in vivo and in silico studies we (i) pinpoint the "Ca2+-trigger site" of the PTP to the catalytic site of the F-ATP synthase β subunit and (ii) define a conformational change that propagates from the catalytic site through OSCP and the lateral stalk to the inner membrane. T163S mutants of the β subunit, which show a selective decrease in Ca2+-ATP hydrolysis, confer resistance to Ca2+-induced, PTP-dependent death in cells and developing zebrafish embryos. These findings are a major advance in the molecular definition of the transition of F-ATP synthase to a channel and of its role in cell death.
Collapse
Affiliation(s)
- Valentina Giorgio
- Department of Biomedical Sciences, University of Padova, Padova, Italy .,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | - Victoria Burchell
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Schiavone
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio Bassot
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Valeria Petronilli
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | | | - Michael Forte
- Vollum Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Silvio Tosatto
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | - Giovanna Lippe
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy .,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| |
Collapse
|
216
|
Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium 2017; 70:56-63. [PMID: 28522037 DOI: 10.1016/j.ceca.2017.05.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022]
Abstract
Recent years have seen renewed interest in the permeability transition pore, a high conductance channel responsible for permeabilization of the inner mitochondrial membrane, a process that leads to depolarization and Ca2+ release. Transient openings may be involved in physiological Ca2+ homeostasis while long-lasting openings may trigger and/or execute cell death. In this review we specifically focus (i) on the hypothesis that the PTP forms from the F-ATP synthase and (ii) on the mechanisms through which Ca2+ can reversibly switch this energy-conserving nanomachine into an energy-dissipating device.
Collapse
Affiliation(s)
- Valentina Giorgio
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Lishu Guo
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Claudio Bassot
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Valeria Petronilli
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| |
Collapse
|
217
|
Vervliet T, Clerix E, Seitaj B, Ivanova H, Monaco G, Bultynck G. Modulation of Ca 2+ Signaling by Anti-apoptotic B-Cell Lymphoma 2 Proteins at the Endoplasmic Reticulum-Mitochondrial Interface. Front Oncol 2017; 7:75. [PMID: 28516063 PMCID: PMC5413508 DOI: 10.3389/fonc.2017.00075] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are important regulators of cell death and cell survival. Mitochondrial Ca2+ levels are critically involved in both of these processes. On the one hand, excessive mitochondrial Ca2+ leads to Ca2+-induced mitochondrial outer membrane permeabilization and thus apoptosis. On the other hand, mitochondria need Ca2+ in order to efficiently fuel the tricarboxylic acid cycle and maintain adequate mitochondrial bioenergetics. For obtaining this Ca2+, the mitochondria are largely dependent on close contact sites with the endoplasmic reticulum (ER), the so-called mitochondria-associated ER membranes. There, the inositol 1,4,5-trisphosphate receptors are responsible for the Ca2+ release from the ER. It comes as no surprise that this Ca2+ release from the ER and the subsequent Ca2+ uptake at the mitochondria are finely regulated. Cancer cells often modulate ER-Ca2+ transfer to the mitochondria in order to promote cell survival and to inhibit cell death. Important regulators of these Ca2+ signals and the onset of cancer are the B-cell lymphoma 2 (Bcl-2) family of proteins. An increasing number of reports highlight the ability of these Bcl-2-protein family members to finely regulate Ca2+ transfer from ER to mitochondria both in healthy cells and in cancer. In this review, we focus on recent insights into the dynamic regulation of ER-mitochondrial Ca2+ fluxes by Bcl-2-family members and how this impacts cell survival, cell death and mitochondrial energy production.
Collapse
Affiliation(s)
- Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Eva Clerix
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Bruno Seitaj
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
218
|
Pérez MJ, Quintanilla RA. Development or disease: duality of the mitochondrial permeability transition pore. Dev Biol 2017; 426:1-7. [PMID: 28457864 DOI: 10.1016/j.ydbio.2017.04.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/29/2022]
Abstract
Mitochondria is not only a dynamic organelle that produces ATP, but is also an important contributor to cell functions in both development and cell death processes. These paradoxical functions of mitochondria are partially regulated by the mitochondrial permeability transition pore (mPTP), a high-conductance channel that can induce loss of mitochondrial membrane potential, impairment of cellular calcium homeostasis, oxidative stress, and a decrease in ATP production upon pathological activation. Interestingly, despite their different etiologies, several neurodegenerative diseases and heart ischemic injuries share mitochondrial dysfunction as a common element. Generally, mitochondrial impairment is triggered by calcium deregulation that could lead to mPTP opening and cell death. Several studies have shown that opening of the mPTP not only induces mitochondrial damage and cell death, but is also a physiological mechanism involved in different cellular functions. The mPTP participates in regular calcium-release mechanisms that are required for proper metabolic regulation; it is hypothesized that the transient opening of this structure could be the principal mediator of cardiac and brain development. The mPTP also plays a role in protecting against different brain and cardiac disorders in the elderly population. Therefore, the aim of this work was to discuss different studies that show this controversial characteristic of the mPTP; although mPTP is normally associated with several pathological events, new critical findings suggest its importance in mitochondrial function and cell development.
Collapse
Affiliation(s)
- María José Pérez
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile; Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile.
| |
Collapse
|
219
|
Bâ A. Alcohol and thiamine deficiency trigger differential mitochondrial transition pore opening mediating cellular death. Apoptosis 2017; 22:741-752. [DOI: 10.1007/s10495-017-1372-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
220
|
He J, Ford HC, Carroll J, Ding S, Fearnley IM, Walker JE. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc Natl Acad Sci U S A 2017; 114:3409-3414. [PMID: 28289229 PMCID: PMC5380099 DOI: 10.1073/pnas.1702357114] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The permeability transition in human mitochondria refers to the opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membrane. Opening can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane, and ATP synthesis, followed by cell death. Recent proposals suggest that the pore is associated with the ATP synthase complex and specifically with the ring of c-subunits that constitute the membrane domain of the enzyme's rotor. The c-subunit is produced from three nuclear genes, ATP5G1, ATP5G2, and ATP5G3, encoding identical copies of the mature protein with different mitochondrial-targeting sequences that are removed during their import into the organelle. To investigate the involvement of the c-subunit in the PTP, we generated a clonal cell, HAP1-A12, from near-haploid human cells, in which ATP5G1, ATP5G2, and ATP5G3 were disrupted. The HAP1-A12 cells are incapable of producing the c-subunit, but they preserve the characteristic properties of the PTP. Therefore, the c-subunit does not provide the PTP. The mitochondria in HAP1-A12 cells assemble a vestigial ATP synthase, with intact F1-catalytic and peripheral stalk domains and the supernumerary subunits e, f, and g, but lacking membrane subunits ATP6 and ATP8. The same vestigial complex plus associated c-subunits was characterized from human 143B ρ0 cells, which cannot make the subunits ATP6 and ATP8, but retain the PTP. Therefore, none of the membrane subunits of the ATP synthase that are involved directly in transmembrane proton translocation is involved in forming the PTP.
Collapse
Affiliation(s)
- Jiuya He
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - Holly C Ford
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - Joe Carroll
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - Shujing Ding
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - Ian M Fearnley
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
221
|
Other bricks for the correct construction of the mitochondrial permeability transition pore complex. Cell Death Dis 2017; 8:e2698. [PMID: 28333138 PMCID: PMC5386586 DOI: 10.1038/cddis.2017.96] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
222
|
D'Orsi B, Mateyka J, Prehn JHM. Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok. Neurochem Int 2017; 109:162-170. [PMID: 28315370 DOI: 10.1016/j.neuint.2017.03.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 01/14/2023]
Abstract
Neuronal cell death is often triggered by events that involve intracellular increases in Ca2+. Under resting conditions, the intracellular Ca2+ concentration is tightly controlled by a number of extrusion and sequestering mechanisms involving the plasma membrane, mitochondria, and ER. These mechanisms act to prevent a disruption of neuronal ion homeostasis. As these processes require ATP, excessive Ca2+ overloading may cause energy depletion, mitochondrial dysfunction, and may eventually lead to Ca2+-dependent cell death. Excessive Ca2+ entry though glutamate receptors (excitotoxicity) has been implicated in several neurologic and chronic neurodegenerative diseases, including ischemic stroke, epilepsy, and Alzheimer's disease. Recent evidence has revealed that excitotoxic cell death is regulated by the B-cell lymphoma-2 (Bcl-2) family of proteins. Bcl-2 proteins, comprising of both pro-apoptotic and anti-apoptotic members, have been shown to not only mediate the intrinsic apoptosis pathway by controlling mitochondrial outer membrane (MOM) integrity, but to also control neuronal Ca2+ homeostasis and energetics. In this review, the role of Bcl-2 family proteins in the regulation of apoptosis, their expression in the central nervous system and how they control Ca2+-dependent neuronal injury are summarized. We review the current knowledge on Bcl-2 family proteins in the regulation of mitochondrial function and bioenergetics, including the fusion and fission machinery, and their role in Ca2+ homeostasis regulation at the mitochondria and ER. Specifically, we discuss how the 'pro-apoptotic' Bcl-2 family proteins, Bax and Bok, physiologically expressed in the nervous system, regulate such 'non-apoptotic/daytime' functions.
Collapse
Affiliation(s)
- Beatrice D'Orsi
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Julia Mateyka
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
223
|
Mnatsakanyan N, Beutner G, Porter GA, Alavian KN, Jonas EA. Physiological roles of the mitochondrial permeability transition pore. J Bioenerg Biomembr 2017; 49:13-25. [PMID: 26868013 PMCID: PMC4981558 DOI: 10.1007/s10863-016-9652-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/04/2016] [Indexed: 01/01/2023]
Abstract
Neurons experience high metabolic demand during such processes as synaptic vesicle recycling, membrane potential maintenance and Ca2+ exchange/extrusion. The energy needs of these events are met in large part by mitochondrial production of ATP through the process of oxidative phosphorylation. The job of ATP production by the mitochondria is performed by the F1FO ATP synthase, a multi-protein enzyme that contains a membrane-inserted portion, an extra-membranous enzymatic portion and an extensive regulatory complex. Although required for ATP production by mitochondria, recent findings have confirmed that the membrane-confined portion of the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane, uncoupling of oxidative phosphorylation and cell death. Recent advances in understanding the molecular components of mPTP and its regulatory mechanisms have determined that decreased uncoupling occurs in states of enhanced mitochondrial efficiency; relative closure of mPTP therefore contributes to cellular functions as diverse as cardiac development and synaptic efficacy.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Department Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA
| | - Gisela Beutner
- Department of Pediatrics (Cardiology), University of Rochester Medical Center, Rochester, NY, USA
| | - George A Porter
- Department of Pediatrics (Cardiology), University of Rochester Medical Center, Rochester, NY, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Elizabeth A Jonas
- Department Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA.
| |
Collapse
|
224
|
Hurst S, Hoek J, Sheu SS. Mitochondrial Ca 2+ and regulation of the permeability transition pore. J Bioenerg Biomembr 2017; 49:27-47. [PMID: 27497945 PMCID: PMC5393273 DOI: 10.1007/s10863-016-9672-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/31/2016] [Indexed: 02/06/2023]
Abstract
The mitochondrial permeability transition pore was originally described in the 1970's as a Ca2+ activated pore and has since been attributed to the pathogenesis of many diseases. Here we evaluate how each of the current models of the pore complex fit to what is known about how Ca2+ regulates the pore, and any insight that provides into the molecular identity of the pore complex. We also discuss the central role of Ca2+ in modulating the pore's open probability by directly regulating processes, such as ATP/ADP balance through the tricarboxylic acid cycle, electron transport chain, and mitochondrial membrane potential. We review how Ca2+ influences second messengers such as reactive oxygen/nitrogen species production and polyphosphate formation. We discuss the evidence for how Ca2+ regulates post-translational modification of cyclophilin D including phosphorylation by glycogen synthase kinase 3 beta, deacetylation by sirtuins, and oxidation/ nitrosylation of key residues. Lastly we introduce a novel view into how Ca2+ activated proteolysis through calpains in the mitochondria may be a driver of sustained pore opening during pathologies such as ischemia reperfusion injury.
Collapse
Affiliation(s)
- Stephen Hurst
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA
| | - Jan Hoek
- Mitocare Center for Mitochondria Research, Department of Pathology Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA.
| |
Collapse
|
225
|
Filadi R, Theurey P, Pizzo P. The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance. Cell Calcium 2017; 62:1-15. [PMID: 28108029 DOI: 10.1016/j.ceca.2017.01.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
Abstract
The close apposition between endoplasmic reticulum (ER) and mitochondria represents a key platform, capable to regulate different fundamental cellular pathways. Among these, Ca2+ signaling and lipid homeostasis have been demonstrated over the last years to be deeply modulated by ER-mitochondria cross-talk. Given its importance in cell life/death decisions, increasing evidence suggests that alterations of the ER-mitochondria axis could be responsible for the onset and progression of several diseases, including neurodegeneration, cancer and obesity. However, the molecular identity of the proteins controlling this inter-organelle apposition is still debated. In this review, we summarize the main cellular pathways controlled by ER-mitochondria appositions, focusing on the principal molecules reported to be involved in this interplay and on those diseases for which alterations in organelles communication have been reported.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Italy
| | - Pierre Theurey
- Department of Biomedical Sciences, University of Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Italy; Neuroscience Institute, National Research Council (CNR), Padova, Italy.
| |
Collapse
|
226
|
Danese A, Patergnani S, Bonora M, Wieckowski MR, Previati M, Giorgi C, Pinton P. Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:615-627. [PMID: 28087257 DOI: 10.1016/j.bbabio.2017.01.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/30/2016] [Accepted: 01/08/2017] [Indexed: 02/08/2023]
Abstract
Until 1972, the term 'apoptosis' was used to differentiate the programmed cell death that naturally occurs in organismal development from the acute tissue death referred to as necrosis. Many studies on cell death and programmed cell death have been published and most are, at least to some degree, related to cancer. Some key proteins and molecular pathways implicated in cell death have been analyzed, whereas others are still being actively researched; therefore, an increasing number of cellular compartments and organelles are being implicated in cell death and cancer. Here, we discuss the mitochondria and subdomains of the endoplasmic reticulum (ER) that interact with mitochondria, the mitochondria-associated membranes (MAMs), which have been identified as critical hubs in the regulation of cell death and tumor growth. MAMs-dependent calcium (Ca2+) release from the ER allows selective Ca2+ uptake by the mitochondria. The perturbation of Ca2+ homeostasis in cancer cells is correlated with sustained cell proliferation and the inhibition of cell death through the modulation of Ca2+ signaling. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Alberto Danese
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | - Maurizio Previati
- Department of Morphology, Surgery and Experimental Medicine, Section of Human Anatomy and Histology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
227
|
Missiroli S, Danese A, Iannitti T, Patergnani S, Perrone M, Previati M, Giorgi C, Pinton P. Endoplasmic reticulum-mitochondria Ca 2+ crosstalk in the control of the tumor cell fate. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:858-864. [PMID: 28064002 DOI: 10.1016/j.bbamcr.2016.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022]
Abstract
Mitochondria-associated membranes are juxtaposed between the endoplasmic reticulum and mitochondria and have been identified as a critical hub in the regulation of apoptosis and tumor growth. One key function of mitochondria-associated membranes is to provide asylum to a number of proteins with tumor suppressor and oncogenic properties. In this review, we discuss how Ca2+ flux manipulation represents the primary mechanism underlying the action of several oncogenes and tumor-suppressor genes and how these networks might be manipulated to provide novel therapies for cancer. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Sonia Missiroli
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alberto Danese
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Tommaso Iannitti
- KWS BioTest, Marine View Office Park, Portishead, Somerset BS20 7AW, UK
| | - Simone Patergnani
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariasole Perrone
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Maurizio Previati
- Department of Morphology, Surgery and Experimental Medicine, Section of Human Anatomy and Histology, Laboratory for Technologies of Advanced Therapies(LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
228
|
Mitochondrial Calcium Uptake in Activation of the Permeability Transition Pore and Cell Death. MOLECULAR BASIS FOR MITOCHONDRIAL SIGNALING 2017. [DOI: 10.1007/978-3-319-55539-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
229
|
Abstract
Mitochondria are the "power house" of a cell continuously generating ATP to ensure its proper functioning. The constant production of ATP via oxidative phosphorylation demands a large electrochemical force that drives protons across the highly selective and low-permeable mitochondrial inner membrane. Besides the conventional role of generating ATP, mitochondria also play an active role in calcium signaling, generation of reactive oxygen species (ROS), stress responses, and regulation of cell-death pathways. Deficiencies in these functions result in several pathological disorders like aging, cancer, diabetes, neurodegenerative and cardiovascular diseases. A plethora of ion channels and transporters are present in the mitochondrial inner and outer membranes which work in concert to preserve the ionic equilibrium of a cell for the maintenance of cell integrity, in physiological as well as pathophysiological conditions. For, e.g., mitochondrial cation channels KATP and BKCa play a significant role in cardioprotection from ischemia-reperfusion injury. In addition to the cation channels, mitochondrial anion channels are equally essential, as they aid in maintaining electro-neutrality by regulating the cell volume and pH. This chapter focusses on the information on molecular identity, structure, function, and physiological relevance of mitochondrial chloride channels such as voltage dependent anion channels (VDACs), uncharacterized mitochondrial inner membrane anion channels (IMACs), chloride intracellular channels (CLIC) and the aspects of forthcoming chloride channels.
Collapse
Affiliation(s)
- Devasena Ponnalagu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Room 8154, Mail Stop 488, Philadelphia, PA, 19102-1192, USA
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Room 8154, Mail Stop 488, Philadelphia, PA, 19102-1192, USA.
| |
Collapse
|
230
|
Abstract
As the heart is an energy-demanding organ, impaired cardiac energy metabolism and mitochondrial function have been inexorably linked to cardiac dysfunction. There is a growing recognition that mitochondrial dysfunction contributes to impaired myocardial energetics and increased oxidative stress in cardiomyopathies, cardiac ischemic damage and heart failure (HF), and mitochondrial permeability transition pore opening has been reported a critical trigger of myocyte death and myocardial remodeling. It is well established that mitochondria play pivotal roles in intracellular signaling in both cell death as well as in cardioprotective pathways. Moreover, recent studies have shown that defects in mitochondrial dynamics affecting biogenesis and turnover are linked to cardiac senescence and HF. Accordingly, there has been an increasing interest in targeting mitochondria for HF therapy. This article reviews the background and recent evidence of mitochondrial involvement in several types of cell death (apoptosis, necrosis and autophagy) occurring in HF. In addition, potential strategies for targeting mitochondria are examined, and their utility in HF therapy considered.
Collapse
|
231
|
Elustondo PA, Nichols M, Negoda A, Thirumaran A, Zakharian E, Robertson GS, Pavlov EV. Mitochondrial permeability transition pore induction is linked to formation of the complex of ATPase C-subunit, polyhydroxybutyrate and inorganic polyphosphate. Cell Death Discov 2016; 2:16070. [PMID: 27924223 PMCID: PMC5137186 DOI: 10.1038/cddiscovery.2016.70] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/10/2016] [Accepted: 08/19/2016] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial permeability transition pore (mPTP) opening allows free movement of ions and small molecules leading to mitochondrial membrane depolarization and ATP depletion that triggers cell death. A multi-protein complex of the mitochondrial ATP synthase has an essential role in mPTP. However, the molecular identity of the central 'pore' part of mPTP complex is not known. A highly purified fraction of mammalian mitochondria containing C-subunit of ATPase (C-subunit), calcium, inorganic polyphosphate (polyP) and polyhydroxybutyrate (PHB) forms ion channels with properties that resemble the native mPTP. We demonstrate here that amount of this channel-forming complex dramatically increases in intact mitochondria during mPTP activation. This increase is inhibited by both Cyclosporine A, an inhibitor of mPTP and Ruthenium Red, an inhibitor of the Mitochondrial Calcium Uniporter. Similar increases in the amount of complex formation occurs in areas of mouse brain damaged by ischemia-reperfusion injury. These findings suggest that calcium-induced mPTP is associated with de novo assembly of a channel comprising C-subunit, polyP and PHB.
Collapse
Affiliation(s)
- P A Elustondo
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University , Halifax, NS, B3H 4R2 Canada
| | - M Nichols
- Departments of Psychiatry and Pharmacology, Brain Repair Centre, Faculty of Medicine Dalhousie University , Halifax, NS, B3H 4R2f Canada
| | - A Negoda
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University , Halifax, NS, B3H 4R2 Canada
| | - A Thirumaran
- Departments of Psychiatry and Pharmacology, Brain Repair Centre, Faculty of Medicine Dalhousie University , Halifax, NS, B3H 4R2f Canada
| | - E Zakharian
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine , 1 Illini Drive, Peoria, IL 61605, USA
| | - G S Robertson
- Departments of Psychiatry and Pharmacology, Brain Repair Centre, Faculty of Medicine Dalhousie University , Halifax, NS, B3H 4R2f Canada
| | - E V Pavlov
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2 Canada; Department of Basic Sciences, New York University, College of Dentistry, 345 East 24th Street, New York, NY 10010, USA
| |
Collapse
|
232
|
Marchi S, Bonora M, Patergnani S, Giorgi C, Pinton P. Methods to Assess Mitochondrial Morphology in Mammalian Cells Mounting Autophagic or Mitophagic Responses. Methods Enzymol 2016; 588:171-186. [PMID: 28237100 DOI: 10.1016/bs.mie.2016.09.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
It is widely acknowledged that mitochondria are highly active structures that rapidly respond to cellular and environmental perturbations by changing their shape, number, and distribution. Mitochondrial remodeling is a key component of diverse biological processes, ranging from cell cycle progression to autophagy. In this chapter, we describe different methodologies for the morphological study of the mitochondrial network. Instructions are given for the preparation of samples for fluorescent microscopy, based on genetically encoded strategies or the employment of synthetic fluorescent dyes. We also propose detailed protocols to analyze mitochondrial morphometric parameters from both three-dimensional and bidimensional datasets. Finally, we describe a protocol for the visualization and quantification of mitochondrial structures through electron microscopy.
Collapse
Affiliation(s)
- S Marchi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - M Bonora
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Patergnani
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - C Giorgi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - P Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
233
|
Zulian A, Schiavone M, Giorgio V, Bernardi P. Forty years later: Mitochondria as therapeutic targets in muscle diseases. Pharmacol Res 2016; 113:563-573. [PMID: 27697642 DOI: 10.1016/j.phrs.2016.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 11/22/2022]
Abstract
The hypothesis that mitochondrial dysfunction can be a general mechanism for cell death in muscle diseases is 40 years old. The key elements of the proposed pathogenetic sequence (cytosolic Ca2+ overload followed by excess mitochondrial Ca2+ uptake, functional and then structural damage of mitochondria, energy shortage, worsened elevation of cytosolic Ca2+ levels, hypercontracture of muscle fibers, cell necrosis) have been confirmed in amazing detail by subsequent work in a variety of models. The explicit implication of the hypothesis was that it "may provide the basis for a more rational treatment for some conditions even before their primary causes are known" (Wrogemann and Pena, 1976, Lancet, 1, 672-674). This prediction is being fulfilled, and the potential of mitochondria as pharmacological targets in muscle diseases may soon become a reality, particularly through inhibition of the mitochondrial permeability transition pore and its regulator cyclophilin D.
Collapse
Affiliation(s)
- Alessandra Zulian
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Schiavone
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Valentina Giorgio
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Bernardi
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
234
|
Inorganic polyphosphate in cardiac myocytes: from bioenergetics to the permeability transition pore and cell survival. Biochem Soc Trans 2016; 44:25-34. [PMID: 26862184 DOI: 10.1042/bst20150218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inorganic polyphosphate (polyP) is a linear polymer of Pi residues linked together by high-energy phosphoanhydride bonds as in ATP. PolyP is present in all living organisms ranging from bacteria to human and possibly even predating life of this planet. The length of polyP chain can vary from just a few phosphates to several thousand phosphate units long, depending on the organism and the tissue in which it is synthesized. PolyP was extensively studied in prokaryotes and unicellular eukaryotes by Kulaev's group in the Russian Academy of Sciences and by the Nobel Prize Laureate Arthur Kornberg at Stanford University. Recently, we reported that mitochondria of cardiac ventricular myocytes contain significant amounts (280±60 pmol/mg of protein) of polyP with an average length of 25 Pi and that polyP is involved in Ca(2+)-dependent activation of the mitochondrial permeability transition pore (mPTP). Enzymatic polyP depletion prevented Ca(2+)-induced mPTP opening during ischaemia; however, it did not affect reactive oxygen species (ROS)-mediated mPTP opening during reperfusion and even enhanced cell death in cardiac myocytes. We found that ROS generation was actually enhanced in polyP-depleted cells demonstrating that polyP protects cardiac myocytes against enhanced ROS formation. Furthermore, polyP concentration was dynamically changed during activation of the mitochondrial respiratory chain and stress conditions such as ischaemia/reperfusion (I/R) and heart failure (HF) indicating that polyP is required for the normal heart metabolism. This review discusses the current literature on the roles of polyP in cardiovascular health and disease.
Collapse
|
235
|
Inorganic polyphosphate (polyP) as an activator and structural component of the mitochondrial permeability transition pore. Biochem Soc Trans 2016; 44:7-12. [PMID: 26862181 DOI: 10.1042/bst20150206] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mitochondrial permeability transition pore (mPTP) is a large channel located in the mitochondrial inner membrane. The opening of mPTP during pathological calcium overload leads to the membrane depolarization and disruption of ATP production. mPTP activation has been implicated as a central event during the process of stress-induced cell death. mPTP is a supramolecular complex composed of many proteins. Recent studies suggest that mitochondrial ATPase plays the central role in the formation of mPTP. However, the structure of the central conducting pore part of mPTP (mPTPore) remains elusive. Here we review current models proposed for the mPTPore and involvement of polyP in its formation and regulation. We discuss the underestimated role of polyP as an effector and a putative structural component of the mPTPore. We propose the hypothesis that inclusion of polyP can explain such properties of mPTP activity as calcium activation, selectivity and voltage-dependence.
Collapse
|
236
|
Lebedev I, Nemajerova A, Foda ZH, Kornaj M, Tong M, Moll UM, Seeliger MA. A Novel In Vitro CypD-Mediated p53 Aggregation Assay Suggests a Model for Mitochondrial Permeability Transition by Chaperone Systems. J Mol Biol 2016; 428:4154-4167. [PMID: 27515399 PMCID: PMC5453312 DOI: 10.1016/j.jmb.2016.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
Tissue necrosis as a consequence of ischemia-reperfusion injury and oxidative damage is a leading cause of permanent disability and death worldwide. The complete mechanism by which cells undergo necrosis upon oxidative stress is not understood. In response to an oxidative insult, wild-type p53 has been implicated as a central regulatory component of the mitochondrial permeability transition (mPT), triggering necrosis. This process is associated with cellular stabilization and translocation of p53 into the mitochondrial matrix. Here, we probe the mechanism by which p53 activates the key mPT regulator cyclophilin D (CypD). We explore the involvement of Trap1, an Hsp90-related mitochondrial matrix protein and a member of the mitochondrial unfolded protein response, and its ability to suppress mPT in a p53-dependent manner. Our study finds that catalytically active CypD causes strong aggregation of wild-type p53 protein (both full-length and isolated DNA-binding domain) into amyloid-type fibrils in vitro. The responsible CypD residues for this activity were mapped by NMR to the active site amino acids R55, F60, F113, and W121. The data also present a new proline isomerization assay for CypD by monitoring the aggregation of p53 as an indicator of CypD activity. Moreover, we find that the inhibition of Trap1 by the mitochondria-specific HSP90 ATPase antagonist Gamitrinib strongly sensitizes primary mouse embryonic fibroblasts to mPT and permeability transition pore opening in a p53- and CypD-dependent manner. We propose a mechanism by which the influx of unfolded p53 into the mitochondrial matrix in response to oxidative stress indirectly activates the normally inhibited CypD by displacing it from Trap1 complexes. This activates CypD's isomerase activity. Liberated CypD then isomerizes multiple proteins including p53 (causing p53 aggregation) and the structural components of the mPTP pore, inducing pore opening. This working model can now be tested in the future.
Collapse
Affiliation(s)
- Ivan Lebedev
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alice Nemajerova
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zachariah H Foda
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maja Kornaj
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael Tong
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
237
|
Biasutto L, Azzolini M, Szabò I, Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2515-30. [PMID: 26902508 DOI: 10.1016/j.bbamcr.2016.02.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
Over the past 30years the mitochondrial permeability transition - the permeabilization of the inner mitochondrial membrane due to the opening of a wide pore - has progressed from being considered a curious artifact induced in isolated mitochondria by Ca(2+) and phosphate to a key cell-death-inducing process in several major pathologies. Its relevance is by now universally acknowledged and a pharmacology targeting the phenomenon is being developed. The molecular nature of the pore remains to this day uncertain, but progress has recently been made with the identification of the FOF1 ATP synthase as the probable proteic substrate. Researchers sharing this conviction are however divided into two camps: these believing that only the ATP synthase dimers or oligomers can form the pore, presumably in the contact region between monomers, and those who consider that the ring-forming c subunits in the FO sector actually constitute the walls of the pore. The latest development is the emergence of a new candidate: Spastic Paraplegia 7 (SPG7), a mitochondrial AAA-type membrane protease which forms a 6-stave barrel. This review summarizes recent developments of research on the pathophysiological relevance and on the molecular nature of the mitochondrial permeability transition pore. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Azzolini
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biology, Viale G. Colombo 3, 35121 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
238
|
Fo ATP synthase C subunit serum levels in patients with ST-segment Elevation Myocardial Infarction: Preliminary findings. Int J Cardiol 2016; 221:993-7. [DOI: 10.1016/j.ijcard.2016.07.125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/29/2016] [Accepted: 07/08/2016] [Indexed: 11/21/2022]
|
239
|
Patergnani S, Fossati V, Bonora M, Giorgi C, Marchi S, Missiroli S, Rusielewicz T, Wieckowski MR, Pinton P. Mitochondria in Multiple Sclerosis: Molecular Mechanisms of Pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:49-103. [PMID: 28069137 DOI: 10.1016/bs.ircmb.2016.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria, the organelles that function as the powerhouse of the cell, have been increasingly linked to the pathogenesis of many neurological disorders, including multiple sclerosis (MS). MS is a chronic inflammatory demyelinating disease of the central nervous system (CNS) and a leading cause of neurological disability in young adults in the western world. Its etiology remains unknown, and while the inflammatory component of MS has been heavily investigated and targeted for therapeutic intervention, the failure of remyelination and the process of axonal degeneration are still poorly understood. Recent studies suggest a role of mitochondrial dysfunction in the neurodegenerative aspects of MS. This review is focused on mitochondrial functions under physiological conditions and the consequences of mitochondrial alterations in various CNS disorders. Moreover, we summarize recent findings linking mitochondrial dysfunction to MS and discuss novel therapeutic strategies targeting mitochondria-related pathways as well as emerging experimental approaches for modeling mitochondrial disease.
Collapse
Affiliation(s)
- S Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - V Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - M Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - C Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Missiroli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - T Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - M R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - P Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
240
|
Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2977-2992. [PMID: 27646922 DOI: 10.1016/j.bbamcr.2016.09.012] [Citation(s) in RCA: 2380] [Impact Index Per Article: 264.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are short-lived and highly reactive molecules. The generation of ROS in cells exists in equilibrium with a variety of antioxidant defences. At low to modest doses, ROS are considered to be essential for regulation of normal physiological functions involved in development such as cell cycle progression and proliferation, differentiation, migration and cell death. ROS also play an important role in the immune system, maintenance of the redox balance and have been implicated in activation of various cellular signalling pathways. Excess cellular levels of ROS cause damage to proteins, nucleic acids, lipids, membranes and organelles, which can lead to activation of cell death processes such as apoptosis. Apoptosis is a highly regulated process that is essential for the development and survival of multicellular organisms. These organisms often need to discard cells that are superfluous or potentially harmful, having accumulated mutations or become infected by pathogens. Apoptosis features a characteristic set of morphological and biochemical features whereby cells undergo a cascade of self-destruction. Thus, proper regulation of apoptosis is essential for maintaining normal cellular homeostasis. ROS play a central role in cell signalling as well as in regulation of the main pathways of apoptosis mediated by mitochondria, death receptors and the endoplasmic reticulum (ER). This review focuses on current understanding of the role of ROS in each of these three main pathways of apoptosis. The role of ROS in the complex interplay and crosstalk between these different signalling pathways remains to be further unravelled during the coming years.
Collapse
Affiliation(s)
- Maureen Redza-Dutordoir
- Département des Sciences Biologiques (TOXEN, BIOMED), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Diana A Averill-Bates
- Département des Sciences Biologiques (TOXEN, BIOMED), Université du Québec à Montréal, Montréal, Québec, Canada.
| |
Collapse
|
241
|
The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget 2016; 6:23427-44. [PMID: 26156019 PMCID: PMC4695128 DOI: 10.18632/oncotarget.4370] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/09/2015] [Indexed: 12/30/2022] Open
Abstract
The failure of apoptosis may contribute to the formation of cancer and to its resistance to therapy. Malignant pleural mesothelioma (MPM) is an aggressive tumor that responds poorly to standard chemo- and radio-therapies. Several studies have demonstrated that a plethora of oncogenes and tumor suppressors contribute to MPM onset/progression. Importantly, most of these genes are involved in the regulation of calcium (Ca2+)-handling. Cellular Ca2+ signaling is an important regulator of many physiological processes, and it has been widely reported to participate in the regulation of apoptotic cell death in cancer cells and tissues. However, in MPM the role of cellular Ca2+ has been poorly investigated. Therefore, we examined whether Ca2+ is involved in MPM. We found that mesothelioma cell lines and short-term cultures obtained from MPM-affected patients exhibited a critical dysregulation in Ca2+ signaling. We determined that this characteristic was associated with resistance to apoptotic stimuli and that correction of intracellular Ca2+ signaling resulted in the rescue of efficient apoptotic responses. In addition, we discovered that mitochondrial Ca2+-uptake plays a pivotal role as an inducer of apoptosis in MPM. Altogether, these findings suggest the identification of new MPM markers, which in turn could be potential targets for new therapeutic approaches.
Collapse
|
242
|
Lee CF, Chavez JD, Garcia-Menendez L, Choi Y, Roe ND, Chiao YA, Edgar JS, Goo YA, Goodlett DR, Bruce JE, Tian R. Normalization of NAD+ Redox Balance as a Therapy for Heart Failure. Circulation 2016; 134:883-94. [PMID: 27489254 DOI: 10.1161/circulationaha.116.022495] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/08/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Impairments of mitochondrial function in the heart are linked intricately to the development of heart failure, but there is no therapy for mitochondrial dysfunction. METHODS We assessed the reduced/oxidized ratio of nicotinamide adenine dinucleotide (NADH/NAD(+) ratio) and protein acetylation in the failing heart. Proteome and acetylome analyses were followed by docking calculation, mutagenesis, and mitochondrial calcium uptake assays to determine the functional role of specific acetylation sites. The therapeutic effects of normalizing mitochondrial protein acetylation by expanding the NAD(+) pool also were tested. RESULTS Increased NADH/NAD(+) and protein hyperacetylation, previously observed in genetic models of defective mitochondrial function, also are present in human failing hearts as well as in mouse hearts with pathologic hypertrophy. Elevation of NAD(+) levels by stimulating the NAD(+) salvage pathway suppressed mitochondrial protein hyperacetylation and cardiac hypertrophy, and improved cardiac function in responses to stresses. Acetylome analysis identified a subpopulation of mitochondrial proteins that was sensitive to changes in the NADH/NAD(+) ratio. Hyperacetylation of mitochondrial malate-aspartate shuttle proteins impaired the transport and oxidation of cytosolic NADH in the mitochondria, resulting in altered cytosolic redox state and energy deficiency. Furthermore, acetylation of oligomycin-sensitive conferring protein at lysine-70 in adenosine triphosphate synthase complex promoted its interaction with cyclophilin D, and sensitized the opening of mitochondrial permeability transition pore. Both could be alleviated by normalizing the NAD(+) redox balance either genetically or pharmacologically. CONCLUSIONS We show that mitochondrial protein hyperacetylation due to NAD(+) redox imbalance contributes to the pathologic remodeling of the heart via 2 distinct mechanisms. Our preclinical data demonstrate a clear benefit of normalizing NADH/NAD(+) imbalance in the failing hearts. These findings have a high translational potential as the pharmacologic strategy of increasing NAD(+) precursors are feasible in humans.
Collapse
Affiliation(s)
- Chi Fung Lee
- From Mitochondria and Metabolism Center (C.F.L., L.G.-M., Y.C., N.D.R., R.T.), Department of Anesthesiology and Pain Medicine (C.F.L., L.G.-M, Y.C., N.D.R., R.T.), Department of Genome Sciences (J.D.C., J.E.B.), Department of Pathology (Y.A.C.), and Department of Medicinal Chemistry (J.S.E., Y.A.G., D.R.G.), University of Washington, Seattle, WA
| | - Juan D Chavez
- From Mitochondria and Metabolism Center (C.F.L., L.G.-M., Y.C., N.D.R., R.T.), Department of Anesthesiology and Pain Medicine (C.F.L., L.G.-M, Y.C., N.D.R., R.T.), Department of Genome Sciences (J.D.C., J.E.B.), Department of Pathology (Y.A.C.), and Department of Medicinal Chemistry (J.S.E., Y.A.G., D.R.G.), University of Washington, Seattle, WA
| | - Lorena Garcia-Menendez
- From Mitochondria and Metabolism Center (C.F.L., L.G.-M., Y.C., N.D.R., R.T.), Department of Anesthesiology and Pain Medicine (C.F.L., L.G.-M, Y.C., N.D.R., R.T.), Department of Genome Sciences (J.D.C., J.E.B.), Department of Pathology (Y.A.C.), and Department of Medicinal Chemistry (J.S.E., Y.A.G., D.R.G.), University of Washington, Seattle, WA
| | - Yongseon Choi
- From Mitochondria and Metabolism Center (C.F.L., L.G.-M., Y.C., N.D.R., R.T.), Department of Anesthesiology and Pain Medicine (C.F.L., L.G.-M, Y.C., N.D.R., R.T.), Department of Genome Sciences (J.D.C., J.E.B.), Department of Pathology (Y.A.C.), and Department of Medicinal Chemistry (J.S.E., Y.A.G., D.R.G.), University of Washington, Seattle, WA
| | - Nathan D Roe
- From Mitochondria and Metabolism Center (C.F.L., L.G.-M., Y.C., N.D.R., R.T.), Department of Anesthesiology and Pain Medicine (C.F.L., L.G.-M, Y.C., N.D.R., R.T.), Department of Genome Sciences (J.D.C., J.E.B.), Department of Pathology (Y.A.C.), and Department of Medicinal Chemistry (J.S.E., Y.A.G., D.R.G.), University of Washington, Seattle, WA
| | - Ying Ann Chiao
- From Mitochondria and Metabolism Center (C.F.L., L.G.-M., Y.C., N.D.R., R.T.), Department of Anesthesiology and Pain Medicine (C.F.L., L.G.-M, Y.C., N.D.R., R.T.), Department of Genome Sciences (J.D.C., J.E.B.), Department of Pathology (Y.A.C.), and Department of Medicinal Chemistry (J.S.E., Y.A.G., D.R.G.), University of Washington, Seattle, WA
| | - John S Edgar
- From Mitochondria and Metabolism Center (C.F.L., L.G.-M., Y.C., N.D.R., R.T.), Department of Anesthesiology and Pain Medicine (C.F.L., L.G.-M, Y.C., N.D.R., R.T.), Department of Genome Sciences (J.D.C., J.E.B.), Department of Pathology (Y.A.C.), and Department of Medicinal Chemistry (J.S.E., Y.A.G., D.R.G.), University of Washington, Seattle, WA
| | - Young Ah Goo
- From Mitochondria and Metabolism Center (C.F.L., L.G.-M., Y.C., N.D.R., R.T.), Department of Anesthesiology and Pain Medicine (C.F.L., L.G.-M, Y.C., N.D.R., R.T.), Department of Genome Sciences (J.D.C., J.E.B.), Department of Pathology (Y.A.C.), and Department of Medicinal Chemistry (J.S.E., Y.A.G., D.R.G.), University of Washington, Seattle, WA
| | - David R Goodlett
- From Mitochondria and Metabolism Center (C.F.L., L.G.-M., Y.C., N.D.R., R.T.), Department of Anesthesiology and Pain Medicine (C.F.L., L.G.-M, Y.C., N.D.R., R.T.), Department of Genome Sciences (J.D.C., J.E.B.), Department of Pathology (Y.A.C.), and Department of Medicinal Chemistry (J.S.E., Y.A.G., D.R.G.), University of Washington, Seattle, WA
| | - James E Bruce
- From Mitochondria and Metabolism Center (C.F.L., L.G.-M., Y.C., N.D.R., R.T.), Department of Anesthesiology and Pain Medicine (C.F.L., L.G.-M, Y.C., N.D.R., R.T.), Department of Genome Sciences (J.D.C., J.E.B.), Department of Pathology (Y.A.C.), and Department of Medicinal Chemistry (J.S.E., Y.A.G., D.R.G.), University of Washington, Seattle, WA
| | - Rong Tian
- From Mitochondria and Metabolism Center (C.F.L., L.G.-M., Y.C., N.D.R., R.T.), Department of Anesthesiology and Pain Medicine (C.F.L., L.G.-M, Y.C., N.D.R., R.T.), Department of Genome Sciences (J.D.C., J.E.B.), Department of Pathology (Y.A.C.), and Department of Medicinal Chemistry (J.S.E., Y.A.G., D.R.G.), University of Washington, Seattle, WA.
| |
Collapse
|
243
|
Gerle C. On the structural possibility of pore-forming mitochondrial FoF1 ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1191-1196. [PMID: 26968896 DOI: 10.1016/j.bbabio.2016.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
The mitochondrial permeability transition is an inner mitochondrial membrane event involving the opening of the permeability transition pore concomitant with a sudden efflux of matrix solutes and breakdown of membrane potential. The mitochondrial F(o)F(1) ATP synthase has been proposed as the molecular identity of the permeability transition pore. The likeliness of potential pore-forming sites in the mitochondrial F(o)F(1) ATP synthase is discussed and a new model, the death finger model, is described. In this model, movement of a p-side density that connects the lipid-plug of the c-ring with the distal membrane bending Fo domain allows reversible opening of the c-ring and structural cross-talk with OSCP and the catalytic (αβ)(3) hexamer. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Christoph Gerle
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.
| |
Collapse
|
244
|
Alvarez-Suarez JM, Giampieri F, Cordero M, Gasparrini M, Forbes-Hernández TY, Mazzoni L, Afrin S, Beltrán-Ayala P, González-Paramás AM, Santos-Buelga C, Varela-Lopez A, Quiles JL, Battino M. Activation of AMPK/Nrf2 signalling by Manuka honey protects human dermal fibroblasts against oxidative damage by improving antioxidant response and mitochondrial function promoting wound healing. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
245
|
Marchi S, Pinton P. Alterations of calcium homeostasis in cancer cells. Curr Opin Pharmacol 2016; 29:1-6. [DOI: 10.1016/j.coph.2016.03.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/04/2016] [Accepted: 03/16/2016] [Indexed: 02/01/2023]
|
246
|
Scruggs SB, Wang D, Ping P. PRKCE gene encoding protein kinase C-epsilon-Dual roles at sarcomeres and mitochondria in cardiomyocytes. Gene 2016; 590:90-6. [PMID: 27312950 DOI: 10.1016/j.gene.2016.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/23/2016] [Accepted: 06/05/2016] [Indexed: 12/26/2022]
Abstract
Protein kinase C-epsilon (PKCε) is an isoform of a large PKC family of enzymes that has a variety of functions in different cell types. Here we discuss two major roles of PKCε in cardiac muscle cells; specifically, its role in regulating cardiac muscle contraction via targeting the sarcomeric proteins, as well as modulating cardiac cell energy production and metabolism by targeting cardiac mitochondria. The importance of PKCε action is described within the context of intracellular localization, as substrate selectivity and specificity is achieved through spatiotemporal targeting of PKCε. Accordingly, the role of PKCε in regulating myocardial function in physiological and pathological states has been documented in both cardioprotection and cardiac hypertrophy.
Collapse
Affiliation(s)
- Sarah B Scruggs
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Ding Wang
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peipei Ping
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
247
|
Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW, Kitsis RN, Otsu K, Ping P, Rizzuto R, Sack MN, Wallace D, Youle RJ. Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1960-91. [PMID: 27126807 PMCID: PMC6398603 DOI: 10.1161/res.0000000000000104] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular disease is a major leading cause of morbidity and mortality in the United States and elsewhere. Alterations in mitochondrial function are increasingly being recognized as a contributing factor in myocardial infarction and in patients presenting with cardiomyopathy. Recent understanding of the complex interaction of the mitochondria in regulating metabolism and cell death can provide novel insight and therapeutic targets. The purpose of this statement is to better define the potential role of mitochondria in the genesis of cardiovascular disease such as ischemia and heart failure. To accomplish this, we will define the key mitochondrial processes that play a role in cardiovascular disease that are potential targets for novel therapeutic interventions. This is an exciting time in mitochondrial research. The past decade has provided novel insight into the role of mitochondria function and their importance in complex diseases. This statement will define the key roles that mitochondria play in cardiovascular physiology and disease and provide insight into how mitochondrial defects can contribute to cardiovascular disease; it will also discuss potential biomarkers of mitochondrial disease and suggest potential novel therapeutic approaches.
Collapse
|
248
|
Ying Y, Padanilam BJ. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell Mol Life Sci 2016; 73:2309-24. [PMID: 27048819 PMCID: PMC5490387 DOI: 10.1007/s00018-016-2202-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
In contrast to apoptosis and autophagy, necrotic cell death was considered to be a random, passive cell death without definable mediators. However, this dogma has been challenged by recent developments suggesting that necrotic cell death can also be a regulated process. Regulated necrosis includes multiple cell death modalities such as necroptosis, parthanatos, ferroptosis, pyroptosis, and mitochondrial permeability transition pore (MPTP)-mediated necrosis. Several distinctive executive molecules, particularly residing on the mitochondrial inner and outer membrane, amalgamating to form the MPTP have been defined. The c-subunit of the F1F0ATP synthase on the inner membrane and Bax/Bak on the outer membrane are considered to be the long sought components that form the MPTP. Opening of the MPTP results in loss of mitochondrial inner membrane potential, disruption of ATP production, increased ROS production, organelle swelling, mitochondrial dysfunction and consequent necrosis. Cyclophilin D, along with adenine nucleotide translocator and the phosphate carrier are considered to be important regulators involved in the opening of MPTP. Increased production of ROS can further trigger other necrotic pathways mediated through molecules such as PARP1, leading to irreversible cell damage. This review examines the roles of PARP1 and cyclophilin D in necrotic cell death. The hierarchical role of p53 in regulation and integration of key components of signaling pathway to elicit MPTP-mediated necrosis and ferroptosis is explored. In the context of recent insights, the indistinct role of necroptosis signaling in tubular necrosis after ischemic kidney injury is scrutinized. We conclude by discussing the participation of p53, PARP1 and cyclophilin D and their overlapping pathways to elicit MPTP-mediated necrosis and ferroptosis in acute kidney injury.
Collapse
Affiliation(s)
- Yuan Ying
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
- Department of Internal Medicine, Division of Nephrology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
249
|
Doczi J, Torocsik B, Echaniz-Laguna A, Mousson de Camaret B, Starkov A, Starkova N, Gál A, Molnár MJ, Kawamata H, Manfredi G, Adam-Vizi V, Chinopoulos C. Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells. Sci Rep 2016; 6:26700. [PMID: 27221760 PMCID: PMC4879635 DOI: 10.1038/srep26700] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 05/09/2016] [Indexed: 01/03/2023] Open
Abstract
The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT’s voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the ‘thinness ratio’ and the ‘cobalt-calcein’ technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca2+ levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient.
Collapse
Affiliation(s)
- Judit Doczi
- Department of Medical Biochemistry, Semmelweis University MTA-SE Laboratory for Neurobiochemistry, Budapest, 1094, Hungary.,MTA-SE Lendület Neurobiochemistry Research Group, Budapest, Hungary
| | - Beata Torocsik
- Department of Medical Biochemistry, Semmelweis University MTA-SE Laboratory for Neurobiochemistry, Budapest, 1094, Hungary
| | - Andoni Echaniz-Laguna
- Département de Neurologie, Hôpitaux Universitaires, Hôpital de Hautepierre, 67098 Strasbourg cedex, France
| | - Bénédicte Mousson de Camaret
- Service des Maladies Héréditaires du Métabolisme, Centre de Biologie et de Pathologie Est, CHU Lyon, 69677 Bron cedex, France
| | - Anatoly Starkov
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Natalia Starkova
- Icahn School of Medicine at Mount Sinai, Department of Hematology and Medical Oncology, New York, NY 10029, USA
| | - Aniko Gál
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, 1083, Hungary
| | - Mária J Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, 1083, Hungary
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, Semmelweis University MTA-SE Laboratory for Neurobiochemistry, Budapest, 1094, Hungary
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University MTA-SE Laboratory for Neurobiochemistry, Budapest, 1094, Hungary.,MTA-SE Lendület Neurobiochemistry Research Group, Budapest, Hungary
| |
Collapse
|
250
|
Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques. Nat Protoc 2016; 11:1067-80. [DOI: 10.1038/nprot.2016.064] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|