2501
|
Abstract
Lysosomes are the final destination of the autophagic pathway. It is in the acidic milieu of the lysosomes that autophagic cargo is metabolized and recycled. One would expect that diseases with primary lysosomal defects would be among the first systems in which autophagy would be studied. In reality, this is not the case. Lysosomal storage diseases, a group of more than 60 diverse inherited disorders, have only recently become a focus of autophagic research. Studies of these clinically severe conditions promise not only to clarify pathogenic mechanisms, but also to expand our knowledge of autophagy itself. In this chapter, we will describe the lysosomal storage diseases in which autophagy has been explored, and present the approaches used to evaluate this essential cellular pathway.
Collapse
Affiliation(s)
- Nina Raben
- The Arthritis and Rheumatism Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
2502
|
Abstract
The field of autophagy research has advanced rapidly in recent years, with important discoveries made in relation to both molecular mechanisms and physiological functions. Initially, autophagy was thought to be primarily a response to starvation. Although this might be true in lower eukaryotes, this catabolic process exerts various physiological functions in higher eukaryotes. This review summarizes the physiological roles of autophagy in amino acid pool maintenance, intracellular quality control, development, cell death, tumor suppression and anti-aging.
Collapse
|
2503
|
Hartley T, Brumell J, Volchuk A. Emerging roles for the ubiquitin-proteasome system and autophagy in pancreatic beta-cells. Am J Physiol Endocrinol Metab 2009; 296:E1-10. [PMID: 18812463 DOI: 10.1152/ajpendo.90538.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein degradation in eukaryotic cells is mediated primarily by the ubiquitin-proteasome system and autophagy. Turnover of protein aggregates and other cytoplasmic components, including organelles, is another function attributed to autophagy. The ubiquitin-proteasome system and autophagy are essential for normal cell function but under certain pathological conditions can be overwhelmed, which can lead to adverse effects in cells. In this review we will focus primarily on the insulin-producing pancreatic beta-cell. Pancreatic beta-cells respond to glucose levels by both producing and secreting insulin. The inability of beta-cells to secrete sufficient insulin is a major contributory factor in the development of type 2 diabetes. The aim of this review is to examine some of the crucial roles of the ubiquitin-proteasome system and autophagy in normal pancreatic beta-cell function and how these pathways may become dysfunctional under pathological conditions associated with metabolic syndromes.
Collapse
Affiliation(s)
- Taila Hartley
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 1L7 Canada
| | | | | |
Collapse
|
2504
|
Yue Z, Holstein GR, Chait BT, Wang QJ. Using genetic mouse models to study the biology and pathology of autophagy in the central nervous system. Methods Enzymol 2009; 453:159-80. [PMID: 19216906 DOI: 10.1016/s0076-6879(08)04008-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Autophagy is a cellular self-eating process that plays an important role in neuroprotection as well as neuronal injury and death. The detailed pathway of autophagy in these two opposing functions remains to be elucidated. Neurons are highly specialized, postmitotic cells that are typically composed of a soma (cell body), a dendritic tree, and an axon. Here, we describe methods for studying autophagy in the central nervous system (CNS). The first involves the use of recently developed transgenic mice expressing the fluorescent autophagosome marker, GFP-LC3. Although CNS neurons show little evidence for the presence of GFP-LC3-containing puncta under normal conditions, under pathological conditions such neurons exhibit many GFP-LC3 puncta. The onset and density of GFP-LC3 puncta have been found to vary significantly in the subcompartments of the affected neurons. These studies suggest that autophagy is distinctly regulated in CNS neurons and that neuronal autophagy can be highly compartmentalized. While transgenic mice expressing GFP-LC3 are a valuable tool for assessing autophagic activity in the CNS, caution needs to be taken when interpreting results solely based on the presence of GFP-LC3 puncta. Therefore, traditional ultrastructural analysis using electron microscopy remains an important tool for studying autophagosomes in vivo. Additional reporters of autophagy are constantly being sought. For example, recently a selective substrate of autophagy p62/SQSTM1 has been shown to be specifically regulated by autophagic activity. Therefore, p62/SQSTM1 protein levels can be used as an additional reporter for autophagic activity.
Collapse
Affiliation(s)
- Zhenyu Yue
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
2505
|
Abstract
Lymphocyte homeostasis is tightly regulated in vivo by various factors including cytokines, antigens, and costimulatory signals. Central to this regulation is the intricate balance between survival and apoptosis determined by pro- and antiapoptotic factors, including Bcl-2/Bcl-xL of the Bcl-2 family in the intrinsic death pathway and Fas/FADD of the TNF death receptor superfamily in the extrinsic death pathway. Recent studies have identified a critical role for autophagy, a well-conserved catabolic process in eukaryotic cells, in T and B lymphocyte homeostasis. Autophagy is essential for mature T lymphocyte survival and proliferation. In addition, autophagy can promote T cell death in defined physiologic or pathologic conditions. Autophagy also contributes to the survival of subsets of B lymphocytes, including developing pre-B cells as well as B1 B cells in vivo. Thus, autophagy represents a novel pathway regulating both developing and mature lymphocytes. Future studies are required to investigate the role of autophagy in regulating T and B cell homeostasis during immune responses to pathogens, as well as to define the mechanisms by which autophagy regulates lymphocyte death and survival.
Collapse
|
2506
|
Guachalla LM, Rudolph KL. Improve organ health by chewing up old proteins? Hepatology 2009; 49:330-2. [PMID: 19115216 DOI: 10.1002/hep.22738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
2507
|
Yang DS, Lee JH, Nixon RA. Monitoring autophagy in Alzheimer's disease and related neurodegenerative diseases. Methods Enzymol 2009; 453:111-44. [PMID: 19216904 DOI: 10.1016/s0076-6879(08)04006-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This chapter describes detailed methods to monitor autophagy in neurodegenerative disorders, especially in Alzheimer's disease. Strategies to assess the competence of autophagy-related mechanisms in disease states ideally incorporate analyses of human disease and control tissues, which may include brain, fibroblasts, or other peripheral cells, in addition to animal and cell models of the neurodegenerative disease pathology and pathobiology. Cross-validation of pathophysiological mechanisms in the diseased tissues is always critical. Because of the cellular heterogeneity of the brain and the differential vulnerability of the neural cells in a given disease state, analyses focus on regional comparisons of affected and unaffected regions or cell populations within a particular brain region and include ultrastructural, immunological, and cell and molecular biological approaches.
Collapse
Affiliation(s)
- Dun-Sheng Yang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | | | | |
Collapse
|
2508
|
|
2509
|
Waguri S, Komatsu M. Chapter 9 Biochemical and Morphological Detection of Inclusion Bodies in Autophagy‐Deficient Mice. Methods Enzymol 2009; 453:181-96. [DOI: 10.1016/s0076-6879(08)04009-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
2510
|
|
2511
|
Kim SH, Munemasa Y, Kwong JMK, Ahn JH, Mareninov S, Gordon LK, Caprioli J, Piri N. Activation of autophagy in retinal ganglion cells. J Neurosci Res 2008; 86:2943-51. [PMID: 18521932 DOI: 10.1002/jnr.21738] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy has been shown to be activated in neuronal cells in response to injury and suggested to have a cell-protective role in neurodegenerative diseases. In this study, we investigated the activation of autophagy in retinal ganglion cells (RGCs) following optic nerve transection (ONT) and evaluated its effect on RGC survival. Expression of several autophagy-related genes, including Atg5, Atg7, and Atg12, and autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1 were analyzed at the transcriptional or protein level 1, 3, and 7 days after ONT. Transcription of the Atg5, Atg7, and Atg12 genes was up-regulated 1.5- to 1.8-fold in the retina 3 days after ONT compared with that in the controls. Expression of Atg12 mRNA was increased 1.6-fold 1 day after ONT. Seven days after ONT, expression of Atg5, Atg7, and Atg12 mRNA was comparable to that in the untreated retinas. Western blot analysis of proteins isolated from RGCs showed 1.6-, 2.7-, and 1.7-fold increases in LC3-II level 1, 3, and 7 days after ONT, respectively, compared with those in the controls. Expression of beclin-1 was 1.7-fold higher 1 day after RGCs were axotomized, but 3 and 7 days after ONT it was comparable to that of the control. Inhibition of autophagy with bafilomycin A1, 3-methyladenine, and Wortmannin in RGC-5 cells under serum-deprived conditions decreased cell viability by approximately 40%. These results suggest possible activation of autophagy in RGCs after optic nerve transection and demonstrate its protective role in RGC-5 cells maintained under conditions of serum deprivation.
Collapse
Affiliation(s)
- Seok Hwan Kim
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
2512
|
Protein Misfolding and Axonal Protection in Neurodegenerative Diseases. PROTEIN FOLDING AND MISFOLDING: NEURODEGENERATIVE DISEASES 2008. [DOI: 10.1007/978-1-4020-9434-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2513
|
Endoplasmic Reticulum Stress in Neurodegeneration. PROTEIN FOLDING AND MISFOLDING: NEURODEGENERATIVE DISEASES 2008. [DOI: 10.1007/978-1-4020-9434-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2514
|
Fukui H, Moraes CT. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum Mol Genet 2008; 18:1028-36. [PMID: 19095717 DOI: 10.1093/hmg/ddn437] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-dependent accumulation of partially deleted mitochondrial DNA (DeltamtDNA) has been suggested to contribute to aging and the development of age-associated diseases including Parkinson's disease. However, the molecular mechanisms underlying the generation and accumulation of DeltamtDNA have not been addressed in vivo. In this study, we have developed a mouse model expressing an inducible mitochondria-targeted restriction endonuclease (PstI). Using this system, we could trigger mtDNA double-strand breaks (DSBs) in adult neurons. We found that this transient event leads to the generation of a family of DeltamtDNA with features that closely resemble naturally-occurring mtDNA deletions. The formation of these deleted species is likely to be mediated by yet uncharacterized DNA repairing machineries that participate in homologous recombination and non-homologous end-joining. Furthermore, we obtained in vivo evidence that DeltamtDNAs with larger deletions accumulate faster than those with smaller deletions, implying a replicative advantage of smaller mtDNAs. These findings identify DSB, DNA repair systems and replicative advantage as likely mechanisms underlying the generation and age-associated accumulation of DeltamtDNA in mammalian neurons.
Collapse
Affiliation(s)
- Hirokazu Fukui
- Neuroscience Program, University of Miami School of Medicine, Miami, FL 33136, USA
| | | |
Collapse
|
2515
|
Autophagy is involved in the ischemic preconditioning. Neurosci Lett 2008; 451:16-9. [PMID: 19103253 DOI: 10.1016/j.neulet.2008.12.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/04/2008] [Accepted: 12/06/2008] [Indexed: 11/21/2022]
Abstract
Autophagy is a key pathway for the clearance of damaged organelles. Ischemic preconditioning (IPC) and autophagy are enhanced by mild hypoxic insults, but the association between autophagy and IPC remains unclear. We investigated the existence and role of autophagy in IPC. In an in vitro PC12 cell model, IPC increased generation and degradation of autophagosomes, as revealed by increased LC3-II bands, cathepsin D positive cells, lysosomal activity and autophagic vacuoles on electron microscopy. Autophagic activity was blocked using 3-methyladenine during IPC, and cell viabilities were measured using FASC and WST-1 assays. Inhibition of autophagy, especially during reperfusion or lethal oxygen-glucose deprivation periods ameliorated the neuroprotective effects of IPC. Moreover, inhibiting autophagy also attenuated Hsp70 upregulation induced by IPC. These findings imply that autophagy participates in IPC-induced neuroprotection, and that autophagy might provide a means of neuroprotection against cerebral ischemia.
Collapse
|
2516
|
Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol Cell Biol 2008; 29:1095-106. [PMID: 19075009 DOI: 10.1128/mcb.01227-08] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular accumulation of unfolded or misfolded proteins is believed to contribute to aging and age-related neurodegenerative diseases. However, the links between age-dependent proteotoxicity and cellular protein degradation systems remain poorly understood. Here, we show that 26S proteasome activity and abundance attenuate with age, which is associated with the impaired assembly of the 26S proteasome with the 19S regulatory particle (RP) and the 20S proteasome. In a genetic gain-of-function screen, we characterized Rpn11, which encodes a subunit of the 19S RP, as a suppressor of expanded polyglutamine-induced progressive neurodegeneration. Rpn11 overexpression suppressed the age-related reduction of the 26S proteasome activity, resulting in the extension of flies' life spans with suppression of the age-dependent accumulation of ubiquitinated proteins. On the other hand, the loss of function of Rpn11 caused an early onset of reduced 26S proteasome activity and a premature age-dependent accumulation of ubiquitinated proteins. It also caused a shorter life span and an enhanced neurodegenerative phenotype. Our results suggest that maintaining the 26S proteasome with age could extend the life span and suppress the age-related progression of neurodegenerative diseases.
Collapse
|
2517
|
Pacheco CD, Elrick MJ, Lieberman AP. Tau deletion exacerbates the phenotype of Niemann-Pick type C mice and implicates autophagy in pathogenesis. Hum Mol Genet 2008; 18:956-65. [PMID: 19074461 DOI: 10.1093/hmg/ddn423] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hyperphosphorylation and aggregation of the microtubule-binding protein tau characterize a diverse array of neurodegenerative disorders. Most of these lack mutations in the encoding MAPT gene, and the role of tau in disease pathogenesis remains controversial. Among these tauopathies is Niemann-Pick type C disease (NPC), a lysosomal storage disorder characterized by progressive neurodegeneration and premature death, most often caused by an inherited deficiency in the intracellular lipid trafficking protein NPC1. To determine the extent to which tau affects NPC pathogenesis, we generated Npc1-/- mice deficient in tau. Unexpectedly, NPC1/tau double null mutants are generated in markedly smaller litters, exhibit an enhanced systemic phenotype and die significantly earlier than NPC1 single null mutants. As autophagy is up-regulated in NPC and protein degradation through this pathway depends on movement along microtubules, we knocked down MAPT expression in NPC1-deficient human fibroblasts and examined effects on this pathway. We show that an acute reduction of tau expression in a cellular model of NPC decreases induction and flux through the autophagic pathway. Our data establish that MAPT deletion exacerbates the NPC phenotype through a mechanism independent of tau protein aggregation and identifies a critical role for tau in the regulation of autophagy in NPC1-deficient cells.
Collapse
Affiliation(s)
- Chris D Pacheco
- Neuroscience Program, The University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
2518
|
Mitra S, Tsvetkov AS, Finkbeiner S. Single neuron ubiquitin-proteasome dynamics accompanying inclusion body formation in huntington disease. J Biol Chem 2008; 284:4398-403. [PMID: 19074152 DOI: 10.1074/jbc.m806269200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The accumulation of mutant protein in intracellular aggregates is a common feature of neurodegenerative disease. In Huntington disease, mutant huntingtin leads to inclusion body (IB) formation and neuronal toxicity. Impairment of the ubiquitin-proteasome system (UPS) has been implicated in IB formation and Huntington disease pathogenesis. However, IBs form asynchronously in only a subset of cells with mutant huntingtin, and the relationship between IB formation and UPS function has been difficult to elucidate. Here, we applied single-cell longitudinal acquisition and analysis to monitor mutant huntingtin IB formation, UPS function, and neuronal toxicity. We found that proteasome inhibition is toxic to striatal neurons in a dose-dependent fashion. Before IB formation, the UPS is more impaired in neurons that go on to form IBs than in those that do not. After forming IBs, impairment is lower in neurons with IBs than in those without. These findings suggest IBs are a protective cellular response to mutant protein mediated in part by improving intracellular protein degradation.
Collapse
Affiliation(s)
- Siddhartha Mitra
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
| | | | | |
Collapse
|
2519
|
Yen WL, Klionsky DJ. How to live long and prosper: autophagy, mitochondria, and aging. Physiology (Bethesda) 2008; 23:248-62. [PMID: 18927201 DOI: 10.1152/physiol.00013.2008] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autophagy is a process of cellular self-degradation in which portions of the cytoplasm are sequestered within cytosolic double-membrane vesicles and delivered to the lysosome/vacuole. This process occurs in all eukaryotic cells and is partly a stress response; autophagy is induced during starvation and hypoxia. However, autophagy also plays a role during development and is associated with a range of diseases. Accumulating data also suggest the involvement of autophagy in aging. For example, the role of various hormones and nutrient sensing pathways in life span extension may involve autophagy. Similarly, autophagy is the primary mechanism for removing damaged organelles, such as mitochondria, which may have a direct impact on aging. Here, we review the role of autophagy, with an emphasis on the signaling pathways that are involved in regulation, and the consequences of autophagy induction with regard to aging.
Collapse
Affiliation(s)
- Wei-Lien Yen
- Life Sciences Institute, and Departments of Molecular, Cellular, and Developmental Biology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
2520
|
Ballabio A, Gieselmann V. Lysosomal disorders: from storage to cellular damage. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:684-96. [PMID: 19111581 DOI: 10.1016/j.bbamcr.2008.12.001] [Citation(s) in RCA: 399] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 11/19/2008] [Accepted: 12/01/2008] [Indexed: 12/16/2022]
Abstract
Lysosomal storage diseases represent a group of about 50 genetic disorders caused by deficiencies of lysosomal and non-lysosomal proteins. Patients accumulate compounds which are normally degraded in the lysosome. In many diseases this accumulation affects various organs leading to severe symptoms and premature death. The revelation of the mechanism by which stored compounds affect cellular function is the basis for understanding pathophysiology underlying lysosomal storage diseases. In the past years it has become clear that storage compounds interfere with various processes on the cellular level. The spectrum covers e.g. receptor activation by non-physiologic ligands, modulation of receptor response and intracellular effectors of signal transduction cascades, impairment of autophagy, and others. Importantly, many of these processes are associated with accumulation of storage material in non-lysosomal compartments. Here we summarize current knowledge on the effects that storage material can elicit on the cellular level.
Collapse
Affiliation(s)
- Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Federico II University, Naples, Italy
| | | |
Collapse
|
2521
|
Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 2008; 105:19211-6. [PMID: 19050071 DOI: 10.1073/pnas.0810452105] [Citation(s) in RCA: 411] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy mediates the cellular response to nutrient deprivation, protein aggregation, and pathogen invasion in human. Dysfunction of autophagy has been implicated in multiple human diseases including cancer. The identification of novel autophagy factors in mammalian cells will provide critical mechanistic insights into how this complicated cellular pathway responds to a broad range of challenges. Here, we report the cloning of an autophagy-specific protein that we called Barkor (Beclin 1-associated autophagy-related key regulator) through direct interaction with Beclin 1 in the human phosphatidylinositol 3-kinase class III complex. Barkor shares 18% sequence identity and 32% sequence similarity with yeast Atg14. Elimination of Barkor expression by RNA interference compromises starvation- and rapamycin-induced LC3 lipidation and autophagosome formation. Overexpression of Barkor leads to autophagy activation and increased number and enlarged volume of autophagosomes. Tellingly, Barkor is also required for suppression of the autophagy-mediated intracellular survival of Salmonella typhimurium in mammalian cells. Mechanistically, Barkor competes with UV radiation resistance associated gene product (UVRAG) for interaction with Beclin 1, and the complex formation of Barkor and Beclin1 is required for their localizations to autophagosomes. Therefore, we define a regulatory signaling pathway mediated by Barkor that positively controls autophagy through Beclin 1 and represents a potential target for drug development in the treatment of human diseases implicated in autophagic dysfunction.
Collapse
|
2522
|
Abstract
Dying cells often display a large-scale accumulation of autophagosomes and hence adopt a morphology called autophagic cell death. In many cases, it is agreed that this autophagic cell death is cell death with autophagy rather than cell death by autophagy. Here, we evaluate the accumulating body of literature that argues that cell death occurs by autophagy. We also list the caveats that must be considered when deciding whether or not autophagy is an important effector mechanism of cell death.
Collapse
|
2523
|
Cuervo AM. Autophagy and aging: keeping that old broom working. Trends Genet 2008; 24:604-12. [PMID: 18992957 PMCID: PMC2745226 DOI: 10.1016/j.tig.2008.10.002] [Citation(s) in RCA: 421] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 10/12/2008] [Accepted: 10/14/2008] [Indexed: 12/19/2022]
Abstract
Autophagy, a highly conserved mechanism of quality control inside cells, is essential for the maintenance of cellular homeostasis and for the orchestration of an efficient cellular response to stress. The decrease in autophagic activity observed in almost all cells and tissues as organisms age was proposed to contribute to different aspects of the aging phenotype and to the aggravation of detrimental age-related diseases. The recent advances in our understanding of the molecular mechanisms underlying autophagy and the identification of the subset of genes involved in this process has enabled the use of genetic manipulations to start testing this hypothesis. Here, I review the recent genetic evidence in support of tight connections between autophagy, health span and aging.
Collapse
Affiliation(s)
- Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center and Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Ullmann B. 611, Bronx, NY 10461, USA.
| |
Collapse
|
2524
|
Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia–ischemia induced brain injury. Neurobiol Dis 2008; 32:329-39. [DOI: 10.1016/j.nbd.2008.07.022] [Citation(s) in RCA: 332] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/21/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022] Open
|
2525
|
Li F, Wang L, Burgess RJ, Weinshilboum RM. Thiopurine S-methyltransferase pharmacogenetics: autophagy as a mechanism for variant allozyme degradation. Pharmacogenet Genomics 2008; 18:1083-94. [PMID: 18820593 PMCID: PMC2583164 DOI: 10.1097/fpc.0b013e328313e03f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Thiopurine S-methyltransferase (TPMT)*3A is degraded much more rapidly than is the 'wild-type' enzyme through a ubiquitin-proteasome-dependent process. It also forms aggresomes, suggesting a possible dynamic balance between degradation and aggregation. We set out to identify genes encoding proteins participating in these processes. METHODS Green fluorescent protein tagged TPMT*3A was expressed in a Saccharomyces cerevisiae gene deletion library, and flow cytometry was used to screen for cells with high fluorescence intensity, indicating the loss of a gene essential for TPMT*3A degradation. RESULTS Twenty-four yeast genes were identified in functional categories that included ubiquitin-dependent protein degradation, vesicle trafficking, and vacuolar degradation. The presence of genes encoding proteins involved in vesicular transport and vacuolar degradation suggested a possible role in TPMT*3A degradation for autophagy--a process not previously identified as a pharmacogenomic mechanism. In support of that hypothesis, TPMT*3A aggregates increased dramatically in mutants for vacuolar protease and autophagy-related genes. Furthermore, TPMT*3A expression in human cells induced autophagy, and small interfering RNA-mediated knockdown of ATG7, an autophagy-related human protein, enhanced TPMT*3A aggregation but not that of TPMT*3C or wild-type TPMT, indicating that autophagy contributes to TPMT*3A degradation in mammalian cells. We also demonstrated that UBE2G2, the human homologue of the E2 ubiquitin-conjugating enzyme identified during the yeast genetic screen, was involved in TPMT*3A degradation in human cells. CONCLUSION These results indicate that autophagy should be considered among mechanisms responsible for the effects of pharmacogenetically significant polymorphisms that alter encoded amino acids.
Collapse
Affiliation(s)
- Fang Li
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic-Mayo Medical School, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
2526
|
Melli G, Taiana M, Camozzi F, Triolo D, Podini P, Quattrini A, Taroni F, Lauria G. Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Exp Neurol 2008; 214:276-84. [PMID: 18809400 DOI: 10.1016/j.expneurol.2008.08.013] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/08/2008] [Accepted: 08/21/2008] [Indexed: 01/14/2023]
Abstract
The study investigates if alpha-lipoic acid is neuroprotective against chemotherapy induced neurotoxicity, if mitochondrial damage plays a critical role in toxic neurodegenerative cascade, and if neuroprotective effects of alpha-lipoic acid depend on mitochondria protection. We used an in vitro model of chemotherapy induced peripheral neuropathy that closely mimic the in vivo condition by exposing primary cultures of dorsal root ganglion (DRG) sensory neurons to paclitaxel and cisplatin, two widely used and highly effective chemotherapeutic drugs. This approach allowed investigating the efficacy of alpha-lipoic acid in preventing axonal damage and apoptosis and the function and ultrastructural morphology of mitochondria after exposure to toxic agents and alpha-lipoic acid. Our results demonstrate that both cisplatin and paclitaxel cause early mitochondrial impairment with loss of membrane potential and induction of autophagic vacuoles in neurons. Alpha-lipoic acid exerts neuroprotective effects against chemotherapy induced neurotoxicity in sensory neurons: it rescues the mitochondrial toxicity and induces the expression of frataxin, an essential mitochondrial protein with anti-oxidant and chaperone properties. In conclusion mitochondrial toxicity is an early common event both in paclitaxel and cisplatin induced neurotoxicity. Alpha-lipoic acid protects sensory neurons through its anti-oxidant and mitochondrial regulatory functions, possibly inducing the expression of frataxin. These findings suggest that alpha-lipoic acid might reduce the risk of developing peripheral nerve toxicity in patients undergoing chemotherapy and encourage further confirmatory clinical trials.
Collapse
Affiliation(s)
- Giorgia Melli
- Neuromuscular Diseases Unit, IRCCS Foundation Neurological Institute Carlo Besta, Via Celoria, 11 20133, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
2527
|
Du L, Hickey RW, Bayir H, Watkins SC, Tyurin VA, Guo F, Kochanek PM, Jenkins LW, Ren J, Gibson G, Chu CT, Kagan VE, Clark RSB. Starving neurons show sex difference in autophagy. J Biol Chem 2008; 284:2383-96. [PMID: 19036730 DOI: 10.1074/jbc.m804396200] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sex-dependent differences in adaptation to famine have long been appreciated, thought to hinge on female versus male preferences for fat versus protein sources, respectively. However, whether these differences can be reduced to neurons, independent of typical nutrient depots, such as adipose tissue, skeletal muscle, and liver, was heretofore unknown. A vital adaptation to starvation is autophagy, a mechanism for recycling amino acids from organelles and proteins. Here we show that segregated neurons from males in culture are more vulnerable to starvation than neurons from females. Nutrient deprivation decreased mitochondrial respiration, increased autophagosome formation, and produced cell death more profoundly in neurons from males versus females. Starvation-induced neuronal death was attenuated by 3-methyladenine, an inhibitor of autophagy; Atg7 knockdown using small interfering RNA; or L-carnitine, essential for transport of fatty acids into mitochondria, all more effective in neurons from males versus females. Relative tolerance to nutrient deprivation in neurons from females was associated with a marked increase in triglyceride and free fatty acid content and a cytosolic phospholipase A2-dependent increase in formation of lipid droplets. Similar sex differences in sensitivity to nutrient deprivation were seen in fibroblasts. However, although inhibition of autophagy using Atg7 small interfering RNA inhibited cell death during starvation in neurons, it increased cell death in fibroblasts, implying that the role of autophagy during starvation is both sex- and tissue-dependent. Thus, during starvation, neurons from males more readily undergo autophagy and die, whereas neurons from females mobilize fatty acids, accumulate triglycerides, form lipid droplets, and survive longer.
Collapse
Affiliation(s)
- Lina Du
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, and Children's Hospital of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2528
|
Qiao L, Hamamichi S, Caldwell KA, Caldwell GA, Yacoubian TA, Wilson S, Xie ZL, Speake LD, Parks R, Crabtree D, Liang Q, Crimmins S, Schneider L, Uchiyama Y, Iwatsubo T, Zhou Y, Peng L, Lu Y, Standaert DG, Walls KC, Shacka JJ, Roth KA, Zhang J. Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity. Mol Brain 2008; 1:17. [PMID: 19021916 PMCID: PMC2600785 DOI: 10.1186/1756-6606-1-17] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/21/2008] [Indexed: 01/19/2023] Open
Abstract
α-synuclein (α-syn) is a main component of Lewy bodies (LB) that occur in many neurodegenerative diseases, including Parkinson's disease (PD), dementia with LB (DLB) and multi-system atrophy. α-syn mutations or amplifications are responsible for a subset of autosomal dominant familial PD cases, and overexpression causes neurodegeneration and motor disturbances in animals. To investigate mechanisms for α-syn accumulation and toxicity, we studied a mouse model of lysosomal enzyme cathepsin D (CD) deficiency, and found extensive accumulation of endogenous α-syn in neurons without overabundance of α-syn mRNA. In addition to impaired macroautophagy, CD deficiency reduced proteasome activity, suggesting an essential role for lysosomal CD function in regulating multiple proteolytic pathways that are important for α-syn metabolism. Conversely, CD overexpression reduces α-syn aggregation and is neuroprotective against α-syn overexpression-induced cell death in vitro. In a C. elegans model, CD deficiency exacerbates α-syn accumulation while its overexpression is protective against α-syn-induced dopaminergic neurodegeneration. Mutated CD with diminished enzymatic activity or overexpression of cathepsins B (CB) or L (CL) is not protective in the worm model, indicating a unique requirement for enzymatically active CD. Our data identify a conserved CD function in α-syn degradation and identify CD as a novel target for LB disease therapeutics.
Collapse
Affiliation(s)
- Liyan Qiao
- Department of Pathology, University of Alabama at Birmingham, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2529
|
Young JE, Martinez RA, La Spada AR. Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation. J Biol Chem 2008; 284:2363-73. [PMID: 19017649 DOI: 10.1074/jbc.m806088200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although autophagy maintains normal neural function by degrading misfolded proteins, little is known about how neurons activate this integral response. Furthermore, classical methods of autophagy induction used with nonneural cells, such as starvation, simply result in neuron death. To study neuronal autophagy, we cultured primary cortical neurons from transgenic mice that ubiquitously express green fluorescent protein-tagged LC3 and monitored LC3-I to LC3-II conversion by immunohistochemistry and immunoblotting. Evaluation of different culture media led us to discover that culturing primary neurons in Dulbecco's modified Eagle's medium without B27 supplementation robustly activates autophagy. We validated this nutrient-limited media approach for inducing autophagy by showing that 3-methyl-adenine treatment and Atg5 RNA interference knockdown each inhibits LC3-I to LC3-II conversion. Evaluation of B27 supplement components yielded insulin as the factor whose absence induced autophagy in primary neurons, and this activation was mammalian target of rapamycin-dependent. When we tested if nutrient-limited media could protect neurons expressing polyglutamine-expanded proteins against cell death, we observed a strong protective effect, probably due to autophagy activation. Our results indicate that nutrient deprivation can be used to understand the regulatory basis of neuronal autophagy and implicate diminished insulin signaling in the activation of neuronal autophagy.
Collapse
Affiliation(s)
- Jessica E Young
- Department of Laboratory Medicine, Center for Neurogenentics and Neurotherapeutics, University of Washington Medical Center, Seattle, WA 98195, USA
| | | | | |
Collapse
|
2530
|
Samokhvalov V, Scott BA, Crowder CM. Autophagy protects against hypoxic injury in C. elegans. Autophagy 2008; 4:1034-41. [PMID: 18849662 DOI: 10.4161/auto.6994] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Macroautophagy has been implicated in a variety of pathological processes. Hypoxic/ischemic cellular injury is one such process in which autophagy has emerged as an important regulator. In general, autophagy is induced after a hypoxic/ischemic insult; however, whether the induction of autophagy promotes cell death or recovery is controversial and appears to be context dependent. We have developed C. elegans as a genetically tractable model for the study of hypoxic cell injury. Both necrosis and apoptosis are mechanisms of cell death following hypoxia in C. elegans. However, the role of autophagy in hypoxic injury in C. elegans has not been examined. Here, we found that RNAi knockdown of the C. elegans homologs of beclin 1/Atg6 (bec-1) and LC3/Atg8 (lgg-1, lgg-2), and mutation of Atg1 (unc-51) decreased animal survival after a severe hypoxic insult. Acute inhibition of autophagy by the type III phosphatidylinositol 3-kinase inhibitors, 3-methyladenine and Wortmannin, also sensitized animals to hypoxic death. Hypoxia-induced neuronal and myocyte injury as well as necrotic cellular morphology were increased by RNAi knockdown of BEC-1. Hypoxia increased the expression of a marker of autophagosomes in a bec-1-dependent manner. Finally, we found that the hypoxia hypersensitive phenotype of bec-1(RNAi) animals could be blocked by loss-of-function mutations in either the apoptosis or necrosis pathway. These results argue that inhibition of autophagy sensitizes C. elegans and its cells to hypoxic injury and that this sensitization is blocked or circumvented when either of the two major cell-death mechanisms is inhibited.
Collapse
Affiliation(s)
- Victor Samokhvalov
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110-1010, USA
| | | | | |
Collapse
|
2531
|
Tamai K, Toyoshima M, Tanaka N, Yamamoto N, Owada Y, Kiyonari H, Murata K, Ueno Y, Ono M, Shimosegawa T, Yaegashi N, Watanabe M, Sugamura K. Loss of hrs in the central nervous system causes accumulation of ubiquitinated proteins and neurodegeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1806-17. [PMID: 19008375 DOI: 10.2353/ajpath.2008.080684] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) proteins form multimolecular complexes that control multivesicular body formation, endosomal sorting, and transport ubiquitinated membrane proteins (including cell-surface receptors) to the endosomes for degradation. There is accumulating evidence that endosomal dysfunction is linked to neural cell degeneration in vitro, but little is known about the relationship between neural disorders and ESCRT proteins in vivo. Here we specifically deleted the hrs gene, ESCRT-0, in the neurons of mice by crossing loxP-flanked hrs mice with transgenic mice expressing the synapsin-I Cre protein (SynI-cre). Histological analyses revealed that both apoptosis and a loss of hippocampal CA3 pyramidal neurons occurred in the hrs(flox/flox);SynI-cre mice. Notably, the hrs(flox/flox);SynI-cre mice accumulated ubiquitinated proteins, such as glutamate receptors and an autophagy-regulating protein, p62. These molecules are particularly prominent in the hippocampal CA3 neurons and cerebral cortex with advancing age. Accordingly, we found that both locomotor activity and learning ability were severely reduced in the hrs(flox/flox);SynI-cre mice. These data suggest that Hrs plays an important role in neural cell survival in vivo and provide an animal model for neurodegenerative diseases that are known to be commonly affected by the generation of proteinaceous aggregates.
Collapse
Affiliation(s)
- Keiichi Tamai
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2532
|
Autophagy: principles and significance in health and disease. Biochim Biophys Acta Mol Basis Dis 2008; 1792:3-13. [PMID: 19022377 DOI: 10.1016/j.bbadis.2008.10.016] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 10/15/2008] [Accepted: 10/17/2008] [Indexed: 12/23/2022]
Abstract
Degradation processes are important for optimal functioning of eukaryotic cells. The two major protein degradation pathways in eukaryotes are the ubiquitin-proteasome pathway and autophagy. This contribution focuses on autophagy. This process is important for survival of cells during nitrogen starvation conditions but also has a house keeping function in removing exhausted, redundant or unwanted cellular components. We present an overview of the molecular mechanism involved in three major autophagy pathways: chaperone mediated autophagy, microautophagy and macroautophagy. Various recent reports indicate that autophagy plays a crucial role in human health and disease. Examples are presented of lysosomal storage diseases and the role of autophagy in cancer, neurodegenerative diseases, defense against pathogens and cell death.
Collapse
|
2533
|
Abstract
Dying cells often display a large-scale accumulation of autophagosomes and hence adopt a morphology called autophagic cell death. In many cases, it is agreed that this autophagic cell death is cell death with autophagy rather than cell death by autophagy. Here, we evaluate the accumulating body of literature that argues that cell death occurs by autophagy. We also list the caveats that must be considered when deciding whether or not autophagy is an important effector mechanism of cell death.
Collapse
|
2534
|
Is malfunction of the ubiquitin proteasome system the primary cause of alpha-synucleinopathies and other chronic human neurodegenerative disease? Biochim Biophys Acta Mol Basis Dis 2008; 1782:683-90. [PMID: 18976704 DOI: 10.1016/j.bbadis.2008.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 01/24/2023]
Abstract
Neuropathological investigations have identified major hallmarks of chronic neurodegenerative disease. These include protein aggregates called Lewy bodies in dementia with Lewy bodies and Parkinson's disease. Mutations in the alpha-synuclein gene have been found in familial disease and this has led to intense focused research in vitro and in transgenic animals to mimic and understand Parkinson's disease. A decade of transgenesis has lead to overexpression of wild type and mutated alpha-synuclein, but without faithful reproduction of human neuropathology and movement disorder. In particular, widespread regional neuronal cell death in the substantia nigra associated with human disease has not been described. The intraneuronal protein aggregates (inclusions) in all of the human chronic neurodegenerative diseases contain ubiquitylated proteins. There could be several reasons for the accumulation of ubiquitylated proteins, including malfunction of the ubiquitin proteasome system (UPS). This hypothesis has been genetically tested in mice by conditional deletion of a proteasomal regulatory ATPase gene. The consequences of gene ablation in the forebrain include extensive neuronal death and the production of Lewy-like bodies containing ubiquitylated proteins as in dementia with Lewy bodies. Gene deletion in catecholaminergic neurons, including in the substantia nigra, recapitulates the neuropathology of Parkinson's disease.
Collapse
|
2535
|
Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 2008; 13:1211-8. [PMID: 19021777 DOI: 10.1111/j.1365-2443.2008.01238.x] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a non-selective bulk degradation process in which isolation membranes enclose a portion of cytoplasm to form double-membrane vesicles, called autophagosomes, and deliver their inner constituents to the lytic compartments. Recent studies have also shed light on another mode of autophagy that selectively degrades various targets. Yeast Atg8 and its mammalian homologue LC3 are ubiquitin-like modifiers that are localized on isolation membranes and play crucial roles in the formation of autophagosomes. These proteins are also involved in selective incorporation of specific cargo molecules into autophagosomes, in which Atg8 and LC3 interact with Atg19 and p62, receptor proteins for vacuolar enzymes and disease-related protein aggregates, respectively. Using X-ray crystallography and NMR, we herein report the structural basis for Atg8-Atg19 and LC3-p62 interactions. Remarkably, Atg8 and LC3 were shown to interact with Atg19 and p62, respectively, in a quite similar manner: they recognized the side-chains of Trp and Leu in a four-amino acid motif, WXXL, in Atg19 and p62 using hydrophobic pockets conserved among Atg8 homologues. Together with mutational analyses, our results show the fundamental mechanism that allows Atg8 homologues, in association with WXXL-containing proteins, to capture specific cargo molecules, thereby endowing isolation membranes and/or their assembly machineries with target selectivity.
Collapse
Affiliation(s)
- Nobuo N Noda
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2536
|
Giusti C, Luciani MF, Klein G, Aubry L, Tresse E, Kosta A, Golstein P. Necrotic cell death: From reversible mitochondrial uncoupling to irreversible lysosomal permeabilization. Exp Cell Res 2008; 315:26-38. [PMID: 18951891 DOI: 10.1016/j.yexcr.2008.09.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/24/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022]
Abstract
Dictyostelium atg1- mutant cells provide an experimentally and genetically favorable model to study necrotic cell death (NCD) with no interference from apoptosis or autophagy. In such cells subjected to starvation and cAMP, induction by the differentiation-inducing factor DIF or by classical uncouplers led within minutes to mitochondrial uncoupling, which causally initiated NCD. We now report that (1) in this model, NCD included a mitochondrial-lysosomal cascade of events, (2) mitochondrial uncoupling and therefore initial stages of death showed reversibility for a surprisingly long time, (3) subsequent lysosomal permeabilization could be demonstrated using Lysosensor blue, acridin orange, Texas red-dextran and cathepsin B substrate, (4) this lysosomal permeabilization was irreversible, and (5) the presence of the uncoupler was required to maintain mitochondrial lesions but also to induce lysosomal lesions, suggesting that signaling from mitochondria to lysosomes must be sustained by the continuous presence of the uncoupler. These results further characterized the NCD pathway in this priviledged model, contributed to a definition of NCD at the lysosomal level, and suggested that in mammalian NCD even late reversibility attempts by removal of the inducer may be of therapeutic interest.
Collapse
Affiliation(s)
- Corinne Giusti
- Centre d'Immunologie de Marseille-Luminy (CIML), Faculté des Sciences de Luminy, Aix Marseille Université, Marseille F-13288, France
| | | | | | | | | | | | | |
Collapse
|
2537
|
Nedelsky NB, Todd PK, Taylor JP. Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. Biochim Biophys Acta Mol Basis Dis 2008; 1782:691-9. [PMID: 18930136 DOI: 10.1016/j.bbadis.2008.10.002] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 11/26/2022]
Abstract
Protein degradation is an essential cellular function that, when dysregulated or impaired, can lead to a wide variety of disease states. The two major intracellular protein degradation systems are the ubiquitin-proteasome system (UPS) and autophagy, a catabolic process that involves delivery of cellular components to the lysosome for degradation. While the UPS has garnered much attention as it relates to neurodegenerative disease, important links between autophagy and neurodegeneration have also become evident. Furthermore, recent studies have revealed interaction between the UPS and autophagy, suggesting a coordinated and complementary relationship between these degradation systems that becomes critical in times of cellular stress. Here we describe autophagy and review evidence implicating this system as an important player in the pathogenesis of neurodegenerative disease. We discuss the role of autophagy in neurodegeneration and review its neuroprotective functions as revealed by experimental manipulation in disease models. Finally, we explore potential parallels and connections between autophagy and the UPS, highlighting their collaborative roles in protecting against neurodegenerative disease.
Collapse
Affiliation(s)
- Natalia B Nedelsky
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
2538
|
Rothermel BA, Hill JA. The heart of autophagy: deconstructing cardiac proteotoxicity. Autophagy 2008; 4:932-5. [PMID: 18769158 DOI: 10.4161/auto.6756] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The heart is capable of robust structural remodeling, sometimes improving performance and sometimes leading to failure. Recent studies have uncovered a critical role for autophagy in disease-related remodeling of the cardiomyocyte. We have shown previously that hemodynamic load elicits a maladaptive autophagic response in cardiomyocytes which contributes to disease progression. In a recent study, we went on to demonstrate that protein aggregation is a proximal event triggering autophagic clearance mechanisms. The ubiquitin-proteasome-dependent pathways of protein clearance are similarly activated in parallel with processing of stress-induced protein aggregates into aggresomes and clearance through autophagy. These findings in the setting of pressure overload contrast with protein aggregation occurring in a model of protein chaperone malfunction in myocytes, where activation of autophagy is beneficial, antagonizing disease progression. Our findings situate heart disease stemming from environmental stress in the category of proteinopathy and raise important new questions regarding molecular events that elicit adaptive and maladaptive autophagy.
Collapse
Affiliation(s)
- Beverly A Rothermel
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
2539
|
Meléndez A, Neufeld TP. The cell biology of autophagy in metazoans: a developing story. Development 2008; 135:2347-60. [PMID: 18567846 DOI: 10.1242/dev.016105] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell biological phenomenon of autophagy (or ;self-eating') has attracted increasing attention in recent years. In this review, we first address the cell biological functions of autophagy, and then discuss recent insights into the role of autophagy in animal development, particularly in C. elegans, Drosophila and mouse. Work in these and other model systems has also provided evidence for the involvement of autophagy in disease processes, such as neurodegeneration, tumorigenesis, pathogenic infection and aging. Insights gained from investigating the functions of autophagy in normal development should increase our understanding of its roles in human disease and its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Alicia Meléndez
- Department of Biology, Queens College, Flushing, NY 11367, USA.
| | | |
Collapse
|
2540
|
Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 2008; 8:318-24. [PMID: 18840362 DOI: 10.1016/j.cmet.2008.08.013] [Citation(s) in RCA: 541] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/29/2008] [Accepted: 08/15/2008] [Indexed: 12/21/2022]
Abstract
Autophagy is a cellular degradation-recycling system for aggregated proteins and damaged organelles. Although dysregulated autophagy is implicated in various diseases including neurodegeneration, its role in pancreatic beta cells and glucose homeostasis has not been described. We produced mice with beta cell-specific deletion of Atg7 (autophagy-related 7). Atg7 mutant mice showed impaired glucose tolerance and decreased serum insulin level. beta cell mass and pancreatic insulin content were reduced because of increased apoptosis and decreased proliferation of beta cells. Physiological studies showed reduced basal and glucose-stimulated insulin secretion and impaired glucose-induced cytosolic Ca2+ transients in autophagy-deficient beta cells. Morphologic analysis revealed accumulation of ubiquitinated protein aggregates colocalized with p62, which was accompanied by mitochondrial swelling, endoplasmic reticulum distension, and vacuolar changes in beta cells. These results suggest that autophagy is necessary to maintain structure, mass and function of pancreatic beta cells, and its impairment causes insulin deficiency and hyperglycemia because of abnormal turnover and function of cellular organelles.
Collapse
|
2541
|
Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 2008; 8:325-32. [PMID: 18840363 DOI: 10.1016/j.cmet.2008.08.009] [Citation(s) in RCA: 659] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 06/28/2008] [Accepted: 08/12/2008] [Indexed: 12/21/2022]
Abstract
Autophagy is an evolutionarily conserved machinery for bulk degradation of cytoplasmic components. Here, we report upregulation of autophagosome formation in pancreatic beta cells in diabetic db/db and in nondiabetic high-fat-fed C57BL/6 mice. Free fatty acids (FFAs), which can cause peripheral insulin resistance associated with diabetes, induced autophagy in beta cells. Genetic ablation of atg7 in beta cells resulted in degeneration of islets and impaired glucose tolerance with reduced insulin secretion. While high-fat diet stimulated beta cell autophagy in control mice, it induced profound deterioration of glucose tolerance in autophagy-deficient mutants, partly because of the lack of compensatory increase in beta cell mass. These findings suggest that basal autophagy is important for maintenance of normal islet architecture and function. The results also identified a unique role for inductive autophagy as an adaptive response of beta cells in the presence of insulin resistance induced by high-fat diet.
Collapse
|
2542
|
Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration. Curr Opin Neurobiol 2008; 18:504-15. [DOI: 10.1016/j.conb.2008.09.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/18/2008] [Accepted: 09/24/2008] [Indexed: 12/17/2022]
|
2543
|
The involvement of cellular prion protein in the autophagy pathway in neuronal cells. Mol Cell Neurosci 2008; 39:238-47. [PMID: 18674620 DOI: 10.1016/j.mcn.2008.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/24/2008] [Accepted: 07/01/2008] [Indexed: 12/11/2022] Open
|
2544
|
Pan T, Kondo S, Zhu W, Xie W, Jankovic J, Le W. Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol Dis 2008; 32:16-25. [DOI: 10.1016/j.nbd.2008.06.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/29/2008] [Accepted: 06/05/2008] [Indexed: 11/16/2022] Open
|
2545
|
Consequences of the DYT1 mutation on torsinA oligomerization and degradation. Neuroscience 2008; 157:588-95. [PMID: 18940237 DOI: 10.1016/j.neuroscience.2008.09.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/15/2008] [Accepted: 09/18/2008] [Indexed: 12/19/2022]
Abstract
DYT1 is the most common inherited dystonia, a neurological syndrome that causes disabling involuntary muscle contractions. This autosomal dominant disease is caused by a glutamic acid deletion near the carboxy-terminus in the protein torsinA. Cell- and animal-based studies have shown how the DYT1 mutation causes mutant torsinA to redistribute from the endoplasmic reticulum to the nuclear envelope, acting through a dominant negative effect over the wild type protein. As a result, the wild type:mutant torsinA expression ratio would be important for disease pathogenesis, and events that influence it, such as a differential degradation process for each protein, might modulate DYT1 pathobiology. The DYT1 mutation also triggers the formation of abnormal intermolecular disulfide bonds in torsinA, although the significance of this finding is unclear. How the protein quality control machinery handles torsinA, and whether this process is affected by its abnormal oligomerization remain unknown. Here, we first explored how the disease-linked mutation influences the catabolic process of human torsinA, demonstrating that the differences in subcellular localization between both forms of torsinA lead to divergences in their degradation pathways and, whereas torsinA is normally recycled through autophagy, the proteasome is also required for the efficient clearance of the mutated form. Subsequently, we determined that the abnormal disulfide bond-dependent oligomerization of mutant torsinA is not a result of its redistribution to the nuclear envelope, but a direct consequence of the mutation. Finally, we established that the presence of disulfide links in mutant torsinA oligomers interfere with their degradation by the proteasome, thus relying on autophagy as the main pathway for clearance. In conclusion, the abnormal subcellular localization and oligomerization of DYT1-linked torsinA influences its catabolic process, opening the door to the modulation of the wild type:mutant torsinA ratio through pharmacological manipulation of protein degradation pathways.
Collapse
|
2546
|
McConkey DJ, Zhu K. Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat 2008; 11:164-79. [PMID: 18818117 DOI: 10.1016/j.drup.2008.08.002] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/13/2008] [Accepted: 08/13/2008] [Indexed: 12/23/2022]
Abstract
Proteasome inhibitors (PIs), such as bortezomib, carfilzomib or NPI-0052, have excellent clinical activity in patients with multiple myeloma and mantle cell lymphoma, and they are currently being evaluated in combination with other agents in patients with solid tumors. Although they exert broad effects on cancer cells, their ability to (1) stabilize pro-apoptotic members of the BCL-2 family, (2) inhibit the two major pathways leading to NFkappaB activation, and (3) cause the build-up of misfolded proteins appear to be particularly important. In addition, PIs may disrupt tumor-stromal interactions that drive NFkappaB activation and angiogenesis and in such a way sensitize cancer cells to other agents. Still, drug resistance ultimately emerges in all tumors that initially respond to PIs. This review provides an overview of the current thinking about how PIs may kill cancer cells exemplified for pancreatic cancer and the possible mechanisms involved in resistance to PIs.
Collapse
Affiliation(s)
- David J McConkey
- Department of Urology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
2547
|
How autophagy is related to programmed cell death during the development of the nervous system. Biochem Soc Trans 2008; 36:813-7. [DOI: 10.1042/bst0360813] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Programmed cell death, together with proliferation and differentiation, is an essential process during the development of the nervous system. During neurogenesis, neurons and glia are generated in large numbers and, subsequently, they die in a process that depends on trophic signalling that refines the cytoarchitecture and connectivity of the nervous system. In addition, programmed cell death also affects proliferating neuroepithelial cells and recently differentiated neuroblasts. Autophagy is a lysosomal degradative pathway that allows the recycling of cell constituents, and seems to be able to play a dual role. It may serve to protect the cell by preventing the accumulation of deleterious products and organelles and supplying energy and amino acids. On the other hand, it has been considered a type of cell death. The role of autophagy during development is little characterized. The retina provides an excellent model system to study autophagy in the context of neural development, and to establish its relationship with proliferation, differentiation and cell death. In the present review, we summarize recent findings showing that autophagy contributes to the development of the nervous system by providing energy for cell corpse removal after physiological cell death, a process associated with retinal neurogenesis.
Collapse
|
2548
|
Li Y, Wang LX, Yang G, Hao F, Urba WJ, Hu HM. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res 2008; 68:6889-95. [PMID: 18757401 DOI: 10.1158/0008-5472.can-08-0161] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cross-presentation of antigens is critical for the induction of adaptive immunity against tumor cells and infectious pathogens. Currently, it is not known how cross-presentation of tumor antigens is regulated by autophagy. Using both HEK 293T cells that expressed the model antigen OVA and melanoma cells as antigen donors, we show that macroautophagy in tumor cells is essential for cross-presentation by dendritic cells both in vitro and in vivo. Inhibition of autophagy abolished cross-presentation almost completely, whereas induction of autophagy dramatically enhanced the cross-presentation of tumor antigens. Moreover, purified autophagosomes were found to be efficient antigen carriers for cross-presentation. Our findings not only identified a novel role for autophagy as an active process in antigen sequestration and delivery to dendritic cells for cross-presentation, but also suggested, for the first time, that isolated autophagosomes may have potential as potent vaccines for immunotherapy against cancer and infectious diseases.
Collapse
Affiliation(s)
- Yuhuan Li
- Laboratory of Cancer Immunobiology, Providence Portland Medical Center, OR 97213-2967, USA
| | | | | | | | | | | |
Collapse
|
2549
|
Hou YCC, Chittaranjan S, Barbosa SG, McCall K, Gorski SM. Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis. ACTA ACUST UNITED AC 2008; 182:1127-39. [PMID: 18794330 PMCID: PMC2542474 DOI: 10.1083/jcb.200712091] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A complex relationship exists between autophagy and apoptosis, but the regulatory mechanisms underlying their interactions are largely unknown. We conducted a systematic study of Drosophila melanogaster cell death-related genes to determine their requirement in the regulation of starvation-induced autophagy. We discovered that six cell death genes--death caspase-1 (Dcp-1), hid, Bruce, Buffy, debcl, and p53-as well as Ras-Raf-mitogen activated protein kinase signaling pathway components had a role in autophagy regulation in D. melanogaster cultured cells. During D. melanogaster oogenesis, we found that autophagy is induced at two nutrient status checkpoints: germarium and mid-oogenesis. At these two stages, the effector caspase Dcp-1 and the inhibitor of apoptosis protein Bruce function to regulate both autophagy and starvation-induced cell death. Mutations in Atg1 and Atg7 resulted in reduced DNA fragmentation in degenerating midstage egg chambers but did not appear to affect nuclear condensation, which indicates that autophagy contributes in part to cell death in the ovary. Our study provides new insights into the molecular mechanisms that coordinately regulate autophagic and apoptotic events in vivo.
Collapse
Affiliation(s)
- Ying-Chen Claire Hou
- The Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | | | | | | | | |
Collapse
|
2550
|
Abstract
Ageing in divergent animal phyla is influenced by several evolutionarily conserved signalling pathways, mitochondrial activity and various environmental factors such as nutrient availability and temperature. Although ageing is a multifactorial process with many mechanisms contributing to the decline, the intracellular accumulation of damaged proteins and mitochondria is a feature common to all aged cells. Autophagy (cellular self-eating) - a lysosome-mediated catabolic process of eukaryotic cells to digest their own constituents - is a major route for the bulk degradation of aberrant cytosolic macromolecules and organelles. Indeed, genetic studies show that autophagy-related genes are required for lifespan extension in various long-lived mutant nematodes and promote survival in worms and flies exposed to prolonged starvation. These data implicate autophagy in ageing control. Furthermore, results in Drosophila demonstrate that promoting basal expression of the autophagy gene Atg8 in the nervous system extends lifespan by 50%, thereby providing evidence that the autophagy pathway regulates the rate at which the tissues age. In this review, the molecular mechanisms by which autophagy genes interact with longevity pathways in diverse organisms ranging from yeast to mammals are discussed.
Collapse
|