2751
|
Dimitrov EL, Petrus E, Usdin TB. Tuberoinfundibular peptide of 39 residues (TIP39) signaling modulates acute and tonic nociception. Exp Neurol 2010; 226:68-83. [PMID: 20696160 DOI: 10.1016/j.expneurol.2010.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/26/2010] [Accepted: 08/02/2010] [Indexed: 11/19/2022]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) synthesizing neurons at the caudal border of the thalamus and in the lateral pons project to areas rich in its receptor, the parathyroid hormone 2 receptor (PTH2R). These areas include many involved in processing nociceptive information. Here we examined the potential role of TIP39 signaling in nociception using a PTH2R antagonist (HYWH) and mice with deletion of TIP39's coding sequence or PTH2R null mutation. Intracerebroventricular (icv) infusion of HYWH significantly inhibited nociceptive responses in tail-flick and hot-plate tests and attenuated the nociceptive response to hindpaw formalin injection. TIP39-KO and PTH2R-KO had increased response latency in the 55°C hot-plate test and reduced responses in the hindpaw formalin test. The tail-flick test was not affected in either KO line. Thermal hypoalgesia in KO mice was dose-dependently reversed by systemic administration of the cannabinoid receptor 1 (CB1) antagonist rimonabant, which did not affect nociception in wild-type (WT). Systemic administration of the cannabinoid agonist CP 55,940 did not affect nociception in KO mice at a dose effective in WT. WT mice administered HYWH icv, and both KOs, had significantly increased stress-induced analgesia (SIA). Rimonabant blocked the increased SIA in TIP39-KO, PTH2R-KO or after HYWH infusion. CB1 and FAAH mRNA were decreased and increased, respectively, in the basolateral amygdala of TIP39-KO mice. These data suggest that TIP39 signaling modulates nociception, very likely by inhibiting endocannabinoid circuitry at a supraspinal level. We infer a new central mechanism for endocannabinoid regulation, via TIP39 acting on the PTH2R in discrete brain regions.
Collapse
MESH Headings
- Amidohydrolases/metabolism
- Animals
- Cannabinoid Receptor Modulators/metabolism
- Formaldehyde
- In Situ Hybridization
- Injections, Intraventricular
- Injections, Spinal
- Male
- Mice
- Mice, Knockout
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Neuropeptides/administration & dosage
- Neuropeptides/pharmacology
- Nociceptors/drug effects
- Nociceptors/physiology
- Pain/pathology
- Pain/physiopathology
- Pain Measurement/drug effects
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/biosynthesis
- Receptor, Parathyroid Hormone, Type 2/biosynthesis
- Receptor, Parathyroid Hormone, Type 2/genetics
- Rimonabant
- Signal Transduction/physiology
- Stress, Psychological/psychology
- Synapses/physiology
- Vesicular Glutamate Transport Protein 2/biosynthesis
- Vesicular Glutamate Transport Protein 2/genetics
Collapse
Affiliation(s)
- Eugene L Dimitrov
- Section on Fundamental Neuroscience, National Institute of Mental Health, 35 Convent Drive, Room 1B-213, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
2752
|
Abdel Samad O, Liu Y, Yang FC, Kramer I, Arber S, Ma Q. Characterization of two Runx1-dependent nociceptor differentiation programs necessary for inflammatory versus neuropathic pain. Mol Pain 2010; 6:45. [PMID: 20673362 PMCID: PMC2919460 DOI: 10.1186/1744-8069-6-45] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/30/2010] [Indexed: 12/02/2022] Open
Abstract
Background The cellular and molecular programs that control specific types of pain are poorly understood. We reported previously that the runt domain transcription factor Runx1 is initially expressed in most nociceptors and controls sensory neuron phenotypes necessary for inflammatory and neuropathic pain. Results Here we show that expression of Runx1-dependent ion channels and receptors is distributed into two nociceptor populations that are distinguished by persistent or transient Runx1 expression. Conditional mutation of Runx1 at perinatal stages leads to preferential impairment of Runx1-persistent nociceptors and a selective defect in inflammatory pain. Conversely, constitutive Runx1 expression in Runx1-transient nociceptors leads to an impairment of Runx1-transient nociceptors and a selective deficit in neuropathic pain. Notably, the subdivision of Runx1-persistent and Runx1-transient nociceptors does not follow the classical nociceptor subdivision into IB4+ nonpeptidergic and IB4- peptidergic populations. Conclusion Altogether, we have uncovered two distinct Runx1-dependent nociceptor differentiation programs that are permissive for inflammatory versus neuropathic pain. These studies lend support to a transcription factor-based distinction of neuronal classes necessary for inflammatory versus neuropathic pain.
Collapse
Affiliation(s)
- Omar Abdel Samad
- Department of Neurobiology, Dana-Farber Cancer Institute, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
2753
|
Abstract
Skin biopsy for epidermal nerve fiber analysis provides an important objective test for the diagnosis of peripheral neuropathy, particularly small fiber sensory neuropathy (SFSN). The determination of epidermal nerve fiber density (ENFD) is reliable, with high diagnostic specificity and good sensitivity. Because of false negatives, biopsy results must be interpreted in conjunction with neurologic findings and laboratory results, including objective tests of sensory and autonomic function. SFSN most commonly is length dependent and is idiopathic in about half the patients. Biopsy of a proximal site (thigh) and a distal site (calf) typically shows greater abnormality of ENFD distally than proximally. More severe abnormality of ENFD in the thigh than in the calf raises the possibility of a non-length-dependent SFSN. The causes of this type of neuropathy, such as Sjögren's syndrome, sarcoidosis, and celiac disease, may be treatable.
Collapse
|
2754
|
Liu XJ, Salter MW. Glutamate receptor phosphorylation and trafficking in pain plasticity in spinal cord dorsal horn. Eur J Neurosci 2010; 32:278-89. [PMID: 20629726 DOI: 10.1111/j.1460-9568.2010.07351.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Considerable evidence suggests that both ionotropic and metabotropic glutamate receptors are involved in pain hypersensitivity. However, glutamate receptor-based therapies are limited by side-effects because the activities of glutamate receptors are essential for many important physiological functions. Here, we review recent key findings in molecular and cellular mechanisms of glutamate receptor regulation and their roles in triggering and sustaining pain hypersensitivity. Targeting these molecular mechanisms could form the basis for new therapeutic strategies for the treatment of chronic pain.
Collapse
Affiliation(s)
- Xue Jun Liu
- Program in Neurosciences & Mental Health, the Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
2755
|
Niikura K, Narita M, Butelman ER, Kreek MJ, Suzuki T. Neuropathic and chronic pain stimuli downregulate central μ -opioid and dopaminergic transmission. Trends Pharmacol Sci 2010; 31:299-305. [DOI: 10.1016/j.tips.2010.04.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 01/25/2023]
|
2756
|
TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 2010; 150:340-350. [PMID: 20542379 DOI: 10.1016/j.pain.2010.05.021] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 02/04/2023]
Abstract
Somatosensory neurons detect environmental stimuli, converting external cues into neural activity that is relayed first to second-order neurons in the spinal cord. The detection of cold is proposed to be mediated by the ion channels TRPM8 and TRPA1. However, there is significant debate regarding the role of each channel in cold-evoked pain, complicating their potential as drug targets for conditions such as cold allodynia and hyperalgesia. To address this debate, we generated mice lacking functional copies of both channels and examined behaviors and neural activity in response to painful cold and noxious cooling compounds. Whereas normal mice display a robust preference for warmth over cold, both TRPM8-null (TRPM8(-/-)) and TRPM8/TRPA1 double-knockout mice (DKO) display no preference until temperatures reach the extreme noxious range. Additionally, in contrast to wildtype mice that avoid touching cold surfaces, mice lacking TRPM8 channels display no such avoidance and explore noxious cold surfaces, even at 5 degrees C. Furthermore, nocifensive behaviors to the cold-mimetic icilin are absent in TRPM8(-/-) and DKO mice, but are retained in TRPA1-nulls (TRPA1(-/-)). Finally, neural activity, measured by expression of the immediate-early gene c-fos, evoked by hindpaw stimulation with noxious cold, menthol, or icilin is reduced in TRPM8(-/-) and DKO mice, but not in TRPA1(-/-) animals. Thus our results show that noxious cold signaling is exclusive to TRPM8, mediating neural and behavioral responses to cold and cold-mimetics, and that TRPA1 is not required for acute cold pain in mammals.
Collapse
|
2757
|
Schumacher MA, Eilers H. TRPV1 splice variants: structure and function. Front Biosci (Landmark Ed) 2010; 15:872-82. [PMID: 20515731 DOI: 10.2741/3651] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The capsaicin receptor (TRPV1) is a non-selective cation channel predominantly expressed in specialized sensory neurons that detect painful stimuli. Although its many functional roles continue to be revealed, it has been confirmed to play a critical role in the perception of peripheral inflammatory hyperalgesia and pain. TRPV1 not only is sensitized and/or activated under a wide range of conditions including inflammation and nerve injury but also undergoes changes in expressed levels in response to these same pathologic conditions. Just as our understanding of the structural requirements of TRPV1 activation has grown, there is evidence that TRPV1 forms heteromeric channel complexes. This review is focused on the structural and functional consequence of TRPV1 splice variants: VR.5'sv, TRPV1b/beta and TRPV1var. Through their co-expression and formation of heteromeric complexes with TRPV1, they have been shown to modulate TRPV1 activation. Moreover, TRPV1 splice variant subunits may also contribute unique properties of activation such as the detection of hypertonic conditions.
Collapse
Affiliation(s)
- Mark A Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143-0427, USA.
| | | |
Collapse
|
2758
|
The Mrg Family and Pain*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2759
|
Takashima Y, Ma L, McKemy DD. The development of peripheral cold neural circuits based on TRPM8 expression. Neuroscience 2010; 169:828-42. [PMID: 20580783 DOI: 10.1016/j.neuroscience.2010.05.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/27/2010] [Accepted: 05/16/2010] [Indexed: 01/27/2023]
Abstract
Afferent nerve fibers of the somatosensory system are a molecularly diverse cell population that detects a varied range of environmental stimuli, converting these external cues ultimately into a sensory percept. Afferents mediating detection of thermal stimuli express a repertoire of temperature sensitive ion channels of the TRP family which endow these nerves with the ability to respond to the breadth of temperatures in the environment. The cold and menthol receptor TRPM8 is responsible for detection of cold and, unlike other thermosensors, detects both innocuous and noxious temperatures. How this single molecule can perform such diverse functions is currently unknown, but expression analyses in adult tissues shows that TRPM8 neurons are a molecularly diverse population and it is likely that this diversity underlies differential functionality. To determine how this phenotype is established, we examined the developmental time course of TRPM8 expression using a mouse transgenic line in which GFP expression is driven by the TRPM8 transcriptional promoter (Trpm8(GFP)). We find that Trpm8(GFP) expression begins prior to embryonic day 15.5 (E15.5) after which expression reaches levels observed in adult neurons. By E18.5, central axons of Trpm8(GFP) neurons reach the spinal cord dorsal horn, but anatomical localization and in vivo measurements of neural activity suggest that fully functional cold circuits are not established until after the first postnatal week. Additionally, Trpm8(GFP) neurons undergo a transition in neurochemical phenotype, ultimately reaching adult expression of markers such TRPV1, CGRP, peripherin, and NF200 by postnatal day 14. Thus, based on immunochemical, anatomical and functional criteria, active cold neural circuits are fully established by the second week postnatal, thereby suggesting that important extrinsic or intrinsic mechanisms are active prior to this developmental stage.
Collapse
Affiliation(s)
- Y Takashima
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
2760
|
Zhuo M. Mitochondrial connection in chronic pain. Pain 2010; 150:1-2. [PMID: 20471170 DOI: 10.1016/j.pain.2010.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 11/27/2022]
Affiliation(s)
- Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8 Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 151-746, Republic of Korea Tel.: +1 314 747 0416
| |
Collapse
|
2761
|
Gu Q, Lee LY. Acid-Sensing Ion Channels and Pain. Pharmaceuticals (Basel) 2010; 3:1411-1425. [PMID: 27713310 PMCID: PMC4033989 DOI: 10.3390/ph3051411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 04/14/2010] [Accepted: 05/07/2010] [Indexed: 12/19/2022] Open
Abstract
Pathophysiological conditions such as inflammation, ischemia, infection and tissue injury can all evoke pain, and each is accompanied by local acidosis. Acid sensing ion channels (ASICs) are proton-gated cation channels expressed in both central and peripheral nervous systems. Increasing evidence suggests that ASICs represent essential sensors for tissue acidosis-related pain. This review provides an update on the role of ASICs in pain sensation and discusses their therapeutic potential for pain management.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA.
| |
Collapse
|
2762
|
Hyperalgesic priming is restricted to isolectin B4-positive nociceptors. Neuroscience 2010; 169:431-5. [PMID: 20457222 DOI: 10.1016/j.neuroscience.2010.04.082] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/30/2010] [Accepted: 04/30/2010] [Indexed: 12/26/2022]
Abstract
We have previously described a rat model for the contribution of neuroplastic changes in nociceptors to the transition from acute to chronic pain. In this model a prior injury activates protein kinase C epsilon (PKCepsilon), inducing a chronic state characterized by marked prolongation of the hyperalgesia induced by inflammatory cytokines, prototypically prostaglandin E(2) (PGE(2)), referred to as hyperalgesic priming. In this study we evaluated the population of nociceptors involved in priming, by lesioning isolectin B4-positive (IB4(+)) nociceptors with intrathecal administration of a selective neurotoxin, IB4-saporin. To confirm that the remaining, TrkA(+)/IB4(-), nociceptors are still functional, we evaluated if nerve growth factor (NGF) induced hyperalgesia. While pretreatment with IB4-saporin eliminated the acute mechanical hyperalgesia induced by glia-derived neurotrophic factor (GDNF), NGF and PsiepsilonRACK, a highly selective activator of PKCepsilon, induced robust hyperalgesia. After injection of NGF, GDNF or PsiepsilonRACK, at a time at which hyperalgesia induced by PGE(2) is markedly prolonged (hyperalgesic priming) in control rats, in IB4-saporin-pretreated rats PGE(2) failed to produce this prolonged hyperalgesia. Thus, while PKCepsilon is present in most dorsal root ganglion neurons, where it can contribute to acute mechanical hyperalgesia, priming is restricted to IB4(+)-nociceptors, including those that are TrkA(+). While PKCepsilon activation can induce acute hyperalgesia in the IB4(+) population, it fails to induce priming. We suggest that hyperalgesic priming occurs only in IB4(+) nociceptors, and that in the peripheral terminals of nociceptors separate intracellular pools of PKCepsilon mediate nociceptor sensitization and the induction of hyperalgesic priming.
Collapse
|
2763
|
Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 2010; 90:559-605. [PMID: 20393194 DOI: 10.1152/physrev.00029.2009] [Citation(s) in RCA: 675] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two-pore domain K(+) (K(2P)) channels give rise to leak (also called background) K(+) currents. The well-known role of background K(+) currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K(2P) channel types) that this primary hyperpolarizing action is not performed passively. The K(2P) channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e.g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K(2P) channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K(2P) channel family into the spotlight. In this review, we focus on the physiological roles of K(2P) channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation.
Collapse
Affiliation(s)
- Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
2764
|
Abstract
Inflammation is an essential immune response that enables survival during infection or injury and maintains tissue homeostasis under a variety of noxious conditions. Inflammation comes at the cost of a transient decline in tissue function, which can in turn contribute to the pathogenesis of diseases of altered homeostasis.
Collapse
Affiliation(s)
- Ruslan Medzhitov
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
2765
|
Mondal PP, Mandal S, Diaspro A. Note: Dynamic point spread function for single and multiphoton fluorescence microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:046103. [PMID: 20441376 DOI: 10.1063/1.3378683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We propose and demonstrate a dynamic point spread function (PSF) for single and multiphoton fluorescence microscopy. The goal is to generate a PSF whose shape and size can be maneuvered from highly localized to elongated one, thereby allowing shallow-to-depth excitation capability during active imaging. The PSF is obtained by utilizing specially designed spatial filter and dynamically altering the filter parameters. We predict potential applications in nanobioimaging and fluorescence microscopy.
Collapse
Affiliation(s)
- Partha Pratim Mondal
- Department of Instrumentation, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|
2766
|
Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 2010; 464:597-600. [PMID: 20237474 PMCID: PMC2845738 DOI: 10.1038/nature08848] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 01/21/2010] [Indexed: 02/07/2023]
Abstract
Chemical nociception, the detection of tissue-damaging chemicals, is important for animal survival and causes human pain and inflammation, but its evolutionary origins are largely unknown. Reactive electrophiles are a class of noxious compounds humans find pungent and irritating, like allyl isothiocyanate (in wasabi) and acrolein (in cigarette smoke)1–3. Insects to humans find reactive electrophiles aversive1–3, but whether this reflects conservation of an ancient sensory modality has been unclear. Here we identify the molecular basis of reactive electrophile detection in flies. We demonstrate that dTRPA1, the Drosophila melanogaster ortholog of the human irritant sensor, acts in gustatory chemosensors to inhibit reactive electrophile ingestion. We show that fly and mosquito TRPA1 orthologs are molecular sensors of electrophiles, using a mechanism conserved with vertebrate TRPA1s. Phylogenetic analyses indicate invertebrate and vertebrate TRPA1s share a common ancestor that possessed critical characteristics required for electrophile detection. These findings support emergence of TRPA1-based electrophile detection in a common bilaterian ancestor, with widespread conservation throughout vertebrate and invertebrate evolution. Such conservation contrasts with the evolutionary divergence of canonical olfactory and gustatory receptors and may relate to electrophile toxicity. We propose human pain perception relies on an ancient chemical sensor conserved across ~500 million years of animal evolution.
Collapse
|
2767
|
Chiechio S, Copani A, Zammataro M, Battaglia G, Gereau RW, Nicoletti F. Transcriptional regulation of type-2 metabotropic glutamate receptors: an epigenetic path to novel treatments for chronic pain. Trends Pharmacol Sci 2010; 31:153-60. [PMID: 20064669 DOI: 10.1016/j.tips.2009.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 11/24/2022]
Abstract
Activation of metabotropic glutamate 2 (mGlu2) receptors inhibits pain transmission at the synapses between primary afferent fibers and neurons in the dorsal horn of the spinal cord. In addition, mGlu2 receptors are found in peripheral nociceptors, and in pain-regulatory centers of the brain stem and forebrain. mGlu2 receptor agonists produce analgesia in models of inflammatory and neuropathic pain, but their use is limited by the development of tolerance. A new therapeutic strategy could be based on the transcriptional regulation of mGlu2 receptors via the acetylation-promoted activation of the p65/RelA transcription factor. "Epigenetic" drugs that increase mGlu2 receptor expression, including l-acetylcarnitine and inhibitors of histone deacetylases, have a different analgesic profile with no tolerance to the therapeutic effect after repeated dosing.
Collapse
Affiliation(s)
- Santina Chiechio
- Department of Pharmaceutical Sciences, University of Catania, Catania, Italy
| | | | | | | | | | | |
Collapse
|
2768
|
Wang ZJ, Wilkie DJ, Molokie R. Neurobiological mechanisms of pain in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2010; 2010:403-8. [PMID: 21239826 PMCID: PMC3650026 DOI: 10.1182/asheducation-2010.1.403] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pain is a frequent complaint of people living with sickle cell disease (SCD); however, the neurobiology of pain in SCD remains poorly understood. Whereas this pain has been thought to be primarily related to visceral and somatic tissue injury subsequent to vaso-occlusion events, emerging evidence from human and animal studies has suggested that a component of SCD pain may be related to neuropathic processes. Significant knowledge has been obtained from studies of molecular and neurobiological mechanisms leading to and maintaining neuropathic pain. Some of the most promising evidence has implicated major roles of protein kinase C and Ca2+/calmodulin-dependent protein kinase II, and their interaction with the N-methyl-D-aspartate receptors and the transient receptor potential vanilloid 1 receptor in the development of neuropathic pain. The latest evidence from our studies suggests that these pathways are important for SCD pain as well. Coupled with emerging animal models of SCD pain, we can now start to elucidate neurobiological mechanisms underlying pain in SCD, which may lead to better understanding and effective therapies.
Collapse
Affiliation(s)
- Zaijie J Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
2769
|
Vladimirskaia EB. [Bone marrow hematopoiesis. Evaluation of the myelogram]. GEMATOLOGIIA I TRANSFUZIOLOGIIA 1990; 35:29-31. [PMID: 2253860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|