251
|
Kazzaz NM, Sule G, Knight JS. Intercellular Interactions as Regulators of NETosis. Front Immunol 2016; 7:453. [PMID: 27895638 PMCID: PMC5107827 DOI: 10.3389/fimmu.2016.00453] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are chromatin-derived webs extruded from neutrophils in response to either infection or sterile stimulation with chemicals, cytokines, or microbial products. The vast majority of studies have characterized NET release (also called NETosis) in pure neutrophil cultures in vitro. The situation is surely more complex in vivo as neutrophils constantly sample not only pathogens and soluble mediators but also signals from cellular partners, including platelets and endothelial cells. This complexity is beginning to be explored by studies utilizing in vitro co-culture, as well as animal models of sepsis, infective endocarditis, lung injury, and thrombosis. Indeed, various selectins, integrins, and surface glycoproteins have been implicated in platelet–neutrophil interactions that promote NETosis, albeit with disparate results across studies. NETosis can also clearly be regulated by soluble mediators derived from platelets, such as eicosanoids, chemokines, and alarmins. Beyond platelets, the role of the endothelium in modulating NETosis is being increasingly revealed, with adhesive interactions likely priming neutrophils toward NETosis. The fact that the same selectins and surface glycoproteins may be expressed by both platelets and endothelial cells complicates the interpretation of in vivo data. In summary, we suggest in this review that the engagement of neutrophils with activated cellular partners provides an important in vivo signal or “hit” toward NETosis. Studies should, therefore, increasingly consider the triumvirate of neutrophils, platelets, and the endothelium when exploring NETosis, especially in disease states.
Collapse
Affiliation(s)
- Nayef M Kazzaz
- Department of Internal Medicine, Division of Rheumatology, University of Michigan , Ann Arbor, MI , USA
| | - Gautam Sule
- Department of Internal Medicine, Division of Rheumatology, University of Michigan , Ann Arbor, MI , USA
| | - Jason S Knight
- Department of Internal Medicine, Division of Rheumatology, University of Michigan , Ann Arbor, MI , USA
| |
Collapse
|
252
|
Erpenbeck L, Chowdhury CS, Zsengellér ZK, Gallant M, Burke SD, Cifuni S, Hahn S, Wagner DD, Karumanchi SA. PAD4 Deficiency Decreases Inflammation and Susceptibility to Pregnancy Loss in a Mouse Model. Biol Reprod 2016; 95:132. [PMID: 28007693 PMCID: PMC5315429 DOI: 10.1095/biolreprod.116.140293] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/21/2016] [Accepted: 10/21/2016] [Indexed: 02/06/2023] Open
Abstract
Inflammation is thought to play a critical role in the pathogenesis of placentation disorders such as recurrent miscarriages, growth restriction, and preeclampsia. Recently, neutrophil extracellular traps (NETs) have emerged as a potential mechanism for promoting inflammation in both infectious and noninfectious disorders. To investigate a pathogenic role for NETs in placentation disorders, we studied a model of antiangiogenic factor-mediated pregnancy loss in wild-type (WT) mice and in mice deficient in peptidylarginine deiminase 4 (Padi4-/-) that are unable to form NETs. Overexpression of soluble fms-like tyrosine kinase 1 (sFlt-1), an antiangiogenic protein that is pathogenically linked with abnormal placentation disorders during early gestation, resulted in pregnancy loss and large accumulation of neutrophils and NETs in WT placentas. Interestingly, sFlt-1 overexpression in Padi4-/- mice resulted in dramatically lower inflammatory and thrombotic response, which was accompanied by significant reduction in pregnancy losses. Inhibition of NETosis may serve as a novel target in disorders of impaired placentation.
Collapse
Affiliation(s)
- Luise Erpenbeck
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Chanchal Sur Chowdhury
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts.,Laboratory for Prenatal Medicine, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Zsuzsanna K Zsengellér
- Departments of Medicine, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Maureen Gallant
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Suzanne D Burke
- Departments of Medicine, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Stephen Cifuni
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Sinuhe Hahn
- Laboratory for Prenatal Medicine, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - S Ananth Karumanchi
- Departments of Medicine, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
253
|
Bruschi M, Petretto A, Bertelli R, Galetti M, Bonanni A, Pratesi F, Migliorini P, Candiano G, Vaglio A, Ghiggeri GM. Post-translational modified proteins are biomarkers of autoimmune-processes: NETosis and the inflammatory-autoimmunity connection. Clin Chim Acta 2016; 464:12-16. [PMID: 27826099 DOI: 10.1016/j.cca.2016.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/22/2022]
Abstract
Basic research is showing new mechanisms involved in early immune responses and Neutrophil Extracellular Trap (NET) formation (or NETosis) is of key importance as first line defense against bacteria, virus and protozoa. Enzymatic modification of arginine in citrulline in histones is the prerequisite of NETosis being it necessary for decondensation and extrusion of DNA from cells; it is conceivable that other post translational modifications may occur during this event. There is consensus in considering that post translational modified proteins may elicit an autoimmune response that leads to the formation of autoantibodies. Several autoimmune diseases seem to share these pathogenic mechanisms, in particular Rheumatoid arthritis, Systemic Lupus Erythematosus, Small Vessel Vasculitis and Anti-Phospholipid Syndrome, which are all characterized by high levels of circulating autoantibodies. Autoimmunity has, however, different targets and elicits different clinical responses. It seems reasonable to hypothesize that although NETosis is common to all the conditions above, NET components are different and potentially responsible for different autoimmune responses. On the other hand also showing whether circulating NET remnants are present as free structures in blood/biological fluids and determine their levels is relevant to autoimmunity. This review is intended to discuss the rationale for utilizing new discoveries that could be of rapid clinical application and lead to the development of early biomarkers of autoimmunity to predict and treat otherwise serious conditions.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory on Pathophysiology of Uremia, Scientific Institute for Research and Health Care (IRCCS), Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Petretto
- Laboratory of Mass Spectrometry-Core Facility, Scientific Institute for Research and Health Care (IRCCS), Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Bertelli
- Laboratory on Pathophysiology of Uremia, Scientific Institute for Research and Health Care (IRCCS), Istituto Giannina Gaslini, Genoa, Italy
| | - Maricla Galetti
- Department of Clinical and Experimental Medicine, Research Center University of Parma, Parma, Italy
| | - Alice Bonanni
- Division of Nephrology, Dialysis, and Transplantation, Scientific Institute for Research and Health Care (IRCCS), Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Pratesi
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanni Candiano
- Laboratory on Pathophysiology of Uremia, Scientific Institute for Research and Health Care (IRCCS), Istituto Giannina Gaslini, Genoa, Italy
| | - Augusto Vaglio
- Department of Clinical and Experimental Medicine, Research Center University of Parma, Parma, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, and Transplantation, Scientific Institute for Research and Health Care (IRCCS), Istituto Giannina Gaslini, Genoa, Italy; Laboratory on Pathophysiology of Uremia, Scientific Institute for Research and Health Care (IRCCS), Istituto Giannina Gaslini, Genoa, Italy.
| |
Collapse
|
254
|
Bloemen S, Wu XX, Devreese KM, de Laat B, Rand JH, Vasovic LV. Inverted erythrocyte membranes demonstrate β2GPI-antiphospholipid antibody interactions and membrane crosslinking. Thromb Res 2016; 146:89-94. [PMID: 27622308 DOI: 10.1016/j.thromres.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/04/2016] [Accepted: 09/07/2016] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The antiphospholipid syndrome (APS) is an acquired autoimmune disorder predisposing patients to thrombosis or pregnancy complications. Since inverted erythrocyte membranes (iEMs) might provide a physiologically relevant source of anionic phospholipids, we studied the interactions of phospholipid-binding proteins and APS antibodies using iEMs. MATERIALS & METHODS iEMs were prepared from packed erythrocytes by hypotonic lysis. Phosphatidylserine (PS) exposure was confirmed by annexin A5 (A5) binding using fluorescence microscopy and flow cytometry. Binding of β2-glycoprotein I (β2GPI)-IgG immune complexes to iEMs was investigated with gel electrophoresis, western blot and flow cytometry. Functional involvement in coagulation was documented in the thrombin generation assay. RESULTS iEMs readily precipitated purified β2GPI as well as β2GPI from normal plasma and APS plasma. The plasma of APS patients provided higher levels of IgG binding to iEMs relative to healthy controls. Thrombin generation increased with increasing concentrations of iEMs, documenting that coagulation proteins bound to the exposed phospholipids. The LA effect was also distinguished in thrombin generation when comparing APS patients, as indicated by an increased lag time. Agglutination was observed after incubation with APS patient plasma and this was augmented by anti-human globulin. CONCLUSIONS In conclusion, iEMs can provide a more physiological approach than phospholipid vesicle-based tests for investigating APS and are more amenable to standardization than platelet membranes.
Collapse
Affiliation(s)
- Saartje Bloemen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| | - Xiao Xuan Wu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Katrien M Devreese
- Coagulation Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, Ghent, Belgium
| | - Bas de Laat
- Synapse Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jacob H Rand
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Ljiljana V Vasovic
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
255
|
Grayson PC, Schauer C, Herrmann M, Kaplan MJ. Review: Neutrophils as Invigorated Targets in Rheumatic Diseases. Arthritis Rheumatol 2016; 68:2071-82. [PMID: 27159737 PMCID: PMC5001882 DOI: 10.1002/art.39745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Peter C. Grayson
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, U.S.A
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Ulmenweg 18, D-91054 Erlangen
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Ulmenweg 18, D-91054 Erlangen
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
256
|
Abstract
PURPOSE OF REVIEW Atherosclerotic cardiovascular disease confers significant morbidity and mortality in patients with systemic lupus erythematosus (SLE) and cannot be fully explained by traditional cardiovascular risk factors. Recent immunologic discoveries have outlined putative pathways in SLE that may also accelerate the development of atherosclerosis. RECENT FINDINGS Aberrant innate and adaptive immune responses implicated in lupus pathogenesis may also contribute to the development of accelerated atherosclerosis in these patients. Defective apoptosis, abnormal lipoprotein function, autoantibodies, aberrant neutrophil responses, and a dysregulated type I interferon pathway likely contribute to endothelial dysfunction. SLE macrophages have an inflammatory phenotype that may drive progression of plaque. SUMMARY Recent discoveries have placed increased emphasis on the immunology of atherosclerotic cardiovascular disease. Understanding the factors that drive the increased risk for cardiovascular disease in SLE patients may provide selective therapeutic targets for reducing inflammation and improving outcomes in atherosclerosis.
Collapse
Affiliation(s)
- Laura B. Lewandowski
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
257
|
Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, Chen Y, Han X, Wu K. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev 2016; 31:61-71. [PMID: 27578214 PMCID: PMC6142815 DOI: 10.1016/j.cytogfr.2016.08.002] [Citation(s) in RCA: 458] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/13/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
Abstract
Persistent infection or chronic inflammation contributes significantly to tumourigenesis and tumour progression. C-X-C motif ligand 8 (CXCL8) is a chemokine that acts as an important multifunctional cytokine to modulate tumour proliferation, invasion and migration in an autocrine or paracrine manner. Studies have suggested that CXCL8 and its cognate receptors, C-X-C chemokine receptor 1 (CXCR1) and CX-C chemokine receptor 2 (CXCR2), mediate the initiation and development of various cancers including breast cancer, prostate cancer, lung cancer, colorectal carcinoma and melanoma. CXCL8 also integrates with multiple intracellular signalling pathways to produce coordinated effects. Neovascularisation, which provides a basis for fostering tumour growth and metastasis, is now recognised as a critical function of CXCL8 in the tumour microenvironment. In this review, we summarize the biological functions and ficlinical significance of the CXCL8 signalling axis in cancer. We also propose that CXCL8 may be a potential therapeutic target for cancer treatment
Collapse
Affiliation(s)
- Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anping Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yijun Tian
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jennifer D Wu
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Yu Liu
- Department of Geriatric, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tengfei Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuan Chen
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
258
|
Meroni PL. Prevention & treatment of obstetrical complications in APS: Is hydroxychloroquine the Holy Grail we are looking for? J Autoimmun 2016; 75:1-5. [PMID: 27496152 DOI: 10.1016/j.jaut.2016.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 07/05/2016] [Indexed: 12/30/2022]
Abstract
Pregnancy morbidity is part of the clinical spectrum of the anti-phospholipid syndrome (APS), with an important social and economical cost. Antiplatelet and anticoagulant agents are effective in preventing the clinical manifestations in the majority of the patients. However, a consistent proportion of the pregnant women present recurrences in spite of the standard therapy. Observational studies and anecdotal reports raised the issue of additional therapeutic strategies in these refractory cases. Among these, anti-malarials (AMs) and in particular hydroxychloroquine (HCQ) are becoming more and more popular in APS as well as in other systemic autoimmune rheumatic conditions. AMs display a pleiotropic activity spanning from immunomodulation effect to anti-inflammatory and anti-thrombotic activities, all of which potentially useful in APS. The well-known safety of HCQ in pregnancy encouraged its use in pregnant women with autoimmune rheumatic disorders including APS and observational reports suggested a protective effect on obstetrical recurrences. Since thrombosis does not seem to be the main pathogenic mechanism in obstetric APS, effectiveness of the treatment with HCQ should be related to other pharmacological effects rather than to the anti-platelet or anti-thrombotic activity of the molecule. Experimental models showed that HCQ may restore some defective biological functions induced by anti-phospholipid antibodies (aPL) on trophoblasts and a recent study reported a protective effect on in vivo aPL-mediated placental and foetal neurodevelopmental abnormalities. Although the rational behind the use of HCQ in obstetric APS is sound, the evidence from the real life is not conclusive and a critical appraisal through clinical trials is mandatory.
Collapse
Affiliation(s)
- Pier Luigi Meroni
- Department of Clinical Sciences and Community Health, University of Milan, Division of Rheumatology, ASST G. Pini, Pini Piazza C. Ferrari 1, 20122, Milan, Italy; IRCCS, Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
259
|
Hoffmann JHO, Enk AH. Neutrophil extracellular traps in dermatology: Caught in the NET. J Dermatol Sci 2016; 84:3-10. [PMID: 27481818 DOI: 10.1016/j.jdermsci.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 01/21/2023]
Abstract
Neutrophil, or polymorphonuclear granulocytes (PMN) constitute the most abundant type of leucocytes in peripheral human blood. One of the major advances in the last decade was the discovery of neutrophil extracellular trap (NET) formation: a process by which neutrophils externalize web-like chromatin strands decorated with antimicrobial peptides. These structures were soon implicated in immune defense and auto-immunity alike and now link neutrophils to the pathogenesis of a variety of diseases of dermatological relevance. Currently, NET formation is mainly subdivided into suicidal and vital NETosis. Controversy exists regarding the capacity of NETs to kill pathogens, and little is known about the way NETs are formed in vivo. Here, we discuss the current terminology, methods for NET quantification, pathways leading to NET formation, and the role of NETs in systemic and cutaneous immune defense and auto-immunity, with a focus on psoriasis and systemic lupus erythematosus.
Collapse
Affiliation(s)
| | - Alexander H Enk
- Department of Dermatology, University of Heidelberg, Germany
| |
Collapse
|
260
|
Kimball AS, Obi AT, Diaz JA, Henke PK. The Emerging Role of NETs in Venous Thrombosis and Immunothrombosis. Front Immunol 2016; 7:236. [PMID: 27446071 PMCID: PMC4921471 DOI: 10.3389/fimmu.2016.00236] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022] Open
Abstract
Venous thrombosis (VT), a leading cause of morbidity and mortality worldwide, has recently been linked to neutrophil activation and release of neutrophil extracellular traps (NETs) via a process called NETosis. The use of various in vivo thrombosis models and genetically modified mice has more precisely defined the exact role of NETosis in the pathogenesis of VT. Translational large animal VT models and human studies have confirmed the presence of NETs in pathologic VT. Activation of neutrophils, with subsequent NETosis, has also been linked to acute infection. This innate immune response, while effective for bacterial clearance from the host by formation of an intravascular bactericidal "net," also triggers thrombosis. Intravascular thrombosis related to such innate immune mechanisms has been coined immunothrombosis. Dysregulated immunothrombosis has been proposed as a mechanism of pathologic micro- and macrovascular thrombosis in sepsis and autoimmune disease. In this focused review, we will address the dual role of NETs in the pathogenesis of VT and immunothrombosis.
Collapse
Affiliation(s)
- Andrew S Kimball
- Section of Vascular Surgery, Conrad Jobst Vascular Research Laboratories, Department of Surgery, University of Michigan , Ann Arbor, MI , USA
| | - Andrea T Obi
- Section of Vascular Surgery, Conrad Jobst Vascular Research Laboratories, Department of Surgery, University of Michigan , Ann Arbor, MI , USA
| | - Jose A Diaz
- Section of Vascular Surgery, Conrad Jobst Vascular Research Laboratories, Department of Surgery, University of Michigan , Ann Arbor, MI , USA
| | - Peter K Henke
- Section of Vascular Surgery, Conrad Jobst Vascular Research Laboratories, Department of Surgery, University of Michigan , Ann Arbor, MI , USA
| |
Collapse
|
261
|
Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 2016; 12:402-13. [PMID: 27241241 DOI: 10.1038/nrneph.2016.71] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune diseases are a group of disorders characterized by a failure in self-tolerance to a wide variety of autoantigens. In genetically predisposed individuals, these diseases occur as a multistep process in which environmental factors have key roles in the development of abnormal innate and adaptive immune responses. Experimental evidence collected in the past decade suggests that neutrophils - the most abundant type of white blood cell - might have an important role in the pathogenesis of these diseases by contributing to the initiation and perpetuation of immune dysregulation through the formation of neutrophil extracellular traps (NETs), synthesis of proinflammatory cytokines and direct tissue damage. Many of the molecules externalized through NET formation are considered to be key autoantigens and might be involved in the generation of autoimmune responses in predisposed individuals. In several systemic autoimmune diseases, the imbalance between NET formation and degradation might increase the half-life of these lattices, which could enhance the exposure of the immune system to modified autoantigens and increase the capacity for NET-induced organ damage. This Review details the role of neutrophils and NETs in the pathophysiology of systemic autoimmune diseases, including their effect on renal damage, and discusses neutrophil targets as potential novel therapies for these diseases.
Collapse
Affiliation(s)
- Sarthak Gupta
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Systemic Autoimmunity Branch, Intramural Research Program, National Institutes of Health, Room 6D 47C, 10 Center Drive, Bethesda, MD 20892-1930, USA
| | - Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Systemic Autoimmunity Branch, Intramural Research Program, National Institutes of Health, Room 6D 47C, 10 Center Drive, Bethesda, MD 20892-1930, USA
| |
Collapse
|
262
|
Sørensen OE, Borregaard N. Neutrophil extracellular traps - the dark side of neutrophils. J Clin Invest 2016; 126:1612-20. [PMID: 27135878 DOI: 10.1172/jci84538] [Citation(s) in RCA: 366] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neutrophil extracellular traps (NETs) were discovered as extracellular strands of decondensed DNA in complex with histones and granule proteins, which were expelled from dying neutrophils to ensnare and kill microbes. NETs are formed during infection in vivo by mechanisms different from those originally described in vitro. Citrullination of histones by peptidyl arginine deiminase 4 (PAD4) is central for NET formation in vivo. NETs may spur formation of autoantibodies and may also serve as scaffolds for thrombosis, thereby providing a link among infection, autoimmunity, and thrombosis. In this review, we present the mechanisms by which NETs are formed and discuss the physiological and pathophysiological consequences of NET formation. We conclude that NETs may be of more importance in autoimmunity and thrombosis than in innate immune defense.
Collapse
|
263
|
Marder W, Knight JS, Kaplan MJ, Somers EC, Zhang X, O'Dell AA, Padmanabhan V, Lieberman RW. Placental histology and neutrophil extracellular traps in lupus and pre-eclampsia pregnancies. Lupus Sci Med 2016; 3:e000134. [PMID: 27158525 PMCID: PMC4854113 DOI: 10.1136/lupus-2015-000134] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022]
Abstract
Objective Systemic lupus erythematosus (SLE) is associated with increased risk of adverse pregnancy outcomes, including pre-eclampsia, particularly in association with antiphospholipid antibody syndrome (APS). While significant placental abnormalities are expected in pre-eclampsia, less is known about how lupus activity and APS in pregnancy affect the placenta. We describe placental pathology from a population of lupus pregnancies, several of which were complicated by APS-related thromboses, in which pre-eclampsia and other complications developed. We performed standard histopathological placental review and quantified neutrophils and neutrophil extracellular traps (NETs) in the intervillous space, given the recognised association of NETs with lupus, APS and pre-eclampsia. Methods Pre-eclampsia, SLE and control placentas were scored for histological features, and neutrophils were quantified on H&E and immunohistochemical staining for the granular protein myeloperoxidase. NETs were identified by extracellular myeloperoxidase staining in the setting of decondensed nuclei. Non-parametric analysis was used to evaluate differences in netting and intact neutrophils between groups, with Kruskal–Wallis testing for associations between histological findings and neutrophils. Results Placentas were evaluated from 35 pregnancies: 10 controls, 11 pre-eclampsia, 4 SLE+pre-eclampsia and 10 SLE, including one complicated by catastrophic APS and one complicated by hepatic and splenic vein thromboses during pregnancy. Intrauterine growth restriction and oligohydramnios were observed in lupus cases but not controls. Significantly more NETs were found infiltrating placental intervillous spaces in pre-eclampsia, SLE+pre-eclampsia and all 10 SLE non-pre-eclampsia cases. The ratio of NETs to total neutrophils was significantly increased in all case groups compared with controls. When present, NETs were associated with maternal vasculitis, laminar decidual necrosis, maternal–fetal interface haemorrhage and non-occlusive fetal thrombotic vasculopathy. Conclusions In this pilot study of placental tissue from lupus pregnancies, outcomes were more complicated, particularly if associated with APS. Placental tissue revealed marked inflammatory and vascular changes that were essentially indistinguishable from placental tissue of pre-eclampsia pregnancies.
Collapse
Affiliation(s)
- Wendy Marder
- Division of Rheumatology, Department of Internal Medicine,University of Michigan, Ann Arbor, Michigan, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan , USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health , Bethesda, Maryland , USA
| | - Emily C Somers
- Division of Rheumatology, Department of Internal Medicine,University of Michigan, Ann Arbor, Michigan, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA; Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Xu Zhang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan , USA
| | - Alexander A O'Dell
- Division of Rheumatology, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan , USA
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard W Lieberman
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
264
|
Alfaro C, Teijeira A, Oñate C, Pérez G, Sanmamed MF, Andueza MP, Alignani D, Labiano S, Azpilikueta A, Rodriguez-Paulete A, Garasa S, Fusco JP, Aznar A, Inogés S, De Pizzol M, Allegretti M, Medina-Echeverz J, Berraondo P, Perez-Gracia JL, Melero I. Tumor-Produced Interleukin-8 Attracts Human Myeloid-Derived Suppressor Cells and Elicits Extrusion of Neutrophil Extracellular Traps (NETs). Clin Cancer Res 2016; 22:3924-36. [PMID: 26957562 DOI: 10.1158/1078-0432.ccr-15-2463] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE Myeloid-derived suppressor cells (MDSC) are considered an important T-cell immunosuppressive component in cancer-bearing hosts. The factors that attract these cells to the tumor microenvironment are poorly understood. IL8 (CXCL8) is a potent chemotactic factor for neutrophils and monocytes. EXPERIMENTAL DESIGN MDSC were characterized and sorted by multicolor flow cytometry on ficoll-gradient isolated blood leucokytes from healthy volunteers (n = 10) and advanced cancer patients (n = 28). In chemotaxis assays, sorted granulocytic and monocytic MDSC were tested in response to recombinant IL8, IL8 derived from cancer cell lines, and patient sera. Neutrophil extracellular traps (NETs) formation was assessed by confocal microscopy, fluorimetry, and time-lapse fluorescence confocal microscopy on short-term MDSC cultures. RESULTS IL8 chemoattracts both granulocytic (GrMDSC) and monocytic (MoMDSC) human MDSC. Monocytic but not granulocytic MDSC exerted a suppressor activity on the proliferation of autologous T cells isolated from the circulation of cancer patients. IL8 did not modify the T-cell suppressor activity of human MDSC. However, IL8 induced the formation of NETs in the GrMDSC subset. CONCLUSIONS IL8 derived from tumors contributes to the chemotactic recruitment of MDSC and to their functional control. Clin Cancer Res; 22(15); 3924-36. ©2016 AACR.
Collapse
Affiliation(s)
- Carlos Alfaro
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), Pamplona, Spain. Department of Oncology, University Clinic of Navarra, Pamplona, Spain. Department of Immunology, University Clinic of Navarra, Pamplona, Spain
| | - Alvaro Teijeira
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), Pamplona, Spain. Department of Oncology, University Clinic of Navarra, Pamplona, Spain. Department of Immunology, University Clinic of Navarra, Pamplona, Spain
| | - Carmen Oñate
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), Pamplona, Spain. Department of Oncology, University Clinic of Navarra, Pamplona, Spain. Department of Immunology, University Clinic of Navarra, Pamplona, Spain
| | - Guiomar Pérez
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), Pamplona, Spain. Department of Oncology, University Clinic of Navarra, Pamplona, Spain. Department of Immunology, University Clinic of Navarra, Pamplona, Spain
| | - Miguel F Sanmamed
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain. Department of Immunology, University Clinic of Navarra, Pamplona, Spain
| | - Maria Pilar Andueza
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain. Department of Immunology, University Clinic of Navarra, Pamplona, Spain
| | - Diego Alignani
- Cytometry Platform, Centre for Applied Medical Research (CIMA), Pamplona, Spain
| | - Sara Labiano
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), Pamplona, Spain
| | - Arantza Azpilikueta
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), Pamplona, Spain
| | - Alfonso Rodriguez-Paulete
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), Pamplona, Spain
| | - Saray Garasa
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), Pamplona, Spain
| | - Juan P Fusco
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain. Department of Immunology, University Clinic of Navarra, Pamplona, Spain
| | - Angela Aznar
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), Pamplona, Spain
| | - Susana Inogés
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain. Department of Immunology, University Clinic of Navarra, Pamplona, Spain
| | | | | | - Jose Medina-Echeverz
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), Pamplona, Spain
| | - Pedro Berraondo
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), Pamplona, Spain
| | - Jose L Perez-Gracia
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain. Department of Immunology, University Clinic of Navarra, Pamplona, Spain
| | - Ignacio Melero
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), Pamplona, Spain. Department of Oncology, University Clinic of Navarra, Pamplona, Spain. Department of Immunology, University Clinic of Navarra, Pamplona, Spain.
| |
Collapse
|
265
|
Giaglis S, Stoikou M, Grimolizzi F, Subramanian BY, van Breda SV, Hoesli I, Lapaire O, Hasler P, Than NG, Hahn S. Neutrophil migration into the placenta: Good, bad or deadly? Cell Adh Migr 2016; 10:208-25. [PMID: 26933824 PMCID: PMC4853040 DOI: 10.1080/19336918.2016.1148866] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Almost 2 decades have passed since the discovery that pregnancy is associated with a basal inflammatory state involving neutrophil activation, and that this is more overt in cases with preeclampsia, than in instances with sepsis. This pivotal observation paved the way for our report, made almost a decade ago, describing the first involvement of neutrophil extracellular traps (NETs) in a non-infectious human pathology, namely preeclampsia, where an abundance of these structures were detected directly in the placental intervillous space. Despite these remarkable findings, there remains a paucity of interest among reproductive biologists in further exploring the role or involvement of neutrophils in pregnancy and related pathologies. In this review we attempt to redress this deficit by highlighting novel recent findings including the discovery of a novel neutrophil subset in the decidua, the interaction of placental protein 13 (PP13) and neutrophils in modulating spiral artery modification, as well as the use of animal model systems to elucidate neutrophil function in implantation, gestation and parturition. These model systems have been particularly useful in identifying key components implicated in recurrent fetal loss, preeclampsia or new signaling molecules such as sphingolipids. Finally, the recent discovery that anti-phospolipid antibodies can trigger NETosis, supports our hypothesis that these structures may contribute to placental dysfunction in pertinent cases with recurrent fetal loss.
Collapse
Affiliation(s)
- Stavros Giaglis
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland.,b Department Rheumatology , Cantonal Hospital Aarau , Aarau , Switzerland
| | - Maria Stoikou
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Franco Grimolizzi
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland.,c Polytechnic University Marche , Ancona , Italy
| | - Bibin Y Subramanian
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Shane V van Breda
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Irene Hoesli
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Olav Lapaire
- d Department of Obstetrics , University Women's Hospital Basel , Basel , Switzerland
| | - Paul Hasler
- b Department Rheumatology , Cantonal Hospital Aarau , Aarau , Switzerland
| | - Nandor Gabor Than
- e Lendulet Reproduction Research Group, Institute of Enzymology , Research Center for Natural Sciences; Hungarian Academy of Sciences , Budapest , Hungary
| | - Sinuhe Hahn
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| |
Collapse
|
266
|
Barnado A, Crofford LJ, Oates JC. At the Bedside: Neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases. J Leukoc Biol 2016; 99:265-78. [PMID: 26658004 PMCID: PMC6608010 DOI: 10.1189/jlb.5bt0615-234r] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/15/2015] [Accepted: 11/05/2015] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps are associated with a unique form of cell death distinct from apoptosis or necrosis, whereby invading microbes are trapped and killed. Neutrophil extracellular traps can contribute to autoimmunity by exposing autoantigens, inducing IFN-α production, and activating the complement system. The association of neutrophil extracellular traps with autoimmune diseases, particularly systemic lupus erythematosus, will be reviewed. Increased neutrophil extracellular trap formation is seen in psoriasis, antineutrophil cytoplasmic antibody-associated vasculitis, antiphospholipid antibody syndrome rheumatoid arthritis, and systemic lupus erythematosus. Neutrophil extracellular traps may promote thrombus formation in antineutrophil cytoplasmic antibody-associated vasculitis and antiphospholipid antibody syndrome. In systemic lupus erythematosus, increased neutrophil extracellular trap formation is associated with increased disease activity and renal disease, suggesting that neutrophil extracellular traps could be a disease activity marker. Neutrophil extracellular traps can damage and kill endothelial cells and promote inflammation in atherosclerotic plaques, which may contribute to accelerated atherosclerosis in systemic lupus erythematosus. As neutrophil extracellular traps induce IFN-α production, measuring neutrophil extracellular traps may estimate IFN-α levels and identify which systemic lupus erythematosus patients have elevated levels and may be more likely to respond to emerging anti-IFN-α therapies. In addition to anti-IFN-α therapies, other novel agents, such as N-acetyl-cysteine, DNase I, and peptidylarginine deiminase inhibitor 4, target neutrophil extracellular traps. Neutrophil extracellular traps offer insight into the pathogenesis of autoimmune diseases and provide promise in developing disease markers and novel therapeutic agents in systemic lupus erythematosus. Priority areas for basic research based on clinical research insights will be identified, specifically the potential role of neutrophil extracellular traps as a biomarker and therapeutic target in systemic lupus erythematosus.
Collapse
Affiliation(s)
- April Barnado
- *Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Leslie J Crofford
- *Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jim C Oates
- *Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
267
|
Rao AN, Kazzaz NM, Knight JS. Do neutrophil extracellular traps contribute to the heightened risk of thrombosis in inflammatory diseases? World J Cardiol 2015; 7:829-842. [PMID: 26730289 PMCID: PMC4691810 DOI: 10.4330/wjc.v7.i12.829] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/03/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023] Open
Abstract
Thrombotic events, both arterial and venous, are a major health concern worldwide. Further, autoimmune diseases, such as systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, and antiphospholipid syndrome, predispose to thrombosis, and thereby push the risk for these morbid events even higher. In recent years, neutrophils have been identified as important players in both arterial and venous thrombosis. Specifically, chromatin-based structures called neutrophil extracellular traps (NETs) play a key role in activating the coagulation cascade, recruiting platelets, and serving as scaffolding upon which the thrombus can be assembled. At the same time, neutrophils and NETs are emerging as important mediators of pathogenic inflammation in the aforementioned autoimmune diseases. Here, we first review the general role of NETs in thrombosis. We then posit that exaggerated NET release contributes to the prothrombotic diatheses of systemic lupus erythematosus, ANCA-associated vasculitis, and antiphospholipid syndrome.
Collapse
|
268
|
van den Hoogen LL, van Roon JAG, Radstake TRDJ, Fritsch-Stork RDE, Derksen RHWM. Delineating the deranged immune system in the antiphospholipid syndrome. Autoimmun Rev 2015; 15:50-60. [PMID: 26318678 DOI: 10.1016/j.autrev.2015.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
The antiphospholipid syndrome (APS) is a systemic autoimmune disease that is characterized serologically by the presence of antiphospholipid antibodies (aPL) and clinically by vascular thrombosis and obstetric complications. The protein β2 glycoprotein I (β2GPI) is identified as the most important autoantigen in this syndrome. Activation of endothelial cells, thrombocytes and placental tissue by anti-β2GPI antibodies relates to the clinical manifestations of APS. This review describes genetic and environmental factors in relation to APS and summarizes the current knowledge on abnormalities in components of both the innate and adaptive immune system in APS. The role of dendritic cells, T-cells, B-cells, monocytes, neutrophils and NK-cells as well as the complement system in APS are discussed. Several gaps in our knowledge on the pathophysiology of APS are identified and a plea is made for future extensive immune cell profiling by a systems medicine approach in order to better unravel the pathogenesis of APS, to gain more insight in the role of the immune system in APS as well as having the potential to reveal biomarkers or novel therapeutic targets.
Collapse
Affiliation(s)
- Lucas L van den Hoogen
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Joël A G van Roon
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ruth D E Fritsch-Stork
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ronald H W M Derksen
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
269
|
Duarte JH. Connective tissue diseases: Neutrophil extracellular traps--a mechanism of thrombosis in patients with antiphospholipid syndrome? Nat Rev Rheumatol 2015; 11:444. [PMID: 26150123 DOI: 10.1038/nrrheum.2015.96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|