251
|
Group-wise FMRI activation detection on corresponding cortical landmarks. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2014. [PMID: 24579198 DOI: 10.1007/978-3-642-40763-5_82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Group-wise activation detection in task-based fMRI has been widely used because of its robustness to noises and statistical power to deal with variability of individual brains. However, current group-wise fMRI activation detection methods typically rely on the spatial alignment established by coregistration of individual brains' fMRI images into the same template space, which has difficulty in dealing with the remarkable anatomic variation of different brains. As a consequence, the resulted misalignment among multiple brains could substantially degrade the accuracy and specificity of group-wise fMRI activation detection. To address these challenges, this paper presents a novel methodology to detect group-wise fMRI activation based on a publicly released dense map of DTI-derived structural cortical landmarks, which possess intrinsic correspondences across individuals and populations. The basic idea here is that a first-level general linear model (GLM) analysis is performed on fMRI signals of each corresponding cortical landmark in each individual brain's own space, and then the single-subject effect size of the same landmark from a group of subjects are statistically integrated and assessed at the group level using the mixed-effects model. As a result, the consistently activated cortical landmarks are determined and declared group-wisely in response to external block-based stimuli. Our experimental results demonstrated that the proposed approach can map meaningful group-wise activation patterns on the atlas of cortical landmarks without image registration between subjects and spatial smoothing.
Collapse
|
252
|
Muhei-aldin O, VanSwearingen J, Karim H, Huppert T, Sparto PJ, Erickson KI, Sejdić E. An investigation of fMRI time series stationarity during motor sequence learning foot tapping tasks. J Neurosci Methods 2014; 227:75-82. [PMID: 24530436 DOI: 10.1016/j.jneumeth.2014.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Understanding complex brain networks using functional magnetic resonance imaging (fMRI) is of great interest to clinical and scientific communities. To utilize advanced analysis methods such as graph theory for these investigations, the stationarity of fMRI time series needs to be understood as it has important implications on the choice of appropriate approaches for the analysis of complex brain networks. NEW METHOD In this paper, we investigated the stationarity of fMRI time series acquired from twelve healthy participants while they performed a motor (foot tapping sequence) learning task. Since prior studies have documented that learning is associated with systematic changes in brain activation, a sequence learning task is an optimal paradigm to assess the degree of non-stationarity in fMRI time-series in clinically relevant brain areas. We predicted that brain regions involved in a "learning network" would demonstrate non-stationarity and may violate assumptions associated with some advanced analysis approaches. Six blocks of learning, and six control blocks of a foot tapping sequence were performed in a fixed order. The reverse arrangement test was utilized to investigate the time series stationarity. RESULTS Our analysis showed some non-stationary signals with a time varying first moment as a major source of non-stationarity. We also demonstrated a decreased number of non-stationarities in the third block as a result of priming and repetition. COMPARISON WITH EXISTING METHODS Most of the current literature does not examine stationarity prior to processing. CONCLUSIONS The implication of our findings is that future investigations analyzing complex brain networks should utilize approaches robust to non-stationarities, as graph-theoretical approaches can be sensitive to non-stationarities present in data.
Collapse
Affiliation(s)
- Othman Muhei-aldin
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jessie VanSwearingen
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Helmet Karim
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Theodore Huppert
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Patrick J Sparto
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
253
|
Zhang S, Hu S, Bednarski SR, Erdman E, Li CSR. Error-related functional connectivity of the thalamus in cocaine dependence. NEUROIMAGE-CLINICAL 2014; 4:585-92. [PMID: 24936409 PMCID: PMC4053644 DOI: 10.1016/j.nicl.2014.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/13/2014] [Accepted: 01/26/2014] [Indexed: 11/30/2022]
Abstract
Error processing is a critical component of cognitive control, an executive function that has been widely implicated in substance misuse. In previous studies we showed that error related activations of the thalamus predicted relapse to drug use in cocaine addicted individuals (Luo et al., 2013). Here, we investigated whether the error-related functional connectivity of the thalamus is altered in cocaine dependent patients (PCD, n = 54) as compared to demographically matched healthy individuals (HC, n = 54). The results of a generalized psychophysiological interaction analysis showed negative thalamic connectivity with the ventral medial prefrontal cortex (vmPFC), in the area of perigenual and subgenual anterior cingulate cortex, in HC but not PCD (p < 0.05, corrected, two-sample t test). This difference in functional connectivity was not observed for task-residual signals, suggesting that it is specific to task-related processes during cognitive control. Further, the thalamic-vmPFC connectivity is positively correlated with the amount of cocaine use in the prior month for female but not for male PCD. These findings add to recent literature and provide additional evidence for circuit-level biomarkers of cocaine dependence. Error-related thalamic-vmPFC connectivity is altered in cocaine misuse. This altered connectivity is associated with impaired self control. This deficit is associated with recent cocaine use in women but not men.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Sarah R Bednarski
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Emily Erdman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA ; Inter-departmental Neuroscience Program, Yale University, New Haven, CT 06520, USA ; Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
254
|
Radaelli D, Poletti S, Gorni I, Locatelli C, Smeraldi E, Colombo C, Benedetti F. Neural correlates of delusion in bipolar depression. Psychiatry Res 2014; 221:1-5. [PMID: 24200366 DOI: 10.1016/j.pscychresns.2013.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
Approximately one-half of all patients affected by bipolar disorder present psychotic features at least in one occasion. This factor worsens the personal and social burden of the disease. Several studies find an altered brain activity in mesolimbic and prefrontal regions in relation to aberrant attribution of salience to stimuli in delusional patients. The aim of the present study is to investigate gray matter (GM) structural correlates of the past history of delusions in a sample of bipolar patients. The sample includes 34 delusional and 39 non-delusional bipolar patients. Brain-imaging volumetric sequences were acquired on a 3.0 T scanner. Voxel based morphometry (VBM) was performed comparing delusional and non-delusional patients. VBM analysis found significant (p=0.001) differences in prefrontal areas and in the insula where delusional patients show lower GM volume compared to non-delusional patients. The main finding of the present study is a reduction of gray matter volume in the dorsolateral prefrontal cortex and in the insula of delusional patients. This result supports the hypothesis of abnormalities in salience and executive-control networks of delusional patients, which could be associated with an aberrant assignment of salience to the elements of one's own experience that is linked to delusion and psychotic symptoms.
Collapse
Affiliation(s)
- Daniele Radaelli
- Department of Clinical Neurosciences, Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy; Centro di Eccellenza Risonanza Magnetica ad Alto Campo (C.E.R.M.A.C.), University Vita-Salute San Raffaele, Milan, Italy.
| | - Sara Poletti
- Department of Clinical Neurosciences, Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy; Centro di Eccellenza Risonanza Magnetica ad Alto Campo (C.E.R.M.A.C.), University Vita-Salute San Raffaele, Milan, Italy
| | - Irene Gorni
- Department of Clinical Neurosciences, Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy
| | - Clara Locatelli
- Department of Clinical Neurosciences, Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy; Centro di Eccellenza Risonanza Magnetica ad Alto Campo (C.E.R.M.A.C.), University Vita-Salute San Raffaele, Milan, Italy
| | - Enrico Smeraldi
- Department of Clinical Neurosciences, Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy; Centro di Eccellenza Risonanza Magnetica ad Alto Campo (C.E.R.M.A.C.), University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Colombo
- Department of Clinical Neurosciences, Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy; Centro di Eccellenza Risonanza Magnetica ad Alto Campo (C.E.R.M.A.C.), University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy; Centro di Eccellenza Risonanza Magnetica ad Alto Campo (C.E.R.M.A.C.), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
255
|
Niendam TA, Lesh TA, Yoon J, Westphal AJ, Hutchison N, Ragland JD, Solomon M, Minzenberg M, Carter CS. Impaired context processing as a potential marker of psychosis risk state. Psychiatry Res 2014; 221:13-20. [PMID: 24120302 PMCID: PMC3947990 DOI: 10.1016/j.pscychresns.2013.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 07/12/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
While structural abnormalities of the dorsolateral prefrontal cortex (DLPFC) may pre-date and predict psychosis onset, the relationships between functional deficits, cognitive and psychosocial impairments has yet to be explored in the at-risk period. An established measure of cognitive control (AXCPT) was administered to demographically matched clinical-high-risk (CHR; n=25), first-episode schizophrenia (FE; n=35), and healthy control (HC; n=35) participants during functional magnetic resonance imaging (fMRI) to investigate these relationships. CHR and FE individuals demonstrated impaired context processing and reduced DLPFC activation relative to HC individuals during increased cognitive control demands. FE and CHR individuals' ability to increase DLPFC activity in response to cognitive control demands was associated with better task performance. Task performance was also associated with severity of disorganization and poverty symptoms in FE participants. These findings support more extensive studies using fMRI to examine the clinical significance of prefrontal cortical functioning in the earliest stages of psychosis.
Collapse
Affiliation(s)
- Tara A. Niendam
- Psychiatry & Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
| | - Tyler A Lesh
- Psychiatry & Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
| | - Jong Yoon
- Psychiatry & Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
| | - Andrew J. Westphal
- Psychiatry & Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
| | - Natalie Hutchison
- Psychiatry & Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
| | - J. Daniel Ragland
- Psychiatry & Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
| | - Marjorie Solomon
- Psychiatry & Behavioral Sciences, University of California, Davis, Sacramento, CA, USA, MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Michael Minzenberg
- Psychiatry & Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
| | - Cameron S. Carter
- Psychiatry & Behavioral Sciences, University of California, Davis, Sacramento, CA, USA, Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
256
|
Busatto GF, Diniz BS, Zanetti MV. Voxel-based morphometry in Alzheimer’s disease. Expert Rev Neurother 2014; 8:1691-702. [DOI: 10.1586/14737175.8.11.1691] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
257
|
Pleger B, Draganski B, Schwenkreis P, Lenz M, Nicolas V, Maier C, Tegenthoff M. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex. PLoS One 2014; 9:e85372. [PMID: 24416397 PMCID: PMC3887056 DOI: 10.1371/journal.pone.0085372] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/25/2013] [Indexed: 11/19/2022] Open
Abstract
The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.
Collapse
Affiliation(s)
- Burkhard Pleger
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
- * E-mail:
| | - Bogdan Draganski
- Laboratoire de Recherche en Neuroimagerie – LREN, Departement des neurosciences cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Peter Schwenkreis
- Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - Melanie Lenz
- Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - Volkmar Nicolas
- Department of Radiology, University Hospital Bergmannsheil, Bochum, Germany
| | - Christoph Maier
- Department of Pain Treatment, University Hospital Bergmannsheil, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
258
|
Takeuchi H, Taki Y, Sassa Y, Hashizume H, Sekiguchi A, Fukushima A, Kawashima R. Regional gray matter volume is associated with empathizing and systemizing in young adults. PLoS One 2014; 9:e84782. [PMID: 24409308 PMCID: PMC3883687 DOI: 10.1371/journal.pone.0084782] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/19/2013] [Indexed: 12/02/2022] Open
Abstract
Empathizing is defined as the drive to identify the mental states of others for predicting their behavior and responding with an appropriate emotion. Systemizing is defined as the drive to analyze a system in terms of the rules that govern the system in order to predict its behavior. Using voxel-based morphometry and questionnaires in a large sample of normal, right-handed young adults, we investigated the regional gray matter volume (rGMV) correlates of empathizing and systemizing and additionally those of the D score, which is the difference between systemizing and empathizing, to reveal the comprehensive picture of those correlates. Negative rGMV correlates of empathizing and positive rGMV correlates of the D score (formed by the negative correlation between rGMV and empathizing), were found primarily in nodes in the default mode network, mirror neuron system, dorsal anterior cingulate cortex, and the lateral part of the prefrontal cortex together with other areas. Positive rGMV correlates of systemizing and of the D score (formed by the positive correlation between rGMV and systemizing) were found primarily in nodes in the external attention system, middle cingulate cortex, and other regions. Negative rGMV correlates of systemizing were found in an area close to the left posterior insula and putamen. These findings reconcile some previously inconsistent findings, provide other new findings and suggest that these areas contribute to empathizing-systemizing. Furthermore, the negative/positive rGMV correlates of empathizing and positive/negative rGMV correlates of systemizing overlapped substantially. This may be in line with the notion that empathizing and systemizing compete neurally in the brain.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroshi Hashizume
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Atsushi Sekiguchi
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ai Fukushima
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
259
|
White matter microstructural changes as vulnerability factors and acquired signs of post-earthquake distress. PLoS One 2014; 9:e83967. [PMID: 24400079 PMCID: PMC3882214 DOI: 10.1371/journal.pone.0083967] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/19/2013] [Indexed: 11/26/2022] Open
Abstract
Many survivors of severe disasters need psychological support, even those not suffering post-traumatic stress disorder (PTSD). The critical issue in understanding the psychological response after experiencing severe disasters is to distinguish neurological microstructural underpinnings as vulnerability factors from signs of emotional distress acquired soon after the stressful life event. We collected diffusion-tensor magnetic resonance imaging (DTI) data from a group of healthy adolescents before the Great East Japan Earthquake and re-examined the DTIs and anxiety levels of 30 non-PTSD subjects from this group 3–4 months after the earthquake using voxel-based analyses in a longitudinal DTI study before and after the earthquake. We found that the state anxiety level after the earthquake was negatively associated with fractional anisotropy (FA) in the right anterior cingulum (Cg) before the earthquake (r = −0.61, voxel level p<0.0025, cluster level p<0.05 corrected), and positively associated with increased FA changes from before to after the earthquake in the left anterior Cg (r = 0.70, voxel level p<0.0025, cluster level p<0.05 corrected) and uncinate fasciculus (Uf) (r = 0.65, voxel level p<0.0025, cluster level p<0.05 corrected). The results demonstrated that lower FA in the right anterior Cg was a vulnerability factor and increased FA in the left anterior Cg and Uf was an acquired sign of state anxiety after the earthquake. We postulate that subjects with dysfunctions in processing fear and anxiety before the disaster were likely to have higher anxiety levels requiring frequent emotional regulation after the disaster. These findings provide new evidence of psychophysiological responses at the neural network level soon after a stressful life event and might contribute to the development of effective methods to prevent PTSD.
Collapse
|
260
|
Sapara A, ffytche DH, Birchwood M, Cooke MA, Fannon D, Williams SC, Kuipers E, Kumari V. Preservation and compensation: the functional neuroanatomy of insight and working memory in schizophrenia. Schizophr Res 2014; 152:201-9. [PMID: 24332795 PMCID: PMC3906535 DOI: 10.1016/j.schres.2013.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND Poor insight in schizophrenia has been theorised to reflect a cognitive deficit that is secondary to brain abnormalities, localized in the brain regions that are implicated in higher order cognitive functions, including working memory (WM). This study investigated WM-related neural substrates of preserved and poor insight in schizophrenia. METHOD Forty stable schizophrenia outpatients, 20 with preserved and 20 with poor insight (usable data obtained from 18 preserved and 14 poor insight patients), and 20 healthy participants underwent functional magnetic resonance imaging (fMRI) during a parametric 'n-back' task. The three groups were preselected to match on age, education and predicted IQ, and the two patient groups to have distinct insight levels. Performance and fMRI data were analysed to determine how groups of patients with preserved and poor insight differed from each other, and from healthy participants. RESULTS Poor insight patients showed lower performance accuracy, relative to healthy participants (p=0.01) and preserved insight patients (p=0.08); the two patient groups were comparable on symptoms and medication. Preserved insight patients, relative to poor insight patients, showed greater activity most consistently in the precuneus and cerebellum (both bilateral) during WM; they also showed greater activity than healthy participants in the inferior-superior frontal gyrus and cerebellum (bilateral). Group differences in brain activity did not co-vary significantly with performance accuracy. CONCLUSIONS The precuneus and cerebellum function contribute to preserved insight in schizophrenia. Preserved insight as well as normal-range WM capacity in schizophrenia sub-groups may be achieved via compensatory neural activity in the frontal cortex and cerebellum.
Collapse
Affiliation(s)
- Adegboyega Sapara
- Department of Psychology, Institute of Psychiatry, King's College London, London, UK
| | - Dominic H. ffytche
- Department of Old Age Psychiatry, Institute of Psychiatry, King's College London, London, UK,Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Max Birchwood
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Michael A. Cooke
- Department of Psychology, Institute of Psychiatry, King's College London, London, UK
| | - Dominic Fannon
- Department of Psychology, Institute of Psychiatry, King's College London, London, UK
| | - Steven C.R. Williams
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Elizabeth Kuipers
- Department of Psychology, Institute of Psychiatry, King's College London, London, UK,NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| | - Veena Kumari
- Department of Psychology, Institute of Psychiatry, King's College London, London, UK; NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
261
|
Sehm B, Taubert M, Conde V, Weise D, Classen J, Dukart J, Draganski B, Villringer A, Ragert P. Structural brain plasticity in Parkinson's disease induced by balance training. Neurobiol Aging 2014; 35:232-9. [DOI: 10.1016/j.neurobiolaging.2013.06.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/07/2013] [Accepted: 06/30/2013] [Indexed: 11/24/2022]
|
262
|
Statistical analysis of fNIRS data: A comprehensive review. Neuroimage 2014; 85 Pt 1:72-91. [DOI: 10.1016/j.neuroimage.2013.06.016] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/20/2013] [Accepted: 06/07/2013] [Indexed: 11/16/2022] Open
|
263
|
Abstract
Successful realization of planned actions requires the brain to encode intentions over delays. Previous research has indicated that several regions in the rostral or anterior prefrontal cortex (PFC) encode delayed intentions. However, different processes may encode the same future task depending on task load during the delay. This difference may depend on the computational resources available when the delay is occupied with an ongoing task and when it is task-free. Here we directly investigated and compared the representation of delayed intentions in the human brain in the presence and absence of ongoing task load during the delay. We acquired fMRI data in combination with an event-based prospective memory design where human subjects remembered to perform the same future tasks over occupied and task-free delays. We used time-resolved multivoxel pattern classification and found that: (1) rostrolateral PFC (BA 46) encoded the delayed intention during both delay types; (2) rostromedial PFC (BA 10) encoded the intentions during occupied delays; whereas (3) a variety of more posterior regions, including the anterior cingulate cortex (BA 24), the supplementary motor area (BA 6), and the precuneus, encoded intentions during task-free delays. Overall, the medial PFC encoded delayed intentions more rostrally in the presence of an ongoing delay task and more caudally in its absence. Thus, rostromedial PFC may play a specialized role in the encoding of prospective memory that depends on higher computational demands (e.g., given higher task load during the delay). In contrast, the rostrolateral PFC is a more general area that encodes future intentions regardless of task load.
Collapse
|
264
|
Takeuchi H, Taki Y, Nouchi R, Hashizume H, Sekiguchi A, Kotozaki Y, Nakagawa S, Miyauchi CM, Sassa Y, Kawashima R. Effects of multitasking-training on gray matter structure and resting state neural mechanisms. Hum Brain Mapp 2013; 35:3646-60. [PMID: 24343872 PMCID: PMC4216411 DOI: 10.1002/hbm.22427] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/06/2013] [Accepted: 11/01/2013] [Indexed: 11/29/2022] Open
Abstract
Multitasking (MT) constitutes engaging in two or more cognitive activities at the same time. MT‐training improves performance on untrained MT tasks and alters the functional activity of the brain during MT. However, the effects of MT‐training on neural mechanisms beyond MT‐related functions are not known. We investigated the effects of 4 weeks of MT‐training on regional gray matter volume (rGMV) and functional connectivity during rest (resting‐FC) in young human adults. MT‐training was associated with increased rGMV in three prefrontal cortical regions (left lateral rostral prefrontal cortex (PFC), dorsolateral PFC (DLPFC), and left inferior frontal junction), the left posterior parietal cortex, and the left temporal and lateral occipital areas as well as decreased resting‐FC between the right DLPFC and an anatomical cluster around the ventral anterior cingulate cortex (ACC). Our findings suggest that participation in MT‐training is as a whole associated with task‐irrelevant plasticity (i.e., neural changes are not limited to certain specific task conditions) in regions and the network that are assumed to play roles in MT as well as diverse higher‐order cognitive functions. We could not dissociate the effects of each task component and the diverse cognitive processes involved in MT because of the nature of the study, and these remain to be investigated. Hum Brain Mapp 35:3646–3660, 2014. © 2013 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Tao Q, Chan CCH, Luo YJ, Li JJ, Ting KH, Wang J, Lee TMC. How does experience modulate auditory spatial processing in individuals with blindness? Brain Topogr 2013; 28:506-19. [PMID: 24322827 PMCID: PMC4408360 DOI: 10.1007/s10548-013-0339-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/21/2013] [Indexed: 11/24/2022]
Abstract
Comparing early- and late-onset blindness in individuals offers a unique model for studying the influence of visual experience on neural processing. This study investigated how prior visual experience would modulate auditory spatial processing among blind individuals. BOLD responses of early- and late-onset blind participants were captured while performing a sound localization task. The task required participants to listen to novel “Bat-ears” sounds, analyze the spatial information embedded in the sounds, and specify out of 15 locations where the sound would have been emitted. In addition to sound localization, participants were assessed on visuospatial working memory and general intellectual abilities. The results revealed common increases in BOLD responses in the middle occipital gyrus, superior frontal gyrus, precuneus, and precentral gyrus during sound localization for both groups. Between-group dissociations, however, were found in the right middle occipital gyrus and left superior frontal gyrus. The BOLD responses in the left superior frontal gyrus were significantly correlated with accuracy on sound localization and visuospatial working memory abilities among the late-onset blind participants. In contrast, the accuracy on sound localization only correlated with BOLD responses in the right middle occipital gyrus among the early-onset counterpart. The findings support the notion that early-onset blind individuals rely more on the occipital areas as a result of cross-modal plasticity for auditory spatial processing, while late-onset blind individuals rely more on the prefrontal areas which subserve visuospatial working memory.
Collapse
Affiliation(s)
- Qian Tao
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
266
|
Smith JF, Braun AR, Alexander GE, Chen K, Horwitz B. Separating lexical-semantic access from other mnemonic processes in picture-name verification. Front Psychol 2013; 4:706. [PMID: 24130539 PMCID: PMC3795327 DOI: 10.3389/fpsyg.2013.00706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/16/2013] [Indexed: 11/13/2022] Open
Abstract
We present a novel paradigm to identify shared and unique brain regions underlying non-semantic, non-phonological, abstract, audio-visual (AV) memory vs. naming using a longitudinal functional magnetic resonance imaging experiment. Participants were trained to associate novel AV stimulus pairs containing hidden linguistic content. Half of the stimulus pairs were distorted images of animals and sine-wave speech versions of the animal's name. Images and sounds were distorted in such a way as to make their linguistic content easily recognizable only after being made aware of its existence. Memory for the pairings was tested by presenting an AV pair and asking participants to verify if the two stimuli formed a learned pairing. After memory testing, the hidden linguistic content was revealed and participants were tested again on their recollection of the pairings in this linguistically informed state. Once informed, the AV verification task could be performed by naming the picture. There was substantial overlap between the regions involved in recognition of non-linguistic sensory memory and naming, suggesting a strong relation between them. Contrasts between sessions identified left angular gyrus and middle temporal gyrus as key additional players in the naming network. Left inferior frontal regions participated in both naming and non-linguistic AV memory suggesting the region is responsible for AV memory independent of phonological content contrary to previous proposals. Functional connectivity between angular gyrus and left inferior frontal gyrus and left middle temporal gyrus increased when performing the AV task as naming. The results are consistent with the hypothesis that, at the spatial resolution of fMRI, the regions that facilitate non-linguistic AV associations are a subset of those that facilitate naming though reorganized into distinct networks.
Collapse
Affiliation(s)
- Jason F Smith
- Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
267
|
Hakamata Y, Iwase M, Kato T, Senda K, Inada T. The neural correlates of mindful awareness: a possible buffering effect on anxiety-related reduction in subgenual anterior cingulate cortex activity. PLoS One 2013; 8:e75526. [PMID: 24130715 PMCID: PMC3794017 DOI: 10.1371/journal.pone.0075526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/15/2013] [Indexed: 11/19/2022] Open
Abstract
Background Human personality consists of two fundamental elements character and temperament. Character allays automatic and preconceptual emotional responses determined by temperament. However, the neurobiological basis of character and its interplay with temperament remain elusive. Here, we examined character-temperament interplay and explored the neural basis of character, with a particular focus on the subgenual anterior cingulate cortex extending to a ventromedial portion of the prefrontal cortex (sgACC/vmPFC). Methods Resting brain glucose metabolism (GM) was measured using [18F] fluorodeoxyglucose positron emission tomography in 140 healthy adults. Personality traits were assessed using the Temperament and Character Inventory. Regions of interest (ROI) analysis and whole-brain analysis were performed to examine a combination effect of temperament and character on the sgACC/vmPFC and to explore the neural correlates of character, respectively. Results Harm avoidance (HA), a temperament trait (i.e., depressive, anxious, vulnerable), showed a significant negative impact on the sgACC/vmPFC GM, whereas self-transcendence (ST), a character trait (i.e., intuitive, judicious, spiritual), exhibited a significant positive effect on GM in the same region (HA β = −0.248, p = 0.003; ST: β = 0.250, p = 0.003). In addition, when coupled with strong ST, individuals with strong HA maintained the sgACC/vmPFC GM level comparable to the level of those with low scores on both HA and ST. Furthermore, exploratory whole-brain analysis revealed a significant positive relationship between ST and sgACC/vmPFC GM (peak voxel at x = −8, y = 32, z = −8, k = 423, Z = 4.41, corrected pFDR = 0.030). Conclusion The current findings indicate that the sgACC/vmPFC might play a critical role in mindful awareness to something beyond as well as in emotional regulation. Developing a sense of mindfulness may temper exaggerated emotional responses in individuals with a risk for or having anxiety and depressive disorders.
Collapse
Affiliation(s)
- Yuko Hakamata
- Department of Clinical Psychology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- * E-mail:
| | - Mikio Iwase
- Koseikai Hospital Diagnostic Imaging Center, Toyohashi, Aichi, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kohei Senda
- Koseikai Hospital Diagnostic Imaging Center, Toyohashi, Aichi, Japan
| | - Toshiya Inada
- Department of Psychiatry, Seiwa Hospital, Institute of Neuropsychiatry, Shinjuku, Tokyo, Japan
| |
Collapse
|
268
|
Rando K, Chaplin TM, Potenza MN, Mayes L, Sinha R. Prenatal cocaine exposure and gray matter volume in adolescent boys and girls: relationship to substance use initiation. Biol Psychiatry 2013; 74:482-9. [PMID: 23751204 PMCID: PMC3775853 DOI: 10.1016/j.biopsych.2013.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Studies of prenatal cocaine exposure have primarily examined childhood populations. Studying adolescents is especially important because adolescence is a time of changing motivations and initiation of substance use. METHODS Using magnetic resonance imaging and whole-brain voxel-based morphometry, we assessed gray matter volume (GMV) differences in 42 prenatally cocaine exposed (PCE) and 21 noncocaine-exposed (NCE) adolescents, aged 14 to 17 years. Associations between GMV differences in significant clusters and the probability of substance use initiation were examined. RESULTS PCE relative to NCE adolescents demonstrated three clusters of lower GMV involving a limbic and paralimbic (p < .001, family-wise error [FWE] corrected), superior frontal gyrus (p = .001, FWE corrected), and precuneus (p = .019, FWE corrected) cluster. GMVs in the superior frontal and precuneus clusters were associated with initiation of substance use. Each 1-mL decrease in GMV increased the probability of initiating substance use by 69.6% (p = .01) in the superior frontal cluster and 83.6% (p = .02) in the precuneus cluster. CONCLUSIONS PCE is associated with structural differences in cortical and limbic regions. Lower GMVs in frontal cortical and posterior regions are associated with substance use initiation and may represent biological risk markers for substance use.
Collapse
Affiliation(s)
- Kenneth Rando
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | |
Collapse
|
269
|
Stevens MTR, D’Arcy RC, Stroink G, Clarke DB, Beyea SD. Thresholds in fMRI studies: Reliable for single subjects? J Neurosci Methods 2013; 219:312-23. [DOI: 10.1016/j.jneumeth.2013.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
|
270
|
Kim D, Cho HB, Dager SR, Yurgelun-Todd DA, Yoon S, Lee JH, Lee SH, Lee S, Renshaw PF, Lyoo IK. Posterior cerebellar vermal deficits in bipolar disorder. J Affect Disord 2013; 150:499-506. [PMID: 23769608 PMCID: PMC5510461 DOI: 10.1016/j.jad.2013.04.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Based on growing evidence of the crucial role of the cerebellum in emotional regulation, we sought to identify cerebellar structural deficits in a large sample of patients with bipolar disorder (BD). METHODS Cerebellar gray matter density was examined in 49 BD patients (24 medication-naive and 25 medication-treated) and 50 carefully matched healthy individuals, using voxel-based morphometry with a high-resolution spatially unbiased atlas template of the human cerebellum. This recently developed methodology is specifically optimized for the assessment of cerebellar structures. We further explored whether antimanic treatment could attenuate cerebellar structural deficits. RESULTS BD patients showed a greater reduction in gray matter density of the posterior cerebellar regions, including the bilateral vermi and the right crus relative to healthy individuals (corrected p<.05). A stepwise linear reduction in gray matter density was observed in bilateral vermal regions between healthy individuals, medication-treated, and medication-naive BD patients. Furthermore, positive correlations of longer duration of illness with bilateral vermal gray matter deficits were observed only in medication-naive BD patients, but not in patients with medication history. LIMITATIONS This study adopted a cross-sectional design. The automatic intensity-normalization method for the measurement of cerebellar gray matter density may have a limitation in providing detailed anatomical information at a cerebellar folia level. CONCLUSIONS The current findings suggest that BD-related deficits in the posterior cerebellar regions, which appear to progress over the course of illness, could potentially be ameliorated by proper treatment with mood stabilizers.
Collapse
Affiliation(s)
- Dajung Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, South Korea
| | - Han Byul Cho
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, South Korea
| | - Stephen R. Dager
- Department of Radiology, University of Washington, Seattle, WA, USA
| | | | - Sujung Yoon
- Department of Psychiatry and The Brain Institute, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Junghyun H. Lee
- Ewha Brain Institute & College of Pharmacy/Graduate School of Pharmaceutical Sciences, Ewha University, Seoul, South Korea
| | - Sun Hea Lee
- Ewha Brain Institute & College of Pharmacy/Graduate School of Pharmaceutical Sciences, Ewha University, Seoul, South Korea
| | - Sunho Lee
- Ewha Brain Institute & College of Pharmacy/Graduate School of Pharmaceutical Sciences, Ewha University, Seoul, South Korea
| | - Perry F. Renshaw
- Department of Psychiatry and The Brain Institute, University of Utah, Salt Lake City, UT, USA
| | - In Kyoon Lyoo
- Ewha Brain Institute & College of Pharmacy/Graduate School of Pharmaceutical Sciences, Ewha University, Seoul, South Korea
| |
Collapse
|
271
|
Neural correlates of "social gaze" processing in high-functioning autism under systematic variation of gaze duration. NEUROIMAGE-CLINICAL 2013; 3:340-51. [PMID: 24273718 PMCID: PMC3815020 DOI: 10.1016/j.nicl.2013.08.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/15/2013] [Accepted: 08/27/2013] [Indexed: 01/06/2023]
Abstract
Direct gaze is a salient nonverbal signal for social interest and the intention to communicate. In particular, the duration of another's direct gaze can modulate our perception of the social meaning of gaze cues. However, both poor eye contact and deficits in social cognitive processing of gaze are specific diagnostic features of autism. Therefore, investigating neural mechanisms of gaze may provide key insights into the neural mechanisms related to autistic symptoms. Employing functional magnetic resonance imaging (fMRI) and a parametric design, we investigated the neural correlates of the influence of gaze direction and gaze duration on person perception in individuals with high-functioning autism (HFA) and a matched control group. For this purpose, dynamically animated faces of virtual characters, displaying averted or direct gaze of different durations (1 s, 2.5 s and 4 s) were evaluated on a four-point likeability scale. Behavioral results revealed that HFA participants showed no significant difference in likeability ratings depending on gaze duration, while the control group rated the virtual characters as increasingly likeable with increasing gaze duration. On the neural level, direct gaze and increasing direct gaze duration recruit regions of the social neural network (SNN) in control participants, indicating the processing of social salience and a perceived communicative intent. In participants with HFA however, regions of the social neural network were more engaged by averted and decreasing amounts of gaze, while the neural response for processing direct gaze in HFA was not suggestive of any social information processing.
Collapse
|
272
|
Obeso I, Cho S, Antonelli F, Houle S, Jahanshahi M, Ko J, Strafella A. Stimulation of the Pre-SMA Influences Cerebral Blood Flow in Frontal Areas Involved with Inhibitory Control of Action. Brain Stimul 2013; 6:769-76. [DOI: 10.1016/j.brs.2013.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/19/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022] Open
|
273
|
Lennerz BS, Alsop DC, Holsen LM, Stern E, Rojas R, Ebbeling CB, Goldstein JM, Ludwig DS. Effects of dietary glycemic index on brain regions related to reward and craving in men. Am J Clin Nutr 2013; 98:641-7. [PMID: 23803881 PMCID: PMC3743729 DOI: 10.3945/ajcn.113.064113] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Qualitative aspects of diet influence eating behavior, but the physiologic mechanisms for these calorie-independent effects remain speculative. OBJECTIVE We examined effects of the glycemic index (GI) on brain activity in the late postprandial period after a typical intermeal interval. DESIGN With the use of a randomized, blinded, crossover design, 12 overweight or obese men aged 18-35 y consumed high- and low-GI meals controlled for calories, macronutrients, and palatability on 2 occasions. The primary outcome was cerebral blood flow as a measure of resting brain activity, which was assessed by using arterial spin-labeling functional magnetic resonance imaging 4 h after test meals. We hypothesized that brain activity would be greater after the high-GI meal in prespecified regions involved in eating behavior, reward, and craving. RESULTS Incremental venous plasma glucose (2-h area under the curve) was 2.4-fold greater after the high- than the low-GI meal (P = 0.0001). Plasma glucose was lower (mean ± SE: 4.7 ± 0.14 compared with 5.3 ± 0.16 mmol/L; P = 0.005) and reported hunger was greater (P = 0.04) 4 h after the high- than the low-GI meal. At this time, the high-GI meal elicited greater brain activity centered in the right nucleus accumbens (a prespecified area; P = 0.0006 with adjustment for multiple comparisons) that spread to other areas of the right striatum and to the olfactory area. CONCLUSIONS Compared with an isocaloric low-GI meal, a high-GI meal decreased plasma glucose, increased hunger, and selectively stimulated brain regions associated with reward and craving in the late postprandial period, which is a time with special significance to eating behavior at the next meal. This trial was registered at clinicaltrials.gov as NCT01064778.
Collapse
Affiliation(s)
- Belinda S Lennerz
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, MA, and Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | |
Collapse
|
274
|
Stansbury DE, Naselaris T, Gallant JL. Natural scene statistics account for the representation of scene categories in human visual cortex. Neuron 2013; 79:1025-34. [PMID: 23932491 DOI: 10.1016/j.neuron.2013.06.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 11/29/2022]
Abstract
During natural vision, humans categorize the scenes they encounter: an office, the beach, and so on. These categories are informed by knowledge of the way that objects co-occur in natural scenes. How does the human brain aggregate information about objects to represent scene categories? To explore this issue, we used statistical learning methods to learn categories that objectively capture the co-occurrence statistics of objects in a large collection of natural scenes. Using the learned categories, we modeled fMRI brain signals evoked in human subjects when viewing images of scenes. We find that evoked activity across much of anterior visual cortex is explained by the learned categories. Furthermore, a decoder based on these scene categories accurately predicts the categories and objects comprising novel scenes from brain activity evoked by those scenes. These results suggest that the human brain represents scene categories that capture the co-occurrence statistics of objects in the world.
Collapse
|
275
|
Choe IH, Yeo S, Chung KC, Kim SH, Lim S. Decreased and increased cerebral regional homogeneity in early Parkinson's disease. Brain Res 2013; 1527:230-7. [DOI: 10.1016/j.brainres.2013.06.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/08/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
|
276
|
A variant on the kappa opioid receptor gene (OPRK1) is associated with stress response and related drug craving, limbic brain activation and cocaine relapse risk. Transl Psychiatry 2013; 3:e292. [PMID: 23962922 PMCID: PMC3756290 DOI: 10.1038/tp.2013.62] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 12/19/2022] Open
Abstract
Stress increases drug craving and relapse risk. The kappa opioid receptor gene (OPRK1) mediates stress responses. Here, we examined whether the OPRK1 rs6989250 C>G affects stress-induced cocaine craving and cortisol responses, subsequent cocaine relapse risk and the neural response to stress using functional magnetic resonance imaging (fMRI) in cocaine dependence. Sixty-seven treatment-engaged, abstinent cocaine-dependent African-Americans were genotyped (CG: N=10; CC: N=57) and participated in a 3-day experiment in which they were exposed to personalized script-driven imagery of stress, drug cues and neutral scenarios, one condition per day, randomly assigned and counterbalanced across subjects. Repeated measures of craving and cortisol were obtained. The subjects were followed prospectively for 90 days to assess relapse risk. A follow-up preliminary fMRI experiment assessed neural responses to stress, drug cue and neutral conditions in matched CG (N=5) and CC (N=8) subgroups. We found greater stress-induced craving (P=0.019), higher cortisol during stress and cue relative to the neutral condition (P's<0.003), and increased cocaine relapse risk (P=0.0075) in the CG compared with the CC group. The CG relative to the CC group also showed greater activation of limbic and midbrain regions during stress and cues relative to the neutral condition with additional stress-induced activation in the right amygdala/hippocampus (P<0.05, whole-brain corrected). These results suggest that OPRK1 is associated with stress-induced craving and cortisol, hyperactive hypothalamus/thalamus-midbrain-cerebellum responses, and also associated with greater subsequent cocaine relapse risk. Future studies to replicate these findings in a larger sample size are warranted.
Collapse
|
277
|
Tsuzuki D, Dan I. Spatial registration for functional near-infrared spectroscopy: from channel position on the scalp to cortical location in individual and group analyses. Neuroimage 2013; 85 Pt 1:92-103. [PMID: 23891905 DOI: 10.1016/j.neuroimage.2013.07.025] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/11/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) has now become widely accepted as a common functional imaging modality. In order for fNIRS to achieve genuine neuroimaging citizenship, it would ideally be equipped with functional and structural image analyses. However, fNIRS measures cortical activities from the head surface without anatomical information of the object being measured. In this review article, we will present a methodological overview of spatial registration of fNIRS data to overcome this technical drawback of fNIRS. We first introduce and explore the use of standard stereotaxic space and anatomical labeling. Second, we explain different ways of describing scalp landmarks using 10-20 based systems. Third, we describe the simplest case of fNIRS data co-registration to a subject's own MRI. Fourth, we extend the concept to fNIRS data registration of group data. Fifth, we describe probabilistic registration methods, which use a reference-MRI database instead of a subject's own MRIs, and thus enable MRI-free registration for standalone fNIRS data. Sixth, we further extend the concept of probabilistic registration to three-dimensional image reconstruction in diffuse optical tomography. Seventh, we describe a 3D-digitizer-free method for the virtual registration of fNIRS data. Eighth, we provide practical guidance on how these techniques are implemented in software. Finally, we provide information on current resources and limitations for spatial registration of child and infant data. Through these technical descriptions, we stress the importance of presenting fNIRS data on a common platform to facilitate both intra- and inter-modal data sharing among the neuroimaging community.
Collapse
Affiliation(s)
- Daisuke Tsuzuki
- Functional Brain Science Laboratory, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan; Applied Cognitive Neuroscience Laboratory, Research and Development Initiatives, Chuo University, 1-13-27 Kasuga, Bunkyo-ward, Tokyo 112-8551, Japan.
| | | |
Collapse
|
278
|
Yoon JH, Minzenberg MJ, Raouf S, D'Esposito M, Carter CS. Impaired prefrontal-basal ganglia functional connectivity and substantia nigra hyperactivity in schizophrenia. Biol Psychiatry 2013; 74:122-9. [PMID: 23290498 PMCID: PMC3620727 DOI: 10.1016/j.biopsych.2012.11.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/07/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND The theory that prefrontal cortex (PFC) dysfunction in schizophrenia leads to excess subcortical dopamine has generated widespread interest because it provides a parsimonious account for two core features of schizophrenia, cognitive deficits and psychosis, respectively. However, there has been limited empirical validation of this model. Moreover, the identity of the specific subcortical brain regions and circuits that may be impaired as a result of PFC dysfunction and mediate its link to psychosis in schizophrenia remains unclear. We undertook this event-related functional magnetic resonance imaging study to test the hypothesis that PFC dysfunction is associated with altered function of and connectivity with dopamine regulating regions of the basal ganglia. METHODS Eighteen individuals with schizophrenia or schizoaffective disorder and 19 healthy control participants completed event-related functional magnetic resonance imaging during working memory. We conducted between-group contrasts of task-evoked, univariate activation maps to identify regions of altered function in schizophrenia. We also compared the groups on the level of functional connectivity between a priori identified PFC and basal ganglia regions to determine if prefrontal disconnectivity in patients was present. RESULTS We observed task-evoked hyperactivity of the substantia nigra that occurred in association with prefrontal and striatal hypoactivity in the schizophrenia group. The magnitude of prefrontal functional connectivity with these dysfunctional basal ganglia regions was decreased in the schizophrenia group. Additionally, the level of nigrostriatal functional connectivity predicted the level of psychosis. CONCLUSIONS These results suggest that functional impairments of the prefrontal striatonigral circuit may be a common pathway linking the pathogenesis of cognitive deficits and psychosis in schizophrenia.
Collapse
Affiliation(s)
- Jong H Yoon
- Department of Psychiatry and Imaging Research Center, University of California Davis, Sacramento, CA 95817, USA.
| | | | | | | | | |
Collapse
|
279
|
Schlumpf YR, Nijenhuis ERS, Chalavi S, Weder EV, Zimmermann E, Luechinger R, La Marca R, Reinders AATS, Jäncke L. Dissociative part-dependent biopsychosocial reactions to backward masked angry and neutral faces: An fMRI study of dissociative identity disorder. NEUROIMAGE-CLINICAL 2013; 3:54-64. [PMID: 24179849 PMCID: PMC3791283 DOI: 10.1016/j.nicl.2013.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 11/06/2022]
Abstract
Objective The Theory of Structural Dissociation of the Personality (TSDP) proposes that dissociative identity disorder (DID) patients are fixed in traumatic memories as “Emotional Parts” (EP), but mentally avoid these as “Apparently Normal Parts” of the personality (ANP). We tested the hypotheses that ANP and EP have different biopsychosocial reactions to subliminally presented angry and neutral faces, and that actors instructed and motivated to simulate ANP and EP react differently. Methods Women with DID and matched healthy female actors (CON) were as ANP and EP (DIDanp, DIDep, CONanp, CONep) consecutively exposed to masked neutral and angry faces. Their brain activation was monitored using functional magnetic resonance imaging. The black-and-white dotted masks preceding and following the faces each had a centered colored dot, but in a different color. Participants were instructed to immediately press a button after a perceived color change. State anxiety was assessed after each run using the STAI-S. Final statistical analyses were conducted on 11 DID patients and 15 controls for differences in neural activity, and 13 DID patients and 15 controls for differences in behavior and psychometric measures. Results Differences between ANP and EP in DID patients and between DID and CON in the two dissociative parts of the personality were generally larger for neutral than for angry faces. The longest reaction times (RTs) existed for DIDep when exposed to neutral faces. Compared to DIDanp, DIDep was associated with more activation of the parahippocampal gyrus. Following neutral faces and compared to CONep, DIDep had more activation in the brainstem, face-sensitive regions, and motor-related areas. DIDanp showed a decreased activity all over the brain in the neutral and angry face condition. There were neither significant within differences nor significant between group differences in state anxiety. CON was not able to simulate genuine ANP and EP biopsychosocially. Conclusions DID patients have dissociative part-dependent biopsychosocial reactions to masked neutral and angry faces. As EP, they are overactivated, and as ANP underactivated. The findings support TSDP. Major clinical implications are discussed. Neural/behavioral differences between EP and ANP exist at a preconscious level. EP but not ANP showed a positive attentional bias to masked facial stimuli. Masked neutral faces elicited dorsal brainstem and occipitotemporal activity in EP. EP’s reaction pattern suggests preconscious fixation particularly on neutral faces. Actors were unable to mimic the neural/behavioral reactions of DID patients.
Collapse
Affiliation(s)
- Yolanda R Schlumpf
- Division of Neuropsychology, Institute of Psychology, University of Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Reduced inferior frontal gyrus activation during response inhibition to emotional stimuli in youth at high risk of bipolar disorder. Biol Psychiatry 2013; 74:55-61. [PMID: 23245750 DOI: 10.1016/j.biopsych.2012.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 10/15/2012] [Accepted: 11/06/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND Functional brain imaging of young people at increased genetic risk for bipolar disorder provides a means of identifying potential endophenotypes for this condition. Dysfunctional neural mechanisms for the cognitive control of emotion are implicated in the genetic predisposition to bipolar disorder, with aberrant activity in frontocortical, striatal, and limbic brain regions previously reported in subjects with established bipolar disorder during inhibitory and emotion processing tasks. METHODS Functional brain activity during inhibition of emotional material in young people at increased genetic risk for bipolar disorder was investigated using a facial-emotion go/no-go task during functional magnetic resonance imaging. Data from 47 genetically high-risk individuals aged 18 to 30 years with at least one first-degree relative with bipolar disorder were compared with 49 control subjects (within the same age range but without a family history of bipolar disorder or other severe mental illness). RESULTS Whole-brain corrected analyses revealed a highly specific and significant lack of recruitment of the inferior frontal gyrus when inhibiting responses to fearful faces in the high-risk participants compared with control subjects (p = .011, family-wise error, peak voxel). CONCLUSIONS Impaired inhibitory function of the inferior frontal cortex may represent a trait marker of vulnerability to bipolar disorder. That this finding was revealed during inhibition of emotional material further implicates dysregulated frontolimbic brain networks as a potential neurocognitive endophenotype for bipolar disorder and provides evidence for pre-existing functional disturbances in those at high genetic risk for bipolar disorder.
Collapse
|
281
|
Georgescu AL, Kuzmanovic B, Santos NS, Tepest R, Bente G, Tittgemeyer M, Vogeley K. Perceiving nonverbal behavior: neural correlates of processing movement fluency and contingency in dyadic interactions. Hum Brain Mapp 2013; 35:1362-78. [PMID: 23813661 DOI: 10.1002/hbm.22259] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/04/2013] [Indexed: 11/06/2022] Open
Abstract
Despite the fact that nonverbal dyadic social interactions are abundant in the environment, the neural mechanisms underlying their processing are not yet fully understood. Research in the field of social neuroscience has suggested that two neural networks appear to be involved in social understanding: (1) the action observation network (AON) and (2) the social neural network (SNN). The aim of this study was to determine the differential contributions of the AON and the SNN to the processing of nonverbal behavior as observed in dyadic social interactions. To this end, we used short computer animation sequences displaying dyadic social interactions between two virtual characters and systematically manipulated two key features of movement activity, which are known to influence the perception of meaning in nonverbal stimuli: (1) movement fluency and (2) contingency of movement patterns. A group of 21 male participants rated the "naturalness" of the observed scenes on a four-point scale while undergoing fMRI. Behavioral results showed that both fluency and contingency significantly influenced the "naturalness" experience of the presented animations. Neurally, the AON was preferentially engaged when processing contingent movement patterns, but did not discriminate between different degrees of movement fluency. In contrast, regions of the SNN were engaged more strongly when observing dyads with disturbed movement fluency. In conclusion, while the AON is involved in the general processing of contingent social actions, irrespective of their kinematic properties, the SNN is preferentially recruited when atypical kinematic properties prompt inferences about the agents' intentions.
Collapse
Affiliation(s)
- Alexandra L Georgescu
- Neuroimaging Research Group, Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
282
|
Takeuchi H, Taki Y, Nouchi R, Sekiguchi A, Hashizume H, Sassa Y, Kotozaki Y, Miyauchi CM, Yokoyama R, Iizuka K, Nakagawa S, Nagase T, Kunitoki K, Kawashima R. Resting state functional connectivity associated with trait emotional intelligence. Neuroimage 2013; 83:318-28. [PMID: 23792978 DOI: 10.1016/j.neuroimage.2013.06.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/26/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022] Open
Abstract
Previous neuroimaging studies have suggested that trait emotional intelligence (TEI) is associated with components of the neural network involved in social cognition (SCN) and somatic marker circuitry (SMC). Our study is the first to investigate the association of TEI with resting-state functional connectivity (RSFC) between the key nodes of SCN and SMC [medial prefromtal cortex (mPFC) and bilateral anterior insula (AI), respectively] and other brain regions. We found that (a) the intrapersonal factor of TEI was negatively correlated with RSFC between mPFC and the anterior part of the right dorsolateral prefrontal cortex (DLPFC), (b) the TEI interpersonal factor score was positively correlated with RSFC between mPFC and the lingual gyrus, and (c) total TEI was positively correlated with RSFC between mPFC and the precuneus as well as (d) between the left AI and the middle part of the right DLPFC. Taken together with previous study findings, our findings can be comprehensively understood as neural mechanisms of SCN and SMC components are associated with TEI. In particular, the fluent interaction between SCN's two key nodes (mPFC and precuneus/PCC) [as well as between DMN's two key nodes] is suggested to be crucial for total TEI. Our study also indicated that (a) a clear functional separation between the two key nodes of the two major intrinsic networks, DMN and the task-positive network (mPFC and DLPFC), is important for higher intrapersonal TEI, (b) brain interactions involving vision-related areas (lingual gyrus) and the key node of SCN (mPFC) are important for interpersonal TEI, and (c) control of DLPFC over the key node of SMC (AI) is important for total TEI.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Satterthwaite TD, Wolf DH, Ruparel K, Erus G, Elliott MA, Eickhoff SB, Gennatas ED, Jackson C, Prabhakaran K, Smith A, Hakonarson H, Verma R, Davatzikos C, Gur RE, Gur RC. Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth. Neuroimage 2013; 83:45-57. [PMID: 23792981 DOI: 10.1016/j.neuroimage.2013.06.045] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022] Open
Abstract
Several independent studies have demonstrated that small amounts of in-scanner motion systematically bias estimates of resting-state functional connectivity. This confound is of particular importance for studies of neurodevelopment in youth because motion is strongly related to subject age during this period. Critically, the effects of motion on connectivity mimic major findings in neurodevelopmental research, specifically an age-related strengthening of distant connections and weakening of short-range connections. Here, in a sample of 780 subjects ages 8-22, we re-evaluate patterns of change in functional connectivity during adolescent development after rigorously controlling for the confounding influences of motion at both the subject and group levels. We find that motion artifact inflates both overall estimates of age-related change as well as specific distance-related changes in connectivity. When motion is more fully accounted for, the prevalence of age-related change as well as the strength of distance-related effects is substantially reduced. However, age-related changes remain highly significant. In contrast, motion artifact tends to obscure age-related changes in connectivity associated with segregation of functional brain modules; improved preprocessing techniques allow greater sensitivity to detect increased within-module connectivity occurring with development. Finally, we show that subject's age can still be accurately estimated from the multivariate pattern of functional connectivity even while controlling for motion. Taken together, these results indicate that while motion artifact has a marked and heterogeneous impact on estimates of connectivity change during adolescence, functional connectivity remains a valuable phenotype for the study of neurodevelopment.
Collapse
|
284
|
Tanaka S, Ikeda H, Kasahara K, Kato R, Tsubomi H, Sugawara SK, Mori M, Hanakawa T, Sadato N, Honda M, Watanabe K. Larger right posterior parietal volume in action video game experts: a behavioral and voxel-based morphometry (VBM) study. PLoS One 2013; 8:e66998. [PMID: 23776706 PMCID: PMC3679077 DOI: 10.1371/journal.pone.0066998] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/14/2013] [Indexed: 11/18/2022] Open
Abstract
Recent studies suggest that action video game players exhibit superior performance in visuospatial cognitive tasks compared with non-game players. However, the neural basis underlying this visuospatial cognitive performance advantage remains largely unknown. The present human behavioral and imaging study compared gray matter volume in action video game experts and non-experts using structural magnetic resonance imaging and voxel-based morphometry analysis. The results revealed significantly larger gray matter volume in the right posterior parietal cortex in experts compared with non-experts. Furthermore, the larger gray matter volume in the right posterior parietal cortex significantly correlated with individual performance in a visual working memory task in experts. These results suggest that differences in brain structure may be linked to extensive video game play, leading to superior visuospatial cognitive performance in action video game experts.
Collapse
|
285
|
Alexander DM, Jurica P, Trengove C, Nikolaev AR, Gepshtein S, Zvyagintsev M, Mathiak K, Schulze-Bonhage A, Ruescher J, Ball T, van Leeuwen C. Traveling waves and trial averaging: The nature of single-trial and averaged brain responses in large-scale cortical signals. Neuroimage 2013; 73:95-112. [DOI: 10.1016/j.neuroimage.2013.01.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/21/2012] [Accepted: 01/13/2013] [Indexed: 11/29/2022] Open
|
286
|
Baker LM, Williams LM, Korgaonkar MS, Cohen RA, Heaps JM, Paul RH. Impact of early vs. late childhood early life stress on brain morphometrics. Brain Imaging Behav 2013; 7:196-203. [PMID: 23247614 PMCID: PMC8754232 DOI: 10.1007/s11682-012-9215-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies of early life trauma suggest that in addition to its emotional impact, exposure to early life stress (ELS) is associated with alterations in brain structure. However, little attention has been devoted to the relationship between emotional processing and brain integrity as a function of age of ELS onset. In the present study we examined whether ELS onset in older ages of youth rather than younger ages is associated with smaller limbic and basal ganglia volumes as measured by magnetic resonance imaging (MRI). We hypothesized that later age of manifestation during youth is associated with smaller volumetric morphology in limbic and basal ganglia volumes in adulthood. A total of 173 individuals were divided into three groups based on the age of self-reported ELS. The three groups included individuals only experiencing early childhood ELS (1 month-7 years, n = 38), those only experiencing later childhood ELS (8 years -17 years, n = 59), and those who have not experienced ELS (n = 76). Anterior cingulate cortex (ACC), hippocampus, amygdala, insula and caudate volumes were measured using a T1-weighted MRI. Analyses confirmed that later childhood ELS was associated with volumetric reductions in the ACC and insula volumes, while ELS experienced between the ages of 1 month and 7 years was not associated with lower brain volumes in these regions. The results may reflect the influence of more fully developed emotional processing of ELS on the developing brain and reinforce a body of research implicating both the ACC and insula in neuropsychiatric disorders and emotional regulation.
Collapse
Affiliation(s)
- Laurie M Baker
- University of Missouri, St. Louis, Department of Psychology- 1, University Boulevard, Stadler Hall S443, St. Louis, MO 63121, USA.
| | | | | | | | | | | |
Collapse
|
287
|
Tamashiro-Duran JH, Squarzoni P, de Souza Duran FL, Curiati PK, Vallada HP, Buchpiguel CA, Lotufo PA, Wajngarten M, Menezes PR, Scazufca M, de Toledo Ferraz Alves TC, Busatto GF. Cardiovascular risk in cognitively preserved elderlies is associated with glucose hypometabolism in the posterior cingulate cortex and precuneus regardless of brain atrophy and apolipoprotein gene variations. AGE (DORDRECHT, NETHERLANDS) 2013; 35:777-792. [PMID: 22544617 PMCID: PMC3636408 DOI: 10.1007/s11357-012-9413-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/17/2012] [Indexed: 05/31/2023]
Abstract
Cardiovascular risk factors (CVRF) possibly contribute to the emergence of Alzheimer's disease (AD). Fluorodeoxyglucose-positron emission tomography (FDG-PET) has been widely used to demonstrate specific patterns of reduced cerebral metabolic rates of glucose (CMRgl) in subjects with AD and in non-demented carriers of the apolipoprotein ε4 (APOE ε4) allele, the major genetic risk factor for AD. However, functional neuroimaging studies investigating the impact of CVRF on cerebral metabolism have been scarce to date. The present FDG-PET study investigated 59 cognitively preserved elderlies divided into three groups according to their cardiovascular risk based on the Framingham 10-year risk Coronary Heart Disease Risk Profile (low-, medium-, and high-risk) to examine whether different levels of CVRF would be associated with reduced CMRgl, involving the same brain regions affected in early stages of AD. Functional imaging data were corrected for partial volume effects to avoid confounding effects due to regional brain atrophy, and all analyses included the presence of the APOE ε4 allele as a confounding covariate. Significant cerebral metabolism reductions were detected in the high-risk group when compared to the low-risk group in the left precuneus and posterior cingulate gyrus. This suggests that findings of brain hypometabolism similar to those seen in subjects with AD can be detected in association with the severity of cardiovascular risk in cognitively preserved individuals. Thus, a greater knowledge about how such factors influence brain functioning in healthy subjects over time may provide important insigths for the future development of strategies aimed at delaying or preventing the vascular-related triggering of pathologic brain changes in the AD.
Collapse
Affiliation(s)
- Jaqueline Hatsuko Tamashiro-Duran
- Laboratory of Neuroimaging in Psychiatry (LIM-21), Department of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evidence from structural brain MRI. Neuroradiology 2013; 55:963-970. [PMID: 23715746 DOI: 10.1007/s00234-013-1204-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Measurement of the upper cervical cord area (UCCA) from brain MRI may be an effective way to quantify spinal cord involvement in neurological disorders such as multiple sclerosis. However, knowledge on the determinants of UCCA in healthy controls (HCs) is limited. METHODS In two cohorts of 133 and 285 HCs, we studied the influence of different demographic, body-related, and brain-related parameters on UCCA by simple and partial correlation analyses as well as by voxel-based morphometry (VBM) across both cerebral gray matter (GM) and white matter (WM). RESULTS First, we confirmed the known but moderate effect of age on UCCA in the older cohort. Second, we studied the correlation of UCCA with sex, body height, and total intracranial volume (TIV). TIV was the only variable that correlated significantly with UCCA after correction for the other variables. Third, we studied the correlation of UCCA with brain-related parameters. Brain volume correlated stronger with UCCA than TIV. Both volumes of the brain tissue compartments GM and WM correlated with UCCA significantly. WM volume explained variance of UCCA after correction for GM volume, whilst the opposite was not observed. Correspondingly, VBM did not yield any brain region, whose GM content correlated significantly with UCCA, whilst cerebral WM content of cerebrospinal tracts strongly correlated with UCCA. This latter effect increased along a craniocaudal gradient. CONCLUSION UCCA is mainly determined by brain volume as well as by WM content of cerebrospinal tracts.
Collapse
|
289
|
Abstract
Recent studies have highlighted cognitive and neural similarities between planning and perceiving actions. Given that action planning involves a simulation of potential action plans that depends on the actor's body posture, we reasoned that perceiving actions may also be influenced by one's body posture. Here, we test whether and how this influence occurs by measuring behavioral and cerebral (fMRI) responses in human participants predicting goals of observed actions, while manipulating postural congruency between their own body posture and postures of the observed agents. Behaviorally, predicting action goals is facilitated when the body posture of the observer matches the posture achieved by the observed agent at the end of his action (action's goal posture). Cerebrally, this perceptual postural congruency effect modulates activity in a portion of the left intraparietal sulcus that has previously been shown to be involved in updating neural representations of one's own limb posture during action planning. This intraparietal area showed stronger responses when the goal posture of the observed action did not match the current body posture of the observer. These results add two novel elements to the notion that perceiving actions relies on the same predictive mechanism as planning actions. First, the predictions implemented by this mechanism are based on the current physical configuration of the body. Second, during both action planning and action observation, these predictions pertain to the goal state of the action.
Collapse
|
290
|
PUGH KR, LANDI N, PRESTON JL, MENCL WE, AUSTIN AC, SIBLEY D, FULBRIGHT RK, SEIDENBERG MS, GRIGORENKO EL, CONSTABLE RT, MOLFESE P, FROST SJ. The relationship between phonological and auditory processing and brain organization in beginning readers. BRAIN AND LANGUAGE 2013; 125:173-83. [PMID: 22572517 PMCID: PMC3417084 DOI: 10.1016/j.bandl.2012.04.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 03/25/2012] [Accepted: 04/07/2012] [Indexed: 05/07/2023]
Abstract
We employed brain-behavior analyses to explore the relationship between performance on tasks measuring phonological awareness, pseudoword decoding, and rapid auditory processing (all predictors of reading (dis)ability) and brain organization for print and speech in beginning readers. For print-related activation, we observed a shared set of skill-correlated regions, including left hemisphere temporoparietal and occipitotemporal sites, as well as inferior frontal, visual, visual attention, and subcortical components. For speech-related activation, shared variance among reading skill measures was most prominently correlated with activation in left hemisphere inferior frontal gyrus and precuneus. Implications for brain-based models of literacy acquisition are discussed.
Collapse
Affiliation(s)
- Kenneth R. PUGH
- Haskins Laboratories, New Haven, CT
- Yale University School of Medicine, Department of Diagnostic Radiology
- University of Connecticut, Department of Psychology
| | - Nicole LANDI
- Haskins Laboratories, New Haven, CT
- Yale University Child Study Center
| | | | | | | | | | - Robert K. FULBRIGHT
- Haskins Laboratories, New Haven, CT
- Yale University School of Medicine, Department of Diagnostic Radiology
| | - Mark S. SEIDENBERG
- Haskins Laboratories, New Haven, CT
- University of Wisconsin, Madison, Department of Psychology
| | | | - R. Todd CONSTABLE
- Haskins Laboratories, New Haven, CT
- Yale University School of Medicine, Department of Diagnostic Radiology
| | | | | |
Collapse
|
291
|
Abstract
Facial motion carries essential information about other people's emotions and intentions. Most previous studies have suggested that facial motion is mainly processed in the superior temporal sulcus (STS), but several recent studies have also shown involvement of ventral temporal face-sensitive regions. Up to now, it is not known whether the increased response to facial motion is due to an increased amount of static information in the stimulus, to the deformation of the face over time, or to increased attentional demands. We presented nonrigidly moving faces and control stimuli to participants performing a demanding task unrelated to the face stimuli. We manipulated the amount of static information by using movies with different frame rates. The fluidity of the motion was manipulated by presenting movies with frames either in the order in which they were recorded or in scrambled order. Results confirm higher activation for moving compared with static faces in STS and under certain conditions in ventral temporal face-sensitive regions. Activation was maximal at a frame rate of 12.5 Hz and smaller for scrambled movies. These results indicate that both the amount of static information and the fluid facial motion per se are important factors for the processing of dynamic faces.
Collapse
Affiliation(s)
- Johannes Schultz
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | | | | | | |
Collapse
|
292
|
Gerretsen P, Chakravarty MM, Mamo D, Menon M, Pollock BG, Rajji TK, Graff‐Guerrero A. Frontotemporoparietal asymmetry and lack of illness awareness in schizophrenia. Hum Brain Mapp 2013; 34:1035-43. [PMID: 22213454 PMCID: PMC6870294 DOI: 10.1002/hbm.21490] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Lack of illness awareness or anosognosia occurs in both schizophrenia and right hemisphere lesions due to stroke, dementia, and traumatic brain injury. In the latter conditions, anosognosia is thought to arise from unilateral hemispheric dysfunction or interhemispheric disequilibrium, which provides an anatomical model for exploring illness unawareness in other neuropsychiatric disorders, such as schizophrenia. METHODS Both voxel-based morphometry using Diffeomorphic Anatomical Registration through Exponentiated Lie Algebra (DARTEL) and a deformation-based morphology analysis of hemispheric asymmetry were performed on 52 treated schizophrenia subjects, exploring the relationship between illness awareness and gray matter volume. Analyses included age, gender, and total intracranial volume as covariates. RESULTS Hemispheric asymmetry analyses revealed illness unawareness was significantly associated with right < left hemisphere volumes in the anteroinferior temporal lobe (t = 4.83, P = 0.051) using DARTEL, and the dorsolateral prefrontal cortex (t = 5.80, P = 0.003) and parietal lobe (t = 4.3, P = 0.050) using the deformation-based approach. Trend level associations were identified in the right medial prefrontal cortex (t = 4.49, P = 0.127) using DARTEL. Lack of illness awareness was also strongly associated with reduced total white matter volume (r = 0.401, P < 0.01) and illness severity (r = 0.559, P < 0.01). CONCLUSION These results suggest a relationship between anosognosia and hemispheric asymmetry in schizophrenia, supporting previous volume-based MRI studies in schizophrenia that found a relationship between illness unawareness and reduced right hemisphere gray matter volume. Functional imaging studies are required to examine the neural mechanisms contributing to these structural observations.
Collapse
Affiliation(s)
- Philip Gerretsen
- Multimodal Imaging Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Geriatric Mental Health Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - M. Mallar Chakravarty
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
- Mouse Imaging Centre (MICe), The Hospital for Sick Children, Toronto, Ontario, Canada
- Kimel Family Translational Imaging‐Genetics Research Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health
| | - David Mamo
- Multimodal Imaging Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Geriatric Mental Health Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Mahesh Menon
- Multimodal Imaging Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Bruce G. Pollock
- Geriatric Mental Health Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K. Rajji
- Geriatric Mental Health Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff‐Guerrero
- Multimodal Imaging Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
293
|
Individual differences in anterior cingulate activation associated with attentional bias predict cocaine use after treatment. Neuropsychopharmacology 2013; 38:1085-93. [PMID: 23303067 PMCID: PMC3629408 DOI: 10.1038/npp.2013.7] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug-dependent patients often relapse into drug use after treatment. Behavioral studies show that enhanced attentional bias to drug cues is a precursor of relapse. The present functional magnetic resonance imaging (fMRI) study examined whether brain regions involved in attentional bias are predictive of cocaine use after treatment. Attentional bias-related brain activity was measured-with a cocaine Stroop task-in cocaine-dependent patients during their first week in detoxification treatment and was used to predict cocaine use at 3-month follow-up. The predictive value of attentional bias-related brain activity in a priori defined regions of interest, in addition to other measures such as self-reports of substance severity, craving, and behavioral attentional bias were examined. The results show that craving in the week before treatment and individual variability in attentional bias-related activity in the dorsal anterior cingulate cortex (dACC) were significant predictors of days of cocaine use at 3-month follow-up and accounted for 45% in explained variance. Brain activity in the dACC uniquely contributed 22% of explained variance to the prediction model. These findings suggest that hyperactive attentional bias-related brain activity in the dACC might be a biomarker of relapse vulnerability as early as in the first week of detoxification treatment. Ultimately, this may help to develop individually tailored treatment interventions to reduce relapse risk.
Collapse
|
294
|
Abstract
This study examined peer relationships in children with traumatic brain injury (TBI) relative to children with orthopedic injuries (OI), and explored whether differences in peer relationships correlated with white matter volumes. Classroom procedures were used to elicit peer perceptions of social behavior, acceptance, and friendships for eighty-seven 8- to 13-year-old children, 15 with severe TBI, 40 with complicated mild/moderate TBI, and 32 with OI. Magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) were used to investigate volumetric correlates of peer relationship measures. Children with severe TBI were rated higher in rejection-victimization than children with OI, and were less likely than children with OI to have a mutual friendship in their classroom (47% vs. 88%). Children with TBI without a mutual friend were rated lower than those with a mutual friend on sociability-popularity and prosocial behavior and higher on rejection-victimization, and had lower peer acceptance ratings. Mutual friendship ratings were related to white matter volumes in several posterior brain regions, but not to overall brain atrophy. Severe TBI in children is associated with detrimental peer relationships that are related to focal volumetric reductions in white matter within regions of the brain involved in social information-processing.
Collapse
|
295
|
Zeidan F, Martucci KT, Kraft RA, McHaffie JG, Coghill RC. Neural correlates of mindfulness meditation-related anxiety relief. Soc Cogn Affect Neurosci 2013; 9:751-9. [PMID: 23615765 DOI: 10.1093/scan/nst041] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Anxiety is the cognitive state related to the inability to control emotional responses to perceived threats. Anxiety is inversely related to brain activity associated with the cognitive regulation of emotions. Mindfulness meditation has been found to regulate anxiety. However, the brain mechanisms involved in meditation-related anxiety relief are largely unknown. We employed pulsed arterial spin labeling MRI to compare the effects of distraction in the form of attending to the breath (ATB; before meditation training) to mindfulness meditation (after meditation training) on state anxiety across the same subjects. Fifteen healthy subjects, with no prior meditation experience, participated in 4 d of mindfulness meditation training. ATB did not reduce state anxiety, but state anxiety was significantly reduced in every session that subjects meditated. Meditation-related anxiety relief was associated with activation of the anterior cingulate cortex, ventromedial prefrontal cortex and anterior insula. Meditation-related activation in these regions exhibited a strong relationship to anxiety relief when compared to ATB. During meditation, those who exhibited greater default-related activity (i.e. posterior cingulate cortex) reported greater anxiety, possibly reflecting an inability to control self-referential thoughts. These findings provide evidence that mindfulness meditation attenuates anxiety through mechanisms involved in the regulation of self-referential thought processes.
Collapse
Affiliation(s)
- Fadel Zeidan
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA and Department of Biomedical Engineering, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Katherine T Martucci
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA and Department of Biomedical Engineering, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Robert A Kraft
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA and Department of Biomedical Engineering, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - John G McHaffie
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA and Department of Biomedical Engineering, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Robert C Coghill
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA and Department of Biomedical Engineering, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
296
|
Takeuchi H, Taki Y, Thyreau B, Sassa Y, Hashizume H, Sekiguchi A, Nagase T, Nouchi R, Fukushima A, Kawashima R. White matter structures associated with empathizing and systemizing in young adults. Neuroimage 2013; 77:222-36. [PMID: 23578577 DOI: 10.1016/j.neuroimage.2013.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 11/20/2022] Open
Abstract
Empathizing is defined as the drive to identify the mental states of others in order to predict their behavior and respond with an appropriate emotion. Systemizing is defined as the drive to analyze a system in terms of the rules that govern it to predict its behavior. We undertook voxel-by-voxel investigations of regional white matter volume (rWMV) and fractional anisotropy (FA) of diffusion tensor imaging to discover the WM structural correlates of empathizing, systemizing, and their difference (D score: systemizing-empathizing). Whole brain analyses of covariance revealed that across both sexes, the D score was negatively correlated with rWMV in the WM area in the bilateral temporal lobe, near the right inferior frontal gyrus, near the ventral medial prefrontal cortex, and near the posterior cingulate cortex and positively correlated with FA in an area involving the superior longitudinal fasciculus. Post-hoc analyses revealed that these associations were generally formed by both the correlation between WM structures and empathizing as well as the opposite correlation between WM structures and systemizing. A significant effect of interaction between sex and the D score on rWMV, which was mainly observed because of a positive correlation between rWMV and empathizing in females and a negative correlation between rWMV and systemizing in females, was found in an area close to the right inferior parietal lobule and temporoparietal junction. Our results suggest that WM structures involving the default mode network and the mirror neuron system support empathizing, and that a WM structure relating to the external attention system supports systemizing. Further, our results revealed an overlap between positive/negative WM structural correlates of empathizing and negative/positive WM structural correlates of systemizing despite little correlation between empathizing and systemizing, which supports the previously held idea that there is a trade-off between empathizing and systemizing in the brain.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Salo R, Fassbender C, Buonocore MH, Ursu S. Behavioral regulation in methamphetamine abusers: an fMRI study. Psychiatry Res 2013; 211:234-8. [PMID: 23149023 PMCID: PMC3594424 DOI: 10.1016/j.pscychresns.2012.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
The goal of this study was to extend our previous findings of abnormal prefrontal function in methamphetamine (MA) abusers and controls and to link the imaging data to behavioral, demographic and drug use variables. We used a fast event-related functional magnetic resonance imaging (fMRI) design to examine trial-to-trial reaction time (RT) adjustments in 30 MA abusers and 30 controls. A variant of the Stroop task was employed to measure influence of response conflict on RT, including the level of trial-to-trial RT adjustments seen after conflict trials. Compared to control subjects, MA abusers exhibited reduced RT adjustments and reduced activation in the prefrontal cortex (PFC) after conflict trials. RT adjustment correlated negatively with PFC brain activity in the MA group, while a trend for a positive correlation was observed in controls. No correlations were observed between task performance or brain activity and age, education or drug use variables. These data support our previous findings that the ability to adapt a behavioral response based on prior experience is compromised in MA abusers. Interestingly, these impairments do not appear to be linked to drug use patterns or to educational levels.
Collapse
Affiliation(s)
- Ruth Salo
- Deparment of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA.
| | - Catherine Fassbender
- Dept. of Psychiatry and Behavioral Sciences, University of California, Davis, CA,Imaging Research Center, University of California, Davis, CA
| | - Michael H. Buonocore
- Imaging Research Center, University of California, Davis, CA,Department of Radiology, University of California, Davis
| | - Stefan Ursu
- Dept. of Psychiatry and Behavioral Sciences, University of California, Davis, CA,Imaging Research Center, University of California, Davis, CA
| |
Collapse
|
298
|
Development of PowerMap: a software package for statistical power calculation in neuroimaging studies. Neuroinformatics 2013; 10:351-65. [PMID: 22644868 DOI: 10.1007/s12021-012-9152-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Although there are a number of statistical software tools for voxel-based massively univariate analysis of neuroimaging data, such as fMRI (functional MRI), PET (positron emission tomography), and VBM (voxel-based morphometry), very few software tools exist for power and sample size calculation for neuroimaging studies. Unlike typical biomedical studies, outcomes from neuroimaging studies are 3D images of correlated voxels, requiring a correction for massive multiple comparisons. Thus, a specialized power calculation tool is needed for planning neuroimaging studies. To facilitate this process, we developed a software tool specifically designed for neuroimaging data. The software tool, called PowerMap, implements theoretical power calculation algorithms based on non-central random field theory. It can also calculate power for statistical analyses with FDR (false discovery rate) corrections. This GUI (graphical user interface)-based tool enables neuroimaging researchers without advanced knowledge in imaging statistics to calculate power and sample size in the form of 3D images. In this paper, we provide an overview of the statistical framework behind the PowerMap tool. Three worked examples are also provided, a regression analysis, an ANOVA (analysis of variance), and a two-sample T-test, in order to demonstrate the study planning process with PowerMap. We envision that PowerMap will be a great aide for future neuroimaging research.
Collapse
|
299
|
Mühlau M, Buck D, Förschler A, Boucard CC, Arsic M, Schmidt P, Gaser C, Berthele A, Hoshi M, Jochim A, Kronsbein H, Zimmer C, Hemmer B, Ilg R. White-matter lesions drive deep gray-matter atrophy in early multiple sclerosis: support from structural MRI. Mult Scler 2013; 19:1485-92. [PMID: 23462349 DOI: 10.1177/1352458513478673] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In MS, the relationship between lesions within cerebral white matter (WM) and atrophy within deep gray matter (GM) is unclear. OBJECTIVE To investigate the spatial relationship between WM lesions and deep GM atrophy. METHODS We performed a cross-sectional structural magnetic resonance imaging (MRI) study (3 Tesla) in 249 patients with clinically-isolated syndrome or relapsing-remitting MS (Expanded Disability Status Scale score: median, 1.0; range, 0-4) and in 49 healthy controls. Preprocessing of T1-weighted and fluid-attenuated T2-weighted images resulted in normalized GM images and WM lesion probability maps. We performed two voxel-wise analyses: 1. We localized GM atrophy and confirmed that it is most pronounced within deep GM; 2. We searched for a spatial relationship between WM lesions and deep GM atrophy; to this end we analyzed WM lesion probability maps by voxel-wise multiple regression, including four variables derived from maxima of regional deep GM atrophy (caudate and pulvinar, each left and right). RESULTS Atrophy of each deep GM region was explained by ipsilateral WM lesion probability, in the area most densely connected to the respective deep GM region. CONCLUSION We demonstrated that WM lesions and deep GM atrophy are spatially related. Our results are best compatible with the hypothesis that WM lesions contribute to deep GM atrophy through axonal pathology.
Collapse
Affiliation(s)
- Mark Mühlau
- Department of Neurology, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Barnes GR, Ridgway GR, Flandin G, Woolrich M, Friston K. Set-level threshold-free tests on the intrinsic volumes of SPMs. Neuroimage 2013; 68:133-40. [PMID: 23246858 PMCID: PMC3625125 DOI: 10.1016/j.neuroimage.2012.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/16/2012] [Accepted: 11/20/2012] [Indexed: 11/17/2022] Open
Abstract
Conventionally, set-level inference on statistical parametric maps (SPMs) is based on the topological features of an excursion set above some threshold—for example, the number of clusters or Euler characteristic. The expected Euler characteristic—under the null hypothesis—can be predicted from an intrinsic measure or volume of the SPM, such as the resel counts or the Lipschitz–Killing curvatures (LKC). We propose a new approach that performs a null hypothesis omnibus test on an SPM, by testing whether its intrinsic volume (described by LKC coefficients) is different from the volume of the underlying residual fields: intuitively, whether the number of peaks in the statistical field (testing for signal) and the residual fields (noise) are consistent or not. Crucially, this new test requires no arbitrary feature-defining threshold but is nevertheless sensitive to distributed or spatially extended patterns. We show the similarities between our approach and conventional topological inference—in terms of false positive rate control and sensitivity to treatment effects—in two and three dimensional simulations. The test consistently improves on classical approaches for moderate (> 20) degrees of freedom. We also demonstrate the application to real data and illustrate the comparison of the expected and observed Euler characteristics over the complete threshold range.
Collapse
|