251
|
Reinen J, van Hemert D, Vermeulen NPE, Commandeur JNM. Application of a Continuous-Flow Bioassay to Investigate the Organic Solvent Tolerability of Cytochrome P450 BM3 Mutants. ACTA ACUST UNITED AC 2015; 20:1246-55. [PMID: 26396180 DOI: 10.1177/1087057115607183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023]
Abstract
A novel methodology is presented to investigate the organic solvent tolerability of cytochrome P450 monooxygenase BM3 (CYP BM3) mutants. A fluorescence-based continuous-flow enzyme activity detection (EAD) setup was used to screen the activity of CYP BM3 mutants in the presence of organic solvents. The methodology is based on the CYP BM3-mediated O-dealkylation of benzyloxyresorufin to form the highly fluorescent product resorufin. The assay setup not only allows detection of the formed resorufin, but it also simultaneously monitors cofactor depletion online. The EAD setup was used to test the activity of a small library of novel CYP BM3 mutants in flow-injection analysis mode in the presence of the organic modifiers methanol, acetonitrile, and isopropanol. Mutants with enhanced tolerability toward all three solvents were identified, and the EAD setup was adapted to facilitate CYP BM3 activity screening against a gradient of an organic modifier to study the behavior of the small library of CYP BM3 mutants in more detail. The simple methodology used in this study was shown to be a very powerful tool to screen for novel CYP BM3 mutants with increased tolerability toward organic solvents.
Collapse
Affiliation(s)
- Jelle Reinen
- Division of Molecular Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Daniel van Hemert
- Division of Molecular Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
252
|
Brixius-Anderko S, Schiffer L, Hannemann F, Janocha B, Bernhardt R. A CYP21A2 based whole-cell system in Escherichia coli for the biotechnological production of premedrol. Microb Cell Fact 2015; 14:135. [PMID: 26374204 PMCID: PMC4572648 DOI: 10.1186/s12934-015-0333-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/31/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Synthetic glucocorticoids like methylprednisolone (medrol) are of high pharmaceutical interest and represent powerful drugs due to their anti-inflammatory and immunosuppressive effects. Since the chemical hydroxylation of carbon atom 21, a crucial step in the synthesis of the medrol precursor premedrol, exhibits a low overall yield because of a poor stereo- and regioselectivity, there is high interest in a more sustainable and efficient biocatalytic process. One promising candidate is the mammalian cytochrome P450 CYP21A2 which is involved in steroid hormone biosynthesis and performs a selective oxyfunctionalization of C21 to provide the precursors of aldosterone, the main mineralocorticoid, and cortisol, the most important glucocorticoid. In this work, we demonstrate the high potential of CYP21A2 for a biotechnological production of premedrol, an important precursor of medrol. RESULTS We successfully developed a CYP21A2-based whole-cell system in Escherichia coli by coexpressing the cDNAs of bovine CYP21A2 and its redox partner, the NADPH-dependent cytochrome P450 reductase (CPR), via a bicistronic vector. The synthetic substrate medrane was selectively 21-hydroxylated to premedrol with a max. yield of 90 mg L(-1) d(-1). To further improve the biocatalytic activity of the system by a more effective electron supply, we exchanged the CPR with constructs containing five alternative redox systems. A comparison of the constructs revealed that the redox system with the highest endpoint yield converted 70 % of the substrate within the first 2 h showing a doubled initial reaction rate compared with the other constructs. Using the best system we could increase the overall yield of premedrol to a maximum of 320 mg L(-1) d(-1) in shaking flasks. Optimization of the biotransformation in a bioreactor could further improve the premedrol gain to a maximum of 0.65 g L(-1) d(-1). CONCLUSIONS We successfully established a CYP21-based whole-cell system for the biotechnological production of premedrol, a pharmaceutically relevant glucocorticoid, in E. coli and could improve the system by optimizing the redox system concerning reaction velocity and endpoint yield. This is the first step for a sustainable replacement of a complicated chemical low-yield hydroxylation by a biocatalytic cytochrome P450-based whole-cell system.
Collapse
Affiliation(s)
| | - Lina Schiffer
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Bernd Janocha
- Sanofi-Aventis Deutschland GmbH, C&BD Frankfurt Biotechnology, 65926, Frankfurt-Höchst, Germany.
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
253
|
Kiss FM, Khatri Y, Zapp J, Bernhardt R. Identification of new substrates for the CYP106A1-mediated 11-oxidation and investigation of the reaction mechanism. FEBS Lett 2015; 589:2320-6. [DOI: 10.1016/j.febslet.2015.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
|
254
|
Willrodt C, Hoschek A, Bühler B, Schmid A, Julsing MK. Coupling limonene formation and oxyfunctionalization by mixed-culture resting cell fermentation. Biotechnol Bioeng 2015; 112:1738-50. [PMID: 25786991 DOI: 10.1002/bit.25592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/13/2015] [Accepted: 03/10/2015] [Indexed: 01/11/2023]
Abstract
Metabolic engineering strategies mark a milestone for the fermentative production of bulk and fine chemicals. Yet, toxic products and volatile reaction intermediates with low solubilities remain challenging. Prominent examples are artificial multistep pathways like the production of perillyl acetate (POHAc) from glucose via limonene. For POHAc, these limitations can be overcome by mixed-culture fermentations. A limonene biosynthesis pathway and cytochrome P450 153A6 (CYP153A6) as regioselective hydroxylase are used in two distinct recombinant E. coli. POHAc formation from glucose in one recombinant cell was hindered by ineffective coupling of limonene synthesis and low rates of oxyfunctionalization. The optimization of P450 gene expression led to the formation of 6.20 ± 0.06 mg gcdw (-1) POHAc in a biphasic batch cultivation with glucose as sole carbon and energy source. Increasing the spatial proximity between limonene synthase and CYP153A6 by a genetic fusion of both enzymes changed the molar limonene/POHAc ratio from 3.2 to 1.6. Spatial separation of limonene biosynthesis from its oxyfunctionalization improved POHAc concentration 3.3-fold to 21.7 mg L(-1) as compared to a biphasic fermentation. Mixed-cultures of E. coli BL21 (DE3) containing the limonene biosynthesis pathway and E. coli MG1655 harboring either CYP153A6, or alternatively a cymene monooxygenase, showed POHAc formation rates of 0.06 or 0.11 U gcdw (-1) , respectively. This concept provides a novel framework for fermentative syntheses involving toxic, volatile, or barely soluble compounds or pathway intermediates.
Collapse
Affiliation(s)
- Christian Willrodt
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany.,Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Anna Hoschek
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Bruno Bühler
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Andreas Schmid
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Mattijs K Julsing
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
255
|
Schiffer L, Anderko S, Hannemann F, Eiden-Plach A, Bernhardt R. The CYP11B subfamily. J Steroid Biochem Mol Biol 2015; 151:38-51. [PMID: 25465475 DOI: 10.1016/j.jsbmb.2014.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 01/11/2023]
Abstract
The biosynthesis of steroid hormones is dependent on P450-catalyzed reactions. In mammals, cholesterol is the common precursor of all steroid hormones, and its conversion to pregnenolone is the initial and rate-limiting step in hormone biosynthesis in steroidogenic tissues such as gonads and adrenal glands. The production of glucocorticoids and mineralocorticoids takes place in the adrenal gland and the final steps are catalyzed by 2 mitochondrial cytochromes P450, CYP11B1 (11β-hydroxylase or P45011β) and CYP11B2 (aldosterone synthase or P450aldo). The occurrence and development of these 2 enzymes in different species, their contribution to the biosynthesis of steroid hormones as well as their regulation at different levels (gene expression, cellular regulation, regulation on the level of proteins) is the topic of this chapter.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Simone Anderko
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Frank Hannemann
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Antje Eiden-Plach
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany.
| |
Collapse
|
256
|
Dennig A, Kuhn M, Tassoti S, Thiessenhusen A, Gilch S, Bülter T, Haas T, Hall M, Faber K. Oxidative Decarboxylation of Short-Chain Fatty Acids to 1-Alkenes. Angew Chem Int Ed Engl 2015; 54:8819-22. [PMID: 26095212 DOI: 10.1002/anie.201502925] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 01/11/2023]
Abstract
The enzymatic oxidative decarboxylation of linear short-chain fatty acids (C4:0-C9:0) employing the P450 monooxygenase OleT, O2 as the oxidant, and NAD(P)H as the electron donor gave the corresponding terminal C3 to C8 alkenes with product titers of up to 0.93 g L(-1) and TTNs of >2000. Key to this process was the construction of an efficient electron-transfer chain employing putidaredoxin CamAB in combination with NAD(P)H recycling at the expense of glucose, formate, or phosphite. This system allows for the biocatalytic production of industrially important 1-alkenes, such as propene and 1-octene, from renewable resources for the first time.
Collapse
Affiliation(s)
- Alexander Dennig
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)
| | - Miriam Kuhn
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)
| | - Sebastian Tassoti
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)
| | - Anja Thiessenhusen
- Creavis, Evonik Industries, Bau 1420, Paul Baumann Strasse 1, 45772 Marl (Germany)
| | - Stefan Gilch
- Creavis, Evonik Industries, Bau 1420, Paul Baumann Strasse 1, 45772 Marl (Germany)
| | - Thomas Bülter
- Creavis, Evonik Industries, Bau 1420, Paul Baumann Strasse 1, 45772 Marl (Germany)
| | - Thomas Haas
- Creavis, Evonik Industries, Bau 1420, Paul Baumann Strasse 1, 45772 Marl (Germany)
| | - Mélanie Hall
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)
| | - Kurt Faber
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria).
| |
Collapse
|
257
|
Dennig A, Kuhn M, Tassoti S, Thiessenhusen A, Gilch S, Bülter T, Haas T, Hall M, Faber K. Oxidative Decarboxylierung von kurzkettigen Fettsäuren zu 1-Alkenen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502925] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
258
|
Ilie A, Lonsdale R, Agudo R, Reetz MT. A diastereoselective P450-catalyzed epoxidation reaction: anti versus syn reactivity. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
259
|
Ko S, Yang YH, Choi KY, Kim BG. rational design and directed evolution of CYP102A1 (BM3) for regio-specific hydroxylation of isoflavone. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0718-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
260
|
Comparison of CYP106A1 and CYP106A2 from Bacillus megaterium – identification of a novel 11-oxidase activity. Appl Microbiol Biotechnol 2015; 99:8495-514. [DOI: 10.1007/s00253-015-6563-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/09/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022]
|
261
|
Kiss FM, Lundemo MT, Zapp J, Woodley JM, Bernhardt R. Process development for the production of 15β-hydroxycyproterone acetate using Bacillus megaterium expressing CYP106A2 as whole-cell biocatalyst. Microb Cell Fact 2015; 14:28. [PMID: 25890176 PMCID: PMC4354754 DOI: 10.1186/s12934-015-0210-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/18/2015] [Indexed: 12/19/2022] Open
Abstract
Background CYP106A2 from Bacillus megaterium ATCC 13368 was first identified as a regio- and stereoselective 15β-hydroxylase of 3-oxo-∆4-steroids. Recently, it was shown that besides 3-oxo-∆4-steroids, 3-hydroxy-∆5-steroids as well as di- and triterpenes can also serve as substrates for this biocatalyst. It is highly selective towards the 15β position, but the 6β, 7α/β, 9α, 11α and 15α positions have also been described as targets for hydroxylation. Based on the broad substrate spectrum and hydroxylating capacity, it is an excellent candidate for the production of human drug metabolites and drug precursors. Results In this work, we demonstrate the conversion of a synthetic testosterone derivative, cyproterone acetate, by CYP106A2 under in vitro and in vivo conditions. Using a Bacillus megaterium whole-cell system overexpressing CYP106A2, sufficient amounts of product for structure elucidation by nuclear magnetic resonance spectroscopy were obtained. The product was characterized as 15β-hydroxycyproterone acetate, the main human metabolite. Since the product is of pharmaceutical interest, our aim was to intensify the process by increasing the substrate concentration and to scale-up the reaction from shake flasks to bioreactors to demonstrate an efficient, yet green and cost-effective production. Using a bench-top bioreactor and the recombinant Bacillus megaterium system, both a fermentation and a transformation process were successfully implemented. To improve the yield and product titers for future industrial application, the main bottlenecks of the reaction were addressed. Using 2-hydroxypropyl-β-cyclodextrin, an effective bioconversion of 98% was achieved using 1 mM substrate concentration, corresponding to a product formation of 0.43 g/L, at a 400 mL scale. Conclusions Here we describe the successful scale-up of cyproterone acetate conversion from shake flasks to bioreactors, using the CYP106A2 enzyme in a whole-cell system. The substrate was converted to its main human metabolite, 15β-hydroxycyproterone acetate, a highly interesting drug candidate, due to its retained antiandrogen activity but significantly lower progestogen properties than the mother compound. Optimization of the process led to an improvement from 55% to 98% overall conversion, with a product formation of 0.43 g/L, approaching industrial process requirements and a future large-scale application.
Collapse
Affiliation(s)
- Flora M Kiss
- Institute of Biochemistry, University of Saarland, Campus B 2.2, 66123, Saarbruecken, Germany.
| | - Marie T Lundemo
- CAPEC-PROCESS, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| | - Josef Zapp
- Institute of Pharmaceutical Biology, University of Saarland, Campus B 2.2, 66123, Saarbruecken, Germany.
| | - John M Woodley
- CAPEC-PROCESS, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| | - Rita Bernhardt
- Institute of Biochemistry, University of Saarland, Campus B 2.2, 66123, Saarbruecken, Germany.
| |
Collapse
|
262
|
Litzenburger M, Kern F, Khatri Y, Bernhardt R. Conversions of tricyclic antidepressants and antipsychotics with selected P450s from Sorangium cellulosum So ce56. Drug Metab Dispos 2015; 43:392-9. [PMID: 25550480 DOI: 10.1124/dmd.114.061937] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human cytochromes P450 (P450s) play a major role in the biotransformation of drugs. The generated metabolites are important for pharmaceutical, medical, and biotechnological applications and can be used for derivatization or toxicological studies. The availability of human drug metabolites is restricted and alternative ways of production are requested. For this, microbial P450s turned out to be a useful tool for the conversion of drugs and related derivatives. Here, we used 10 P450s from the myxobacterium Sorangium cellulosum So ce56, which have been cloned, expressed, and purified. The P450s were investigated concerning the conversion of the antidepressant drugs amitriptyline, clomipramine, imipramine, and promethazine; the antipsychotic drugs carbamazepine, chlorpromazine, and thioridazine, as well as their precursors, iminodibenzyl and phenothiazine. Amitriptyline, chlorpromazine, clomipramine, imipramine, and thioridazine are efficiently converted during the in vitro reaction and were chosen to upscale the production by an Escherichia coli-based whole-cell bioconversion system. Two different approaches, a whole-cell system using M9CA medium and a system using resting cells in buffer, were used for the production of sufficient amounts of metabolites for NMR analysis. Amitriptyline, clomipramine, and imipramine are converted to the corresponding 10-hydroxylated products, whereas the conversion of chlorpromazine and thioridazine leads to a sulfoxidation in position 5. It is shown for the first time that myxobacterial P450s are efficient to produce known human drug metabolites in a milligram scale, revealing their ability to synthesize pharmaceutically important compounds.
Collapse
Affiliation(s)
- Martin Litzenburger
- Institut für Biochemie, Universität des Saarlandes, Saarbruecken, Germany (M.L., F.K., Y.K., R.B.)
| | - Fredy Kern
- Institut für Biochemie, Universität des Saarlandes, Saarbruecken, Germany (M.L., F.K., Y.K., R.B.)
| | - Yogan Khatri
- Institut für Biochemie, Universität des Saarlandes, Saarbruecken, Germany (M.L., F.K., Y.K., R.B.)
| | - Rita Bernhardt
- Institut für Biochemie, Universität des Saarlandes, Saarbruecken, Germany (M.L., F.K., Y.K., R.B.)
| |
Collapse
|
263
|
Schiffer L, Anderko S, Hobler A, Hannemann F, Kagawa N, Bernhardt R. A recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective cortisol production and optimization towards a preparative scale. Microb Cell Fact 2015; 14:25. [PMID: 25880059 PMCID: PMC4347555 DOI: 10.1186/s12934-015-0209-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human mitochondrial CYP11B1 catalyzes a one-step regio- and stereoselective 11β-hydroxylation of 11-deoxycortisol yielding cortisol which constitutes not only the major human stress hormone but also represents a commercially relevant therapeutic drug due to its anti-inflammatory and immunosuppressive properties. Moreover, it is an important intermediate in the industrial production of synthetic pharmaceutical glucocorticoids. CYP11B1 thus offers a great potential for biotechnological application in large-scale synthesis of cortisol. Because of its nature as external monooxygenase, CYP11B1-dependent steroid hydroxylation requires reducing equivalents which are provided from NADPH via a redox chain, consisting of adrenodoxin reductase (AdR) and adrenodoxin (Adx). RESULTS We established an Escherichia coli based whole-cell system for selective cortisol production from 11-deoxycortisol by recombinant co-expression of the demanded 3 proteins. For the subsequent optimization of the whole-cell activity 3 different approaches were pursued: Firstly, CYP11B1 expression was enhanced 3.3-fold to 257 nmol∗L(-1) by site-directed mutagenesis of position 23 from glycine to arginine, which was accompanied by a 2.6-fold increase in cortisol yield. Secondly, the electron transfer chain was engineered in a quantitative manner by introducing additional copies of the Adx cDNA in order to enhance Adx expression on transcriptional level. In the presence of 2 and 3 copies the initial linear conversion rate was greatly accelerated and the final product concentration was improved 1.4-fold. Thirdly, we developed a screening system for directed evolution of CYP11B1 towards higher hydroxylation activity. A culture down-scale to microtiter plates was performed and a robot-assisted, fluorescence-based conversion assay was applied for the selection of more efficient mutants from a random library. CONCLUSIONS Under optimized conditions a maximum productivity of 0.84 g cortisol∗L(-1)∗d(-1) was achieved, which clearly shows the potential of the developed system for application in the pharmaceutical industry.
Collapse
Affiliation(s)
- Lina Schiffer
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Simone Anderko
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Anna Hobler
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Norio Kagawa
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
264
|
Guidelines for development and implementation of biocatalytic P450 processes. Appl Microbiol Biotechnol 2015; 99:2465-83. [PMID: 25652652 DOI: 10.1007/s00253-015-6403-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 01/17/2023]
Abstract
Biocatalytic reactions performed by cytochrome P450 monooxygenases are interesting in pharmaceutical research since they are involved in human drug metabolism. Furthermore, they are potentially interesting as biocatalysts for synthetic chemistry because of the exquisite selectivity of the chemistry they undertake. For example, selective hydroxylation can be undertaken on a highly functionalized molecule without the need for functional group protection. Recent progress in the discovery of novel P450s as well as protein engineering of these enzymes strongly encourages further development of their application, including use in synthetic processes. The biological characteristics of P450s (e.g., cofactor dependence) motivate the use of whole-cell systems for synthetic processes, and those processes implemented in industry are so far dominated by growing cells and native host systems. However, for an economically feasible process, the expression of P450 systems in a heterologous host with sufficient biocatalyst yield (g/g cdw) for non-growing systems or space-time yield (g/L/h) for growing systems remains a major challenge. This review summarizes the opportunities to improve P450 whole-cell processes and strategies in order to apply and implement them in industrial processes, both from a biological and process perspective. Indeed, a combined approach of host selection and cell engineering, integrated with process engineering, is suggested as the most effective route to implementation.
Collapse
|
265
|
Janocha S, Schmitz D, Bernhardt R. Terpene hydroxylation with microbial cytochrome P450 monooxygenases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:215-50. [PMID: 25682070 DOI: 10.1007/10_2014_296] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Terpenoids comprise a highly diverse group of natural products. In addition to their basic carbon skeleton, they differ from one another in their functional groups. Functional groups attached to the carbon skeleton are the basis of the terpenoids' diverse properties. Further modifications of terpene olefins include the introduction of acyl-, aryl-, or sugar moieties and usually start with oxidations catalyzed by cytochrome P450 monooxygenases (P450s, CYPs). P450s are ubiquitously distributed throughout nature, involved in essential biological pathways such as terpenoid biosynthesis as well as the tailoring of terpenoids and other natural products. Their ability to introduce oxygen into nonactivated C-H bonds is unique and makes P450s very attractive for applications in biotechnology. Especially in the field of terpene oxidation, biotransformation methods emerge as an attractive alternative to classical chemical synthesis. For this reason, microbial P450s depict a highly interesting target for protein engineering approaches in order to increase selectivity and activity, respectively. Microbial P450s have been described to convert industrial and pharmaceutically interesting terpenoids such as ionones, limone, valencene, resin acids, and triterpenes (including steroids) as well as vitamin D3. Highly selective and active mutants have been evolved by applying classical site-directed mutagenesis as well as directed evolution of proteins. As P450s usually depend on electron transfer proteins, mutagenesis has also been applied to improve the interactions between P450s and their respective redox partners. This chapter provides an overview of terpenoid hydroxylation reactions catalyzed by bacterial P450s and highlights the achievements made by protein engineering to establish productive hydroxylation processes.
Collapse
Affiliation(s)
- Simon Janocha
- Department of Biochemistry, Saarland University, Campus B2 2, 66123, Saarbruecken, Germany
| | | | | |
Collapse
|
266
|
Ilie A, Agudo R, Roiban GD, Reetz MT. P450-catalyzed regio- and stereoselective oxidative hydroxylation of disubstituted cyclohexanes: creation of three centers of chirality in a single CH-activation event. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.11.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
267
|
Hall EA, Bell SG. The efficient and selective biocatalytic oxidation of norisoprenoid and aromatic substrates by CYP101B1 from Novosphingobium aromaticivorans DSM12444. RSC Adv 2015. [DOI: 10.1039/c4ra14010a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CYP101B1 fromNovosphingobium aromaticivoransoxidises ionone derivatives and phenylcyclohexane with high activity and regioselectivity.
Collapse
Affiliation(s)
- Emma A. Hall
- School of Chemistry and Physics
- University of Adelaide
- Australia
| | - Stephen G. Bell
- School of Chemistry and Physics
- University of Adelaide
- Australia
| |
Collapse
|
268
|
Warburton M, Omar Ali H, Choon Liong W, Martin Othusitse A, Zaki Abdullah Zubir A, Maddock S, Seng Wong T. OneClick: A Program for Designing Focused Mutagenesis Experiments. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.3.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
269
|
Schifrin A, Ly TTB, Günnewich N, Zapp J, Thiel V, Schulz S, Hannemann F, Khatri Y, Bernhardt R. Characterization of the Gene Cluster CYP264B1-geoA fromSorangium cellulosumSo ce56: Biosynthesis of (+)-Eremophilene and Its Hydroxylation. Chembiochem 2014; 16:337-44. [DOI: 10.1002/cbic.201402443] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Indexed: 11/06/2022]
|
270
|
Michener JK, Camargo Neves AA, Vuilleumier S, Bringel F, Marx CJ. Effective use of a horizontally-transferred pathway for dichloromethane catabolism requires post-transfer refinement. eLife 2014; 3:e04279. [PMID: 25418043 PMCID: PMC4271186 DOI: 10.7554/elife.04279] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/22/2014] [Indexed: 01/09/2023] Open
Abstract
When microbes acquire new abilities through horizontal gene transfer, the genes and pathways must function under conditions with which they did not coevolve. If newly-acquired genes burden the host, their utility will depend on further evolutionary refinement of the recombinant strain. We used laboratory evolution to recapitulate this process of transfer and refinement, demonstrating that effective use of an introduced dichloromethane degradation pathway required one of several mutations to the bacterial host that are predicted to increase chloride efflux. We then used this knowledge to identify parallel, beneficial mutations that independently evolved in two natural dichloromethane-degrading strains. Finally, we constructed a synthetic mobile genetic element carrying both the degradation pathway and a chloride exporter, which preempted the adaptive process and directly enabled effective dichloromethane degradation across diverse Methylobacterium environmental isolates. Our results demonstrate the importance of post-transfer refinement in horizontal gene transfer, with potential applications in bioremediation and synthetic biology.
Collapse
Affiliation(s)
- Joshua K Michener
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Aline A Camargo Neves
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stéphane Vuilleumier
- CNRS Molecular Genetics, Genomics, Microbiology, Université de Strasbourg, Strasbourg, France
| | - Françoise Bringel
- CNRS Molecular Genetics, Genomics, Microbiology, Université de Strasbourg, Strasbourg, France
| | - Christopher J Marx
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, United States
- Department of Biological Sciences, University of Idaho, Moscow, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, United States
| |
Collapse
|
271
|
Khatri Y, Hannemann F, Girhard M, Kappl R, Hutter M, Urlacher VB, Bernhardt R. A natural heme-signature variant of CYP267A1 fromSorangium cellulosumSo ce56 executes diverse ω-hydroxylation. FEBS J 2014; 282:74-88. [DOI: 10.1111/febs.13104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Yogan Khatri
- Department of Biochemistry; Saarland University; Saarbrücken Germany
| | - Frank Hannemann
- Department of Biochemistry; Saarland University; Saarbrücken Germany
| | - Marco Girhard
- Institute of Biochemistry; Heinrich-Heine-Universität Düsseldorf; Germany
| | - Reinhard Kappl
- Department of Biophysics; Saarland University; Homburg Germany
| | - Michael Hutter
- Center for Bioinformatics; Saarland University; Saarbrücken Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry; Heinrich-Heine-Universität Düsseldorf; Germany
| | - Rita Bernhardt
- Department of Biochemistry; Saarland University; Saarbrücken Germany
| |
Collapse
|
272
|
Structural basis for the 4′-hydroxylation of diclofenac by a microbial cytochrome P450 monooxygenase. Appl Microbiol Biotechnol 2014; 99:3081-91. [DOI: 10.1007/s00253-014-6148-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
|