251
|
Du Z, Zhang Z, Han X, Xie H, Yan W, Tian D, Liu M, Rao C. Comprehensive Analysis of Sideroflexin 4 in Hepatocellular Carcinoma by Bioinformatics and Experiments. Int J Med Sci 2023; 20:1300-1315. [PMID: 37786439 PMCID: PMC10542026 DOI: 10.7150/ijms.86990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 10/04/2023] Open
Abstract
Background: Sideroflexins (SFXNs) are a family of highly conserved mitochondrial transporters which regulate iron homeostasis and mitochondrial respiratory chain. However, the roles and mechanisms of SFXNs in HCC remain unknown. Methods: SFXNs expression and prognostic value in HCC was comprehensively analyzed. Proteins interacting with SFXN4 were analyzed in STRING database. The co-expression genes of SFXN4 were analyzed in cBioPortal database, and function of SFXN4 co-expression genes were annotated. The putative transcription factors and miRNA targeting SFXN4 were analyzed in NetworkAnalyst. The correlation between SFXN4 expression and immune infiltration was analyzed by ssGSEA. Cancer pathway activity and drug sensitivity related to SFXN4 were explored in GSCALite. The roles of SFXN4 in proliferation, migration and invasion of HCC were assessed in vitro and in vivo. Results: SFXN4 was consistently elevated in HCC, positively correlated with clinicopathological characteristics and predicted poor outcome. Functional enrichment showed SFXN4 was mainly related to oxidative phosphorylation, reactive oxygen species and metabolic pathways. SFXN4 expression was regulated by multiple transcription factors and miRNAs, and SFXN4 expression in HCC was associated with several cancer pathways and drug sensitivity. SFXN4 expression correlated with immune infiltration in HCC. In vitro, knockdown of SFXN4 inhibited HCC proliferation, migration and invasion, and decreased the expression of cyclin D1 and MMP2. In vivo, knockdown of SFXN4 inhibited the growth of tumor xenografts in mice. Conclusion: SFXN4 was upregulated in HCC, predicted poor prognosis, and may facilitate HCC development and progression via various mechanisms. For HCC, SFXN4 may provide both prognostic information and therapeutic potential.
Collapse
Affiliation(s)
- Zhipeng Du
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongchao Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Han
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaping Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caijun Rao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
252
|
Ye Y, Yu B, Wang H, Yi F. Glutamine metabolic reprogramming in hepatocellular carcinoma. Front Mol Biosci 2023; 10:1242059. [PMID: 37635935 PMCID: PMC10452011 DOI: 10.3389/fmolb.2023.1242059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal disease with limited management strategies and poor prognosis. Metabolism alternations have been frequently unveiled in HCC, including glutamine metabolic reprogramming. The components of glutamine metabolism, such as glutamine synthetase, glutamate dehydrogenase, glutaminase, metabolites, and metabolite transporters, are validated to be potential biomarkers of HCC. Increased glutamine consumption is confirmed in HCC, which fuels proliferation by elevated glutamate dehydrogenase or upstream signals. Glutamine metabolism also serves as a nitrogen source for amino acid or nucleotide anabolism. In addition, more glutamine converts to glutathione as an antioxidant in HCC to protect HCC cells from oxidative stress. Moreover, glutamine metabolic reprogramming activates the mTORC signaling pathway to support tumor cell proliferation. Glutamine metabolism targeting therapy includes glutamine deprivation, related enzyme inhibitors, and transporters inhibitors. Together, glutamine metabolic reprogramming plays a pivotal role in HCC identification, proliferation, and progression.
Collapse
Affiliation(s)
- Yanyan Ye
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bodong Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hua Wang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Fengming Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
253
|
Wang Y, Wan X, Du S. Integrated analysis revealing a novel stemness-metabolism-related gene signature for predicting prognosis and immunotherapy response in hepatocellular carcinoma. Front Immunol 2023; 14:1100100. [PMID: 37622118 PMCID: PMC10445950 DOI: 10.3389/fimmu.2023.1100100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant lethal tumor and both cancer stem cells (CSCs) and metabolism reprogramming have been proven to play indispensable roles in HCC. This study aimed to reveal the connection between metabolism reprogramming and the stemness characteristics of HCC, established a new gene signature related to stemness and metabolism and utilized it to assess HCC prognosis and immunotherapy response. The clinical information and gene expression profiles (GEPs) of 478 HCC patients came from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA). The one-class logistic regression (OCLR) algorithm was employed to calculate the messenger ribonucleic acid expression-based stemness index (mRNAsi), a new stemness index quantifying stemness features. Differentially expressed analyses were done between high- and low-mRNAsi groups and 74 differentially expressed metabolism-related genes (DEMRGs) were identified with the help of metabolism-related gene sets from Molecular Signatures Database (MSigDB). After integrated analysis, a risk score model based on the three most efficient prognostic DEMRGs, including Recombinant Phosphofructokinase Platelet (PFKP), phosphodiesterase 2A (PDE2A) and UDP-glucuronosyltransferase 1A5 (UGT1A5) was constructed and HCC patients were divided into high-risk and low-risk groups. Significant differences were found in pathway enrichment, immune cell infiltration patterns, and gene alterations between the two groups. High-risk group patients tended to have worse clinical outcomes and were more likely to respond to immunotherapy. A stemness-metabolism-related model composed of gender, age, the risk score model and tumor-node-metastasis (TNM) staging was generated and showed great discrimination and strong ability in predicting HCC prognosis and immunotherapy response.
Collapse
Affiliation(s)
| | | | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
254
|
Zhang J, Yang Y, Wang Z, Zhang X, Zhang Y, Lin J, Du Y, Wang S, Si D, Bao J, Tian X. Integration of Metabolomics, Lipidomics, and Proteomics Reveals the Metabolic Characterization of Nonalcoholic Steatohepatitis. J Proteome Res 2023; 22:2577-2592. [PMID: 37403919 DOI: 10.1021/acs.jproteome.3c00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Metabolic dysfunction is associated with nonalcoholic steatohepatitis (NASH) development. However, omics studies investigating metabolic changes in NASH patients are limited. In this study, metabolomics and lipidomics in plasma, as well as proteomics in the liver, were performed to characterize the metabolic profiles of NASH patients. Moreover, the accumulation of bile acids (BAs) in NASH patients prompted us to investigate the protective effect of cholestyramine on NASH. The liver expression of essential proteins involved in FA transport and lipid droplets was significantly elevated in patients with NASH. Furthermore, we observed a distinct lipidomic remodeling in patients with NASH. We also report a novel finding suggesting an increase in the expression of critical proteins responsible for glycolysis and the level of glycolytic output (pyruvic acid) in patients with NASH. Furthermore, the accumulation of branched chain amino acids, aromatic amino acids, purines, and BAs was observed in NASH patients. Similarly, a dramatic metabolic disorder was also observed in a NASH mouse model. Cholestyramine not only significantly alleviated liver steatosis and fibrosis but also reversed NASH-induced accumulation of BAs and steroid hormones. In conclusion, NASH patients were characterized by perturbations in FA uptake, lipid droplet formation, glycolysis, and accumulation of BAs and other metabolites.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yiqin Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Zipeng Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaofen Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingfan Zhang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiashuo Lin
- School of Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | | | - Jie Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
255
|
Gao J, Fang Y, Chen J, Tang Z, Tian M, Jiang X, Tao C, Huang R, Zhu G, Qu W, Wu X, Zhou J, Fan J, Liu W, Shi Y. Methyltransferase like 3 inhibition limits intrahepatic cholangiocarcinoma metabolic reprogramming and potentiates the efficacy of chemotherapy. Oncogene 2023; 42:2507-2520. [PMID: 37420030 DOI: 10.1038/s41388-023-02760-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
N6-methyladenosine (m6A) RNA methylation and its associated methyltransferase like 3 (METTL3) are involved in the development and maintenance of various tumors. The present study aimed to evaluate the cross-talk of METTL3 with glucose metabolism and reveal a novel mechanism for intrahepatic cholangiocarcinoma (ICC) progression. Real-time quantitative PCR, western blotting, and immunohistochemistry analyses suggested that METTL3 was highly expressed in ICC, which was correlated with poor patient prognosis. Immunoprecipitation sequencing of m6A-RNA showed that METTL3 upregulated m6A modification of NFAT5, which recruited IGF2BP1 for NFAT5 mRNA stabilization. Elevated expression of NFAT5 increased the expression of the gluconeogenesis-related genes GLUT1 and PGK1, resulting in enhanced aerobic glycolysis, proliferation, and tumor metastasis of ICC. Moreover, higher METTL3 expression was observed in tumor tissues of ICC patients with activated ICC glucose metabolism. Importantly, STM2457, a highly potent METTL3 inhibitor, which inhibited METTL3 activity and acted synergistically with gemcitabine, suggests that reprogramming RNA epigenetic modifications may serve as a potential therapeutic strategy. Overall, our findings highlighted the role of METTL3-mediated m6A modification of NFAT5 in activating glycolytic reprogramming in ICC and proposed that the METTL3/NFAT5 axis was a clinical target for the management of ICC chemoresistance by targeting cancer glycolysis.
Collapse
Affiliation(s)
- Jun Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Fang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiafeng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengxin Tian
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xifei Jiang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenyang Tao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Run Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guiqi Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Weifeng Qu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoling Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Weiren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yinghong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| |
Collapse
|
256
|
Shen X, Luo K, Yuan J, Gao J, Cui B, Yu Z, Lu Z. Hepatic DDAH1 mitigates hepatic steatosis and insulin resistance in obese mice: Involvement of reduced S100A11 expression. Acta Pharm Sin B 2023; 13:3352-3364. [PMID: 37655336 PMCID: PMC10465955 DOI: 10.1016/j.apsb.2023.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 09/02/2023] Open
Abstract
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is an important regulator of plasma asymmetric dimethylarginine (ADMA) levels, which are associated with insulin resistance in patients with nonalcoholic fatty liver disease (NAFLD). To elucidate the role of hepatic DDAH1 in the pathogenesis of NAFLD, we used hepatocyte-specific Ddah1-knockout mice (Ddah1HKO) to examine the progress of high-fat diet (HFD)-induced NAFLD. Compared to diet-matched flox/flox littermates (Ddah1f/f), Ddah1HKO mice exhibited higher serum ADMA levels. After HFD feeding for 16 weeks, Ddah1HKO mice developed more severe liver steatosis and worse insulin resistance than Ddah1f/f mice. On the contrary, overexpression of DDAH1 attenuated the NAFLD-like phenotype in HFD-fed mice and ob/ob mice. RNA-seq analysis showed that DDAH1 affects NF-κB signaling, lipid metabolic processes, and immune system processes in fatty livers. Furthermore, DDAH1 reduces S100 calcium-binding protein A11 (S100A11) possibly via NF-κB, JNK and oxidative stress-dependent manner in fatty livers. Knockdown of hepatic S100a11 by an AAV8-shS100a11 vector alleviated hepatic steatosis and insulin resistance in HFD-fed Ddah1HKO mice. In summary, our results suggested that the liver DDAH1/S100A11 axis has a marked effect on liver lipid metabolism in obese mice. Strategies to increase liver DDAH1 activity or decrease S100A11 expression could be a valuable approach for NAFLD therapy.
Collapse
Affiliation(s)
- Xiyue Shen
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Respiratory Medicine, Tongji University School of Medicine, Shanghai 200433, China
| | - Kai Luo
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Gao
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingqing Cui
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoran Yu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
257
|
Li K, Yang Y, Ma M, Lu S, Li J. Hypoxia-based classification and prognostic signature for clinical management of hepatocellular carcinoma. World J Surg Oncol 2023; 21:216. [PMID: 37481543 PMCID: PMC10362578 DOI: 10.1186/s12957-023-03090-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023] Open
Abstract
OBJECTIVE Intratumoral hypoxia is an essential feature of hepatocellular carcinoma (HCC). Herein, we investigated the hypoxia-based heterogeneity and relevant clinical implication in HCC. METHODS Three HCC cohorts: TCGA-LIHC, LICA-FR, and LIRI-JP were retrospectively gathered. Consensus clustering analysis was utilized for hypoxia-based classification based upon transcriptome of hypoxia genes. Through LASSO algorithm, a hypoxia-relevant prognostic signature was built. Immunotherapeutic response was inferred through analyzing immune checkpoints, T cell inflamed score, TIDE score, and TMB score. RNF145 expression was measured in normoxic or hypoxic HCC cells. In RNF145-knockout cells, CCK-8, TUNEL, and scratch tests were implemented. RESULTS HCC patients were classified into two hypoxia subtypes, with more advanced stages and poorer prognosis in cluster2 than cluster1. The heterogeneity in tumor infiltrating immune cells and genetic mutation was found between subtypes. The hypoxia-relevant prognostic model was proposed, composed of ANLN, CBX2, DLGAP5, FBLN2, FTCD, HMOX1, IGLV1-44, IL33, LCAT, LPCAT1, MKI67, PFN2, RNF145, S100A9, and SPP1). It was predicted that high-risk patients presented worse prognosis with an independent and reliable manner. Based upon high expression of immune checkpoints (CD209, CTLA4, HAVCR2, SIRPA, TNFRSF18, TNFRSF4, and TNFRSF9), high T cell inflamed score, low TIDE score and high TMB score, high-risk patients might respond to immunotherapy. Experimental validation showed that RNF145 was upregulated in hypoxic HCC cells, RNF145 knockdown attenuated proliferation and migration, but aggravated apoptosis in HCC cells. CONCLUSION Altogether, the hypoxia-based classification and prognostic signature might be useful for prognostication and guiding treatment of HCC.
Collapse
Affiliation(s)
- Ke Li
- Ruigu Medical Laboratory of Guangxi Medical University Co., LTD, Nanning, Guangxi, China
| | - Yanfang Yang
- Guangxi Zhuoqiang Technology Co. LTD, Nanning, Guangxi, China.
| | - Mingwei Ma
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Suping Lu
- Foresea Life Insurance Nanning Hospital, Nanning, Guangxi, China
| | - Junjie Li
- Guangxi Zhuoqiang Technology Co. LTD, Nanning, Guangxi, China
| |
Collapse
|
258
|
CAI TIANYING, BAI JUNJIE, TAN PENG, HUANG ZHIWEI, LIU CHEN, WU ZIMING, CHENG YONGLANG, LI TONGXI, CHEN YIFAN, RUAN JIAN, GAO LIN, DU YICHAO, FU WENGUANG. Zyxin promotes hepatocellular carcinoma progression via the activation of AKT/mTOR signaling pathway. Oncol Res 2023; 31:805-817. [PMID: 37547758 PMCID: PMC10398406 DOI: 10.32604/or.2023.029549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/17/2023] [Indexed: 08/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy that is driven by multiple genes and pathways. The aim of this study was to investigate the role and specific mechanism of the actin-interacting protein zyxin (ZYX) in HCC. We found that the expression of ZYX was significantly higher in HCC tissues compared to that in normal liver tissues. In addition, overexpression of ZYX in hepatoma cell lines (PLC/PRF/5, HCCLM3) enhanced their proliferation, migration and invasion, whereas ZYX knockdown had the opposite effects (SK HEP-1, Huh-7). Furthermore, the change in the expression levels of ZYX also altered that of proteins related to cell cycle, migration and invasion. Similar results were obtained with xenograft models. The AKT/mTOR signaling pathway is one of the key mediators of cancer development. While ZYX overexpression upregulated the levels of phosphorylated AKT/mTOR proteins, its knockdown had the opposite effect. In addition, the AKT inhibitor MK2206 neutralized the pro-oncogenic effects of ZYX on the HCC cells, whereas the AKT activator SC79 restored the proliferation, migration and invasion of HCC cells with ZYX knockdown. Taken together, ZYX promotes the malignant progression of HCC by activating AKT/mTOR signaling pathway, and is a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- TIANYING CAI
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - JUNJIE BAI
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - PENG TAN
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - ZHIWEI HUANG
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - CHEN LIU
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - ZIMING WU
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - YONGLANG CHENG
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - TONGXI LI
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - YIFAN CHEN
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - JIAN RUAN
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - LIN GAO
- Department of Health Management, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - YICHAO DU
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - WENGUANG FU
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
259
|
Zhou X, Huang G, Wang L, Zhao Y, Li J, Chen D, Wei L, Chen Z, Yang B. L-carnitine promotes liver regeneration after hepatectomy by enhancing lipid metabolism. J Transl Med 2023; 21:487. [PMID: 37474946 PMCID: PMC10360338 DOI: 10.1186/s12967-023-04317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Lipid metabolism plays an important role in liver regeneration, but its regulation still requires further research. In this study, lipid metabolites involved in mouse liver regeneration at different time points were sequenced and analyzed to study their influence on liver regeneration and its mechanism. METHODS Our experiment was divided into two parts. The first part examined lipid metabolites during liver regeneration in mice. In this part, lipid metabolites were sequentially analyzed in the livers of 70% mouse hepatectomy models at 0, 1, 3and 7 days after operation to find the changes of lipid metabolites in the process of liver regeneration. We screened L-carnitine as our research object through metabolite detection. Therefore, in the second part, we analyzed the effects of carnitine on mouse liver regeneration and lipid metabolism during liver regeneration. We divided the mouse into four groups: control group (70% hepatectomy group); L-carnitine group (before operation) (L-carnitine were given before operation); L-carnitine group (after operation)(L-carnitine were given after operation) and L-carnitine + perhexiline maleate (before operation) group. Weighing was performed at 24 h, 36 and 48 h in each group, and oil red staining, HE staining and MPO staining were performed. Tunnel fluorescence staining, Ki67 staining and serological examination. RESULTS Sequencing analysis of lipid metabolites in 70% of mouse livers at different time points after hepatectomy showed significant changes in carnitine metabolites. The results showed that, compared with the control group the mouse in L-carnitine group (before operation) at 3 time points, the number of fat drops in oil red staining was decreased, the number of Ki67 positive cells was increased, the number of MPO positive cells was decreased, the number of Tunnel fluorescence positive cells was decreased, and the liver weight was increased. Serum enzymes were decreased. Compared with control group, L-carnitine group (after operation) showed similar trends in all indexes at 36 and 48 h as L-carnitine group (before operation). L-carnitine + perhexiline maleate (before operation) group compared with control group, the number of fat drops increased, the number of Ki67 positive cells decreased, and the number of MPO positive cells increased at 3 time points. The number of Tunnel fluorescent positive cells increased and serum enzyme increased. However, both liver weights increased. CONCLUSION L-carnitine can promote liver cell regeneration by promoting lipid metabolism and reduce aseptic inflammation caused by excessive lipid accumulation.
Collapse
Affiliation(s)
- Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Guobin Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Junbo Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China.
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China.
| |
Collapse
|
260
|
Wang Y, Shi K, Tu J, Ke C, Chen N, Wang B, Liu Y, Zhou Z. Atractylenolide III Ameliorates Bile Duct Ligation-Induced Liver Fibrosis by Inhibiting the PI3K/AKT Pathway and Regulating Glutamine Metabolism. Molecules 2023; 28:5504. [PMID: 37513376 PMCID: PMC10383814 DOI: 10.3390/molecules28145504] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Liver fibrosis is one of the leading causes of hepatic sclerosis and hepatocellular carcinoma worldwide. However, the complex pathophysiological mechanisms of liver fibrosis are unknown, and no specific drugs are available to treat liver fibrosis. Atractylenolide III (ATL III) is a natural compound isolated from the plant Atractylodes lancea (Thunb.) DC. that possesses antioxidant properties and the ability to inhibit inflammatory responses. In this study, cholestatic hepatic fibrosis was induced in mice using a bile duct ligation (BDL) model and treated with 10 mg/kg and 50 mg/kg of ATL III via gavage for 14 days. ATL III significantly reduced the liver index, lowered serum ALT and AST levels, and reduced liver injury in bile-duct-ligated mice. In addition, ATL III significantly attenuated histopathological changes and reduced collagen deposition. ATL III reduced the expression of fibrosis-related genes α-smooth muscle actin (α-SMA), Collagen I (col1a1), Collagen IV (col4a2), and fibrosis-related proteins α-SMA and col1a1 in liver tissue. Using RNA sequencing (RNA-seq) to screen molecular targets and pathways, ATL III was found to affect the PI3K/AKT singling pathway by inhibiting the phosphorylation of PI3K and AKT, thereby ameliorating BDL-induced liver fibrosis. Gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of ATL III on liver metabolites in BDL mice. ATL III further affected glutamine metabolism by down-regulating the activity of glutamine (GLS1) and glutamine metabolism. ATL III further affected glutamine metabolism by down-regulating the activity of glutaminase (GLS1), as well as glutamine metabolism. Therefore, we conclude that ATL III attenuates liver fibrosis by inhibiting the PI3K/AKT pathway and glutamine metabolism, suggesting that ATL III is a potential drug candidate for treating liver fibrosis.
Collapse
Affiliation(s)
- Yan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (Y.W.); (K.S.); (J.T.); (C.K.); (N.C.)
| | - Kun Shi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (Y.W.); (K.S.); (J.T.); (C.K.); (N.C.)
| | - Jiyuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (Y.W.); (K.S.); (J.T.); (C.K.); (N.C.)
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (Y.W.); (K.S.); (J.T.); (C.K.); (N.C.)
| | - Niping Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (Y.W.); (K.S.); (J.T.); (C.K.); (N.C.)
| | - Bo Wang
- Hubei Institute for Drug Control, NMPA Key Laboratory of Quality Control of Chinese Medicine, Hubei Engineering Research Center for Drug Quality Control, Wuhan 430075, China;
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (Y.W.); (K.S.); (J.T.); (C.K.); (N.C.)
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (Y.W.); (K.S.); (J.T.); (C.K.); (N.C.)
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| |
Collapse
|
261
|
Zhu S, Wang S, Luo T. Exogenous galanin alleviates hepatic steatosis by promoting autophagy via the AMPK-mTOR pathway. Arch Biochem Biophys 2023:109689. [PMID: 37429535 DOI: 10.1016/j.abb.2023.109689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Defective autophagy-induced intracellular lipid degradation is causally associated with non-alcoholic fatty liver disease (NAFLD) development. Therefore, agents that can restore autophagy may have potential clinical application prospects on this public health issue. Galanin (GAL) is a pleiotropic peptide that regulates autophagy and is a potential drug for the treatment of NAFLD. In this study, we used an MCD-induced NAFLD mouse model in vivo and an FFA-induced HepG2 hepatocyte model in vitro to evaluate the anti-NAFLD effect of GAL. Exogenous GAL supplementation significantly attenuated lipid droplet accumulation and suppressed hepatocyte TG levels in mice and cell models. Mechanistically, Galanin-mediated reduction of lipid accumulation was positively correlated with upregulated p-AMPK, as evidenced by upregulated protein expressions of fatty acid oxidation-related gene markers (PPAR-α and CPT1A), upregulated expressions of the autophagy-related marker (LC3B), and downregulated autophagic substrate p62 levels. In FFA-treated HepG2 cells, activation of fatty acid oxidation and autophagy-related proteins by galanin was reversed by autophagy inhibitors, chloroquine, and the AMPK inhibitor. Galanin ameliorates hepatic fat accumulation by inducing autophagy and fatty acid oxidation via the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Shuyuan Zhu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Shuai Wang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Tao Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
262
|
Zheng X, Qian K. Neutrophil-to-lymphocyte ratio predicts therapy outcomes of transarterial chemoembolization combined with tyrosine kinase inhibitors plus programmed cell death ligand 1 antibody for unresectable hepatocellular carcinoma. Anticancer Drugs 2023; 34:775-782. [PMID: 36730299 DOI: 10.1097/cad.0000000000001458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The objective is to assess the predictive value of preoperative biochemical markers, expressed as neutrophil-to-lymphocyte ratio (NLR), in patients with unresectable hepatocellular carcinoma (uHCC) receiving a combination of tailored tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) plus transarterial chemoembolization (TACE). A total of 95 patients with uHCC treated with TACE + TKIs + ICIs in our hospital between March 2018 and October 2021 were included in this retrospective study. The prognosis of the patients was analyzed based on NLRs. Overall survival (OS), progression-free survival (PFS), and adverse events (AEs) were evaluated. Univariate and multivariate analyses were used to determine factors affecting survival. Patients with a low pretreatment NLR (NLR ≤ 2.22) had significantly longer OS (25.8 months vs. 16.4 months; P = 0.000) and PFS (14.0 months vs. 11.1 months; P = 0.002). In multivariate analysis, two independent factors affecting PFS were identified: hepatitis B virus infection and NLR. Three independent factors affected OS: tumor size, Eastern Cooperative Oncology Group performance, and NLR. All AEs were tolerable, whereas NLR could be suspected as an indicator of immunotherapy-related AEs. A lower pretreatment NLR (≤2.22) might indicate a better prognosis for patients with uHCC treated with TACE + TKIs + ICIs. NLR could provide better guidance for clinicians when evaluating the prognosis of patients with uHCC treated with TACE + TKIs + ICIs and making clinical treatment decisions.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Hepatopancreatobilary Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang
| | - Kun Qian
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
263
|
He H, Sugiyama A, Snyder NW, Teneche MG, Liu X, Maner-Smith KM, Goessling W, Hagen SJ, Ortlund EA, Najafi-Shoushtari SH, Acuña M, Cohen DE. Acyl-CoA thioesterase 12 suppresses YAP-mediated hepatocarcinogenesis by limiting glycerolipid biosynthesis. Cancer Lett 2023; 565:216210. [PMID: 37150501 DOI: 10.1016/j.canlet.2023.216210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Cancer cells use acetate to support the higher demand for energy and lipid biosynthesis during uncontrolled cell proliferation, as well as for acetylation of regulatory proteins. Acyl-CoA thioesterase 12 (Acot12) is the enzyme that hydrolyzes acetyl-CoA to acetate in liver cytosol and is downregulated in hepatocellular carcinoma (HCC). A mechanistic role for Acot12 in hepatocarcinogenesis was assessed in mice in response to treatment with diethylnitrosamine(DEN)/carbon tetrachloride (CCl4) administration or prolonged feeding of a diet that promotes non-alcoholic steatohepatitis (NASH). Relative to controls, Acot12-/- mice exhibited accelerated liver tumor formation that was characterized by the hepatic accumulation of glycerolipids, including lysophosphatidic acid (LPA), and that was associated with reduced Hippo signaling and increased yes-associated protein (YAP)-mediated transcriptional activity. In Acot12-/- mice, restoration of hepatic Acot12 expression inhibited hepatocarcinogenesis and YAP activation, as did knockdown of hepatic YAP expression. Excess LPA produced due to deletion of Acot12 signaled through LPA receptors (LPARs) coupled to Gα12/13 subunits to suppress YAP phosphorylation, thereby promoting its nuclear localization and transcriptional activity. These findings identify a protective role for Acot12 in suppressing hepatocarcinogenesis by limiting biosynthesis of glycerolipids including LPA, which preserves Hippo signaling.
Collapse
Affiliation(s)
- Haiyue He
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Gastroenterology, Xiangya Hospital of Central South University, Hunan, China
| | - Akiko Sugiyama
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19104, USA
| | - Marcos G Teneche
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19104, USA
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Hunan, China
| | - Kristal M Maner-Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Wolfram Goessling
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - Susan J Hagen
- Division of Surgical Sciences, Department of Surgery, Beth Israel-Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - S Hani Najafi-Shoushtari
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, 10021, USA; Research Department, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Mariana Acuña
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
264
|
Wang W, Rong Z, Wang G, Hou Y, Yang F, Qiu M. Cancer metabolites: promising biomarkers for cancer liquid biopsy. Biomark Res 2023; 11:66. [PMID: 37391812 PMCID: PMC10311880 DOI: 10.1186/s40364-023-00507-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/27/2023] [Indexed: 07/02/2023] Open
Abstract
Cancer exerts a multitude of effects on metabolism, including the reprogramming of cellular metabolic pathways and alterations in metabolites that facilitate inappropriate proliferation of cancer cells and adaptation to the tumor microenvironment. There is a growing body of evidence suggesting that aberrant metabolites play pivotal roles in tumorigenesis and metastasis, and have the potential to serve as biomarkers for personalized cancer therapy. Importantly, high-throughput metabolomics detection techniques and machine learning approaches offer tremendous potential for clinical oncology by enabling the identification of cancer-specific metabolites. Emerging research indicates that circulating metabolites have great promise as noninvasive biomarkers for cancer detection. Therefore, this review summarizes reported abnormal cancer-related metabolites in the last decade and highlights the application of metabolomics in liquid biopsy, including detection specimens, technologies, methods, and challenges. The review provides insights into cancer metabolites as a promising tool for clinical applications.
Collapse
Affiliation(s)
- Wenxiang Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Peking University People's Hospital Thoracic Oncology Institute, Beijing, 100044, China
| | - Zhiwei Rong
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, China
| | - Guangxi Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Hou
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Clinical Research Center, Peking University, Beijing, 100191, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
- Peking University People's Hospital Thoracic Oncology Institute, Beijing, 100044, China.
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
- Peking University People's Hospital Thoracic Oncology Institute, Beijing, 100044, China.
| |
Collapse
|
265
|
Zhang Q, Liu J, Lin H, Lin B, Zhu M, Li M. Glucose metabolism reprogramming promotes immune escape of hepatocellular carcinoma cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:519-536. [PMID: 37455832 PMCID: PMC10344893 DOI: 10.37349/etat.2023.00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/13/2023] [Indexed: 07/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex process that plays an important role in its progression. Abnormal glucose metabolism in HCC cells can meet the nutrients required for the occurrence and development of liver cancer, better adapt to changes in the surrounding microenvironment, and escape the attack of the immune system on the tumor. There is a close relationship between reprogramming of glucose metabolism and immune escape. This article reviews the current status and progress of glucose metabolism reprogramming in promoting immune escape in liver cancer, aiming to provide new strategies for clinical immunotherapy of liver cancer.
Collapse
Affiliation(s)
- Qiuyue Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Jinchen Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Haifeng Lin
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou 570216, Hainan Province, China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou 570216, Hainan Province, China
- Institution of Tumor, Hainan Medical College, Haikou 570102, Hainan Province, China
| |
Collapse
|
266
|
Tan Y, Huang Z, Liu Y, Li X, Stalin A, Fan X, Wu Z, Wu C, Lu S, Zhang F, Chen M, Huang J, Cheng G, Li B, Guo S, Yang Y, Zhang S, Wu J. Integrated serum pharmacochemistry, 16S rRNA sequencing and metabolomics to reveal the material basis and mechanism of Yinzhihuang granule against non-alcoholic fatty liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116418. [PMID: 36990301 DOI: 10.1016/j.jep.2023.116418] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yinzhihuang granule (YZHG) has liver protective effect and can be used for clinical treatment of non-alcoholic fatty liver disease (NAFLD), but its material basis and mechanism need to be further clarified. AIM OF THE STUDY This study aims to reveal the material basis and mechanism of YZHG treating NAFLD. MATERIALS AND METHODS Serum pharmacochemistry were employed to identify the components from YZHG. The potential targets of YZHG against NAFLD were predicted by system biology and then preliminarily verified by molecular docking. Furthermore, the functional mechanism of YZHG in NAFLD mice was elucidated by 16S rRNA sequencing and untargeted metabolomics. RESULTS From YZHG, 52 compounds were identified, of which 42 were absorbed into the blood. Network pharmacology and molecular docking showed that YZHG treats NAFLD with multi-components and multi-targets. YZHG can improve the levels of blood lipids, liver enzymes, lipopolysaccharide (LPS), and inflammatory factors in NAFLD mice. YZHG can also significantly improve the diversity and richness of intestinal flora and regulate glycerophospholipid and sphingolipid metabolism. Moreover, Western Blot experiment showed that YZHG can regulate liver lipid metabolism and enhance intestinal barrier function. CONCLUSIONS YZHG may treat NAFLD by improving the disruption of intestinal flora and enhancing the intestinal barrier. This will reduce the invasion of LPS into the liver subsequently regulate liver lipid metabolism and reduce liver inflammation.
Collapse
Affiliation(s)
- Yingying Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhihong Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yingying Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Xiaotian Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhishan Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fanqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Meilin Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiaqi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276017, China.
| | - Bing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276017, China.
| | - Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shuofeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
267
|
Yan JB, Nie YM, Xu SM, Zhang S, Chen ZY. Pure total flavonoids from citrus alleviate oxidative stress and inflammation in nonalcoholic fatty liver disease by regulating the miR-137-3p/NOXA2/NOX2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154944. [PMID: 37393830 DOI: 10.1016/j.phymed.2023.154944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/25/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become a global health issue owing to its large disease population and high morbidity. We previously reported that the improvement in oxidative stress (OS) using pure total flavonoids from citrus (PTFC), flavonoids isolated from the peel of Citrus changshan-huyou Y.B. Chan, is a crucial strategy for NAFLD treatment. However, OS-associated intervention pathways in NAFLD remain unclear. METHODS In this study, we used microRNA (miR)- and mRNA-sequencing to identify the pathway by which PTFC improve OS in NAFLD. Clinical data, mimic/inhibitor assays, and a dual-luciferase reporter assay were selected to verify the regulatory relationships of this pathway. Moreover, in vivo and in vitro experiments were used to confime the regulatory effect of PTFC on this pathway. RESULTS miR-seq, mRNA-seq, and bioinformatics analyses revealed that the miR-137-3p/neutrophil cytosolic factor 2 (NCF2, also known as NOXA2)/cytochrome b-245 beta chain (CYBB, also known as NOX2) pathway may be a target pathway for PTFC to improve OS and NAFLD. Additionally, bivariate logistic regression analysis combining the serum and clinical data of patients revealed NOX2 and NOXA2 as risk factors and total antioxidant capacity (indicator of OS level) as a protective factor for NAFLD. miR-137-3p mimic/inhibitor assays revealed that the upregulation of miR-137-3p is vital for improving cellular steatosis, OS, and inflammation. Dual-luciferase reporter assay confirmed that NOXA2 acts as an miR-137-3p sponge. These results co-determined that miR-137-3p/NOXA2/NOX2 is an essential pathway involved in NAFLD pathogenesis, including lipid accumulation, OS, and inflammation. In vivo and in vitro experiments further confirmed that the miR-137-3p/NOXA2/NOX2 pathway is regulated by PTFC. CONCLUSION PTFC alleviates OS and inflammation in NAFLD by regulating the miR-137-3p/NOXA2/NOX2 pathway.
Collapse
Affiliation(s)
- Jun-Bin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, 310000, China
| | - Yun-Meng Nie
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Su-Mei Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, 310000, China; Key Laboratory of Traditional Chinese Medicine for the treatment of Intestine-Liver of Zhejiang Province, Hangzhou, 310000, China.
| | - Zhi-Yun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China; Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
268
|
Wu S, Chen Q, Wang Y, Yin H, Wei Y. Lipid nanoparticle delivery of siRNA targeting Cyp2e1 gene attenuates subacute alcoholic liver injury in mice. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:306-317. [PMID: 37476942 PMCID: PMC10409911 DOI: 10.3724/zdxbyxb-2022-0729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVES To investigate the effect and mechanism of lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) targeting Cyp2e1 gene on subacute alcoholic liver injury in mice. METHODS siRNA targeting Cyp2e1 gene was encapsulated in LNP (si-Cyp2e1 LNP) by microfluidic technique and the resulting LNPs were characterized. The optimal dose of si-Cyp2e1 LNP administration was screened. Forty female C57BL/6N mice were randomly divided into blank control group, model control group, si-Cyp2e1 LNP group, LNP control group and metadoxine group. The subacute alcoholic liver injury mouse model was induced by ethanol feeding for 10 d plus ethanol gavage for the last 3 d. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and the superoxide dismutase (SOD) activity as well as malondialdehyde, reactive oxygen species, glutathione, triacylglycerol, total cholesterol contents in liver tissue were measured in each group, and liver index was calculated. The expression of genes related to oxidative stress, lipid synthesis and inflammation in each group of mice were measured by realtime RT-PCR. RESULTS Compared with the model control group, the levels of liver index, serum ALT, AST activities, malondialdehyde, reactive oxygen species, triacylglycerol, total cholesterol contents in liver tissue decreased, but the SOD activity as well as glutathione increased in the si-Cyp2e1 LNP group (all P<0.01). Hematoxylin-eosin staining result showed disorganized hepatocytes with sparse cytoplasm and a large number of fat vacuoles and necrosis in the model control group, while the si-Cyp2e1 LNP group had uniformly sized and arranged hepatocytes with normal liver tissue morphology and structure. Oil red O staining result showed si-Cyp2e1 LNP group had lower fat content of the liver compared to the model control group (P<0.01), and no fat droplets accumulated. Anti-F4/80 monoclonal antibody fluorescence immunohistochemistry showed that the si-Cyp2e1 LNP group had lower cumulative optical density values compared to the model control group (P<0.01) and no significant inflammatory reaction. Compared with the model control group, the expression of catalytic genes P47phox, P67phox and Gp91phox were reduced (all P<0.01), while the expression of the antioxidant enzyme genes Sod1, Gsh-rd and Gsh-px were increased (all P<0.01). The mRNA expression of the lipid metabolism genes Pgc-1α and Cpt1 were increased (all P<0.01) and the lipid synthesis-related genes Srebp1c, Acc and Fasn were decreased (all P<0.01); the expression of liver inflammation-related genes Tgf-β, Tnf-α and Il-6 were decreased (all P<0.01). CONCLUSIONS The si-Cyp2e1 LNP may attenuate subacute alcoholic liver injury in mice mainly by reducing reactive oxygen levels, increasing antioxidant activity, blocking oxidative stress pathways and reducing ethanol-induced steatosis and inflammation.
Collapse
Affiliation(s)
- Shuang Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Qiubing Chen
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yalan Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Hao Yin
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- RNA Institute, Wuhan University, Wuhan 430072, China
- Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430010, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
269
|
Chen Y, Wang W, Morgan MP, Robson T, Annett S. Obesity, non-alcoholic fatty liver disease and hepatocellular carcinoma: current status and therapeutic targets. Front Endocrinol (Lausanne) 2023; 14:1148934. [PMID: 37361533 PMCID: PMC10286797 DOI: 10.3389/fendo.2023.1148934] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Obesity is a global epidemic and overwhelming evidence indicates that it is a risk factor for numerous cancers, including hepatocellular carcinoma (HCC), the third leading cause of cancer-related deaths worldwide. Obesity-associated hepatic tumorigenesis develops from nonalcoholic fatty liver disease (NAFLD), progressing to nonalcoholic steatohepatitis (NASH), cirrhosis and ultimately to HCC. The rising incidence of obesity is resulting in an increased prevalence of NAFLD and NASH, and subsequently HCC. Obesity represents an increasingly important underlying etiology of HCC, in particular as the other leading causes of HCC such as hepatitis infection, are declining due to effective treatments and vaccines. In this review, we provide a comprehensive overview of the molecular mechanisms and cellular signaling pathways involved in the pathogenesis of obesity-associated HCC. We summarize the preclinical experimental animal models available to study the features of NAFLD/NASH/HCC, and the non-invasive methods to diagnose NAFLD, NASH and early-stage HCC. Finally, since HCC is an aggressive tumor with a 5-year survival of less than 20%, we will also discuss novel therapeutic targets for obesity-associated HCC and ongoing clinical trials.
Collapse
Affiliation(s)
- Yinshuang Chen
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Maria P. Morgan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
270
|
Qiu H, Shao N, Liu J, Zhao J, Chen C, Li Q, He Z, Zhao X, Xu L. Amino acid metabolism in tumor: New shine in the fog? Clin Nutr 2023:S0261-5614(23)00184-X. [PMID: 37321900 DOI: 10.1016/j.clnu.2023.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/10/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Alterations in amino acid metabolism is closely related to the occurrence of clinical diseases. The mechanism of tumorigenesis is complex, involving the complicated relationship between tumor cells and immune cells in local tumor microenvironment. A series of recent studies have shown that metabolic remodeling is intimately related to tumorigenesis. And amino acid metabolic reprogramming is one of the important characteristics of tumor metabolic remodeling, which participates in tumor cells growth, survival as well as the immune cell activation and function in the local tumor microenvironment, thereby affecting tumor immune escape. Recent studies have further shown that controlling the intake of specific amino acids can significantly improve the effect of clinical intervention in tumors, suggesting that amino acid metabolism is gradually becoming one of the new promising targets of clinical intervention in tumors. Therefore, developing new intervention strategies based on amino acid metabolism has broad prospects. In this article, we review the abnormal changes in the metabolism of some typical amino acids, including glutamine, serine, glycine, asparagine and so on in tumor cells and summarize the relationship among amino acid metabolism, tumor microenvironment and the function of T cells. In particular, we discuss the current issues that need to be addressed in the related fields of tumor amino acid metabolism, aiming to provide a theoretical basis for the development of new strategies for clinical interventions in tumors based on amino acid metabolism reprogramming.
Collapse
Affiliation(s)
- Hui Qiu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Nan Shao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Jing Liu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Qihong Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi Guizhou 563000, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Xu Zhao
- School of Medicine, Guizhou University, Guizhou Guiyang, 550025 China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China.
| |
Collapse
|
271
|
Wen Q, Huang M, Xie J, Liu R, Miao Q, Huang J, Zhang J, Lyu W, Qi M, Wu C, Qi Q, Zhang Z, Deng R, Wang C, Chen ZS, Zhang D, Ye W, Chen M. lncRNA SYTL5-OT4 promotes vessel co-option by inhibiting the autophagic degradation of ASCT2. Drug Resist Updat 2023; 69:100975. [PMID: 37207473 DOI: 10.1016/j.drup.2023.100975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
AIMS Vessel co-option is responsible for tumor resistance to antiangiogenic therapies (AATs) in patients with colorectal cancer liver metastasis (CRCLM). However, the mechanisms underlying vessel co-option remain largely unknown. Herein, we investigated the roles of a novel lncRNA SYTL5-OT4 and Alanine-Serine-Cysteine Transporter 2 (ASCT2) in vessel co-option-mediated AAT resistance. METHODS SYTL5-OT4 was identified by RNA-sequencing and verified by RT-qPCR and RNA fluorescence in situ hybridization assays. The effects of SYTL5-OT4 and ASCT2 on tumor cells were investigated by gain- and loss-of-function experiments, and those of SYTL5-OT4 on ASCT2 expression were analyzed by RNA immunoprecipitation and co-immunoprecipitation assays. The roles of SYTL5-OT4 and ASCT2 in vessel co-option were detected by histological, immunohistochemical, and immunofluorescence analyses. RESULTS The expression of SYTL5-OT4 and ASCT2 was higher in patients with AAT-resistant CRCLM. SYTL5-OT4 enhanced the expression of ASCT2 by inhibiting its autophagic degradation. SYTL5-OT4 and ASCT2 promoted vessel co-option by increasing the proliferation and epithelial-mesenchymal transition of tumor cells. Combination therapy of ASCT2 inhibitor and antiangiogenic agents overcame vessel co-option-mediated AAT resistance in CRCLM. CONCLUSION This study highlights the crucial roles of lncRNA and glutamine metabolism in vessel co-option and provides a potential therapeutic strategy for patients with AAT-resistant CRCLM.
Collapse
Affiliation(s)
- Qing Wen
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jingwen Xie
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Runyu Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qun Miao
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jinjun Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Junqiu Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wenyu Lyu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ming Qi
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chunyi Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Qi
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhijing Zhang
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chenran Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John's University, NY 11439, USA.
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
272
|
Wang Y, Long L, Zhuo L, Zhang H, Luo T, Deng J, Wang Y, Li Z, Wang Z, Peng X. Design, synthesis, and biological evaluation of 1-styrenyl isoquinoline derivatives for anti-hepatocellular carcinoma activity and effect on mitochondria. Eur J Med Chem 2023; 256:115420. [PMID: 37182331 DOI: 10.1016/j.ejmech.2023.115420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
In this study, 18 derivatives of 1-styrene-isoquinoline were designed and synthesized from resveratrol and isoquinoline. The IC50 of compound 1c against Huh7 and SK-Hep-1 cells were 2.52 μM and 4.20 μM, respectively. Mice were treated with 650 mg/kg compound 1c, and the survival status of mice was good. Further studies showed that compound 1c could inhibit cell proliferation by arresting the cell cycle in the G2/M phase, induce cell apoptosis, and inhibit cell migration and invasion by regulating epithelial-mesenchymal transition (EMT). It is worth noting that numbers of studies have pointed that resveratrol can trigger mitochondrial apoptosis to induce apoptosis of cancer cells. Therefore, we investigated the mechanism of compound 1c induced apoptosis of Huh7 and SK-Hep-1 cells. The results indicated that compound 1c could regulate the expression of proteins which are related to mitochondrial apoptosis pathway and inhibit the phosphorylation of PI3K/Akt/mTOR signaling pathway. In addition, compound 1c could inhibit the growth of Huh7-xenografts, and perform a tumor inhibitory rate of 41.44% when administered 30 mg/kg once a day. This work provides a potential anti-hepatocellular carcinoma compound that warrants further investigation.
Collapse
Affiliation(s)
- Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Tian Luo
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jiedan Deng
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhao Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
273
|
Zhang H, Zhao C, Zhang Y, Lu L, Shi W, Zhou Q, Pu Y, Wang S, Liu R, Yin L. Multi-omics analysis revealed NMBA induced esophageal carcinoma tumorigenesis via regulating PPARα signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121369. [PMID: 36858103 DOI: 10.1016/j.envpol.2023.121369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
As widespread environmental carcinogens causing esophageal carcinoma (EC), the effects of N-nitrosamines on human health hazards and accurate toxicity mechanisms have not been well-elucidated. In this study, we explored the tumorigenic mechanism of N-nitrosomethylbenzylamine (NMBA) exposure using both cell and rat models. It was found that NMBA (2 μM) exposure for 26 weeks induced malignant transformation of normal esophageal epithelial (Het-1A) cells. After then proteomics analysis showed that lipid metabolism disorder predominantly participated in the process of NMBA-induced cell malignant transformation. Further the integrated proteomics and lipidomics analysis revealed that the enhancement of fatty acid metabolism promoted the EC tumorigenesis induced by NMBA through facilitating the fatty acid-associated PPARα signaling pathway. The animal studies also revealed that accelerated fatty acid decomposition in the progression of NMBA-induced EC models of rats was accompanied by the activation of the PPARα pathway. Overall, our findings depicted the key dynamic molecular alteration triggered by N-nitrosamines, and provided comprehensive biological perspectives into the carcinogenic risk assessment of N-nitrosamines.
Collapse
Affiliation(s)
- Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Chao Zhao
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou, 225000, China
| | - Ying Zhang
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou, 225000, China
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Wei Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
274
|
Cheng Z, Huang H, Li M, Liang X, Tan Y, Chen Y. Lactylation-Related Gene Signature Effectively Predicts Prognosis and Treatment Responsiveness in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2023; 16:ph16050644. [PMID: 37242427 DOI: 10.3390/ph16050644] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignant tumor associated with high morbidity and mortality. Therefore, it is of great importance to develop effective prognostic models and guide clinical treatment in HCC. Protein lactylation is found in HCC tumors and is associated with HCC progression. METHODS The expression levels of lactylation-related genes were identified from the TCGA database. A lactylation-related gene signature was constructed using LASSO regression. The prognostic value of the model was assessed and further validated in the ICGC cohort, with the patients split into two groups based on risk score. Glycolysis and immune pathways, treatment responsiveness, and the mutation of signature genes were analyzed. The correlation between PKM2 expression and the clinical characteristics was investigated. RESULTS Sixteen prognostic differentially expressed lactylation-related genes were identified. An 8-gene signature was constructed and validated. Patients with higher risk scores had poorer clinical outcomes. The two groups were different in immune cell abundance. The high-risk group patients were more sensitive to most chemical drugs and sorafenib, while the low-risk group patients were more sensitive to some targeted drugs such as lapatinib and FH535. Moreover, the low-risk group had a higher TIDE score and was more sensitive to immunotherapy. PKM2 expression correlated with clinical characteristics and immune cell abundance in the HCC samples. CONCLUSIONS The lactylation-related model exhibited robust predictive efficiency in HCC. The glycolysis pathway was enriched in the HCC tumor samples. A low-risk score indicated better treatment response to most targeted drugs and immunotherapy. The lactylation-related gene signature could be used as a biomarker for the effective clinical treatment of HCC.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huichao Huang
- Department of Infectious Disease, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Maoyu Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xujun Liang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuying Tan
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
275
|
Foglia B, Beltrà M, Sutti S, Cannito S. Metabolic Reprogramming of HCC: A New Microenvironment for Immune Responses. Int J Mol Sci 2023; 24:7463. [PMID: 37108625 PMCID: PMC10138633 DOI: 10.3390/ijms24087463] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma is the most common primary liver cancer, ranking third among the leading causes of cancer-related mortality worldwide and whose incidence varies according to geographical area and ethnicity. Metabolic rewiring was recently introduced as an emerging hallmark able to affect tumor progression by modulating cancer cell behavior and immune responses. This review focuses on the recent studies examining HCC's metabolic traits, with particular reference to the alterations of glucose, fatty acid and amino acid metabolism, the three major metabolic changes that have gained attention in the field of HCC. After delivering a panoramic picture of the peculiar immune landscape of HCC, this review will also discuss how the metabolic reprogramming of liver cancer cells can affect, directly or indirectly, the microenvironment and the function of the different immune cell populations, eventually favoring the tumor escape from immunosurveillance.
Collapse
Affiliation(s)
- Beatrice Foglia
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | - Marc Beltrà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Salvatore Sutti
- Department of Health Sciences, Interdisciplinary Research Center for Autoimmune Diseases, University of East Piedmont, 28100 Novara, Italy
| | - Stefania Cannito
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| |
Collapse
|
276
|
Hong J, Liu J, Zhang Y, Ding L, Ye Q. MiR-3180 inhibits hepatocellular carcinoma growth and metastasis by targeting lipid synthesis and uptake. Cancer Cell Int 2023; 23:66. [PMID: 37041584 PMCID: PMC10091558 DOI: 10.1186/s12935-023-02915-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
PURPOSE Reprogrammed lipid metabolism is a hallmark of cancer that provides energy, materials, and signaling molecules for rapid cancer cell growth. Cancer cells acquire fatty acids primarily through de novo synthesis and uptake. Targeting altered lipid metabolic pathways is a promising anticancer strategy. However, their regulators have not been fully investigated, especially those targeting both synthesis and uptake. METHODS Immunohistochemistry was performed on samples from patients with hepatocellular carcinoma (HCC) to establish the correlation between miR-3180, stearoyl-CoA desaturase-1 (SCD1), and CD36 expression, quantified via qRT-PCR and western blotting. The correlation was analyzed using a luciferase reporter assay. Cell proliferation, migration, and invasion were analyzed using CCK-8, wound healing, and transwell assays, respectively. Oil Red O staining and flow cytometry were used to detect lipids. Triglycerides and cholesterol levels were analyzed using a reagent test kit. CY3-labeled oleic acid transport was analyzed using an oleic acid transport assay. Tumor growth and metastasis were detected in vivo in a xenograft mouse model. RESULTS MiR-3180 suppressed de novo fatty acid synthesis and uptake by targeting the key lipid synthesis enzyme SCD1 and key lipid transporter CD36. MiR-3180 suppressed HCC cell proliferation, migration, and invasion in an SCD1- and CD36-dependent manner in vitro. The mouse model demonstrated that miR-3180 inhibits HCC tumor growth and metastasis by inhibiting SCD1- and CD36-mediated de novo fatty acid synthesis and uptake. MiR-3180 expression was downregulated in HCC tissues and negatively correlated with SCD1 and CD36 levels. Patients with high miR-3180 levels showed better prognosis than those with low levels. CONCLUSIONS Our investigation indicates that miR-3180 is a critical regulator involved in de novo fatty acid synthesis and uptake, which inhibits HCC tumor growth and metastasis by suppressing SCD1 and CD36. Therefore, miR-3180 is a novel therapeutic target and prognostic indicator for patients with HCC.
Collapse
Affiliation(s)
- Jie Hong
- Medical School of Guizhou University, Guiyang, China
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jie Liu
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yanan Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Ding
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Qinong Ye
- Medical School of Guizhou University, Guiyang, China.
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
277
|
Fu B, Zhou M, Song G, Zeng H, Gong Y, Jiang Y, Ke Y, Huang D, Peng H, Li Q. Comprehensive analysis reveals TSEN54 as a robust prognosis biomarker and promising immune-related therapeutic target for hepatocellular carcinoma. Aging (Albany NY) 2023; 15:2734-2771. [PMID: 37059591 PMCID: PMC10120902 DOI: 10.18632/aging.204645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/17/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Hepatocellular carcinoma represents the most common primary malignancy of all liver cancer types and its prognosis is usually unsatisfactory. TSEN54 encodes a protein constituting a subunit of the tRNA splicing endonuclease heterotetramer. Previous researches concentrated on the contribution of TSEN54 in pontocerebellar hypoplasia, but no studies have yet reported its role in HCC. METHODS TIMER, HCCDB, GEPIA, HPA, UALCAN, MEXPRESS, SMART, TargetScan, RNAinter, miRNet, starBase, Kaplan-Meier Plotter, cBioPortal, LinkedOmics, GSEA, TISCH, TISIDB, GeneMANIA, PDB, GSCALite were applied in this research. RESULTS We identified the upregulation of TSEN54 expression in HCC and related it to multiple clinicopathological features. Hypomethylation of TSEN54 was closely associated with its high expression. HCC sufferers who held high TSEN54 expression typically had shorter survival expectations. Enrichment analysis showed the involvement of TSEN54 in the cell cycle and metabolic processes. Afterward, we observed that TSEN54 expression level had a positive relationship to the infiltration level of multiple immune cells and the expression of several chemokines. We additionally identified that TSEN54 was related to the expression level of several immune checkpoints and TSEN54 was linked to several m6A-related regulators. CONCLUSIONS TSEN54 is a prognostic marker of HCC. TSEN54 could become a prospective candidate for HCC diagnosis and therapy.
Collapse
Affiliation(s)
- Bidong Fu
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Gelin Song
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yun Ke
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Hong Peng
- Department of Colorectal Surgery, 908th Hospital of Chinese People’s Liberation Army Joint, Nanchang, Jiangxi Province, People’s Republic of China
| | - Qing Li
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| |
Collapse
|
278
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
279
|
Hao J, Chen Q, Feng Y, Jiang Q, Sun H, Deng B, Huang X, Guan J, Chen Q, Liu X, Wang Y, Cao P, Feng F, Li X. Combination treatment with FAAH inhibitors/URB597 and ferroptosis inducers significantly decreases the growth and metastasis of renal cell carcinoma cells via the PI3K-AKT signaling pathway. Cell Death Dis 2023; 14:247. [PMID: 37024452 PMCID: PMC10079857 DOI: 10.1038/s41419-023-05779-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Ferroptosis, a nonapoptotic form of programmed cell death characterized by significant iron-dependent peroxidation of phospholipids, is regulated by cellular metabolism, redox homeostasis, and various cancer-related signaling pathways. Recently, considerable progress has been made in demonstrating the critical role of lipid metabolism in regulating ferroptosis, indicating the potential of combinational strategies for treating cancer in the future. In this study, we explored the combinational effects of lipid metabolism compounds and ferroptosis inducers on renal cell carcinoma (RCC) cells. We found potent synergy of the fatty acid amide hydrolase (FAAH) inhibitor URB597 with ferroptosis inducer (1S, 3R)-RSL3 (RSL3) in inhibiting the growth and metastasis of RCC cells both in vitro and in vivo via induction of G1 cell cycle arrest and promotion of the production of lipid peroxides, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and cytosolic reactive oxygen species (ROS). In addition, inhibition of FAAH increased the sensitivity of RCC cells to ferroptosis. Genome-wide RNA sequencing indicated that the combination of URB597 and RSL3 has more significant effects on regulation of the expression of genes related to cell proliferation, the cell cycle, cell migration and invasion, and ferroptosis than either single agent alone. Moreover, we found that combinational treatment modulated the sensitivity of RCC cells to ferroptosis via the phosphatidylinositol 3 kinase (PI3K)-AKT signaling pathway. These data demonstrate that dual targeting of FAAH and ferroptosis could be a promising strategy for treating RCC.
Collapse
Affiliation(s)
- Junfeng Hao
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of General practice medicine, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Qiguang Chen
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yongmin Feng
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Qiyu Jiang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Huiwei Sun
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Botian Deng
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xin Huang
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of General practice medicine, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Jibin Guan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Qiuping Chen
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xincheng Liu
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yanjin Wang
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Peng Cao
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, 110016, China.
| | - Fan Feng
- Clinical Laboratory, The Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Xiaoyu Li
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
280
|
Ding Y, Gong Y, Zeng H, Zhou X, Yu Z, Pan J, Zhou M, Liu S, Lai W. Biological function analysis of ARHGAP39 as an independent prognostic biomarker in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:2631-2666. [PMID: 37059586 PMCID: PMC10120899 DOI: 10.18632/aging.204635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/11/2023] [Indexed: 04/16/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer, with a high morbidity and low survival rate. Rho GTPase activating protein 39 (ARHGAP39) is a crucial activating protein of Rho GTPases, a novel target in cancer therapy, and it was identified as a hub gene for gastric cancer. However, the expression and role of ARHGAP39 in hepatocellular carcinoma remain unclear. Accordingly, the cancer genome atlas (TCGA) data were used to analyze the expression and clinical value of ARHGAP39 in hepatocellular carcinoma. Further, the LinkedOmics tool suggested functional enrichment pathways for ARHGAP39. To investigate in depth the possible role of ARHGAP39 on immune infiltration, we analyzed the relationship between ARHGAP39 and chemokines in HCCLM3 cells. Finally, the GSCA website was used to explore drug resistance in patients with high ARHGAP39 expression. Studies have shown that ARHGAP39 is highly expressed in hepatocellular carcinoma and relevant to clinicopathological features. In addition, the overexpression of ARHGAP39 leads to a poor prognosis. Besides, co-expressed genes and enrichment analysis showed a correlation with the cell cycle. Notably, ARHGAP39 may worsen the survival of hepatocellular carcinoma patients by increasing the level of immune infiltration through chemokines. Moreover, N6-methyladenosine (m6A) modification-related factors and drug sensitivity were also found to be associated with ARHGAP39. In brief, ARHGAP39 is a promising prognostic factor for hepatocellular carcinoma patients that is closely related to cell cycle, immune infiltration, m6A modification, and drug resistance.
Collapse
Affiliation(s)
- Yongqi Ding
- Department of Health Management Medical, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Shiwen Liu
- Emergency Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Lai
- Department of Health Management Medical, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
281
|
Peng K, Wang S, Liu R, Zhou L, Jeong GH, Jeong IH, Liu X, Kiyokawa H, Xue B, Zhao B, Shi H, Yin J. Effects of UBE3A on Cell and Liver Metabolism through the Ubiquitination of PDHA1 and ACAT1. Biochemistry 2023; 62:1274-1286. [PMID: 36920305 PMCID: PMC10077595 DOI: 10.1021/acs.biochem.2c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/03/2023] [Indexed: 03/16/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is substantiated by the reprogramming of liver metabolic pathways that disrupts the homeostasis of lipid and glucose metabolism and thus promotes the progression of the disease. The metabolic pathways associated with NAFLD are regulated at different levels from gene transcription to various post-translational modifications including ubiquitination. Here, we used a novel orthogonal ubiquitin transfer platform to identify pyruvate dehydrogenase A1 (PDHA1) and acetyl-CoA acetyltransferase 1 (ACAT1), two important enzymes that regulate glycolysis and ketogenesis, as substrates of E3 ubiquitin ligase UBE3A/E6AP. We found that overexpression of UBE3A accelerated the degradation of PDHA1 and promoted glycolytic activities in HEK293 cells. Furthermore, a high-fat diet suppressed the expression of UBE3A in the mouse liver, which was associated with increased ACAT1 protein levels, while forced expression of UBE3A in the mouse liver resulted in decreased ACAT1 protein contents. As a result, the mice with forced expression of UBE3A in the liver exhibited enhanced accumulation of triglycerides, cholesterol, and ketone bodies. These results reveal the role of UBE3A in NAFLD development by inducing the degradation of ACAT1 in the liver and promoting lipid storage. Overall, our work uncovers an important mechanism underlying the regulation of glycolysis and lipid metabolism through UBE3A-mediated ubiquitination of PDHA1 and ACAT1 to regulate their stabilities and enzymatic activities in the cell.
Collapse
Affiliation(s)
- Kangli Peng
- Engineering
Research Center of Cell and Therapeutic Antibody, Ministry of Education,
and School of Pharmacy, Shanghai Jiao Tong
University, Shanghai 200240, China
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Shirong Wang
- Department
of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ruochuan Liu
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Li Zhou
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Geon H. Jeong
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - In Ho Jeong
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xianpeng Liu
- Department
of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
| | - Hiroaki Kiyokawa
- Department
of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
| | - Bingzhong Xue
- Department
of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Bo Zhao
- Engineering
Research Center of Cell and Therapeutic Antibody, Ministry of Education,
and School of Pharmacy, Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Hang Shi
- Department
of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Yin
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
282
|
Huang H, Guo S, Chen Y, Liu Y, Jin J, Liang Y, Fan L, Xiang R. Increased RTN3 phenocopies nonalcoholic fatty liver disease by inhibiting the AMPK-IDH2 pathway. MedComm (Beijing) 2023; 4:e226. [PMID: 36925557 PMCID: PMC10013133 DOI: 10.1002/mco2.226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 03/16/2023] Open
Abstract
Reticulon 3 (RTN3), an endoplasmic reticulum protein, is crucial in neurodegenerative and kidney diseases. However, the role of RTN3 in liver tissues has not been described. Here, we employed public datasets, patients, and several animal models to explore the role of RTN3 in nonalcoholic fatty liver disease (NAFLD). The underlying mechanisms were studied in primary hepatocytes and L02 cells in vitro. We found an increased expression of RTN3 in NAFLD patients, high-fat diet mice, and oxidized low-density lipoprotein-treated L02 cells. The RTN3 transgenic mice exhibited the phenotypes of fatty liver and lipid accumulation. Single-cell RNA sequencing analysis indicated that increased RTN3 might induce mitochondrial dysfunction. We further showed this in primary hepatocytes, the L02 cell line, and the Caenorhabditis elegans strain. Mechanistically, RTN3 regulated these events through its interactions with glucose-regulated protein 78 (GRP78), which further inhibited the adenosine 5 monophosphate-activated protein kinase (AMPK)-isocitrate dehydrogenase 2 (IDH2) pathway. In the end, knockout of RTN3 relieved fatty liver and mitochondrial dysfunction. Our study indicated that RTN3 was important in NAFLD and lipid catabolism and that an increase in RTN3 in the liver might be a risk factor for nonalcoholic steatohepatitis and NAFLD.
Collapse
Affiliation(s)
- Hao Huang
- Department of NephrologyXiangya HospitalCentral South UniversityChangshaChina
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaChina
- Hunan Key Laboratory of Animal Models for Human DiseasesSchool of Life SciencesCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Shuai Guo
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaChina
| | - Ya‐Qin Chen
- Department of CardiologySecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Yu‐Xing Liu
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaChina
| | - Jie‐Yuan Jin
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaChina
| | - Yun Liang
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaChina
| | - Liang‐Liang Fan
- Department of NephrologyXiangya HospitalCentral South UniversityChangshaChina
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaChina
- Hunan Key Laboratory of Animal Models for Human DiseasesSchool of Life SciencesCentral South UniversityChangshaChina
| | - Rong Xiang
- Department of NephrologyXiangya HospitalCentral South UniversityChangshaChina
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaChina
- Hunan Key Laboratory of Animal Models for Human DiseasesSchool of Life SciencesCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Department of CardiologySecond Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
283
|
Meng Z, Geng X, Lin X, Wang Z, Chen D, Liang H, Zhu Y, Sui Y. A prospective diagnostic and prognostic biomarker for hepatocellular carcinoma that functions in glucose metabolism regulation: Solute carrier family 37 member 3. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166661. [PMID: 36773462 DOI: 10.1016/j.bbadis.2023.166661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Due to the insidious onset of HCC, early diagnosis is relatively difficult. HCC also exhibit strong resistance to first-line therapeutic drugs. Therefore, novel precise diagnostic and prognostic biomarkers for HCC are urgently needed. We employed a combination methods of bioinformatic analysis, cell functional experiments in vitro and a xenograft tumour model in vivo to systematically investigate the role of solute carrier family 37 member 3 (SLC37A3) in HCC progression. First, bioinformatic analysis demonstrated that SLC37A3 expression was significantly increased in HCC tissues compared with normal tissues. SLC37A3 expression was also associated with tumour stages and various clinical and pathological features. Similar trends in SLC37A3 expression levels were verified in HCC cells and by using IHC experiments. Next, survival analysis showed that the overall, 1-year, 3-year and 5-year survival rates were decreased in HCC patients with high SLC37A3 expression compared with HCC patients low SLC37A3 expression. Xenograft tumour experiments also suggested that SLC37A3 knockdown significantly inhibited HCC tumourigenesis in vivo. Cell functional experiments suggested that SLC37A3 knockdown inhibited HCC cell proliferation and metastasis, but promoted apoptosis. Furthermore, RNA-seq analysis of SLC37A3-knockdown HCC cells indicated that the type 1 diabetes mellitus (T1DM)-related signalling pathway was significantly altered. The expression levels of insulin secretion-related and glycolysis/gluconeogenesis-related genes were also altered, suggesting that SLC37A3 might be involved in the regulation of glucose homeostasis. In summary, SLC37A3 represents a prospective diagnostic and prognostic biomarker for HCC that functions in glucose metabolism regulation.
Collapse
Affiliation(s)
- Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xue Geng
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Xiaoyue Lin
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ziwei Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Danchun Chen
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Hua Liang
- Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ying Zhu
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Yutong Sui
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China.
| |
Collapse
|
284
|
Zhao M, Lei Y, Zhou Y, Sun M, Li X, Zhou Z, Huang J, Li X, Zhao B. Development and investigation of metabolism-associated risk assessment models for patients with viral hepatitis. Front Cell Infect Microbiol 2023; 13:1165647. [PMID: 37065201 PMCID: PMC10095836 DOI: 10.3389/fcimb.2023.1165647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Dysregulation of metabolism plays an important role in the onset and progression of multiple pathogenic diseases, including viral hepatitis. However, a model to predict viral hepatitis risk by metabolic pathways is still lacking. Thus, we developed two risk assessment models for viral hepatitis based on metabolic pathways identified through univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analysis. The first model is designed to assess the progression of the disease by evaluating changes in the Child–Pugh class, hepatic decompensation, and the development of hepatocellular carcinoma. The second model is focused on determining the prognosis of the illness, taking into account the patient’s cancer status. Our models were further validated by Kaplan–Meier plots of survival curves. In addition, we investigated the contribution of immune cells in metabolic processes and identified three distinct subsets of immune cells—CD8+ T cells, macrophages, and NK cells—that have significantly affected metabolic pathways. Specifically, our findings suggest that resting or inactive macrophages and NK cells contribute to maintaining metabolic homeostasis, particularly with regard to lipid and α-amino acid metabolism, thereby potentially reducing the risk of viral hepatitis progression. Moreover, maintaining metabolic homeostasis ensures a balance between killer-proliferative and exhausted CD8+ T cells, which helps in mitigating CD8+ T cell-mediated liver damage while preserving energy reserves. In conclusion, our study offers a useful tool for early disease detection in viral hepatitis patients through metabolic pathway analysis and sheds light on the immunological understanding of the disease through the examination of immune cell metabolic disorders.
Collapse
Affiliation(s)
- Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Lei
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanyan Zhou
- Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingan Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Xinyu Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- *Correspondence: Bin Zhao, ; ; Xinyu Li,
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Xinyu Li,
| |
Collapse
|
285
|
Yao M, Zhou P, Qin YY, Wang L, Yao DF. Mitochondrial carnitine palmitoyltransferase-II dysfunction: A possible novel mechanism for nonalcoholic fatty liver disease in hepatocarcinogenesis. World J Gastroenterol 2023; 29:1765-1778. [PMID: 37032731 PMCID: PMC10080702 DOI: 10.3748/wjg.v29.i12.1765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 03/09/2023] [Indexed: 03/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) or metabolic-associated fatty liver disease has been characterized by the lipid accumulation with injury of hepatocytes and has become one of the most common chronic liver diseases in the world. The complex mechanisms of NAFLD formation are still under identification. Carnitine palmitoyltransferase-II (CPT-II) on inner mitochondrial membrane (IMM) regulates long chain fatty acid β-oxidation, and its abnormality has had more and more attention paid to it by basic and clinical research in NAFLD. The sequences of its peptide chain and DNA nucleotides have been identified, and the catalytic activity of CPT-II is affected on its gene mutations, deficiency, enzymatic thermal instability, circulating carnitine level and so on. Recently, the CPT-II dysfunction has been discovered in models of liver lipid accumulation. Meanwhile, the malignant transformation of hepatocyte-related CD44+ stem T cell activation, high levels of tumor-related biomarkers (AFP, GPC3) and abnormal activation of Wnt3a expression as a key signal molecule of the Wnt/β-catenin pathway run parallel to the alterations of hepatocyte pathology. This review focuses on some of the progress of CPT-II inactivity on IMM with liver fatty accumulation as a possible novel pathogenesis for NAFLD in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Min Yao
- Department of Medical Immunology, Medical School of Nantong University & Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Ping Zhou
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yan-Yan Qin
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
286
|
Liu Z, Liu H, Chen Z, Deng C, Zhou L, Chen S, Kang J, Chen Y, He S, Zhou Z. Identification of a novel plasma metabolite panel as diagnostic biomarker for hepatocellular carcinoma. Clin Chim Acta 2023; 543:117302. [PMID: 36940842 DOI: 10.1016/j.cca.2023.117302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023]
Abstract
BACKGROUND AND AIMS Metabolic reprogramming is one of the hallmarks of cancer. Hepatocellular carcinoma (HCC) is one of the most lethal malignancy camcer, but the early diagnosis of HCC remains difficult. In this study, we searched for potential plasma metabolite biomarkers of HCC. METHODS A total of plasma samples of 104 HCC, 76 cirrhosis and 10 healthy subjects were assessed and validated through Gas chromatography-Mass spectrometry. Receiver-operating characteristic curves (ROC) combined with multivariate statistical analyses were used to assess the diagnostic performance of metabolites and combinations. RESULTS 10 metabolites in screening cohort were significantly changed in the plasma of HCC patients. Multivariate logistic regression analysis of candidate metabolites in validation cohort showed that N-formylglycine, oxoglutaric acid, citrulline and heptaethylene glycol could distinguish HCC from cirrhosis. The combination of these four metabolites showed a better performance than AFP with the Area Under the Curve (AUC), sensitivity, specificity as 0.940, 84.00%, 97.56%, respectively. In further, the panel of N-formylglycine, heptaethylene glycol and citrulline can more effectively discriminate early stage HCC from cirrhosis than AFP (AUC: 0.835 vs. 0.634). Finally, heptaethylene glycol could significantly inhibit the proliferation, migration and invasion of HCC cells in vitro. CONCLUSION The combination of plasma N-formylglycine, oxoglutaric acid, citrulline, and heptaethylene glycol can be an efficient novel diagnostic biomarker for HCC.
Collapse
Affiliation(s)
- Zhiying Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hongtao Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhiji Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chao Deng
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Li Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Siyuan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Juan Kang
- Department of Infectious Disease, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yao Chen
- Physical examination center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Zhihang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
287
|
Tan S, Yang Y, Yang W, Han Y, Huang L, Yang R, Hu Z, Tao Y, Liu L, Li Y, Oyang L, Lin J, Peng Q, Jiang X, Xu X, Xia L, Peng M, Wu N, Tang Y, Cao D, Liao Q, Zhou Y. Exosomal cargos-mediated metabolic reprogramming in tumor microenvironment. J Exp Clin Cancer Res 2023; 42:59. [PMID: 36899389 PMCID: PMC9999652 DOI: 10.1186/s13046-023-02634-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of cancer. As nutrients are scarce in the tumor microenvironment (TME), tumor cells adopt multiple metabolic adaptations to meet their growth requirements. Metabolic reprogramming is not only present in tumor cells, but exosomal cargos mediates intercellular communication between tumor cells and non-tumor cells in the TME, inducing metabolic remodeling to create an outpost of microvascular enrichment and immune escape. Here, we highlight the composition and characteristics of TME, meanwhile summarize the components of exosomal cargos and their corresponding sorting mode. Functionally, these exosomal cargos-mediated metabolic reprogramming improves the "soil" for tumor growth and metastasis. Moreover, we discuss the abnormal tumor metabolism targeted by exosomal cargos and its potential antitumor therapy. In conclusion, this review updates the current role of exosomal cargos in TME metabolic reprogramming and enriches the future application scenarios of exosomes.
Collapse
Affiliation(s)
- Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wenjuan Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Lisheng Huang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Ruiqian Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Zifan Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yi Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yun Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
288
|
Zhang Z, Wang S, Zhu Z, Nie B. Identification of potential feature genes in non-alcoholic fatty liver disease using bioinformatics analysis and machine learning strategies. Comput Biol Med 2023; 157:106724. [PMID: 36898287 DOI: 10.1016/j.compbiomed.2023.106724] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and NAFLD-associated hepatocellular carcinoma (HCC) has continuously increased in recent years. Machine learning is an effective method for screening the feature genes of a disease for prediction, prevention and personalized treatment. Here, we used the "limma" package and weighted gene co-expression network analysis (WGCNA) to screen 219 NAFLD-related genes and found that they were mainly enriched in inflammation-related pathways. Four feature genes (AXUD1, FOSB, GADD45B, and SOCS2) were screened by LASSO regression and support vector machine-recursive feature elimination (SVM-RFE) machine learning algorithms. Therefore, a clinical diagnostic model with an area under the curve (AUC) value of 0.994 was constructed, which was superior to other indicators of NAFLD. Significant correlations existed between feature genes expression and steatohepatitis histology or clinical variables. These findings were also validated in external datasets and a mouse model. Finally, we found that feature genes expression was significantly decreased in NAFLD-associated HCC and that SOCS2 may be a prognostic biomarker. Our findings may provide new insights into the diagnosis, prevention and treatment targets of NAFLD and NAFLD-associated HCC.
Collapse
Affiliation(s)
- Zhaohui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong Province, 510630, China
| | - Shihao Wang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong Province, 510630, China
| | - Zhengwen Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong Province, 510630, China
| | - Biao Nie
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong Province, 510630, China.
| |
Collapse
|
289
|
Lin H, Han H, Yang M, Wen Z, Chen Q, Ma Y, Wang X, Wang C, Yin T, Wang X, Lu G, Chen H, Qi J, Yang Y. PKM2/PDK1 dual-targeted shikonin derivatives restore the sensitivity of EGFR-mutated NSCLC cells to gefitinib by remodeling glucose metabolism. Eur J Med Chem 2023; 249:115166. [PMID: 36731272 DOI: 10.1016/j.ejmech.2023.115166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Pyruvate kinase 2 (PKM2) and pyruvate dehydrogenase kinase 1 (PDK1) are two key enzymes in tumor glucose metabolism pathway that not only promote tumor growth and proliferation through accelerating aerobic glycolysis, but also contribute to drug resistance of non-small cell lung cancer (NSCLC). Considering that targeting PKM2 or PDK1 alone seems insufficient to remodel abnormal glucose metabolism to achieve significant antitumor activity, we proposed a "two-step approach" that regulates PKM2 and PDK1 synchronously. Firstly, we found that the combination of ML265 (PKM2 activator) and AZD7545 (PDK1 inhibitor) could synergistically inhibit proliferation and induce apoptosis in H1299 cells. Base on this, we designed a series of novel shikonin (SK) thioether derivatives as PKM2/PDK1 dual-target agents, among which the most potent compound E5 featuring a 2-methyl substitution on the benzene ring exerted significantly increased inhibitory activity toward EGFR mutant NSCLC cell H1975 (IC50 = 1.51 μmol/L), which was 3 and 17-fold more active than the lead compound SK (IC50 = 4.56 μmol/L) and the positive control gefitinib (IC50 = 25.56 μmol/L), respectively. Additionally, E5 also showed good anti-tumor activity in xenografted mouse models, with significantly lower toxicity side effects than SK. Moreover, E5 also inhibited the entry of PKM2 into nucleus to regulate the transcriptional activation of oncogenes, thus restoring the sensitivity of H1975 cell to gefitinib. Collectively, these data demonstrate that E5, a dual inhibitor of PKM2/PDK1, may be a promising adjunct to gefitinib in the treatment of EGFR-TKIs resistant NSCLC, deserving further investigation.
Collapse
Affiliation(s)
- Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Qingqing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yudi Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Changyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongyuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
290
|
Non-alcoholic Fatty Liver Disease (NAFLD), Type 2 Diabetes, and Non-viral Hepatocarcinoma: Pathophysiological Mechanisms and New Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11020468. [PMID: 36831004 PMCID: PMC9953066 DOI: 10.3390/biomedicines11020468] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, the incidence of non-viral hepatocellular carcinoma (HCC) has increased dramatically, which is probably related to the increased prevalence of metabolic syndrome, together with obesity and type 2 diabetes mellitus (T2DM). Several epidemiological studies have established the association between T2DM and the incidence of HCC and have demonstrated the role of diabetes mellitus as an independent risk factor for the development of HCC. The pathophysiological mechanisms underlying the development of Non-alcoholic fatty liver disease (NAFLD) and its progression to Non-alcoholic steatohepatitis (NASH) and cirrhosis are various and involve pro-inflammatory agents, oxidative stress, apoptosis, adipokines, JNK-1 activation, increased IGF-1 activity, immunomodulation, and alteration of the gut microbiota. Moreover, these mechanisms are thought to play a significant role in the development of NAFLD-related hepatocellular carcinoma. Early diagnosis and the timely correction of risk factors are essential to prevent the onset of liver fibrosis and HCC. The purpose of this review is to summarize the current evidence on the association among obesity, NASH/NAFLD, T2DM, and HCC, with an emphasis on clinical impact. In addition, we will examine the main mechanisms underlying this complex relationship, and the promising strategies that have recently emerged for these diseases' treatments.
Collapse
|
291
|
Han C, Chen J, Huang J, Zhu R, Zeng J, Yu H, He Z. Single-cell transcriptome analysis reveals the metabolic changes and the prognostic value of malignant hepatocyte subpopulations and predict new therapeutic agents for hepatocellular carcinoma. Front Oncol 2023; 13:1104262. [PMID: 36860314 PMCID: PMC9969971 DOI: 10.3389/fonc.2023.1104262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/02/2023] [Indexed: 02/04/2023] Open
Abstract
Background The development of HCC is often associated with extensive metabolic disturbances. Single cell RNA sequencing (scRNA-seq) provides a better understanding of cellular behavior in the context of complex tumor microenvironments by analyzing individual cell populations. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) data was employed to investigate the metabolic pathways in HCC. Principal component analysis (PCA) and uniform manifold approximation and projection (UMAP) analysis were applied to identify six cell subpopulations, namely, T/NK cells, hepatocytes, macrophages, endothelial cells, fibroblasts, and B cells. The gene set enrichment analysis (GSEA) was performed to explore the existence of pathway heterogeneity across different cell subpopulations. Univariate Cox analysis was used to screen genes differentially related to The Overall Survival in TCGA-LIHC patients based on scRNA-seq and bulk RNA-seq datasets, and LASSO analysis was used to select significant predictors for incorporation into multivariate Cox regression. Connectivity Map (CMap) was applied to analysis drug sensitivity of risk models and targeting of potential compounds in high risk groups. Results Analysis of TCGA-LIHC survival data revealed the molecular markers associated with HCC prognosis, including MARCKSL1, SPP1, BSG, CCT3, LAGE3, KPNA2, SF3B4, GTPBP4, PON1, CFHR3, and CYP2C9. The RNA expression of 11 prognosis-related differentially expressed genes (DEGs) in normal human hepatocyte cell line MIHA and HCC cell lines HCC-LM3 and HepG2 were compared by qPCR. Higher KPNA2, LAGE3, SF3B4, CCT3 and GTPBP4 protein expression and lower CYP2C9 and PON1 protein expression in HCC tissues from Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) databases. The results of target compound screening of risk model showed that mercaptopurine is a potential anti-HCC drug. Conclusion The prognostic genes associated with glucose and lipid metabolic changes in a hepatocyte subpopulation and comparison of liver malignancy cells to normal liver cells may provide insight into the metabolic characteristics of HCC and the potential prognostic biomarkers of tumor-related genes and contribute to developing new treatment strategies for individuals.
Collapse
Affiliation(s)
- Cuifang Han
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,*Correspondence: Cuifang Han, ; Hongbing Yu, ; Zhiwei He,
| | - Jiaru Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jing Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Riting Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Hongbing Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,*Correspondence: Cuifang Han, ; Hongbing Yu, ; Zhiwei He,
| | - Zhiwei He
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,*Correspondence: Cuifang Han, ; Hongbing Yu, ; Zhiwei He,
| |
Collapse
|
292
|
Jiang X, Deng W, Tao S, Tang Z, Chen Y, Tian M, Wang T, Tao C, Li Y, Fang Y, Pu C, Gao J, Wang X, Qu W, Gai X, Ding Z, Fu Y, Zheng Y, Cao S, Zhou J, Huang M, Liu W, Xu J, Fan J, Shi Y. A RIPK3-independent role of MLKL in suppressing parthanatos promotes immune evasion in hepatocellular carcinoma. Cell Discov 2023; 9:7. [PMID: 36650126 PMCID: PMC9845215 DOI: 10.1038/s41421-022-00504-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 01/18/2023] Open
Abstract
Mixed lineage kinase domain-like (MLKL) is widely accepted as an executioner of necroptosis, in which MLKL mediates necroptotic signaling and triggers cell death in a receptor-interacting protein kinase 3 (RIPK3)-dependent manner. Recently, it is increasingly noted that RIPK3 is intrinsically silenced in hepatocytes, raising a question about the role of MLKL in hepatocellular carcinoma (HCC). This study reports a previously unrecognized role of MLKL in regulating parthanatos, a programmed cell death distinct from necroptosis. In HCC cells with intrinsic RIPK3 deficiency, knockout of MLKL impedes the orthotopic tumor growth, activates the anti-tumor immune response and enhances the therapeutic effect of immune checkpoint blockade in syngeneic HCC tumor models. Mechanistically, MLKL is required for maintaining the endoplasmic reticulum (ER)-mitochondrial Mg2+ dynamics in HCC cells. MLKL deficiency restricts ER Mg2+ release and mitochondrial Mg2+ uptake, leading to ER dysfunction and mitochondrial oxidative stress, which together confer increased susceptibility to metabolic stress-induced parthanatos. Importantly, pharmacological inhibition of poly(ADP-ribose) polymerase to block parthanatos restores the tumor growth and immune evasion in MLKL-knockout HCC tumors. Together, our data demonstrate a new RIPK3-independent role of MLKL in regulating parthanatos and highlight the role of MLKL in facilitating immune evasion in HCC.
Collapse
Affiliation(s)
- Xifei Jiang
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Wenjia Deng
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Siyao Tao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Tang
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yuehong Chen
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mengxin Tian
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,grid.8547.e0000 0001 0125 2443Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ting Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Chenyang Tao
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yize Li
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Fang
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Congying Pu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jun Gao
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xiaomin Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Weifeng Qu
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xiameng Gai
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhenbin Ding
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yixian Fu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Zheng
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Siyuwei Cao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhou
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China ,grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Huang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Weiren Liu
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jun Xu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jia Fan
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China ,grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yinghong Shi
- grid.506261.60000 0001 0706 7839Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, China ,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
293
|
Qiu X, Xu H, Wang K, Gao F, Xu X, He H. P-21 Activated Kinases in Liver Disorders. Cancers (Basel) 2023; 15:cancers15020551. [PMID: 36672500 PMCID: PMC9857091 DOI: 10.3390/cancers15020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The p21 Activated Kinases (PAKs) are serine threonine kinases and play important roles in many biological processes, including cell growth, survival, cytoskeletal organization, migration, and morphology. Recently, PAKs have emerged in the process of liver disorders, including liver cancer, hepatic ischemia-reperfusion injury, hepatitis, and liver fibrosis, owing to their effects in multiple signaling pathways in various cell types. Activation of PAKs promotes liver cancer growth and metastasis and contributes to the resistance of liver cancer to radiotherapy and chemotherapy, leading to poor survival of patients. PAKs also play important roles in the development and progression of hepatitis and other pathological processes of the liver such as fibrosis and ischemia-reperfusion injury. In this review, we have summarized the currently available studies about the role of PAKs in liver disorders and the mechanisms involved, and further explored the potential therapeutic application of PAK inhibitors in liver disorders, with the aim to provide a comprehensive overview on current progress and perspectives of PAKs in liver disorders.
Collapse
Affiliation(s)
- Xun Qiu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hanzhi Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Correspondence: (K.W.); (H.H.)
| | - Fengqiang Gao
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, 145 Studley Rd., Heidelberg, VIC 3084, Australia
- Correspondence: (K.W.); (H.H.)
| |
Collapse
|
294
|
VOCs from Exhaled Breath for the Diagnosis of Hepatocellular Carcinoma. Diagnostics (Basel) 2023; 13:diagnostics13020257. [PMID: 36673067 PMCID: PMC9858163 DOI: 10.3390/diagnostics13020257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Volatile organic compound (VOC) profiles as biomarkers for hepatocellular carcinoma (HCC) are understudied. We aimed to identify VOCs from the exhaled breath for HCC diagnosis and compare the performance of VOCs to alpha-fetoprotein (AFP). The performance of VOCs for predicting treatment response and the association between VOCs level and survival of HCC patients were also determined. METHODS VOCs from 124 HCC patients and 219 controls were identified using the XGBoost algorithm. ROC analysis was used to determine VOCs performance in differentiating HCC patients from controls and in discriminating treatment responders from non-responders. The association between VOCs and the survival of HCC patients was analyzed using Cox proportional hazard analysis. RESULTS The combination of 9 VOCs yielded 70.0% sensitivity, 88.6% specificity, and 75.0% accuracy for HCC diagnosis. When differentiating early HCC from cirrhotic patients, acetone dimer had a significantly higher AUC than AFP, i.e., 0.775 vs. 0.714, respectively, p = 0.001. Acetone dimer classified HCC patients into treatment responders and non-responders, with 95.7% sensitivity, 73.3% specificity, and 86.8% accuracy. Isopropyl alcohol was independently associated with the survival of HCC patients, with an adjusted hazard ratio of 7.23 (95%CI: 1.36-38.54), p = 0.020. CONCLUSIONS Analysis of VOCs is a feasible noninvasive test for diagnosing and monitoring HCC treatment response.
Collapse
|
295
|
Li L, Cui Z, Wang H, Huang B, Ma H. Dietary supplementation of dimethyl itaconate protects against chronic heat stress-induced growth performance impairment and lipid metabolism disorder in broiler chickens. J Anim Sci 2023; 101:skad120. [PMID: 37085946 PMCID: PMC10610747 DOI: 10.1093/jas/skad120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023] Open
Abstract
This study aimed to investigate the protective effects of dietary supplementation of dimethyl itaconate (DI) on chronic heat stress (HS)-induced impairment of the growth performance and lipid metabolism in broiler chickens. 21 days old male Ross 308 broiler chickens (a total of 120, about 700 g body weight) were randomly divided into five treatment groups, including control group, HS group, HS + 50 mg/kg DI group, HS + 150 mg/kg DI group, and HS + 200 mg/kg DI group, and each group contains eight cages of twenty-four broilers. The broiler chickens in the control group were raised in the room (21 ± 1 °C) and fed with a finisher diet for 21 days. The broiler chickens of the HS group and the HS + DI groups were raised in the room (32 ± 1 °C for 8 h/day) and fed with a finisher diet containing DI at 0, 50, 150, and 200 mg/kg diet for 21 days. The results showed that HS-induced decreases in the final body weight (P < 0.01), average daily gain (P < 0.01), and average daily feed intake (P < 0.01) were alleviated by dietary supplementation of DI (P < 0.05). In addition, dietary supplementation of DI attenuated the increases in the liver index (P < 0.01) and abdominal fat rate (P < 0.01) caused by HS in broilers (P < 0.05). Treatment with DI ameliorated HS-induced lipid accumulation in the liver and serum of broiler chickens (P < 0.05). The upregulation of mRNA levels of fat synthesis factors (P < 0.01) and downregulation of mRNA levels of lipolysis-related factors (P < 0.01) caused by HS were markedly blunted after treatment with DI in the liver of broilers (P < 0.05). Broilers exposed to HS exhibited lower phosphorylated protein levels of AMP-activated protein kinase α and acetyl-CoA carboxylase α compared to the control group (P < 0.01), which were improved by treatment with DI (P < 0.01). Collectively, these results demonstrated that dietary supplementation of DI protects against chronic HS-induced growth performance impairment and lipid metabolism disorder in broiler chickens. These results not only provide a theoretical basis for DI to alleviate metabolic disorders but also provide a reference value for DI as a feed additive to improve heat stress in poultry caused by high temperature.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ziyi Cui
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Benzeng Huang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
296
|
Xu X, Wang J. Prognostic prediction and multidimensional dissections of a macrophages M0-related gene signature in liver cancer. Front Endocrinol (Lausanne) 2023; 14:1153562. [PMID: 37033261 PMCID: PMC10080084 DOI: 10.3389/fendo.2023.1153562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is the seventh most commonly diagnosed malignancy and the third leading cause of all cancer death worldwide. The undifferentiated macrophages M0 can be induced into polarized M1 and M2 to exert opposite effects in tumor microenvironment. However, the prognostic value of macrophages M0 phenotype remains obscure in LIHC. METHODS The transcriptome data of LIHC was obtained from TCGA database and ICGC database. 365 LIHC samples from TCGA database and 231 LIHC samples from ICGC database were finally included. Macrophages M0-related genes (MRGs) were screened by Pearson correlation analysis and univariate Cox regression analysis based on the infiltration level of Macrophages M0. LASSO regression analysis was employed to construct a prognostic signature based on MRGs, and risk scores were accordingly calculated. Then we investigated the MRGs-based prognostic signature with respects to prognostic value, clinical significance, strengthened pathways, immune infiltration, gene mutation and drug sensitivity. Furthermore, the expression pattern of MRGs in the tumor microenvironment were also detected in LIHC. RESULTS A ten-MRG signature was developed and clarified as independent prognostic predictors in LIHC. The risk score-based nomogram showed favorable capability in survival prediction. Several substance metabolism activities like fatty acid/amino acid metabolism were strengthened in low-risk group. Low risk group was deciphered to harbor TTN mutation-driven tumorigenesis, while TP53 mutation was dominant in high-risk group. We also ascertained that the infiltration levels of immune cells and expressions of immune checkpoints are significantly influenced by the risk score. Besides, we implied that patients in low-risk group may be more sensitive to several anti-cancer drugs. What's more important, single-cell analysis verified the expression of MRGs in the tumor microenvironment of LIHC. CONCLUSION Multidimensional evaluations verified the clinical utility of the macrophages M0-related gene signature to predict prognosis, assist risk decision and guide treatment strategy for patients with LIHC.
Collapse
Affiliation(s)
- Xiaoming Xu
- Department of Gastroenterology, Jining First People’s Hospital, Jining, China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People’s Hospital of Yancheng, Yancheng, China
- *Correspondence: Jingzhi Wang,
| |
Collapse
|
297
|
Fan FS. Small-interfering RNA targeting proprotein convertase subtilisin/kexin type 9 might promote fatty liver disease and hepatocellular carcinoma through upregulation of CD36. Tumour Biol 2023; 45:73-80. [PMID: 37694331 DOI: 10.3233/tub-230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipoprotein (LDL) receptor and fatty acid translocase CD36, inducing lysosomal degradation of these two receptors in the liver cells. Both monoclonal antibody (mAb) and small-interfering RNA (siRNA) targeting PCSK9 have been designed for treatment of familial hypercholesterolemia recently, with elevating LDL receptors on the liver cell surface and increasing LDL uptake as the main beneficial mechanism. However, given that the binding domains of PCSK9 for LDL receptor and CD36 are different, and PCSK9 mAb only attacks the domain for LDL receptor, CD36 expression remains partially controlled under PCSK9 mAb treatment. In contrast, PCSK9 siRNA brings on complete loss of PCSK9, resulting in overexpression of CD36. Based on the fact that CD36 is a key factor in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and subsequent hepatocellular carcinoma (HCC), the risk of developing NAFLD and HCC on long-term use of PCSK9 siRNA is thus raised as a hypothesis. Additionally, because CD36 is also involved in the promotion of malignant diseases other than HCC, such as acute myeloid leukemia, gastric cancer, breast cancer, and colorectal cancer, the speculative danger of flourishing these malignancies by PCSK9 siRNA is discussed as well.
Collapse
Affiliation(s)
- Frank S Fan
- Division of Hematology and Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
298
|
Xiang Z, Jiang C, Yang J, Huang L, Jiang B, Wang X, Gao C, Li M, Meng Y, Tong L, Ling B, Wang Y, Wu J. Serum extracellular vesicle-derived ASS1 is a promising predictor for the occurrence of HEV-ALF. J Med Virol 2023; 95:e28425. [PMID: 36562411 DOI: 10.1002/jmv.28425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Development of biomarkers for predicting the occurrence of hepatitis E virus related-acute liver failure (HEV-ALF) is conducive to prevention and early intervention. Serum samples from 250 HEV-ALF patients, 250 patients with acute hepatitis E (AHE) and 250 health controls (HCs) were collected. We assessed the predictive ability of extracellular vesicle (EV)-derived argininosuccinate synthase 1 (ASS1) levels for HEV-ALF occurrence. Serum EVs were successfully isolated. EV-derived ASS1 levels in the HEV-ALF patients were significantly higher than those in the AHE patients and HCs. In HEV-ALF patients, EV-derived ASS1 levels were positively correlated with the number of failed organs and disease progression. The logistical regression showed that EV-derived ASS1 level is an independent risk factor for HEV-ALF, and orthogonal partial least squares discriminant analysis (OPLS-DA) also suggested that EV-derived ASS1 level has high predictive capability. Besides, the area under the curve (AUC) of EV-derived ASS1 level to predict HEV-ALF occurrence was 0.728 (0.684-0.772) with the sensitivity and specificity being 72.80% and 64.80%, which had a high decision-making ability. Furthermore, there existed no significant difference between the age ≥60 and age <60 groups in EV-derived ASS1 levels. Serum EV-derived ASS1 level is a promising predictor for the occurrence of HEV-ALF.
Collapse
Affiliation(s)
- Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jiajia Yang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Bin Jiang
- Department of Laboratory Medicine, The Central Blood Station of Yancheng City, Yancheng, Jiangsu, China
| | - Xuanli Wang
- Jiangsu University School of Medicine, Zhenjiang, Jiangsu, China
| | - Ce Gao
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mo Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yiling Meng
- Department of Laboratory Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling Tong
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bai Ling
- Department of Pharmacy, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Ying Wang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
299
|
Chen J, Sun M, Cui X, Zhang X. Ginsenoside compound K induces mitochondrial apoptosis in human hepatoma cells through Bclaf1-mediated modulation of ERK signaling. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2134313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Jiaxin Chen
- College of Medicine, Yanbian University, Yanji, People’s Republic of China
| | - Manqing Sun
- College of Medicine, Yanbian University, Yanji, People’s Republic of China
| | - Xinmu Cui
- College of Medicine, Yanbian University, Yanji, People’s Republic of China
| | - Xuewu Zhang
- College of Medicine, Yanbian University, Yanji, People’s Republic of China
| |
Collapse
|
300
|
Gutiérrez-Cuevas J, Lucano-Landeros S, López-Cifuentes D, Santos A, Armendariz-Borunda J. Epidemiologic, Genetic, Pathogenic, Metabolic, Epigenetic Aspects Involved in NASH-HCC: Current Therapeutic Strategies. Cancers (Basel) 2022; 15:23. [PMID: 36612019 PMCID: PMC9818030 DOI: 10.3390/cancers15010023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the sixth most frequent cancer in the world, being the third cause of cancer-related deaths. Nonalcoholic steatohepatitis (NASH) is characterized by fatty infiltration, oxidative stress and necroinflammation of the liver, with or without fibrosis, which can progress to advanced liver fibrosis, cirrhosis and HCC. Obesity, metabolic syndrome, insulin resistance, and diabetes exacerbates the course of NASH, which elevate the risk of HCC. The growing prevalence of obesity are related with increasing incidence of NASH, which may play a growing role in HCC epidemiology worldwide. In addition, HCC initiation and progression is driven by reprogramming of metabolism, which indicates growing appreciation of metabolism in the pathogenesis of this disease. Although no specific preventive pharmacological treatments have recommended for NASH, dietary restriction and exercise are recommended. This review focuses on the molecular connections between HCC and NASH, including genetic and risk factors, highlighting the metabolic reprogramming and aberrant epigenetic alterations in the development of HCC in NASH. Current therapeutic aspects of NASH/HCC are also reviewed.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Silvia Lucano-Landeros
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Daniel López-Cifuentes
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, EMCS, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
- Tecnologico de Monterrey, EMCS, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|