251
|
Yoshida S, Kumakura F, Komatsu I, Arai K, Onuma Y, Hojo H, Singh BG, Priyadarsini KI, Iwaoka M. Antioxidative Glutathione Peroxidase Activity of Selenoglutathione. Angew Chem Int Ed Engl 2011; 50:2125-8. [DOI: 10.1002/anie.201006939] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Indexed: 11/09/2022]
|
252
|
Nguyen VD, Saaranen MJ, Karala AR, Lappi AK, Wang L, Raykhel IB, Alanen HI, Salo KEH, Wang CC, Ruddock LW. Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation. J Mol Biol 2011; 406:503-15. [PMID: 21215271 DOI: 10.1016/j.jmb.2010.12.039] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/23/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
Abstract
Disulfide bond formation in the endoplasmic reticulum by the sulfhydryl oxidase Ero1 family is thought to be accompanied by the concomitant formation of hydrogen peroxide. Since secretory cells can make substantial amounts of proteins that contain disulfide bonds, the production of this reactive oxygen species could have potentially lethal consequences. Here, we show that two human proteins, GPx7 and GPx8, labeled as secreted glutathione peroxidases, are actually endoplasmic reticulum-resident protein disulfide isomerase peroxidases. In vitro, the addition of GPx7 or GPx8 to a folding protein along with protein disulfide isomerase and peroxide enables the efficient oxidative refolding of a reduced denatured protein. Furthermore, both GPx7 and GPx8 interact with Ero1α in vivo, and GPx7 significantly increases oxygen consumption by Ero1α in vitro. Hence, GPx7 and GPx8 may represent a novel route for the productive use of peroxide produced by Ero1α during disulfide bond formation.
Collapse
Affiliation(s)
- Van Dat Nguyen
- Department of Biochemistry, University of Oulu, Linnanmaa Campus, 90570 Oulu, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
|
254
|
Arai K, Dedachi K, Iwaoka M. Rapid and quantitative disulfide bond formation for a polypeptide chain using a cyclic selenoxide reagent in an aqueous medium. Chemistry 2010; 17:481-5. [PMID: 21207564 DOI: 10.1002/chem.201002742] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Indexed: 11/10/2022]
Abstract
To elucidate the reaction mechanism of the disulfide (SS) bond formation reaction of a polypeptide molecule with a water-soluble selenoxide reagent, trans-3,4-dihydroxyselenolane oxide (DHS(ox)), short-term oxidation experiments were carried out for the reduced state (R) of a recombinant hirudin CX-397 variant at pH 7.0 and 25 °C. In the reaction, R was oxidized sequentially to one-SS, two-SS, and three-SS intermediate ensembles within 1 min. The kinetic analysis revealed that the three second-order rate constants for the SS formation are proportional to the number of thiol groups existing in the reactant SS intermediates, indicating the stochastic nature of the SS formation. Ab initio calculation at the HF/6-31++G(d,p) level in water by using the polarizable continuum model suggested that the SS formation reaction is highly exothermic and proceeds via a reactive thioselenurane intermediate with a distorted linear O-Se-S linkage. The results clearly demonstrated that the rate-determining step of the SS formation reaction is the first bimolecular process between a thiol substrate and DHS(ox) rather than the subsequent process to release a SS product.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | | | | |
Collapse
|
255
|
Abstract
There is considerable evidence that placental oxidative stress plays a significant role in the etiology of preeclampsia. Prophylactic use of exogenous anti-oxidants such as vitamins E and C have proven to be ineffective and potentially dangerous. The current study addresses the role of endogenous anti-oxidant systems in preeclampsia. In particular, data on the selenodependent enzymes glutathione peroxidase and thioredoxin reductase will be presented and the role of selenium in preeclampsia will be considered. The aim of these studies was to determine the levels of endogenous antioxidants, selenium, and biological oxidation in normal and preeclamptic placental tissues. Furthermore, animal studies were conducted to assess the impact of selenium depletion on anti-oxidant expression and activity, oxidative stress and symptoms of preeclampsia. Selenium depletion generated placental oxidative stress and produced a preeclamptic like syndrome in pregnant rats suggesting a link between placental oxidative stress, endogenous antioxidant disequilibria and the pathogenesis of preeclampsia that may be linked to insufficient dietary selenium. The selenium of status of preeclamptic mothers was also considered and lower levels of selenium were observed when compared to normal controls. Selenium supplementation improves endogenous anti-oxidant expression in trophoblast cells and might provide an effective method of protecting the placenta from oxidative stress during preeclampsia. Clinical studies are now underway to investigate the benefits of low dose selenium supplementation on the development and progression of preeclampsia.
Collapse
|
256
|
Snider G, Grout L, Ruggles EL, Hondal RJ. Methaneseleninic acid is a substrate for truncated mammalian thioredoxin reductase: implications for the catalytic mechanism and redox signaling. Biochemistry 2010; 49:10329-38. [PMID: 21038895 DOI: 10.1021/bi101130t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mammalian thioredoxin reductase is a homodimeric pyridine nucleotide disulfide oxidoreductase that contains the rare amino acid selenocysteine (Sec) on a C-terminal extension. We previously have shown that a truncated version of mouse mitochondrial thioredoxin reductase missing this C-terminal tail will catalyze the reduction of a number of small molecules. Here we show that the truncated thioredoxin reductase will catalyze the reduction of methaneseleninic acid. This reduction is fast at pH 6.1 and is only 4-fold slower than that of the full-length enzyme containing Sec. This finding suggested to us that if the C-terminal Sec residue in the holoenzyme became oxidized to the seleninic acid form (Sec-SeO(2)(-)) that it would be quickly reduced back to an active state by enzymic thiols and further suggested to us that the enzyme would be very resistant to irreversible inactivation by oxidation. We tested this hypothesis by reducing the enzyme with NADPH and subjecting it to high concentrations of H(2)O(2) (up to 50 mM). The results show that the enzyme strongly resisted inactivation by 50 mM H(2)O(2). To determine the redox state of the C-terminal Sec residue, we attempted to inhibit the enzyme with dimedone. Dimedone alkylates protein sulfenic acid residues and presumably will alkylate selenenic acid (Sec-SeOH) residues as well. The enzyme was not inhibited by dimedone even when a 150-fold excess was added to the reaction mixture containing the enzyme and H(2)O(2). We also tested the ability of the truncated enzyme to resist inactivation by oxidation as well and found that it also was resistant to high concentrations of H(2)O(2). One assumption for the use of Sec in enzymes is that it is catalytically superior to the use of cysteine. We and others have previously suggested that there are reasons for the use of Sec in enzymes that are unrelated to the conversion of substrate to product. The data presented here support this assertion. The results also imply that the redox signaling function of the thioredoxin system can remain active under oxidative stress.
Collapse
Affiliation(s)
- Gregg Snider
- Department of Biochemistry, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
257
|
Sausen de Freitas A, de Souza Prestes A, Wagner C, Haigert Sudati J, Alves D, Oliveira Porciúncula L, Kade IJ, Teixeira Rocha JB. Reduction of diphenyl diselenide and analogs by mammalian thioredoxin reductase is independent of their gluthathione peroxidase-like activity: a possible novel pathway for their antioxidant activity. Molecules 2010; 15:7699-714. [PMID: 21030914 DOI: 10.3390/molecules15117700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/14/2010] [Accepted: 10/26/2010] [Indexed: 01/05/2023] Open
Abstract
Since the successful use of the organoselenium drug ebselen in clinical trials for the treatment of neuropathological conditions associated with oxidative stress, there have been concerted efforts geared towards understanding the precise mechanism of action of ebselen and other organoselenium compounds, especially the diorganyl diselenides such as diphenyl diselenide, and its analogs. Although the mechanism of action of ebselen and other organoselenium compounds has been shown to be related to their ability to generally mimic native glutathione peroxidase (GPx), only ebselen however has been shown to serve as a substrate for the mammalian thioredoxin reductase (TrxR), demonstrating another component of its pharmacological mechanisms. In fact, there is a dearth of information on the ability of other organoselenium compounds, especially diphenyl diselenide and its analogs, to serve as substrates for the mammalian enzyme thioredoxin reductase. Interestingly, diphenyl diselenide shares several antioxidant and neuroprotective properties with ebselen. Hence in the present study, we tested the hypothesis that diphenyl diselenide and some of its analogs (4,4'-bistrifluoromethyldiphenyl diselenide, 4,4'-bismethoxy-diphenyl diselenide, 4.4'-biscarboxydiphenyl diselenide, 4,4'-bischlorodiphenyl diselenide, 2,4,6,2',4',6'-hexamethyldiphenyl diselenide) could also be substrates for rat hepatic TrxR. Here we show for the first time that diselenides are good substrates for mammalian TrxR, but not necessarily good mimetics of GPx, and vice versa. For instance, bis-methoxydiphenyl diselenide had no GPx activity, whereas it was a good substrate for reduction by TrxR. Our experimental observations indicate a possible dissociation between the two pathways for peroxide degradation (either via substrate for TrxR or as a mimic of GPx). Consequently, the antioxidant activity of diphenyl diselenide and analogs can be attributed to their capacity to be substrates for mammalian TrxR and we therefore conclude that subtle changes in the aryl moiety of diselenides can be used as tool for dissociation of GPx or TrxR pathways as mechanism triggering their antioxidant activities.
Collapse
Affiliation(s)
- Andressa Sausen de Freitas
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900, Santa Maria RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
258
|
Reduction of diphenyl diselenide and analogs by mammalian thioredoxin reductase is independent of their gluthathione peroxidase-like activity: a possible novel pathway for their antioxidant activity. Molecules 2010. [PMID: 21030914 PMCID: PMC6259470 DOI: 10.3390/molecules15117699] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Since the successful use of the organoselenium drug ebselen in clinical trials for the treatment of neuropathological conditions associated with oxidative stress, there have been concerted efforts geared towards understanding the precise mechanism of action of ebselen and other organoselenium compounds, especially the diorganyl diselenides such as diphenyl diselenide, and its analogs. Although the mechanism of action of ebselen and other organoselenium compounds has been shown to be related to their ability to generally mimic native glutathione peroxidase (GPx), only ebselen however has been shown to serve as a substrate for the mammalian thioredoxin reductase (TrxR), demonstrating another component of its pharmacological mechanisms. In fact, there is a dearth of information on the ability of other organoselenium compounds, especially diphenyl diselenide and its analogs, to serve as substrates for the mammalian enzyme thioredoxin reductase. Interestingly, diphenyl diselenide shares several antioxidant and neuroprotective properties with ebselen. Hence in the present study, we tested the hypothesis that diphenyl diselenide and some of its analogs (4,4'-bistrifluoromethyldiphenyl diselenide, 4,4'-bismethoxy-diphenyl diselenide, 4.4'-biscarboxydiphenyl diselenide, 4,4'-bischlorodiphenyl diselenide, 2,4,6,2',4',6'-hexamethyldiphenyl diselenide) could also be substrates for rat hepatic TrxR. Here we show for the first time that diselenides are good substrates for mammalian TrxR, but not necessarily good mimetics of GPx, and vice versa. For instance, bis-methoxydiphenyl diselenide had no GPx activity, whereas it was a good substrate for reduction by TrxR. Our experimental observations indicate a possible dissociation between the two pathways for peroxide degradation (either via substrate for TrxR or as a mimic of GPx). Consequently, the antioxidant activity of diphenyl diselenide and analogs can be attributed to their capacity to be substrates for mammalian TrxR and we therefore conclude that subtle changes in the aryl moiety of diselenides can be used as tool for dissociation of GPx or TrxR pathways as mechanism triggering their antioxidant activities.
Collapse
|
259
|
Liu G, Feinstein SI, Wang Y, Dodia C, Fisher D, Yu K, Ho YS, Fisher AB. Comparison of glutathione peroxidase 1 and peroxiredoxin 6 in protection against oxidative stress in the mouse lung. Free Radic Biol Med 2010; 49:1172-81. [PMID: 20627125 PMCID: PMC2947380 DOI: 10.1016/j.freeradbiomed.2010.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/29/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
Peroxiredoxin 6 (Prdx6) and cytosolic GSH peroxidase (GPx1), both GSH-dependent peroxidases, were compared for the effects of their knockout on injury and lipid peroxidation in: (a) lungs of mice exposed to 0.85 or 1.0atm O(2), (b) isolated perfused mouse lungs exposed to 5mM tert-butylhydroperoxide (t-BOOH) or 1mM paraquat, and (c) primary mouse pulmonary microvascular endothelial cells exposed to 50muM t-BOOH. Derangements in GPx1 null were similar or slightly greater than in wild type for all parameters in the various models of oxidant stress, whereas Prdx6 null showed markedly increased effects. GSH peroxidase activity with phosphatidylcholine hydroperoxide as substrate in GPx1-null lung homogenate was decreased only slightly vs wild type, whereas activity in Prdx6-null lungs was decreased by ~95%, indicating that Prdx6 is the major enzyme for reduction of oxidized lung phospholipids. Expression levels of oxidant-related genes measured with a PCR-based gene array indicated no significant differences between the Prdx6 and the GPx1 null except for the target genes and IL-19. Thus, Prdx6-null mice are significantly more sensitive to oxidant stress compared to GPx1 null, suggesting that scavenging of phospholipid hydroperoxides by Prdx6 plays a major role in lung antioxidant defense.
Collapse
Affiliation(s)
- Geng Liu
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
260
|
Abruzzo PM, di Tullio S, Marchionni C, Belia S, Fanó G, Zampieri S, Carraro U, Kern H, Sgarbi G, Lenaz G, Marini M. Oxidative stress in the denervated muscle. Free Radic Res 2010; 44:563-76. [PMID: 20298122 DOI: 10.3109/10715761003692487] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Following experimental hind limb denervation in rats, this study demonstrates that oxidative stress occurs and advances an hypothesis about its origin. In fact: (i) ROS are formed; (ii) membrane lipids are oxidized; (iii) oxidized ion channels and pumps may lead to increased [Ca(2+)](i); all the above mentioned events increase with denervation time. In the denervated muscle, (iv) mRNA abundance of cytoprotective and anti-oxidant proteins (Hsp70, Hsp27, Sod1, Catalase, Gpx1, Gpx4, Gstm1), as well as (v) SOD1 enzymatic activity and HSP70i protein increase; (vi) an unbalance in mitochondrial OXPHOS enzymes occurs, presumably leading to excess mitochondrial ROS production; (vii) increased cPLA2alpha expression (mRNA) and activation (increased [Ca(2+)](i)) may lead to increased hydroperoxides release. Since anti-oxidant defences appear inadequate to counterbalance increased ROS production with increased denervation time, an anti-oxidant therapeutic strategy seems to be advisable in the many medical conditions where the nerve-muscle connection is impaired.
Collapse
Affiliation(s)
- Provvidenza M Abruzzo
- Department of Histology, Embryology, and Applied Biology, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20847933 PMCID: PMC2933860 DOI: 10.1155/2010/453642] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 01/21/2023]
Abstract
Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to put this knowledge into the context of their unique energy metabolism.
Collapse
|
262
|
Du S, Zhou J, Jia Y, Huang K. SelK is a novel ER stress-regulated protein and protects HepG2 cells from ER stress agent-induced apoptosis. Arch Biochem Biophys 2010; 502:137-43. [PMID: 20692228 DOI: 10.1016/j.abb.2010.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/31/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
Selenoprotein K (SelK), an endoplasmic reticulum (ER) resident protein, its biological function has been less-well studied. To investigate the role of SelK in the ER stress response, effects of SelK gene silence and ER stress agents on expression of SelK and cell apoptosis in HepG2 cells were studied. The results showed that SelK was regulated by ER stress agents, Tunicamycin (Tm) and beta-Mercaptoethanol (beta-ME), in HepG2 cells. Moreover, the SelK gene silence by RNA interference could significantly aggravate HepG2 cell death and apoptosis induced by the ER stress agents. These results suggest that SelK is an ER stress-regulated protein and plays an important role in protecting HepG2 cells from ER stress agent-induced apoptosis.
Collapse
Affiliation(s)
- Shaoqing Du
- Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | |
Collapse
|
263
|
Dammeyer P, Arnér ESJ. Human Protein Atlas of redox systems - what can be learnt? Biochim Biophys Acta Gen Subj 2010; 1810:111-38. [PMID: 20647035 DOI: 10.1016/j.bbagen.2010.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/08/2010] [Accepted: 07/11/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND High-throughput screening projects are popular approaches to yield a vast amount of information amenable for database mining and "hypothesis generation". The keys to success for these approaches depend upon the quality of primary data, choice of algorithms for data analyses, solidity in data annotations and the general usefulness of the results. A large initiative aimed at mapping the expression of all human proteins is the Human Protein Atlas (www.proteinatlas.org), encompassing immunohistochemical analyses of human tissues utilizing antibodies raised against a large number of human proteins. Here, we wished to probe what could be learnt from this atlas using a manual in-depth analysis of the results regarding the expression of key proteins in the human glutathione and thioredoxin systems. METHODS The freely available on-line data of immunohistochemical analyses for selected human redox proteins within the Human Protein Atlas were here analyzed, provided that reasonably solid data existed for the antibodies that were employed. This included tissue expression data for thioredoxin 1 (Trx1), Trx2, thioredoxin reductase 1 (TrxR1), TrxR2, glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PD), γ-glutamyl cysteinyl synthase (gGCS) and the six peroxiredoxins Prx1 to Prx6. The data were further complemented with a screen using a polyclonal peptide antibody raised against the unique glutaredoxin domain of TXNRD1_v3 ("v3"). The results from fifteen major tissues and organs are presented (lung, kidney, liver, lymph node, testis, prostate, ovary, breast, pancreas, cerebellum, hippocampus, cerebral cortex, skin, skeletal muscle and heart muscle) and discussed considering earlier findings described in the literature. RESULTS Staining patterns proved to be highly variable and often unexpected both in terms of tissues analyzed and the individual target proteins. Among the analyzed tissues, only macrophages of the lung, tubular cells of the kidney, lymphoid cells of lymph nodes, Leydig cells in the testis, glandular cells of the prostate and exocrine glandular cells of the pancreas, showed positive staining with all of the fourteen antibodies that were analyzed. Among these antibodies, those against Trx1, TrxR2 and G6PD showed the most restricted staining across different tissues, while others including the antibodies against Trx2, TrxR1, GR, Prx3, Prx4 and Prx6 gave strong staining in most tissues. Staining for v3 was strong in many cells and tissues, which was unexpected considering previous results mapping transcripts for this protein. No obvious co-variation in staining across tissues could be noted when comparing any two of the analyzed antibodies. Staining for G6PD was weak in most tissues, except for cells of the seminiferous ducts in testis and follicular cells of the ovary, where G6PD staining was strong. CONCLUSIONS Results from high-throughput screening projects such as the Human Protein Atlas must be taken with caution and need to be duly confirmed by thorough in-depth follow-up studies. The varying staining intensities comparing tissues as seen here for most of the analyzed antibodies nonetheless suggest that the overall profile of the human redox systems may vary significantly between different cell types and between different tissues. GENERAL SIGNIFICANCE The Human Protein Atlas data suggest that the individual proteins of the human thioredoxin and glutathione systems may be strikingly tissue- and cell type-specific in terms of expression levels, but we also conclude that these type of high-throughput results should be taken with significant caution and must be duly verified using subsequent focused and detailed hypothesis-guided follow-up studies. This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.
Collapse
Affiliation(s)
- Pascal Dammeyer
- Department of Medical Biochemistry and Biophyscis, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
264
|
Shchedrina VA, Zhang Y, Labunskyy VM, Hatfield DL, Gladyshev VN. Structure-function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxid Redox Signal 2010; 12:839-49. [PMID: 19747065 PMCID: PMC2864662 DOI: 10.1089/ars.2009.2865] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selenium is an essential trace element in mammals. The major biological form of this micronutrient is the amino acid selenocysteine, which is present in the active sites of selenoenzymes. Seven of 25 mammalian selenoproteins have been identified as residents of the endoplasmic reticulum, including the 15-kDa selenoprotein, type 2 iodothyronine deiodinase and selenoproteins K, M, N, S, and T. Most of these proteins are poorly characterized. However, recent studies implicate some of them in quality control of protein folding in the ER, retrotranslocation of misfolded proteins from the ER to the cytosol, metabolism of the thyroid hormone, and regulation of calcium homeostasis. In addition, some of these proteins are involved in regulation of glucose metabolism and inflammation. This review discusses evolution and structure-function relations of the ER-resident selenoproteins and summarizes recent findings on these proteins, which reveal the emerging important role of selenium and selenoproteins in ER function.
Collapse
Affiliation(s)
- Valentina A Shchedrina
- Redox Biology Center and Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
| | | | | | | | | |
Collapse
|
265
|
Forman HJ, Maiorino M, Ursini F. Signaling functions of reactive oxygen species. Biochemistry 2010. [PMID: 20050630 DOI: 10.1021/bi.9020378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review signaling by reactive oxygen species, which is emerging as a major physiological process. However, among the reactive oxygen species, H(2)O(2) best fulfills the requirements of being a second messenger. Its enzymatic production and degradation, along with the requirements for the oxidation of thiols by H(2)O(2), provide the specificity for time and place that are required in signaling. Both thermodynamic and kinetic considerations suggest that among possible oxidation states of cysteine, formation of sulfenic acid derivatives or disulfides can be relevant as thiol redox switches in signaling. In this work, the general constraints that are required for protein thiol oxidation by H(2)O(2) to be fast enough to be relevant for signaling are discussed in light of the mechanism of oxidation of the catalytic cysteine or selenocysteine in thiol peroxidases. While the nonenzymatic reaction between thiol and H(2)O(2) is, in most cases, too slow to be relevant in signaling, the enzymatic catalysis of thiol oxidation by these peroxidases provides a potential mechanism for redox signaling.
Collapse
Affiliation(s)
- Henry Jay Forman
- University of California, 5200 North Lake Road, Merced, California 95344, USA.
| | | | | |
Collapse
|
266
|
Forman HJ, Maiorino M, Ursini F. Signaling functions of reactive oxygen species. Biochemistry 2010; 49:835-42. [PMID: 20050630 DOI: 10.1021/bi9020378] [Citation(s) in RCA: 590] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We review signaling by reactive oxygen species, which is emerging as a major physiological process. However, among the reactive oxygen species, H(2)O(2) best fulfills the requirements of being a second messenger. Its enzymatic production and degradation, along with the requirements for the oxidation of thiols by H(2)O(2), provide the specificity for time and place that are required in signaling. Both thermodynamic and kinetic considerations suggest that among possible oxidation states of cysteine, formation of sulfenic acid derivatives or disulfides can be relevant as thiol redox switches in signaling. In this work, the general constraints that are required for protein thiol oxidation by H(2)O(2) to be fast enough to be relevant for signaling are discussed in light of the mechanism of oxidation of the catalytic cysteine or selenocysteine in thiol peroxidases. While the nonenzymatic reaction between thiol and H(2)O(2) is, in most cases, too slow to be relevant in signaling, the enzymatic catalysis of thiol oxidation by these peroxidases provides a potential mechanism for redox signaling.
Collapse
Affiliation(s)
- Henry Jay Forman
- University of California, 5200 North Lake Road, Merced, California 95344, USA.
| | | | | |
Collapse
|
267
|
Arnér ESJ. Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine? Exp Cell Res 2010; 316:1296-303. [PMID: 20206159 DOI: 10.1016/j.yexcr.2010.02.032] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 02/24/2010] [Indexed: 11/25/2022]
Abstract
The defining entity of a selenoprotein is the inclusion of at least one selenocysteine (Sec) residue in its sequence. Sec, the 21st naturally occurring genetically encoded amino acid, differs from its significantly more common structural analog cysteine (Cys) by the identity of a single atom: Sec contains selenium instead of the sulfur found in Cys. Selenium clearly has unique chemical properties that differ from sulfur, but more striking are perhaps the similarities between the two elements. Selenium was discovered by Jöns Jacob Berzelius, a renowned Swedish scientist instrumental in establishing the institution that would become Karolinska Institutet. Written at the occasion of the bicentennial anniversary of Karolinska Institutet, this mini review focuses on the unique selenium-derived properties that may potentially arise in a protein upon the inclusion of Sec in place of Cys. With 25 human genes encoding selenoproteins and in total several thousand selenoproteins yet described in nature, it seems likely that the presence of that single selenium atom of Sec should convey some specific feature, thereby explaining the existence of selenoproteins in spite of demanding and energetically costly Sec-specific synthesis machineries. Nonetheless, most, if not all, of the currently known selenoproteins are also found as Cys-containing non-selenoprotein orthologues in other organisms, wherefore any potentially unique properties of selenoproteins are yet a matter of debate. The pK(a) of free Sec (approximately 5.2) being significantly lower than that of free Cys (approximately 8.5) has often been proposed as one of the unique features of Sec. However, as discussed herein, this pK(a) difference between Sec and Cys can hardly provide an evolutionary pressure for maintenance of selenoproteins. Moreover, the typically 10- to 100-fold lower enzymatic efficiencies of Sec-to-Cys mutants of selenoprotein oxidoreductases, are also weak arguments for the overall existence of selenoproteins. Here, it is however emphasized that the inherent high nucleophilicity of Sec and thereby its higher chemical reaction rate with electrophiles, as compared to Cys, seems to be a truly unique property of Sec that cannot easily be mimicked by the basicity of Cys, even within the microenvironment of a protein. The chemical rate enhancement obtained with Sec can have other consequences than those arising from a low redox potential of some Cys-dependent proteins, typically aiming at maintaining redox equilibria. Another unique aspect of Sec compared to Cys seems to be its efficient potency to support one-electron transfer reactions, which, however, has not yet been unequivocally shown as a Sec-dependent step during the natural catalysis of any known selenoprotein enzyme.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
268
|
Abstract
The history of free radical biochemistry is briefly reviewed in respect to major trend shifts from the focus on radiation damage toward enzymology of radical production and removal and ultimately the role of radicals, hydroperoxides, and related fast reacting compounds in metabolic regulation. Selected aspects of the chemistry of radicals and hydroperoxides, the enzymology of peroxidases, and the biochemistry of adaptive responses and regulatory phenomena are compiled and discussed under the perspective of how the fragments of knowledge can be merged to biologically meaningful concepts of regulation. It is concluded that (i) not radicals but H(2)O(2), hydroperoxides, and peroxynitrite are the best candidates for oxidant signals, (ii) peroxidases of the GPx and Prx family or functionally equivalent proteins have the chance to specifically sense hydroperoxides and to transduce the oxidant signal, (iii) redox signaling proceeds via reactions known from thiol peroxidase and redoxin chemistry, (iv) proximal targets are proteins that are modified at SH groups, and (v) redoxins are documented signal transducers but also used as terminators. The importance of kinetics for forward signaling and for sensitivity modulation by competition is emphasized and ways to restore resting conditions are discussed. Research needs to validate emerging concepts are outlined.
Collapse
|
269
|
Mauri P, Toppo S, De Palma A, Benazzi L, Maiorino M, Ursini F. Identification by MS/MS of disulfides produced by a functional redox transition. Methods Enzymol 2010; 473:217-25. [PMID: 20513480 DOI: 10.1016/s0076-6879(10)73011-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Among posttranslational modifications of proteins entailed with signal transduction, the redox transition is today brought to the focus as a major biochemical event accounting for the signaling functions of reactive oxygen species. Thermodynamic and kinetic criteria highlight hydroperoxides and protein disulfides as signaling and transducer elements, respectively, and growing biochemical evidence supports this notion. The protein Cys residue involved in this function must react fast and specifically with the oxidant and then with a second accessible Cys yielding the disulfide. These kinetic and structural constraints are shared with peroxidases and peroxiredoxins, which are competitors for the signaling hydroperoxide. In this chapter, a procedure based on MS/MS analysis for inter- and intrachain disulfide assignment in proteins undergoing redox-switch is presented. While the sensitivity of the modern MS/MS instruments permits the sequencing of double peptides linked by a disulfide bond, the major pitfall of the proteomic procedure is the thiol-disulfide scrambling taking place at the alkaline pH needed for the proteolytic reaction of trypsin. Instead, the use of pepsin at acidic pH prevents the disulfide scrambling, but the specificity of the proteolytic reaction is low and thus the complexity of fragmentation increases. We succeeded to limit this problem by heuristically assuming a conserved pepsin cleavage pattern of the protein both in the oxidized and the reduced form. Asymmetric cleavage of the disulfide by collisional fragmentation further corroborated the identification. In conclusion, the use of pepsin, integrated by a minimal computation, appears suitable for positively assigning inter- and intrachain disulfides generated by a functional redox-switch.
Collapse
Affiliation(s)
- Pierluigi Mauri
- Institute for Biomedical Technologies, National Research Council, Viale Fratelli Cervi, Segrate-Milano, Italy
| | | | | | | | | | | |
Collapse
|