251
|
Lei YP, Liu CT, Sheen LY, Chen HW, Lii CK. Diallyl disulfide and diallyl trisulfide protect endothelial nitric oxide synthase against damage by oxidized low-density lipoprotein. Mol Nutr Food Res 2010; 54 Suppl 1:S42-52. [PMID: 20229525 DOI: 10.1002/mnfr.200900278] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Garlic is viewed as an effective health food against atherosclerosis. In this study, we examined whether diallyl disulfide (DADS) and diallyl trisulfide (DATS) protect endothelial nitric oxide synthase (eNOS) activation against oxidized LDL (ox-LDL) insult and through what mechanism. We found that DADS and DATS reversed the suppression of eNOS Ser1177 phosphorylation by ox-LDL, and wortmannin abolished the reversal by DADS and DATS. Similarly, the inhibition of cellular cGMP and nitric oxide production by ox-LDL was reversed by DADS and DATS (p<0.05). This increase in nitric oxide bioavailability by the allyl sulfides was attenuated by wortmannin. Immunoprecipitation assay revealed that DADS and DATS preserved the interaction of eNOS with caveolin-1 in the membrane. In addition, DADS and DATS suppressed the reduction of the cellular eNOS protein content by ox-LDL. When cycloheximide was added to block protein synthesis, DADS and DATS suppressed eNOS protein degradation similarly to that noted by MG132. Ox-LDL increased chymotrypsin-like proteasome activity, and this increase was inhibited by the allyl sulfides and MG132 (p<0.05). These results suggest that DADS and DATS protect eNOS activity against ox-LDL insult. This protection can be attributed partly to their mediation of phosphatidylinositol 3-kinase/protein kinase B signaling and prevention of eNOS degradation.
Collapse
Affiliation(s)
- Yen-Ping Lei
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
252
|
Bassuk JI, Wu H, Arias J, Kurlansky P, Adams JA. Whole body periodic acceleration (pGz) improves survival and allows for resuscitation in a model of severe hemorrhagic shock in pigs. J Surg Res 2010; 164:e281-9. [PMID: 20869084 DOI: 10.1016/j.jss.2010.07.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/07/2010] [Accepted: 07/18/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Whole body periodic acceleration (pGz), the repetitive, head-foot sinusoidal motion of the body, increases pulsatile shear stress on the vascular endothelium producing increased release of endothelial derived nitric oxide (eNO) into circulation. Based upon prior CPR investigations, we hypothesized that pGz instituted prior to and during hemorrhagic shock (HS) should improve survival. MATERIALS AND METHODS Sixteen anesthetized male pigs, 23 ± 5 kg, were randomized to receive 1 h pGz or no pGz (CONT) prior to and during severe controlled graded HS up to 2-1/2 h. HS was induced by removing blood at 10 mL/kg increments from the circulation at 30-min intervals up to a maximum blood loss of 50 mL/kg. Thirty minutes after maximum blood loss, shed blood and lactated Ringers solution was infused intravenously. RESULTS All animals survived up to 30 mL/kg blood loss. Survival and return to normal blood pressure to 120 min was achieved in 50% of animals receiving pGz compared with none in CONT. Cardiac output, blood pressure, and oxygen delivery decreased equally in both groups but oxygen consumption was significantly lower with pGz than CONT during all hemorrhage time points. Regional blood flow (RBF) was preserved in brain, heart, kidneys, ileum, and stomach in both groups up to 40 mL/kg of blood loss. After 40 mL/kg blood loss, RBF was much better preserved in pGz than CONT. CONCLUSIONS pGz applied 1 h prior to and during severe graded hemorrhagic shock delays onset of irreversible shock, enabling potential restoration of blood loss and survival.
Collapse
Affiliation(s)
- Jorge I Bassuk
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida 33140, USA
| | | | | | | | | |
Collapse
|
253
|
Cabral PD, Hong NJ, Garvin JL. Shear stress increases nitric oxide production in thick ascending limbs. Am J Physiol Renal Physiol 2010; 299:F1185-92. [PMID: 20719980 DOI: 10.1152/ajprenal.00112.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We showed that luminal flow stimulates nitric oxide (NO) production in thick ascending limbs. Ion delivery, stretch, pressure, and shear stress all increase when flow is enhanced. We hypothesized that shear stress stimulates NO in thick ascending limbs, whereas stretch, pressure, and ion delivery do not. We measured NO in isolated, perfused rat thick ascending limbs using the NO-sensitive dye DAF FM-DA. NO production rose from 21 ± 7 to 58 ± 12 AU/min (P < 0.02; n = 7) when we increased luminal flow from 0 to 20 nl/min, but dropped to 16 ± 8 AU/min (P < 0.02; n = 7) 10 min after flow was stopped. Flow did not increase NO in tubules from mice lacking NO synthase 3 (NOS 3). Flow stimulated NO production by the same extent in tubules perfused with ion-free solution and physiological saline (20 ± 7 vs. 24 ± 6 AU/min; n = 7). Increasing stretch while reducing shear stress and pressure lowered NO generation from 42 ± 9 to 17 ± 6 AU/min (P < 0.03; n = 6). In the absence of shear stress, increasing pressure and stretch had no effect on NO production (2 ± 8 vs. 8 ± 8 AU/min; n = 6). Similar results were obtained in the presence of tempol (100 μmol/l), a O(2)(-) scavenger. Primary cultures of thick ascending limb cells subjected to shear stresses of 0.02 and 0.55 dyne/cm(2) produced NO at rates of 55 ± 10 and 315 ± 93 AU/s, respectively (P < 0.002; n = 7). Pretreatment with the NOS inhibitor l-NAME (5 mmol/l) blocked the shear stress-induced increase in NO production. We concluded that shear stress rather than pressure, stretch, or ion delivery mediates flow-induced stimulation of NO by NOS 3 in thick ascending limbs.
Collapse
Affiliation(s)
- Pablo D Cabral
- Hypertension and Vascular Research Div., Dept. of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, USA
| | | | | |
Collapse
|
254
|
Leo CH, Joshi A, Woodman OL. Short-term type 1 diabetes alters the mechanism of endothelium-dependent relaxation in the rat carotid artery. Am J Physiol Heart Circ Physiol 2010; 299:H502-11. [DOI: 10.1152/ajpheart.01197.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to examine the effect of an early stage of streptozotocin-induced diabetes on the mechanism(s) of endothelium-dependent relaxation. Diabetes was induced by a single injection of streptozotocin (48 mg/kg iv), and the ACh-induced relaxation of rat carotid arteries was examined 6 wk later. A diabetes-induced increase in superoxide levels, determined by L-012-induced chemiluminescence, from carotid arteries was associated with endothelial nitric oxide (NO) synthase (eNOS) uncoupling and increased catalytic subunit of NADPH oxidase expression. The sensitivity and maximum response to ACh were similar in normal and diabetic rats despite a decrease in NO release detected by 4-amino-5-methylamino-2′,7′-difluorofluorescein. In normal rats, N-nitro-l-arginine (100 μM) plus 1 H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (10 μM), to inhibit NOS and soluble guanylate cyclase (sGC), respectively, abolished ACh-induced relaxation, whereas in diabetic rats, the maximum relaxation to ACh was attenuated (maximum relaxation: 25 ± 5%), but not abolished, by that treatment. The remaining ACh-induced relaxation was abolished by NO scavengers, cupric chloride (to degrade nitrosothiols), or blockers of endothelial K+ channels. Western blot analysis of the carotid arteries indicated that diabetes significantly increased the expression of eNOS but decreased the proportion of eNOS expressed as the dimer. These findings demonstrate that in early diabetes, ACh-induced relaxation is maintained but is resistant to NOS inhibition. In early diabetes, nitrosothiol-mediated opening of K+ channels may act in conjunction with NO stimulation of sGC to maintain endothelium-dependent relaxation despite the increase in vascular superoxide levels.
Collapse
Affiliation(s)
- C. H. Leo
- School of Medical Sciences, Health Innovation Research Institute, RMIT University, Bundoora, Victoria, Australia; and
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | - A. Joshi
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | - O. L. Woodman
- School of Medical Sciences, Health Innovation Research Institute, RMIT University, Bundoora, Victoria, Australia; and
| |
Collapse
|
255
|
Abstract
Regular physical activity (endurance training, ET) has a strong positive link with cardiovascular health. The aim of this review is to draw together the current knowledge on gene expression in different cell types comprising the vessels of the circulatory system, with special emphasis on the endothelium, and how these gene products interact to influence vascular health. The effect beneficial effects of ET on the endothelium are believed to result from increased vascular shear stress during ET bouts. A number of mechanosensory mechanisms have been elucidated that may contribute to the effects of ET on vascular function, but there are questions regarding interactions among molecular pathways. For instance, increases in flow brought on by ET can reduce circulating levels of viscosity and haemostatic and inflammatory variables that may interact with increased shear stress, releasing vasoactive substances such as nitric oxide and prostacyclin, decreasing permeability to plasma lipoproteins as well as the adhesion of leucocytes. At this time the optimal rate-of-flow and rate-of-change in flow for determining whether anti-atherogenic or pro-atherogenic processes proceed remain unknown. In addition, the impact of haemodynamic variables differs with vessel size and tissue type in which arteries are located. While the hurdles to understanding the mechanism responsible for ET-induced alterations in vascular cell gene expression are significant, they in no way undermine the established benefits of regular physical activity to the cardiovascular system and to general overall health. This review summarizes current understanding of control of vascular cell gene expression by exercise and how these processes lead to improved cardiovascular health.
Collapse
Affiliation(s)
- J J Whyte
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | |
Collapse
|
256
|
Abstract
Prospective identification of which individuals with diabetes mellitus (DM) are at greatest risk for developing cardiovascular disease (CVD) complications would have considerable public health importance by allowing the allocation of limited resources to be focused on those individuals who would most benefit from aggressive intervention. Over the past 20 years genetic disease association studies have demonstrated that polymorphisms at specific genetic loci may identify those individuals at greatest risk for developing CVD in the setting of DM. This article reviews the evidence accumulated to date on four polymorphic loci with the aim of explaining how these polymorphisms modify the risk for CVD in DM by modifying the functional activity of a specific gene. Use of the knowledge of these genetic differences among individuals in targeting drug therapy (pharmacogenomics) is also discussed.
Collapse
Affiliation(s)
- Dan Farbstein
- Technion-Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
257
|
Bauer EM, Qin Y, Miller TW, Bandle RW, Csanyi G, Pagano PJ, Bauer PM, Schnermann J, Roberts DD, Isenberg JS. Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovasc Res 2010; 88:471-81. [PMID: 20610415 DOI: 10.1093/cvr/cvq218] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Thrombospondin-1 (TSP1), via its necessary receptor CD47, inhibits nitric oxide (NO)-stimulated soluble guanylate cyclase activation in vascular smooth muscle cells, and TSP1-null mice have increased shear-dependent blood flow compared with wild-type mice. Yet, the endothelial basement membrane should in theory function as a barrier to diffusion of soluble TSP1 into the arterial smooth muscle cell layer. These findings suggested that endothelial-dependent differences in blood flow in TSP1-null mice may be the result of direct modulation of endothelial NO synthase (eNOS) activation by circulating TSP1. Here we tested the hypothesis that TSP1 inhibits eNOS activation and endothelial-dependent arterial relaxation. METHODS AND RESULTS Acetylcholine (ACh)-stimulated activation of eNOS and agonist-driven calcium transients in endothelial cells were inhibited by TSP1. TSP1 also inhibited eNOS phosphorylation at serine(1177). TSP1 treatment of the endothelium of wild-type and TSP1-null but not CD47-null arteries inhibited ACh-stimulated relaxation. TSP1-null vessels demonstrated greater endothelial-dependent vasorelaxation compared with the wild type. Conversely, TSP1-null arteries demonstrated less vasoconstriction to phenylephrine compared with the wild type, which was corrected upon inhibition of eNOS. In TSP1-null mice, intravenous TSP1 blocked ACh-stimulated decreases in blood pressure, and both intravenous TSP1 and a CD47 agonist antibody acutely elevated blood pressure in mice. CONCLUSION TSP1, via CD47, inhibits eNOS activation and endothelial-dependent arterial relaxation and limits ACh-driven decreases in blood pressure. Conversely, intravenous TSP1 and a CD47 antibody increase blood pressure. These findings suggest that circulating TSP1, by limiting endogenous NO production, functions as a pressor agent supporting blood pressure.
Collapse
Affiliation(s)
- Eileen M Bauer
- Vascular Medicine Institute of University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Holton ML, Wang W, Emerson M, Neyses L, Armesilla AL. Plasma membrane calcium ATPase proteins as novel regulators of signal transduction pathways. World J Biol Chem 2010; 1:201-8. [PMID: 21537369 PMCID: PMC3083965 DOI: 10.4331/wjbc.v1.i6.201] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/22/2010] [Accepted: 06/24/2010] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence suggests that plasma membrane calcium ATPases (PMCAs) play a key role as regulators of calcium-triggered signal transduction pathways via interaction with partner proteins. PMCAs regulate these pathways by targeting specific proteins to cellular sub-domains where the levels of intracellular free calcium are kept low by the calcium ejection properties of PMCAs. According to this model, PMCAs have been shown to interact functionally with the calcium-sensitive proteins neuronal nitric oxide synthase, calmodulin-dependent serine protein kinase, calcineurin and endothelial nitric oxidase synthase. Transgenic animals with altered expression of PMCAs are being used to evaluate the physiological significance of these interactions. To date, PMCA interactions with calcium-dependent partner proteins have been demonstrated to play a crucial role in the pathophysiology of the cardiovascular system via regulation of the nitric oxide and calcineurin/nuclear factor of activated T cells pathways. This new evidence suggests that PMCAs play a more sophisticated role than the mere ejection of calcium from the cells, by acting as modulators of signaling transduction pathways.
Collapse
Affiliation(s)
- Mary Louisa Holton
- Mary Louisa Holton, Angel L Armesilla, Molecular Pharmacology Group, Department of Pharmacy, Research Institute in Healthcare Sciences, Room MA 228, School of Applied sciences, University of Wolverhampton, WV1 1SB, Wolverhampton, United Kingdom
| | | | | | | | | |
Collapse
|
259
|
Guibert C. Plasma membrane Ca2+-ATPase equals no NO. Cardiovasc Res 2010; 87:401-2. [PMID: 20542879 DOI: 10.1093/cvr/cvq187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
260
|
Hill BG, Dranka BP, Bailey SM, Lancaster JR, Darley-Usmar VM. What part of NO don't you understand? Some answers to the cardinal questions in nitric oxide biology. J Biol Chem 2010; 285:19699-704. [PMID: 20410298 PMCID: PMC2888379 DOI: 10.1074/jbc.r110.101618] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nitric oxide (NO) regulates biological processes through signaling mechanisms that exploit its unique biochemical properties as a free radical. For the last several decades, the key aspects of the chemical properties of NO relevant to biological systems have been defined, but it has been a challenge to assign these to specific cellular processes. Nevertheless, it is now clear that the high affinity of NO for transition metal centers, particularly iron, and the rapid reaction of NO with oxygen-derived free radicals can explain many of its biological and pathological properties. Emerging studies also highlight a growing importance of the secondary metabolites of NO-dependent reactions in the post-translational modification of key metabolic and signaling proteins. In this minireview, we emphasize the current understanding of the biochemistry of NO and place it in a biological context.
Collapse
Affiliation(s)
- Bradford G Hill
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2180, USA
| | | | | | | | | |
Collapse
|
261
|
Kuhr F, Lowry J, Zhang Y, Brovkovych V, Skidgel RA. Differential regulation of inducible and endothelial nitric oxide synthase by kinin B1 and B2 receptors. Neuropeptides 2010; 44:145-54. [PMID: 20045558 PMCID: PMC2830320 DOI: 10.1016/j.npep.2009.12.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 12/01/2009] [Accepted: 12/04/2009] [Indexed: 02/07/2023]
Abstract
Kinins are vasoactive peptides that play important roles in cardiovascular homeostasis, pain and inflammation. After release from their precursor kininogens, kinins or their C-terminal des-Arg metabolites activate two distinct G protein-coupled receptors (GPCR), called B2 (B2R) or B1 (B1R). The B2R is expressed constitutively with a wide tissue distribution. In contrast, the B1R is not expressed under normal conditions but is upregulated by tissue insult or inflammatory mediators. The B2R is considered to mediate many of the acute effects of kinins while the B1R is more responsible for chronic responses in inflammation. Both receptors can couple to Galphai and Galphaq families of G proteins to release mediators such as nitric oxide (NO), arachidonic acid, prostaglandins, leukotrienes and endothelium-derived hyperpolarizing factor and can induce the release of other inflammatory agents. The focus of this review is on the different transduction events that take place upon B2R and B1R activation in human endothelial cells that leads to generation of NO via activation of different NOS isoforms. Importantly, B2R-mediated eNOS activation leads to a transient ( approximately 5min) output of NO in control endothelial cells whereas in cytokine-treated endothelial cells, B1R activation leads to very high and prolonged ( approximately 90min) NO production that is mediated by a novel signal transduction pathway leading to post-translational activation of iNOS.
Collapse
Affiliation(s)
- F Kuhr
- Department of Pharmacology, University of Illinois at Chicago, College of Medicine, 835 South Wolcott, (M/C 868), Chicago, IL 60612, United States
| | | | | | | | | |
Collapse
|
262
|
Wang L, Wu B, Sun Y, Xu T, Zhang X, Zhou M, Jiang W. Translocation of protein kinase C isoforms is involved in propofol-induced endothelial nitric oxide synthase activation. Br J Anaesth 2010; 104:606-12. [PMID: 20348139 DOI: 10.1093/bja/aeq064] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Previous studies have indicated that protein kinase C (PKC) may enhance endothelial nitric oxide synthase (eNOS) activation, although the detailed mechanism(s) remains unclear. In this study, we investigated the roles of PKC isoforms in regulating propofol-induced eNOS activation in human umbilical vein endothelial cells (HUVECs). METHODS We applied western blot (WB) analysis to investigate the effects of propofol on Ser(1177) phosphorylation-dependent eNOS activation in HUVECs. Nitrite (NO(2)(-)) accumulation was measured using the Griess assay. The phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway was examined by WB assay. Propofol-induced translocation of individual PKC isoforms in subcellular fractions in HUVECs was analysed using WB assay. RESULTS In HUVECs, protocol treatment (1-100 microM) for 10 min induced a concentration-dependent increase in phosphorylation of eNOS at Ser(1177). The NO production was also increased accordingly. PKC inhibitors, bisindolylmaleimide I (0.1-1 microM), and staurosporine (20 and 100 nM), effectively blocked propofol-induced eNOS activation and NO production. Further analyses in fractionated endothelial lysate showed that short-term propofol treatment (50 microM) led to translocation of PKC-alpha, PKC-delta, PKC-zeta, PKC-eta, and PKC-epsilon from cytosolic to membrane fractions, which could also be inhibited by both PKC inhibitors. These data revealed that the differential redistribution of these isozymes is indispensable for propofol-induced eNOS activation. In addition, Akt was not phosphorylated in response to propofol at Ser(473) or Thr(308). CONCLUSIONS Propofol induces the Ser(1177) phosphorylation-dependent eNOS activation through the drug-stimulated translocation of PKC isoforms to distinct intracellular sites in HUVECs, which is independent of PI3K/Akt-independent pathway.
Collapse
Affiliation(s)
- L Wang
- Department of Anesthesiology, School of Medicine, Shanghai Sixth Municipal Hospital, Shanghai Jiaotong University, Shanghai 200233, China.
| | | | | | | | | | | | | |
Collapse
|
263
|
Takahashi S, Shinya T, Sugiyama A. Angiostatin inhibition of vascular endothelial growth factor-stimulated nitric oxide production in endothelial cells. J Pharmacol Sci 2010; 112:432-7. [PMID: 20308796 DOI: 10.1254/jphs.10028fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Angiostatin (AS), a proteolytic fragment of plasminogen, is a potent antiangiogenic factor. It was reported that AS attenuates the vasodilatory response to vascular endothelial growth factor (VEGF) in isolated interventricular arterioles. Here, we investigated the effect of AS on nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs). AS inhibited VEGF-stimulated NO production in a dose-dependent manner, whereas AS alone did not affect basal NO production. Disruption of kringle structures by reduction of disulfide bonds resulted in the loss of the inhibitory effect of AS on VEGF-stimulated NO production. To elucidate how AS might impair VEGF activation of endothelial NO synthase (eNOS), we further examined whether AS would affect Ca(2+)-dependent and -independent pathways of eNOS activation. AS had no effect on the transient increase in cytosolic Ca(2+) levels elicited by VEGF. In contrast, AS prevented VEGF-potentiated eNOS phosphorylation at Ser1177. These results clearly indicate that AS inhibits VEGF-stimulated NO production in HUVECs without affecting basal NO production. The kringle structures of AS are required for this effect, and impairment of Ser1177 phosphorylation of eNOS might be involved in the inhibition of VEGF-stimulated NO production by AS.
Collapse
Affiliation(s)
- Satoru Takahashi
- First Department of Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Japan.
| | | | | |
Collapse
|
264
|
Musicki B, Liu T, Strong TD, Lagoda GA, Bivalacqua TJ, Burnett AL. Post-translational regulation of endothelial nitric oxide synthase (eNOS) by estrogens in the rat vagina. J Sex Med 2010; 7:1768-77. [PMID: 20233295 DOI: 10.1111/j.1743-6109.2010.01750.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Estrogens control vaginal blood flow during female sexual arousal mostly through nitric oxide (NO). Although vascular effects of estrogens are attributed to an increase in endothelial NO production, the mechanisms of endothelial NO synthase (eNOS) regulation by estrogens in the vagina are largely unknown. AIMS Our hypothesis was that estrogens regulate eNOS post-translationally in the vagina, providing a mechanism to affect NO bioavailability without changes in eNOS protein expression. METHODS We measured eNOS phosphorylation and eNOS interaction with caveolin-1 and heat shock protein 90 (HSP90) in the distal and proximal vagina of female rats at diestrus, 7 days after ovariectomy and 2 days after replacement of ovariectomized rats with estradiol-17beta (15 microg). MAIN OUTCOME MEASURES Molecular mechanisms of eNOS regulation by estrogen in the rat vagina. RESULTS We localized phospho-eNOS (Ser-1177) immunohistochemically to the endothelium lining blood vessels and vaginal sinusoids. Estrogen withdrawal decreased phosphorylation of eNOS on its positive regulatory site (Ser-1177) and increased eNOS binding to its negative regulator caveolin-1 (without affecting eNOS/HSP90 interaction), and they were both normalized by estradiol replacement. Protein expressions of phosphorylated Akt (protein kinase B) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) were not affected by estrogen status, suggesting that the effect of estrogens on eNOS (Ser-1177) phosphorylation was not mediated by activated AKT or ERK1/2. eNOS phosphorylation on its negative regulatory site (Ser-114) was increased in the vagina by estrogen withdrawal and normalized by estradiol replacement, implying that the maintenance of low phosphorylation of eNOS on this site by estradiol may limit eNOS interaction with caveolin-1 and preserve the enzyme's activity. Total eNOS, inducible NOS, caveolin-1, and HSP90 protein expressions were not affected by ovariectomy or estradiol replacement in the distal or proximal vagina. CONCLUSIONS These results define novel estrogen signaling mechanisms in the vagina which involve eNOS phosphorylation and eNOS-caveolin-1 interaction.
Collapse
Affiliation(s)
- Biljana Musicki
- Department of Urology, The Johns Hopkins University, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
265
|
Holton M, Mohamed TMA, Oceandy D, Wang W, Lamas S, Emerson M, Neyses L, Armesilla AL. Endothelial nitric oxide synthase activity is inhibited by the plasma membrane calcium ATPase in human endothelial cells. Cardiovasc Res 2010; 87:440-8. [PMID: 20211863 DOI: 10.1093/cvr/cvq077] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Nitric oxide (NO) plays a pivotal role in the regulation of cardiovascular physiology. Endothelial NO is mainly produced by the endothelial nitric oxide synthase (eNOS) enzyme. eNOS enzymatic activity is regulated at several levels, including Ca(2+)/calmodulin binding and the interaction of eNOS with associated proteins. There is emerging evidence indicating a role for the plasma membrane calcium ATPase (PMCA) as a negative regulator of Ca(2+)/calmodulin-dependent signal transduction pathways via its interaction with partner proteins. The aim of our study was to investigate the possibility that the activity of eNOS is regulated through its association with endothelial PMCA. METHODS AND RESULTS We show here a novel interaction between endogenous eNOS and PMCA in human primary endothelial cells. The interaction domains were located to the region 735-934 of eNOS and the catalytic domain of PMCA. Ectopic expression of PMCA in endothelial cells resulted in an increase in phosphorylation of the residue Thr-495 of endogenous eNOS. However, disruption of the PMCA-eNOS interaction by expression of the PMCA interaction domain significantly reversed the PMCA-mediated effect on eNOS phosphorylation. These results suggest that eNOS activity is negatively regulated via interaction with PMCA. Moreover, NO production by endothelial cells was significantly reduced by ectopic expression of PMCA. CONCLUSION Our results show strong evidence for a novel functional interaction between endogenous PMCA and eNOS in endothelial cells, suggesting a role for endothelial PMCA as a negative modulator of eNOS activity, and, therefore, NO-dependent signal transduction pathways.
Collapse
Affiliation(s)
- MaryLouisa Holton
- Molecular Pharmacology Group, Department of Pharmacy, Research Institute in Healthcare Sciences, School of Applied Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1SB, UK
| | | | | | | | | | | | | | | |
Collapse
|
266
|
Hosoya M, Ohashi J, Sawada A, Takaki A, Shimokawa H. Combination therapy with olmesartan and azelnidipine improves EDHF-mediated responses in diabetic apolipoprotein E-deficient mice. Circ J 2010; 74:798-806. [PMID: 20154404 DOI: 10.1253/circj.cj-09-0862] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The endothelium modulates vascular tone by synthesizing and releasing several vasodilating factors, including vasodilator prostaglandins, nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF). In the present study, we examined whether an angiotensin-receptor blocker, a calcium-channel blocker or their combination improved EDHF-mediated responses in diabetic apolipoprotein E-deficient (ApoE(-/-)) mice. METHODS AND RESULTS We used male C57BL/6N (control) and streptozocin-induced diabetic ApoE(-/-) mice. The diabetic ApoE(-/-) mice were administered oral vehicle (untreated), olmesartan (OLM, 30 mgxkg(-1)xday(-1)), azelnidipine (AZL, 10 mgxkg(-1)xday(-1)), their combination (OLM + AZL), or hydralazine (HYD 5 mgxkg(-1)xday(-1)) for 5 weeks. In the untreated group, systolic blood pressure was significantly higher and both EDHF-mediated relaxation and endothelium-dependent hyperpolarization were markedly reduced as compared with the control group. Although EDHF-mediated relaxation was not significantly improved in the HYD, OLM and AZL groups, it was significantly improved in the OLM + AZL group, as was also the case with phosphorylation of Akt and endothelial NO synthase (eNOS). In contrast, the endothelium-independent relaxation response to sodium nitroprusside or NS-1619 (a direct opener of K(Ca) channels) was unaltered in any group. CONCLUSIONS OLM + AZL may improve the severely impaired EDHF-mediated responses in diabetic ApoE(-/-) mice, in which activation of the endothelial Akt - eNOS pathway may be involved.
Collapse
Affiliation(s)
- Maki Hosoya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | |
Collapse
|
267
|
Hayashi T, Iguchi A. Possibility of the regression of atherosclerosis through the prevention of endothelial senescence by the regulation of nitric oxide and free radical scavengers. Geriatr Gerontol Int 2010; 10:115-30. [PMID: 20100288 DOI: 10.1111/j.1447-0594.2009.00581.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the elderly, atherosclerotic diseases such as stroke and myocardial infarction occupy a major part of their causes of death and care. The elderly always have atherosclerosis in their aorta and other arteries and are exposed to risk of attacks. It is the elderly who should receive its safe, harmless and advanced treatment. Advanced stage of atherosclerosis in the elderly is progressed by complicated risk factors such as dyslipidemia and diabetes mellitus and specific risk factors for the elderly, aging (and menopause). Treatment of atherosclerotic disease may need special ones targeted for the elderly. Recent studies reported that frequencies of dyslipidemia were not decreased in the older oldest. In the elderly, impaired glucose tolerance occurs and it progresses atherosclerosis. Endothelial dysfunction like impairment of nitric oxide (NO) bioavailability also progresses atherosclerosis. Although we tried to regress the high cholesterol diet-induced atherosclerosis in rabbit aorta with a normal diet with or without statin, regression could not be achieved. NO targeting gene therapy (adenovirus endothelial nitric oxide synthase [eNOS] gene vector) regressed 20% of atherosclerotic lesions through reduction of lipid contents, however, a more integrated strategy is important for complete regression. We paid attention to NO bioavailability and developed two ways of increasing it in atherosclerosis: citrulline therapy and arginase II inhibition by estrogen. Further, we found a close relation between atherosclerosis and endothelial senescence and that NO can prevent it, especially in a diabetic model. Taken together, regression of atherosclerosis can be achieved by not only regulation of various risk factors but regulation of the cross-talk of NO and free radicals.
Collapse
Affiliation(s)
- Toshio Hayashi
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | |
Collapse
|
268
|
Michel T, Vanhoutte PM. Cellular signaling and NO production. Pflugers Arch 2010; 459:807-16. [PMID: 20082095 DOI: 10.1007/s00424-009-0765-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 11/14/2009] [Accepted: 11/19/2009] [Indexed: 12/22/2022]
Abstract
The endothelium can evoke relaxations (dilatations) of the underlying vascular smooth muscle, by releasing vasodilator substances. The best characterized endothelium-derived relaxing factor is nitric oxide (NO), which is synthesized by the endothelial isoform of nitric oxide synthase (eNOS). Endothelium-dependent relaxations involve both pertussis-toxin-sensitive G(i) (e.g., responses to serotonin, sphingosine 1-phosphate, alpha(2)-adrenergic agonists, and thrombin) and pertussis-toxin-insensitive G(q) (e.g., adenosine diphosphate and bradykinin) coupling proteins. eNOS undergoes a complex pattern of intracellular regulation, including post-translational modifications involving enzyme acylation and phosphorylation. eNOS is reversibly targeted to signal-transducing plasmalemmal caveolae where the enzyme interacts with a number of regulatory proteins, many of which are modified in cardiovascular disease states. The release of nitric oxide by the endothelial cell can be up- (e.g., by estrogens, exercise, and dietary factors) and down-regulated (e.g. oxidative stress, smoking, and oxidized low-density lipoproteins). It is reduced in the course of vascular disease (e.g., diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis-toxin-sensitive pathway for NO release which favors vasospasm, thrombosis, penetration of macrophages, cellular growth, and the inflammatory reaction leading to atherosclerosis. The unraveling of the complex interaction of the pathways regulating the presence and the activity of eNOS will enhance the understanding of the perturbations in endothelium-dependent signaling that are seen in cardiovascular disease states, and may lead to the identification of novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas Michel
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
269
|
Bełtowski J, Wójcicka G, Jamroz-Wiśniewska A, Wojtak A. Chronic hyperleptinemia induces resistance to acute natriuretic and NO-mimetic effects of leptin. Peptides 2010; 31:155-63. [PMID: 19854228 DOI: 10.1016/j.peptides.2009.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/14/2009] [Accepted: 10/14/2009] [Indexed: 12/21/2022]
Abstract
Apart from controlling energy balance, leptin, secreted by adipose tissue, is also involved in the regulation of cardiovascular function. Previous studies have demonstrated that acutely administered leptin stimulates natriuresis and vascular nitric oxide (NO) production and that these effects are impaired in obese animals. However, the mechanism of resistance to leptin is not clear. Because obesity is associated with chronically elevated leptin, we examined if long-term hyperleptinemia impairs acute effects of leptin on sodium excretion and NO production in the absence of obesity. Hyperleptinemia was induced in lean rats by administration of exogenous leptin at a dose of 0.5mg/kg/day for 7 days, and then acute effect of leptin (1mg/kg i.v.) was studied under general anesthesia. Leptin increased fractional sodium excretion and decreased Na(+),K(+)-ATPase activity in the renal medulla. In addition, leptin increased the level of NO metabolites and cyclic GMP in plasma and aortic wall. These acute effects of leptin were impaired in hyperleptinemic animals. In both control and hyperleptinemic groups the effect of leptin on Na(+) excretion and renal Na(+),K(+)-ATPase was abolished by phosphoinositide 3-kinase (PI3K) inhibitor, wortmannin, but not by protein kinase B/Akt inhibitor, triciribine,. In contrast, acute effect of leptin on NO metabolites and cGMP was abolished by triciribine but not by wortmannin. Leptin stimulated Akt phosphorylation at Ser(473) in aortic tissue but not in the kidney, and this effect was comparable in control and hyperleptinemic groups. These results suggest that hyperleptinemia may mediate "renal" and "vascular" leptin resistance observed in obesity.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University, Lublin, Poland.
| | | | | | | |
Collapse
|
270
|
Uchiyama T, Toda KI, Takahashi S. Resveratrol Inhibits Angiogenic Response of Cultured Endothelial F-2 Cells to Vascular Endothelial Growth Factor, but Not to Basic Fibroblast Growth Factor. Biol Pharm Bull 2010; 33:1095-100. [DOI: 10.1248/bpb.33.1095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomomi Uchiyama
- First Department of Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare
| | - Ken-ichi Toda
- Department of Dermatology, Kitano Hospital, Tazuke Kofukai Medical Research Institute
| | - Satoru Takahashi
- First Department of Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare
| |
Collapse
|
271
|
Bender TS, Abdel-Rahman AA. Differential central NOS-NO signaling underlies clonidine exacerbation of ethanol-evoked behavioral impairment. Alcohol Clin Exp Res 2009; 34:555-66. [PMID: 20028349 DOI: 10.1111/j.1530-0277.2009.01121.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The molecular mechanisms that underlie clonidine exacerbation of behavioral impairment caused by ethanol are not fully known. We tested the hypothesis that nitric oxide synthase (NOS)-derived nitric oxide (NO) signaling in the locus coeruleus (LC) is implicated in this phenomenon. METHODS Male Sprague-Dawley rats with intracisternal (i.c.) and jugular vein cannulae implanted 6 days earlier were tested for drug-induced behavioral impairment. The latter was assessed as the duration of loss of righting reflex (LORR) and rotorod performance every 15 minutes until the rat recovered to the baseline walk criterion (180 seconds). In a separate cohort, we measured p-neuronal NOS (nNOS), p-endothelial NOS (eNOS), and p-ERK1/2 in the LC following drug treatment, vehicle, or NOS inhibitor. RESULTS Rats that received clonidine [60 Ig/kg, i.v. (intravenous)] followed by ethanol (1 or 1.5 g/kg, i.v.) exhibited synergistic impairment of rotorod performance. Intracisternal pretreatment with nonselective NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME, 0.5 mg) or selective nNOS inhibitor N-propyl-L-arginine (1 microg) exacerbated the impairment of rotorod performance caused by clonidine-ethanol combination. Exacerbation of behavioral impairment was caused by L-NAME enhancement of the effect of ethanol, not clonidine. L-NAME did not influence blood ethanol levels; thus, the interaction was pharmacodynamic. LORR caused by clonidine (60 microg/kg, i.v.)-ethanol (1 g/kg, i.v.) combination was abolished by selective inhibition of central eNOS (L-NIO, 10 microg i.c.) but not by nNOS inhibition under the same conditions. Western blot analyses complemented the pharmacological evidence by demonstrating that clonidine-ethanol combination inhibits phosphorylation (activation) of nNOS (p-nNOS) and increases the level of phosphorylated eNOS (p-eNOS) in the LC; the change in p-nNOS was paralleled by similar change in LC p-ERK1/2. NOS inhibitors alone did not affect the level of nitrate/nitrite, p-nNOS, p-eNOS, or p-ERK1/2 in the LC. CONCLUSIONS Alterations in NOS-derived NO in the LC underlie clonidine-ethanol induced behavioral impairment. A decrease in nNOS activity, due at least partly to a reduction in nNOS phosphorylation, mediates rotorod impairment, while enhanced eNOS activity contributes to LORR, elicited by clonidine-ethanol combination.
Collapse
Affiliation(s)
- Tara S Bender
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | | |
Collapse
|
272
|
Church JE, Qian J, Kumar S, Black SM, Venema RC, Papapetropoulos A, Fulton DJR. Inhibition of endothelial nitric oxide synthase by the lipid phosphatase PTEN. Vascul Pharmacol 2009; 52:191-8. [PMID: 19962452 DOI: 10.1016/j.vph.2009.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 10/30/2009] [Accepted: 11/29/2009] [Indexed: 12/17/2022]
Abstract
PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a lipid phosphatase that functions as a negative regulator of the phosphoinositide-3-kinase (PI3K) pathway. The present study sought to examine in depth the interaction between PTEN and eNOS activity. Co-expression of eNOS and PTEN in COS-7 cells significantly decreased NO production compared to eNOS alone, while co-expression of eNOS and the dominant negative mutant PTEN(C124A) significantly increased NO production. Upon examination of the putative eNOS phosphorylation sites, phosphorylation of S116, T497, S617, S635 and S1179 was decreased by PTEN co-expression, while the dominant negative PTEN(C124A) produced an increase in phosphorylation of all sites except S116 and S635. A myristoylation-deficient eNOS construct with little dependence on phosphorylation state (G2AeNOS) was not significantly affected by co-expression with either PTEN or PTEN(C124A). Likewise, an eNOS construct with a triple phospho-null mutation (S617A, S635A and S1179A) was also unaffected by co-expression with either PTEN or PTEN(C124A). Purified PTEN or PTEN(C124A) failed to interact with purified eNOS in vitro, arguing against a direct interaction between PTEN and eNOS. When the PTEN constructs were expressed in human aortic endothelial cells (HAECs), PTEN significantly decreased NO production and PTEN(C124A) increased it, and both S617 and S1179 were altered by co-expression with the PTEN constructs. Increased expression of PTEN in endothelial cells did not influence superoxide production. We conclude that PTEN is a regulator of eNOS function both when expressed in COS-7 cells and in human endothelial cells, and does so via its effects on the PI3K/Akt pathway.
Collapse
|
273
|
Monti M, Donnini S, Giachetti A, Mochly-Rosen D, Ziche M. deltaPKC inhibition or varepsilonPKC activation repairs endothelial vascular dysfunction by regulating eNOS post-translational modification. J Mol Cell Cardiol 2009; 48:746-56. [PMID: 19913548 DOI: 10.1016/j.yjmcc.2009.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/30/2009] [Accepted: 11/01/2009] [Indexed: 11/20/2022]
Abstract
The balance between endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) and reactive oxygen species (ROS) production determines endothelial-mediated vascular homeostasis. Activation of protein kinase C (PKC) has been linked to imbalance of the eNOS/ROS system, which leads to endothelial dysfunction. We previously found that selective inhibition of delta PKC (deltaPKC) or selective activation of epsilon PKC (varepsilonPKC) reduces oxidative damage in the heart following myocardial infarction. In this study we determined the effect of these PKC isozymes in the survival of coronary endothelial cells (CVEC). We demonstrate here that serum deprivation of CVEC increased eNOS-mediated ROS levels, activated caspase-3, reduced Akt phosphorylation and cell number. Treatment with either the deltaPKC inhibitor, deltaV1-1, or the varepsilonPKC activator, psivarepsilonRACK, inhibited these effects, restoring cell survival through inhibition of eNOS activity. The decrease in eNOS activity coincided with specific de-phosphorylation of eNOS at Ser1179, and eNOS phosphorylation at Thr497 and Ser116. Furthermore, deltaV1-1 or psivarepsilonRACK induced physical association of eNOS with caveolin-1, an additional marker of eNOS inhibition, and restored Akt activation by inhibiting its nitration. Together our data demonstrate that (1) in endothelial dysfunction, ROS and reactive nitrogen species (RNS) formation result from uncontrolled eNOS activity mediated by activation of deltaPKC or inhibition of varepsilonPKC; (2) inhibition of deltaPKC or activation of varepsilonPKC corrects the perturbed phosphorylation state of eNOS, thus increasing cell survival. Since endothelial health ensures better tissue perfusion and oxygenation, treatment with a deltaPKC inhibitor and/or an varepsilonPKC activator in diseases of endothelial dysfunction should be considered.
Collapse
Affiliation(s)
- Martina Monti
- Department of Molecular Biology, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy
| | | | | | | | | |
Collapse
|
274
|
Nitric oxide and potassium channels mediate GM1 ganglioside-induced vasorelaxation. Naunyn Schmiedebergs Arch Pharmacol 2009; 380:487-95. [PMID: 19894035 DOI: 10.1007/s00210-009-0469-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 10/15/2009] [Indexed: 12/13/2022]
Abstract
Monosialotetrahexosylganglioside (GM1) is a glycosphingolipid present in most cell membranes that displays antioxidant and neuroprotective properties. It has been recently described that GM1 induces pial vessel vasodilation and increases NO( x ) content in cerebral cortex, which are fully prevented by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). However, it is not known whether GM1 relaxes larger vessels, as well as the mechanisms by which GM1 causes vasorelaxation. In this study, we demonstrate that GM1 (10, 30, 100, 300 microM, 1 and 3 mM) induces vascular relaxation determined by isometric tension studies in rat mesenteric artery rings contracted with 1 microM phenylephrine. The vasorelaxation induced by GM1 was abolished by endothelium removal, by incubation with L-NAME (1 microM), and partially inhibited by the blockade of potassium channels by 1 mM tetraethylammonium, 10 microM glibenclamide, by the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (10 microM), and by 50 nM charybdotoxin, a blocker of large and intermediate conductance calcium-activated potassium channels. Moreover, GM1-induced relaxation was not affected by apamin (50 nM), a small conductance calcium-activated potassium channel blocker. The results indicate that direct and indirect nitric oxide pathways play a pivotal role in vasorelaxation induced by GM1, which is mediated mainly by potassium channels activation. We suggest that vasodilation may underlie some of the biological effects of exogenous GM1 ganglioside.
Collapse
|
275
|
Hess CN, Kou R, Johnson RP, Li GK, Michel T. ADP signaling in vascular endothelial cells: ADP-dependent activation of the endothelial isoform of nitric-oxide synthase requires the expression but not the kinase activity of AMP-activated protein kinase. J Biol Chem 2009; 284:32209-24. [PMID: 19783664 DOI: 10.1074/jbc.m109.032656] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ADP responses underlie therapeutic approaches to many cardiovascular diseases, and ADP receptor antagonists are in widespread clinical use. The role of ADP in platelet biology has been extensively studied, yet ADP signaling pathways in endothelial cells remain incompletely understood. We found that ADP promoted phosphorylation of the endothelial isoform of nitric-oxide synthase (eNOS) at Ser(1179) and Ser(635) and dephosphorylation at Ser(116) in cultured endothelial cells. Although eNOS activity was stimulated by both ADP and ATP, only ADP signaling was significantly inhibited by the P2Y(1) receptor antagonist MRS 2179 or by knockdown of P2Y(1) using small interfering RNA (siRNA). ADP activated the small GTPase Rac1 and promoted endothelial cell migration. siRNA-mediated knockdown of Rac1 blocked ADP-dependent eNOS Ser(1179) and Ser(635) phosphorylation, as well as eNOS activation. We analyzed pathways known to regulate eNOS, including phosphoinositide 3-kinase/Akt, ERK1/2, Src, and calcium/calmodulin-dependent kinase kinase-beta (CaMKKbeta) using the inhibitors wortmannin, PD98059, PP2, and STO-609, respectively. None of these inhibitors altered ADP-modulated eNOS phosphorylation. In contrast, siRNA-mediated knockdown of AMP-activated protein kinase (AMPK) inhibited ADP-dependent eNOS Ser(635) phosphorylation and eNOS activity but did not affect eNOS Ser(1179) phosphorylation. Importantly, the AMPK enzyme inhibitor compound C had no effect on ADP-stimulated eNOS activity, despite completely blocking AMPK activity. CaMKKbeta knockdown suppressed ADP-stimulated eNOS activity, yet inhibition of CaMKKbeta kinase activity using STO-609 failed to affect eNOS activation by ADP. These data suggest that the expression, but not the kinase activity, of AMPK and CaMKKbeta is necessary for ADP signaling to eNOS.
Collapse
Affiliation(s)
- Connie Ng Hess
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
276
|
|
277
|
Schmitt CA, Dirsch VM. Modulation of endothelial nitric oxide by plant-derived products. Nitric Oxide 2009; 21:77-91. [PMID: 19497380 DOI: 10.1016/j.niox.2009.05.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/28/2009] [Accepted: 05/26/2009] [Indexed: 12/31/2022]
|
278
|
Stuehr DJ, Tejero J, Haque MM. Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. FEBS J 2009; 276:3959-74. [PMID: 19583767 DOI: 10.1111/j.1742-4658.2009.07120.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide synthases belong to a family of dual-flavin enzymes that transfer electrons from NAD(P)H to a variety of heme protein acceptors. During catalysis, their FMN subdomain plays a central role by acting as both an electron acceptor (receiving electrons from FAD) and an electron donor, and is thought to undergo large conformational movements and engage in two distinct protein-protein interactions in the process. This minireview summarizes what we know about the many factors regulating nitric oxide synthase flavoprotein domain function, primarily from the viewpoint of how they impact electron input/output and conformational behaviors of the FMN subdomain.
Collapse
Affiliation(s)
- Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
279
|
Miller TW, Isenberg JS, Roberts DD. Molecular regulation of tumor angiogenesis and perfusion via redox signaling. Chem Rev 2009; 109:3099-124. [PMID: 19374334 PMCID: PMC2801866 DOI: 10.1021/cr8005125] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - David D. Roberts
- To whom correspondence should be addressed: NIH, Building 10, Room 2A33, 10 Center Dr, MSC1500, Bethesda, Maryland 20892,
| |
Collapse
|
280
|
Patel HH, Insel PA. Lipid rafts and caveolae and their role in compartmentation of redox signaling. Antioxid Redox Signal 2009; 11:1357-72. [PMID: 19061440 PMCID: PMC2757136 DOI: 10.1089/ars.2008.2365] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane (lipid) rafts and caveolae, a subset of rafts, are cellular domains that concentrate plasma membrane proteins and lipids involved in the regulation of cell function. In addition to providing signaling platforms for G-protein-coupled receptors and certain tyrosine kinase receptors, rafts/caveolae can influence redox signaling. This review discusses molecular characteristics of and methods to study rafts/caveolae, determinants that contribute to the localization of molecules in these entities, an overview of signaling molecules that show such localization, and the contribution of rafts/caveolae to redox signaling. Of particular note is the evidence that endothelial nitric oxide synthase (eNOS), NADPH oxygenase, and heme oxygenase, along with other less well-studied redox systems, localize in rafts and caveolae. The precise basis for this localization and the contribution of raft/caveolae-localized redox components to physiology and disease are important issues for future studies.
Collapse
Affiliation(s)
- Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093-0636, USA
| | | |
Collapse
|
281
|
Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 2009; 89:481-534. [PMID: 19342613 DOI: 10.1152/physrev.00042.2007] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide production in response to flow-dependent shear forces applied on the surface of endothelial cells is a fundamental mechanism of regulation of vascular tone, peripheral resistance, and tissue perfusion. This implicates the concerted action of multiple upstream "mechanosensing" molecules reversibly assembled in signalosomes recruiting endothelial nitric oxide synthase (eNOS) in specific subcellular locales, e.g., plasmalemmal caveolae. Subsequent short- and long-term increases in activity and expression of eNOS translate this mechanical stimulus into enhanced NO production and bioactivity through a complex transcriptional and posttranslational regulation of the enzyme, including by shear-stress responsive transcription factors, oxidant stress-dependent regulation of transcript stability, eNOS regulatory phosphorylations, and protein-protein interactions. Notably, eNOS expressed in cardiac myocytes is amenable to a similar regulation in response to stretching of cardiac muscle cells and in part mediates the length-dependent increase in cardiac contraction force. In addition to short-term regulation of contractile tone, eNOS mediates key aspects of cardiac and vascular remodeling, e.g., by orchestrating the mobilization, recruitment, migration, and differentiation of cardiac and vascular progenitor cells, in part by regulating the stabilization and transcriptional activity of hypoxia inducible factor in normoxia and hypoxia. The continuum of the influence of eNOS in cardiovascular biology explains its growing implication in mechanosensitive aspects of integrated physiology, such as the control of blood pressure variability or the modulation of cardiac remodeling in situations of hemodynamic overload.
Collapse
Affiliation(s)
- J-L Balligand
- Unit of Pharmacology and Therapeutics, Université catholique de Louvain, Brussels, Belgium.
| | | | | |
Collapse
|
282
|
Durrant JR, Seals DR, Connell ML, Russell MJ, Lawson BR, Folian BJ, Donato AJ, Lesniewski LA. Voluntary wheel running restores endothelial function in conduit arteries of old mice: direct evidence for reduced oxidative stress, increased superoxide dismutase activity and down-regulation of NADPH oxidase. J Physiol 2009; 587:3271-85. [PMID: 19417091 DOI: 10.1113/jphysiol.2009.169771] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Habitual aerobic exercise is associated with enhanced endothelium-dependent dilatation (EDD) in older humans, possibly by increasing nitric oxide bioavailability and reducing oxidative stress. However, the mechanisms involved are incompletely understood. EDD was measured in young (6-8 months) and old (29-32 months) cage control and voluntary wheel running (VR) B6D2F1 mice. Age-related reductions in maximal carotid artery EDD to acetylcholine (74 vs. 96%, P < 0.01) and the nitric oxide (NO) component of EDD (maximum dilatation with ACh and l-NAME minus that with ACh alone was -28% vs. -55%, P < 0.01) were restored in old VR (EDD: 96%, NO: -46%). Nitrotyrosine, a marker of oxidative stress, was increased in aorta with age, but was markedly lower in old VR (P < 0.05). Aortic superoxide dismutase (SOD) activity was greater (P < 0.01), whereas NADPH oxidase protein expression (P < 0.01) and activity (P = 0.05) were lower in old VR vs. old cage control. Increasing SOD (with 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl) and inhibition of NADPH oxidase (with apocynin) improved EDD and its NO component in old cage control, but not old VR mice. VR increased endothelial NO synthase (eNOS) protein expression (P < 0.05) and activation (Ser1177 phosphorylation) (P < 0.05) in old mice. VR did not affect EDD in young mice. Our results show that voluntary aerobic exercise restores the age-associated loss of EDD by suppression of oxidative stress via stimulation of SOD antioxidant activity and inhibition of NADPH oxidase superoxide production. Increased eNOS protein and activation also may contribute to exercise-mediated preservation of NO bioavailability and EDD with ageing.
Collapse
Affiliation(s)
- Jessica R Durrant
- Department of Integrative Physiology, University of Colorado at Boulder, 80309, USA
| | | | | | | | | | | | | | | |
Collapse
|
283
|
Sennoun N, Baron-Menguy C, Burban M, Lecompte T, Andriantsitohaina R, Henrion D, Mercat A, Asfar P, Levy B, Meziani F. Recombinant human activated protein C improves endotoxemia-induced endothelial dysfunction: a blood-free model in isolated mouse arteries. Am J Physiol Heart Circ Physiol 2009; 297:H277-82. [PMID: 19395546 DOI: 10.1152/ajpheart.01133.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recombinant human activated protein C (rhAPC) is one of the treatment panels for improving vascular dysfunction in septic patients. In a previous study, we reported that rhAPC treatment in rat endotoxemia improved vascular reactivity, although the mechanisms involved are still under debate. In the present study, we hypothesized that rhAPC may improve arterial dysfunction through its nonanticoagulant properties. Ten hours after injection of LPS in mice (50 mg/kg ip), aortic rings and mesenteric arteries were isolated and incubated with or without rhAPC for 12 h. Aortic rings were mounted in a myograph, after which arterial contractility and endothelium-dependent relaxation were measured in the presence or absence of nitric oxide synthase or cyclooxygenase inhibitors. Flow (shear stress)-mediated dilation with or without the above inhibitors was also measured in mesenteric resistance arteries. Protein expression was assessed by Western blotting. Lipopolysaccharide (LPS) reduced aortic contractility to KCl and phenylephrine as well as dilation to acetylcholine. LPS also reduced flow-mediated dilation in mesenteric arteries. In rhAPC-treated aorta and mesenteric arteries, contractility and endothelial responsiveness to vasodilator drug and shear stress were improved. rhAPC treatment also improved LPS-induced endothelial dysfunction; this effect was associated with an increase in the phosphorylated form of endothelial nitric oxide synthase and protein kinase B as well as cyclooxygenase vasodilatory pathways, thus suggesting that these pathways, together with the decrease in nuclear factor-kappaB activation and inducible nitric oxide synthase expression in the vascular wall, are implicated in the endothelial effect of rhAPC. In conclusion, ex vivo application of rhAPC improves arterial contractility and endothelial dysfunction resulting from endotoxemia in mice. This finding provides important insights into the mechanism underlying rhAPC-induced improvements on arterial dysfunction during septic shock.
Collapse
Affiliation(s)
- Nacira Sennoun
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 771, Centre National de la Recherche Scientifique (CNRS) UMR 6214, Université d'Angers, Angers, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Abstract
PURPOSE OF REVIEW Substantial evidence documents the key role of lipid (membrane) rafts and caveolae as microdomains that concentrate a wide variety of receptors and postreceptor components regulated by hormones, neurotransmitters and growth factors. RECENT FINDINGS Recent data document that these microdomains are important in regulating vascular endothelial and smooth muscle cells and renal epithelial cells, and particularly in signal transduction across the plasma membrane. SUMMARY Raft/caveolae domains are cellular regions, including in cardiovascular and renal epithelial cells, which organize a large number of signal transduction components, thereby providing spatially and temporally efficient regulation of cell function.
Collapse
|
285
|
Pellegrin M, Mazzolai L, Berthelot A, Laurant P. Dysfonction endothéliale et risque cardiovasculaire. L’exercice protège la fonction endothéliale et prévient la maladie cardiovasculaire. Sci Sports 2009. [DOI: 10.1016/j.scispo.2008.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
286
|
Hammer T, Tritsaris K, Hübschmann MV, Gibson J, Nisato RE, Pepper MS, Dissing S. IL-20 activates human lymphatic endothelial cells causing cell signalling and tube formation. Microvasc Res 2009; 78:25-32. [PMID: 19281830 DOI: 10.1016/j.mvr.2009.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 12/19/2022]
Abstract
IL-20 is an arteriogenic cytokine that remodels collateral networks in vivo, and plays a role in cellular organization. Here, we investigate its role in lymphangiogenesis using a lymphatic endothelial cell line, hTERT-HDLEC, which expresses the lymphatic markers LYVE-1 and podoplanin. Upon stimulation of hTERT-HDLEC with IL-20, we found an increase in the intracellular free calcium concentration, in Akt and eNOS phosphorylations as well as in perinuclear NO production. We found that eNOS phosphorylation and NO synthesis are highly dependent on the PI3K/Akt signalling pathway. We also found an IL-20 induced phosphorylation of Erk1/2 and mTOR, and using the MEK inhibitor PD98059 and mTOR complex inhibitor rapamycin we demonstrated the importance of these signalling pathways in IL-20-mediated proliferation. IL-20 triggered actin polymerization and morphological changes resulting in elongated cell structures, and in matrigels, IL-20 caused tube formations of hTERT-HDLEC in a PI3K- and mTOR dependent way. In a sprouting assay we found that IL-20 caused cell migration within 24 h at a rate comparable to VEGF-C, and this migration could be inhibited by wortmannin and rapamycin. These data show that IL-20 activates cell signalling resulting in lymphangiogenic processes including migration, proliferation and tube formation. Thus, IL-20 is a cytokine that has the potential of activating or modulating the formation of lymphatic vessels.
Collapse
Affiliation(s)
- Troels Hammer
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Center for healthy Ageing, University of Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
287
|
Isenberg JS, Martin-Manso G, Maxhimer JB, Roberts DD. Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nat Rev Cancer 2009; 9:182-94. [PMID: 19194382 PMCID: PMC2796182 DOI: 10.1038/nrc2561] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to long-term regulation of angiogenesis, angiogenic growth factor signalling through nitric oxide (NO) acutely controls blood flow and haemostasis. Inhibition of this pathway may account for the hypertensive and pro-thrombotic side effects of the vascular endothelial growth factor antagonists that are currently used for cancer treatment. The first identified endogenous angiogenesis inhibitor, thrombospondin 1, also controls tissue perfusion, haemostasis and radiosensitivity by antagonizing NO signalling. We examine the role of these and other emerging activities of thrombospondin 1 in cancer. Clarifying how endogenous and therapeutic angiogenesis inhibitors regulate vascular NO signalling could facilitate development of more selective inhibitors.
Collapse
Affiliation(s)
- Jeff S Isenberg
- Hemostasis and Vascular Biology Research Institute and the Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
288
|
da Silva CG, Specht A, Wegiel B, Ferran C, Kaczmarek E. Mechanism of purinergic activation of endothelial nitric oxide synthase in endothelial cells. Circulation 2009; 119:871-9. [PMID: 19188511 DOI: 10.1161/circulationaha.108.764571] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Decreased endothelial nitric oxide (NO) synthase (eNOS) activity and NO production are critical contributors to the endothelial dysfunction and vascular complications observed in many diseases, including diabetes mellitus. Extracellular nucleotides activate eNOS and increase NO generation; however, the mechanism of this observation is not fully clarified. METHODS AND RESULTS To elucidate the signaling pathway(s) leading to nucleotide-mediated eNOS phosphorylation at Ser-1177, human umbilical vein endothelial cells were treated with several nucleotides, including ATP, UTP, and ADP, in the presence or absence of selective inhibitors. These experiments identified P2Y1, P2Y2, and possibly P2Y4 as the purinergic receptors involved in eNOS phosphorylation and demonstrated that this process was adenosine independent. Nucleotide-induced eNOS phosphorylation and activity were inhibited by BAPTA-AM (an intracellular free calcium chelator), rottlerin (a protein kinase Cdelta inhibitor), and protein kinase Cdelta siRNA. In contrast, blockade of AMP-activated protein kinase, calcium/calmodulin-dependent kinase II, calcium/calmodulin-dependent kinase kinase, serine/threonine protein kinase B, protein kinase A, extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase did not affect nucleotide-mediated eNOS phosphorylation. CONCLUSIONS The present study indicates that extracellular nucleotide-mediated eNOS phosphorylation is calcium and protein kinase Cdelta dependent. This newly identified signaling pathway opens new therapeutic avenues for the treatment of endothelial dysfunction.
Collapse
Affiliation(s)
- Cleide Gonçalves da Silva
- Center for Vascular Biology Research and the Division of Vascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
289
|
Adams JA, Wu H, Bassuk JA, Arias J, Uryash A, Kurlansky P. Periodic acceleration (pGz) acutely increases endothelial and neuronal nitric oxide synthase expression in endomyocardium of normal swine. Peptides 2009; 30:373-7. [PMID: 19022311 DOI: 10.1016/j.peptides.2008.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Periodic acceleration (pGz) is a non-invasive method of increasing pulsatile shear stress to the endothelium. pGz is achieved by the sinusoidal head to foot motion to the supine body. pGz increases endogenous production of nitric oxide in whole animal models and isolated perfused vessel preparations, and is cardioprotective when applied prior to, during and after ischemia reperfusion. In part, the protective effects of pGz are attributable to nitric oxide (NO). The purpose of this investigation was to determine whether pGz up-regulates NOS isoforms in the endomyocardium. METHODS AND RESULTS Fifteen swine weight 15-20 kg, were anesthetized, instrumented to measure hemodynamics and randomized. Ten animals received 1h of pGz at 180 cycles/min and Gz+/-3.9 m/s(2) [pGz] in addition to conventional ventilatory support and five served as time controls. RESULTS pGz produced a 2.3+/-0.4 and a 6.6+/-0.1 fold significant increase in eNOS and phosphorylated eNOS, 3.6+/-1.1 fold increase in nNOS, and no significant change in iNOS. pGz also produced a 2.4+/-0.3 and 3.9+/-0.2 folds significant increase in both total(t-Akt) and phosphorylated (p-Akt) Akt. CONCLUSIONS pGz is associated with an increase in both total and phosphorylated eNOS and nNOS protein expression in endomyocardium, and induced significant increase in total and phosphorylated-Akt. The data indicates that pGz is a novel method to induce eNOS and nNOS production in the endomyocardium. Therefore, pGz may serve as a powerful non-invasive intervention to activate the beneficial cardiac effects of endothelial and neuronal NOS.
Collapse
Affiliation(s)
- Jose A Adams
- Mount Sinai Medical Center, Division of Neonatology 3-BLUM, 4300 Alton Road, Miami Beach, FL 33140, USA.
| | | | | | | | | | | |
Collapse
|
290
|
Liu J, Gao Y, Negash S, Longo LD, Raj JU. Long-term effects of prenatal hypoxia on endothelium-dependent relaxation responses in pulmonary arteries of adult sheep. Am J Physiol Lung Cell Mol Physiol 2009; 296:L547-54. [PMID: 19136582 DOI: 10.1152/ajplung.90333.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic hypoxia during the course of pregnancy is a common insult to the fetus. However, its long-term effect on the pulmonary vasculature in adulthood has not been described. In this study, the vasorelaxation responses of conduit pulmonary arteries in adult female sheep that were chronically hypoxic as fetuses and raised postnatally at sea level were investigated. Vessel tension studies revealed that endothelium-dependent relaxation responses were attenuated in pulmonary arteries from adult sheep that experienced prenatal hypoxia. Endothelial nitric oxide synthase (eNOS) protein expression was unchanged, but eNOS activity was significantly decreased in pulmonary arteries from prenatally hypoxic sheep. Protein expression of eNOS partners, caveolin-1, calmodulin, and heat shock protein 90 (Hsp90) did not change following prenatal hypoxia. However, the association between eNOS and caveolin-1, its inhibitory binding partner, was significantly increased, whereas association between eNOS and its stimulatory partners calmodulin and Hsp90 was greatly decreased. Furthermore, phosphorylation of Ser(1177) in eNOS decreased, whereas phosphorylation of Thr(495) increased, in the prenatally hypoxic pulmonary arteries, events that are related to eNOS activity. These data demonstrate that prenatal hypoxia results in persistent abnormalities in endothelium-dependent relaxation responses of pulmonary arteries in adult sheep due to decreased eNOS activity resulting from altered posttranslational regulation.
Collapse
Affiliation(s)
- Jie Liu
- Division of Neonatology, Harbor-University of California, Los Angeles Medical Center, Geffen School of Medicine at University of California, and Los Angeles Biomedical Research Institute, Los Angeles, California 90502, USA.
| | | | | | | | | |
Collapse
|
291
|
|
292
|
Current World Literature. Curr Opin Nephrol Hypertens 2009; 18:91-3. [DOI: 10.1097/mnh.0b013e32831fd875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
293
|
Takahashi S, Uchiyama T, Toda KI. Differential Effect of Resveratrol on Nitric Oxide Production in Endothelial F-2 Cells. Biol Pharm Bull 2009; 32:1840-3. [DOI: 10.1248/bpb.32.1840] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Satoru Takahashi
- First Department of Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare
| | - Tomomi Uchiyama
- First Department of Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare
| | - Ken-ichi Toda
- Department of Dermatology, The Tazuke Kofukai Medical Institute, Kitano Hospital
| |
Collapse
|
294
|
Abstract
Following an arterial occlusion outward remodeling of pre-existent inter-connecting arterioles occurs by proliferation of vascular smooth muscle and endothelial cells. This is initiated by deformation of the endothelial cells through increased pulsatile fluid shear stress (FSS) caused by the steep pressure gradient between the high pre-occlusive and the very low post-occlusive pressure regions that are interconnected by collateral vessels. Shear stress leads to the activation and expression of all NOS isoforms and NO production, followed by endothelial VEGF secretion, which induces MCP-1 synthesis in endothelium and in the smooth muscle of the media. This leads to attraction and activation of monocytes and T-cells into the adventitial space (peripheral collateral vessels) or attachment of these cells to the endothelium (coronary collaterals). Mononuclear cells produce proteases and growth factors to digest the extra-cellular scaffold and allow motility and provide space for the new cells. They also produce NO from iNOS, which is essential for arteriogenesis. The bulk of new tissue production is carried by the smooth muscles of the media, which transform their phenotype from a contractile into a synthetic and proliferative one. Important roles are played by actin binding proteins like ABRA, cofilin, and thymosin beta 4 which determine actin polymerization and maturation. Integrins and connexins are markedly up-regulated. A key role in this concerted action which leads to a 2-to-20 fold increase in vascular diameter, depending on species size (mouse versus human) are the transcription factors AP-1, egr-1, carp, ets, by the Rho pathway and by the Mitogen Activated Kinases ERK-1 and -2. In spite of the enormous increase in tissue mass (up to 50-fold) the degree of functional restoration of blood flow capacity is incomplete and ends at 30% of maximal conductance (coronary) and 40% in the vascular periphery. The process of arteriogenesis can be drastically stimulated by increases in FSS (arterio-venous fistulas) and can be completely blocked by inhibition of NO production, by pharmacological blockade of VEGF-A and by the inhibition of the Rho-pathway. Pharmacological stimulation of arteriogenesis, important for the treatment of arterial occlusive diseases, seems feasible with NO donors.
Collapse
|
295
|
Piper HM, García-Dorado D, Martinson EA. Monitoring the success of articles: a look back and a look ahead. Cardiovasc Res 2008; 80:321-3. [PMID: 18948274 DOI: 10.1093/cvr/cvn284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
296
|
Schnell CR, Stauffer F, Allegrini PR, O'Reilly T, McSheehy PMJ, Dartois C, Stumm M, Cozens R, Littlewood-Evans A, García-Echeverría C, Maira SM. Effects of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 on the tumor vasculature: implications for clinical imaging. Cancer Res 2008; 68:6598-607. [PMID: 18701483 DOI: 10.1158/0008-5472.can-08-1044] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dysregulated angiogenesis and high tumor vasculature permeability, two vascular endothelial growth factor (VEGF)-mediated processes and hallmarks of human tumors, are in part phosphatidylinositol 3-kinase (PI3K) dependent. NVP-BEZ235, a dual PI3K/mammalian target of rapamycin (mTOR) inhibitor, was found to potently inhibit VEGF-induced cell proliferation and survival in vitro and VEGF-induced angiogenesis in vivo as shown with s.c. VEGF-impregnated agar chambers. Moreover, the compound strongly inhibited microvessel permeability both in normal tissue and in BN472 mammary carcinoma grown orthotopically in syngeneic rats. Similarly, tumor interstitial fluid pressure, a phenomenon that is also dependent of tumor permeability, was significantly reduced by NVP-BEZ235 in a dose-dependent manner on p.o. administration. Because RAD001, a specific mTOR allosteric inhibitor, was ineffective in the preceding experiments, we concluded that the effects observed for NVP-BEZ235 are in part driven by PI3K target modulation. Hence, tumor vasculature reduction was correlated with full blockade of endothelial nitric oxide (NO) synthase, a PI3K/Akt-dependent but mTORC1-independent effector involved in tumor permeability through NO production. In the BN472 tumor model, early reduction of permeability, as detected by K(trans) quantification using the dynamic contrast-enhanced magnetic resonance imaging contrasting agent P792 (Vistarem), was found to be a predictive marker for late-stage antitumor activity by NVP-BEZ235.
Collapse
Affiliation(s)
- Christian R Schnell
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2008; 10:1713-65. [PMID: 18707220 DOI: 10.1089/ars.2008.2027] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The endothelium is essential for the maintenance of vascular homeostasis. Central to this role is the production of endothelium-derived nitric oxide (EDNO), synthesized by the endothelial isoform of nitric oxide synthase (eNOS). Endothelial dysfunction, manifested as impaired EDNO bioactivity, is an important early event in the development of various vascular diseases, including hypertension, diabetes, and atherosclerosis. The degree of impairment of EDNO bioactivity is a determinant of future vascular complications. Accordingly, growing interest exists in defining the pathologic mechanisms involved. Considerable evidence supports a causal role for the enhanced production of reactive oxygen species (ROS) by vascular cells. ROS directly inactivate EDNO, act as cell-signaling molecules, and promote protein dysfunction, events that contribute to the initiation and progression of endothelial dysfunction. Increasing data indicate that strategies designed to limit vascular ROS production can restore endothelial function in humans with vascular complications. The purpose of this review is to outline the various ways in which ROS can influence endothelial function and dysfunction, describe the redox mechanisms involved, and discuss approaches for preventing endothelial dysfunction that may highlight future therapeutic opportunities in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Shane R Thomas
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
298
|
Hayashi T, Yano K, Matsui-Hirai H, Yokoo H, Hattori Y, Iguchi A. Nitric oxide and endothelial cellular senescence. Pharmacol Ther 2008; 120:333-9. [PMID: 18930078 DOI: 10.1016/j.pharmthera.2008.09.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 09/03/2008] [Indexed: 11/15/2022]
Abstract
Cellular senescence is characterized by permanent exit from the cell cycle and the appearance of distinct morphological and functional changes associated with an impairment of cellular homeostasis. Many studies support the occurrence of vascular endothelial cell senescence in vivo, and the senescent phenotype of endothelial cells can be transformed from anti-atherosclerotic to pro-atherosclerotic. Thus, endothelial cell senescence promotes endothelial dysfunction and may contribute to the pathogenesis of age-associated vascular disorders. Emerging evidence suggests that increasing nitric oxide (NO) bioavailability or endothelial NO synthase (eNOS) activity activates telomerase and delays endothelial cell senescence. In this review, we discuss the potential mechanisms underlying the ability of NO to prevent endothelial cell senescence and describe the possible changes in the NO-mediated anti-senescence effect under pathophysiological conditions, including oxidative stress and hyperglycemia. Further understanding of the mechanisms underlying the anti-senescence effect of NO in endothelial cells will provide insights into the potential of eNOS-based anti-senescence therapy for age-associated vascular disorders.
Collapse
Affiliation(s)
- Toshio Hayashi
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
299
|
Abstract
It is common knowledge that ischemic stroke has major social and economic consequences. However, until now, translation of experimental studies into clinical reality has been sorely lacking. So far, most studies have focused on acute stroke outcome and early treatment paradigms affording neuroprotection. It is increasingly recognized that it will be necessary to harness the capacity of the brain for neuroregeneration to improve longer-term outcome. Endothelial nitric oxide synthase (eNOS) is emerging as a key target in molecular stroke research. eNOS ameliorates acute ischemic injury and promotes recovery following cerebral ischemia. This review summarizes the effects of eNOS on the regulation of cerebral blood flow, hemostasis, inflammation, angiogenesis as well as neurogenesis. The possible impact on stroke prevention as well as on strategies aimed at improving long-term stroke outcome are discussed.
Collapse
Affiliation(s)
- Karen Gertz
- Charité Universitätsmedizin Berlin, Klinik und Poliklinik für Neurologie, Abteilung für Experimentelle Neurologie, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Endres
- Charité Universitätsmedizin Berlin, Klinik und Hochschulambulanz für Neurologie und Klinische Neurophysiologie, Campus Benjamin Franklin and Center for Stroke Research Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
300
|
Muniyappa R, Iantorno M, Quon MJ. An integrated view of insulin resistance and endothelial dysfunction. Endocrinol Metab Clin North Am 2008; 37:685-711, ix-x. [PMID: 18775359 PMCID: PMC2613319 DOI: 10.1016/j.ecl.2008.06.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial dysfunction and insulin resistance are frequently comorbid states. Vasodilator actions of insulin are mediated by phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways that stimulate production of nitric oxide from vascular endothelium. This helps to couple metabolic and hemodynamic homeostasis under healthy conditions. In pathologic states, shared causal factors, including glucotoxicity, lipotoxicity, and inflammation selectively impair PI3K-dependent insulin signaling pathways that contribute to reciprocal relationships between insulin resistance and endothelial dysfunction. This article discusses the implications of pathway-selective insulin resistance in vascular endothelium, interactions between endothelial dysfunction and insulin resistance, and therapeutic interventions that may simultaneously improve both metabolic and cardiovascular physiology in insulin-resistant conditions.
Collapse
Affiliation(s)
| | | | - Michael J. Quon
- Corresponding author for proof and reprints: Michael J. Quon, MD, PhD, Chief, Diabetes Unit, NCCAM, NIH, 9 Memorial Drive, Building 9, Room 1N-105 MSC 0920, Bethesda, MD 20892-0920, Tel: (301) 496-6269, Fax: (301) 402-1679,
| |
Collapse
|