251
|
Liu ZC, Li LH, Li DY, Gao ZQ, Chen D, Song B, Jiang BH, Dang XW. KIAA1429 regulates alternative splicing events of cancer-related genes in hepatocellular carcinoma. Front Oncol 2022; 12:1060574. [PMID: 36505780 PMCID: PMC9732450 DOI: 10.3389/fonc.2022.1060574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most fatal malignancies with high morbidity and mortality rates in the world, whose molecular pathogenesis is incompletely understood. As an RNA-binding protein participating in the processing and modification of RNA, KIAA1429 has been proved to be implicated in the pathogenesis of multiple cancers. However, how KIAA1429 functions in alternative splicing is not fully reported. In the current study, multi-omics sequencing data were used to analyze and decipher the molecular functions and the underlying mechanisms of KIAA1429 in HCC samples. RNA sequencing data (RNA-seq) analysis demonstrated that in HCCLM3 cells, alternative splicing (AS) profiles were mediated by KIAA1429. Regulated AS genes (RASGs) by KIAA1429 were enriched in cell cycle and apoptosis-associated pathways. Furthermore, by integrating the RNA immunoprecipitation and sequencing data (RIP-seq) of KIAA1429, we found that KIAA1429-bound transcripts were highly overlapping with RASGs, indicating that KIAA1429 could globally regulate the alternative splicing perhaps by binding to their transcripts in HCCLM3 cells. The overlapping RASGs were also clustered in cell cycle and apoptosis-associated pathways. In particular, we validated the regulated AS events of three genes using clinical specimens from HCC patients, including the exon 6 of BPTF gene and a marker gene of HCC. In summary, our results shed light on the regulatory functions of KIAA1429 in the splicing process of pre-mRNA and provide theoretical basis for the targeted therapy of HCC.
Collapse
Affiliation(s)
- Zhao-chen Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu-Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding-Yang Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Qiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Chen
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co. Ltd, Zhengzhou, China
| | - Bin Song
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co. Ltd, Zhengzhou, China
| | - Bing-Hua Jiang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao-wei Dang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Xiao-wei Dang,
| |
Collapse
|
252
|
Shaw TI, Zhao B, Li Y, Wang H, Wang L, Manley B, Stewart PA, Karolak A. Multi-omics approach to identifying isoform variants as therapeutic targets in cancer patients. Front Oncol 2022; 12:1051487. [PMID: 36505834 PMCID: PMC9730332 DOI: 10.3389/fonc.2022.1051487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer-specific alternatively spliced events (ASE) play a role in cancer pathogenesis and can be targeted by immunotherapy, oligonucleotide therapy, and small molecule inhibition. However, identifying actionable ASE targets remains challenging due to the uncertainty of its protein product, structure impact, and proteoform (protein isoform) function. Here we argue that an integrated multi-omics profiling strategy can overcome these challenges, allowing us to mine this untapped source of targets for therapeutic development. In this review, we will provide an overview of current multi-omics strategies in characterizing ASEs by utilizing the transcriptome, proteome, and state-of-art algorithms for protein structure prediction. We will discuss limitations and knowledge gaps associated with each technology and informatics analytics. Finally, we will discuss future directions that will enable the full integration of multi-omics data for ASE target discovery.
Collapse
Affiliation(s)
- Timothy I. Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States,*Correspondence: Timothy I. Shaw,
| | - Bi Zhao
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Hong Wang
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Brandon Manley
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Paul A. Stewart
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Aleksandra Karolak
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
253
|
David JK, Maden SK, Wood MA, Thompson RF, Nellore A. Retained introns in long RNA-seq reads are not reliably detected in sample-matched short reads. Genome Biol 2022; 23:240. [PMID: 36369064 PMCID: PMC9652823 DOI: 10.1186/s13059-022-02789-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There is growing interest in retained introns in a variety of disease contexts including cancer and aging. Many software tools have been developed to detect retained introns from short RNA-seq reads, but reliable detection is complicated by overlapping genes and transcripts as well as the presence of unprocessed or partially processed RNAs. RESULTS We compared introns detected by 8 tools using short RNA-seq reads with introns observed in long RNA-seq reads from the same biological specimens. We found significant disagreement among tools (Fleiss' [Formula: see text]) such that 47.7% of all detected intron retentions were not called by more than one tool. We also observed poor performance of all tools, with none achieving an F1-score greater than 0.26, and qualitatively different behaviors between general-purpose alternative splicing detection tools and tools confined to retained intron detection. CONCLUSIONS Short-read tools detect intron retention with poor recall and precision, calling into question the completeness and validity of a large percentage of putatively retained introns called by commonly used methods.
Collapse
Affiliation(s)
- Julianne K. David
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,Present Address: Base5 Genomics, Inc., Mountain View, CA USA
| | - Sean K. Maden
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.21107.350000 0001 2171 9311Present Address: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Mary A. Wood
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.429936.30000 0004 5914 210XPortland VA Research Foundation, Portland, OR USA ,Present Address: Phase Genomics, Inc., Seattle, WA USA
| | - Reid F. Thompson
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.484322.bDivision of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Radiation Medicine, Oregon Health & Science University, Portland, OR USA
| | - Abhinav Nellore
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Surgery, Oregon Health & Science University, Portland, OR USA
| |
Collapse
|
254
|
Hu W, Wu Y, Shi Q, Wu J, Kong D, Wu X, He X, Liu T, Li S. Systematic characterization of cancer transcriptome at transcript resolution. Nat Commun 2022; 13:6803. [PMID: 36357395 PMCID: PMC9649690 DOI: 10.1038/s41467-022-34568-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Transcribed RNAs undergo various regulation and modification to become functional transcripts. Notably, cancer transcriptome has not been fully characterized at transcript resolution. Herein, we carry out a reference-based transcript assembly across >1000 cancer cell lines. We identify 498,255 transcripts, approximately half of which are unannotated. Unannotated transcripts are closely associated with cancer-related hallmarks and show clinical significance. We build a high-confidence RNA binding protein (RBP)-transcript regulatory network, wherein most RBPs tend to regulate transcripts involved in cell proliferation. We identify numerous transcripts that are highly associated with anti-cancer drug sensitivity. Furthermore, we establish RBP-transcript-drug axes, wherein PTBP1 is experimentally validated to affect the sensitivity to decitabine by regulating KIAA1522-a6 transcript. Finally, we establish a user-friendly data portal to serve as a valuable resource for understanding cancer transcriptome diversity and its potential clinical utility at transcript level. Our study substantially extends cancer RNA repository and will facilitate anti-cancer drug discovery.
Collapse
Affiliation(s)
- Wei Hu
- grid.16821.3c0000 0004 0368 8293Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620 China
| | - Yangjun Wu
- grid.452404.30000 0004 1808 0942Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Qili Shi
- grid.11841.3d0000 0004 0619 8943Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jingni Wu
- grid.16821.3c0000 0004 0368 8293Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620 China
| | - Deping Kong
- grid.16821.3c0000 0004 0368 8293Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620 China
| | - Xiaohua Wu
- grid.452404.30000 0004 1808 0942Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Xianghuo He
- grid.11841.3d0000 0004 0619 8943Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Teng Liu
- grid.16821.3c0000 0004 0368 8293Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620 China ,grid.440657.40000 0004 1762 5832Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000 China
| | - Shengli Li
- grid.16821.3c0000 0004 0368 8293Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620 China
| |
Collapse
|
255
|
Wu S, Huang Y, Zhang M, Gong Z, Wang G, Zheng X, Zong W, Zhao W, Xing P, Li R, Liu Z, Bao Y. ASCancer Atlas: a comprehensive knowledgebase of alternative splicing in human cancers. Nucleic Acids Res 2022; 51:D1196-D1204. [PMID: 36318242 PMCID: PMC9825479 DOI: 10.1093/nar/gkac955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Alternative splicing (AS) is a fundamental process that governs almost all aspects of cellular functions, and dysregulation in this process has been implicated in tumor initiation, progression and treatment resistance. With accumulating studies of carcinogenic mis-splicing in cancers, there is an urgent demand to integrate cancer-associated splicing changes to better understand their internal cross-talks and functional consequences from a global view. However, a resource of key functional AS events in human cancers is still lacking. To fill the gap, we developed ASCancer Atlas (https://ngdc.cncb.ac.cn/ascancer), a comprehensive knowledgebase of aberrant splicing in human cancers. Compared to extant databases, ASCancer Atlas features a high-confidence collection of 2006 cancer-associated splicing events experimentally proved to promote tumorigenesis, a systematic splicing regulatory network, and a suit of multi-scale online analysis tools. For each event, we manually curated the functional axis including upstream splicing regulators, splicing event annotations, downstream oncogenic effects, and possible therapeutic strategies. ASCancer Atlas also houses about 2 million computationally putative splicing events. Additionally, a user-friendly web interface was built to enable users to easily browse, search, visualize, analyze, and download all splicing events. Overall, ASCancer Atlas provides a unique resource to study the functional roles of splicing dysregulation in human cancers.
Collapse
Affiliation(s)
| | | | - Mochen Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Gong
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Wang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinchang Zheng
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wenting Zong
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiqi Xing
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Rujiao Li
- Correspondence may also be addressed to Rujiao Li. Tel: +86 10 84097638;
| | - Zhaoqi Liu
- Correspondence may also be addressed to Zhaoqi Liu. Tel: +86 10 84097398;
| | - Yiming Bao
- To whom correspondence should be addressed. Tel: +86 10 84097858; Fax: +86 10 84097720;
| |
Collapse
|
256
|
Urbanski L, Brugiolo M, Park S, Angarola BL, Leclair NK, Yurieva M, Palmer P, Sahu SK, Anczuków O. MYC regulates a pan-cancer network of co-expressed oncogenic splicing factors. Cell Rep 2022; 41:111704. [DOI: 10.1016/j.celrep.2022.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/16/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
|
257
|
Lee J, Pang K, Kim J, Hong E, Lee J, Cho HJ, Park J, Son M, Park S, Lee M, Ooshima A, Park KS, Yang HK, Yang KM, Kim SJ. ESRP1-regulated isoform switching of LRRFIP2 determines metastasis of gastric cancer. Nat Commun 2022; 13:6274. [PMID: 36307405 PMCID: PMC9616898 DOI: 10.1038/s41467-022-33786-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Although accumulating evidence indicates that alternative splicing is aberrantly altered in many cancers, the functional mechanism remains to be elucidated. Here, we show that epithelial and mesenchymal isoform switches of leucine-rich repeat Fli-I-interacting protein 2 (LRRFIP2) regulated by epithelial splicing regulatory protein 1 (ESRP1) correlate with metastatic potential of gastric cancer cells. We found that expression of the splicing variants of LRRFIP2 was closely correlated with that of ESRP1. Surprisingly, ectopic expression of the mesenchymal isoform of LRRFIP2 (variant 3) dramatically increased liver metastasis of gastric cancer cells, whereas deletion of exon 7 of LRRFIP2 by the CRISPR/Cas9 system caused an isoform switch, leading to marked suppression of liver metastasis. Mechanistically, the epithelial LRRFIP2 isoform (variant 2) inhibited the oncogenic function of coactivator-associated arginine methyltransferase 1 (CARM1) through interaction. Taken together, our data reveals a mechanism of LRRFIP2 isoform switches in gastric cancer with important implication for cancer metastasis.
Collapse
Affiliation(s)
- Jihee Lee
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.410886.30000 0004 0647 3511Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488 Korea
| | | | - Junil Kim
- grid.263765.30000 0004 0533 3568School of Systems Biomedical Science, Soongsil University, Seoul, 06978 Korea
| | - Eunji Hong
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.264381.a0000 0001 2181 989XDepartment of Biomedical Science, College of Life Science, Sungkyunkwan University, Suwon, Gyeonggi-do 16419 Korea
| | - Jeeyun Lee
- grid.264381.a0000 0001 2181 989XDivision of Hematology-Oncology, Department of Medicine, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, 06351 Korea
| | - Hee Jin Cho
- grid.258803.40000 0001 0661 1556Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, 41566 Korea ,grid.414964.a0000 0001 0640 5613Innovative Therapeutic Research Center, Precision Medicine Research Institute, Samsung Medical Center, Seoul, 06531 Republic of Korea
| | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, 06668 Korea
| | - Minjung Son
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.264381.a0000 0001 2181 989XDepartment of Biomedical Science, College of Life Science, Sungkyunkwan University, Suwon, Gyeonggi-do 16419 Korea
| | - Sihyun Park
- GILO Institute, GILO Foundation, Seoul, 06668 Korea
| | | | | | - Kyung-Soon Park
- grid.410886.30000 0004 0647 3511Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488 Korea
| | - Han-Kwang Yang
- grid.412484.f0000 0001 0302 820XDepartment of Surgery, Seoul National University Hospital, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University, Seoul, 03080 Korea
| | | | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,Medpacto Inc., Seoul, 06668 Korea
| |
Collapse
|
258
|
Oku Y, Madia F, Lau P, Paparella M, McGovern T, Luijten M, Jacobs MN. Analyses of Transcriptomics Cell Signalling for Pre-Screening Applications in the Integrated Approach for Testing and Assessment of Non-Genotoxic Carcinogens. Int J Mol Sci 2022; 23:ijms232112718. [PMID: 36361516 PMCID: PMC9659232 DOI: 10.3390/ijms232112718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
With recent rapid advancement of methodological tools, mechanistic understanding of biological processes leading to carcinogenesis is expanding. New approach methodologies such as transcriptomics can inform on non-genotoxic mechanisms of chemical carcinogens and can be developed for regulatory applications. The Organisation for the Economic Cooperation and Development (OECD) expert group developing an Integrated Approach to the Testing and Assessment (IATA) of Non-Genotoxic Carcinogens (NGTxC) is reviewing the possible assays to be integrated therein. In this context, we review the application of transcriptomics approaches suitable for pre-screening gene expression changes associated with phenotypic alterations that underlie the carcinogenic processes for subsequent prioritisation of downstream test methods appropriate to specific key events of non-genotoxic carcinogenesis. Using case studies, we evaluate the potential of gene expression analyses especially in relation to breast cancer, to identify the most relevant approaches that could be utilised as (pre-) screening tools, for example Gene Set Enrichment Analysis (GSEA). We also consider how to address the challenges to integrate gene panels and transcriptomic assays into the IATA, highlighting the pivotal omics markers identified for assay measurement in the IATA key events of inflammation, immune response, mitogenic signalling and cell injury.
Collapse
Affiliation(s)
- Yusuke Oku
- The Organisation for Economic Cooperation and Development (OECD), 2 Rue Andre Pascal, 75016 Paris, France
- Correspondence: (Y.O.); (M.N.J.)
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy
| | - Pierre Lau
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Martin Paparella
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innbruck, Austria
| | - Timothy McGovern
- US Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20901, USA
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA Utrecht, The Netherlands
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazard (CRCE), Public Health England (PHE), Chilton OX11 0RQ, Oxfordshire, UK
- Correspondence: (Y.O.); (M.N.J.)
| |
Collapse
|
259
|
Nagel R, Pataskar A, Champagne J, Agami R. Boosting Antitumor Immunity with an Expanded Neoepitope Landscape. Cancer Res 2022; 82:3637-3649. [PMID: 35904353 PMCID: PMC9574376 DOI: 10.1158/0008-5472.can-22-1525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
Immune-checkpoint blockade therapy has been successfully applied to many cancers, particularly tumors that harbor a high mutational burden and consequently express a high abundance of neoantigens. However, novel approaches are needed to improve the efficacy of immunotherapy for treating tumors that lack a high load of classic genetically derived neoantigens. Recent discoveries of broad classes of nongenetically encoded and inducible neoepitopes open up new avenues for therapeutic development to enhance sensitivity to immunotherapies. In this review, we discuss recent work on neoantigen discovery, with an emphasis on novel classes of noncanonical neoepitopes.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Erasmus MC, Rotterdam University, Rotterdam, the Netherlands
| |
Collapse
|
260
|
Hu K, Ma C, Ma R, Zheng Q, Wang Y, Zhang N, Sun Z. Roles of Krüppel-like factor 6 splice variant 1 in the development, diagnosis, and possible treatment strategies for non-small cell lung cancer. Am J Cancer Res 2022; 12:4468-4482. [PMID: 36381325 PMCID: PMC9641401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023] Open
Abstract
Krüppel-like factor 6 (KLF6) is a nuclear transcriptional regulator found in mammalian tissue that has been identified as a tumor suppressor gene in several malignancies. As a result of loss of heterozygosity, DNA methylation, and alternative splicing, it is frequently inactivated in various malignancies. Krüppel-like factor 6 splice variant 1 (KLF6-SV1), Krüppel-like factor 6 splice variant 2, and Krüppel-like factor 6 splice variant 3 alternatively spliced isoforms that emerge from a single nucleotide polymorphism in the KLF6 gene. KLF6-SV1 is generally upregulated in multiple cancers, and its biological function is well understood. Overexpression of KLF6-SV1 inhibits the KLF6 gene function while promoting tumor progression, which is associated with a poor prognosis in patients with various malignancies. We reviewed the progress of KLF6-SV1 research in NSCLC over the last several years to understand the molecular mechanisms of tumorigenesis, tumor development, and therapy resistance. Finally, this review emphasizes the therapeutic potential of small interfering RNA targeted silencing of KLF6-SV1 as a novel strategy for managing chemotherapy resistance in NSCLC patients.
Collapse
Affiliation(s)
- Kang Hu
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical UniversityJinan 250013, Shandong, China
- School of Clinical Medicine, Weifang Medical UniversityWeifang 261053, Shandong, China
| | - Chao Ma
- School of Clinical Medicine, Weifang Medical UniversityWeifang 261053, Shandong, China
| | - Ruijie Ma
- Cheeloo College of Medicine, Shandong UniversityJinan 250013, Shandong, China
| | - Qiming Zheng
- Cheeloo College of Medicine, Shandong UniversityJinan 250013, Shandong, China
| | - Yepeng Wang
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical UniversityJinan 250013, Shandong, China
| | - Nan Zhang
- Department of Breast Disease Center, Central Hospital Affiliated to Shandong First Medical UniversityJinan 250013, Shandong, China
| | - Zhigang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical UniversityJinan 250013, Shandong, China
| |
Collapse
|
261
|
Zhang Y, Ye G, Yang Q, Zheng B, Zhang G, Hu Y, Yu J, Li G. Landscape of exitrons in gastric cancer. EBioMedicine 2022; 84:104272. [PMID: 36137412 PMCID: PMC9494173 DOI: 10.1016/j.ebiom.2022.104272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Exitron is a new type of non-canonical alternative splicing. Accumulating evidence implies exitron may have pathological function and contribute to another source of anti-tumor immunogenicity in various cancers. Its role in gastric cancer remains poorly understood. Large-scale, multi-omics analysis could comprehensively characterize the landscape of exitrons in gastric cancer, reveal undiscovered mechanism and hopefully identify molecular biomarkers for predicting immunotherapy response. METHODS We collected datasets from five studies for analysis. RNA sequencing was used for exitron identification. Somatic mutations were detected by whole exome sequencing. Neopeptides were confirmed by proteome mass spectrometry. FINDINGS 42174 gastric cancer-specific exitrons (GCSEs) were identified in 632 patients. GCSEs were clinically relevant to gender, age, Lauren type, tumor stage and prognosis. Tissue specificity test and pathogenic exitron prediction revealed their unique functional impact. GCSEs were mutually exclusive with mutations and demonstrated both unique and complementary function against TP53 mutation in gastric cancer. We further established splicing regulatory network to reveal upstream regulation of exitron splicing. We also evaluated the immunogenicity and diagnostic potential of GCSEs. Evidence of GCSEs-derived neopeptide expression was validated by whole proteome mass spectrometry. PD-1 and Siglecs were significantly increased in high neoantigen load patients. But exitron-related biomarkers failed to predict immunotherapy response, possibly due to small sample size and insufficient sequencing depth. INTERPRETATION The present study provided a comprehensive multidimensional landscape of gastric cancer exitrons and underscores insights into underexplored mechanism in gastric cancer pathology. FUNDING The Guangdong Provincial Key Laboratory of Precision Medicine for Gastroinstestinal Cancer (2020B121201004), the Guangdong Provincial Major Talents Project (No. 2019JC05Y361) and National Natural Science Foundation of China (grant number:82172960 and 81872013).
Collapse
Affiliation(s)
- Yihao Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Gengtai Ye
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Qingbin Yang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Boyang Zheng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Guofan Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
262
|
Trifonova EA, Gavrilenko MM, Babovskaya AA, Zarubin AA, Svarovskaya MG, Izhoykina EV, Stepanov IA, Serebrova VN, Kutsenko IG, Stepanov VA. Alternative Splicing Landscape of Placental Decidual Cells during Physiological Pregnancy. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
263
|
Del Giudice M, Foster JG, Peirone S, Rissone A, Caizzi L, Gaudino F, Parlato C, Anselmi F, Arkell R, Guarrera S, Oliviero S, Basso G, Rajan P, Cereda M. FOXA1 regulates alternative splicing in prostate cancer. Cell Rep 2022; 40:111404. [PMID: 36170835 PMCID: PMC9532847 DOI: 10.1016/j.celrep.2022.111404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/28/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of alternative splicing in prostate cancer is linked to transcriptional programs activated by AR, ERG, FOXA1, and MYC. Here, we show that FOXA1 functions as the primary orchestrator of alternative splicing dysregulation across 500 primary and metastatic prostate cancer transcriptomes. We demonstrate that FOXA1 binds to the regulatory regions of splicing-related genes, including HNRNPK and SRSF1. By controlling trans-acting factor expression, FOXA1 exploits an "exon definition" mechanism calibrating alternative splicing toward dominant isoform production. This regulation especially impacts splicing factors themselves and leads to a reduction of nonsense-mediated decay (NMD)-targeted isoforms. Inclusion of the NMD-determinant FLNA exon 30 by FOXA1-controlled oncogene SRSF1 promotes cell growth in vitro and predicts disease recurrence. Overall, we report a role for FOXA1 in rewiring the alternative splicing landscape in prostate cancer through a cascade of events from chromatin access, to splicing factor regulation, and, finally, to alternative splicing of exons influencing patient survival.
Collapse
Affiliation(s)
- Marco Del Giudice
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy; Candiolo Cancer Institute, FPO-IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy
| | - John G Foster
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Serena Peirone
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Alberto Rissone
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy; Candiolo Cancer Institute, FPO-IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy
| | - Livia Caizzi
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy; Candiolo Cancer Institute, FPO-IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy
| | - Federica Gaudino
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy; Candiolo Cancer Institute, FPO-IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy
| | - Caterina Parlato
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy; Candiolo Cancer Institute, FPO-IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy
| | - Francesca Anselmi
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy; Department of Life Science and System Biology, Università degli Studi di Torino, via Accademia Albertina 13, 10123 Turin, Italy
| | - Rebecca Arkell
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy; Candiolo Cancer Institute, FPO-IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy
| | - Salvatore Oliviero
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy; Department of Life Science and System Biology, Università degli Studi di Torino, via Accademia Albertina 13, 10123 Turin, Italy
| | - Giuseppe Basso
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy; Candiolo Cancer Institute, FPO-IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy
| | - Prabhakar Rajan
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Division of Surgery and Interventional Science, University College London, Charles Bell House, 3 Road Floor, 43-45 Foley Street, London W1W 7TS, UK; The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK; Department of Urology, Barts Health NHS Trust, the Royal London Hospital, Whitechapel Road, London E1 1BB, UK; Department of Uro-oncology, University College London NHS Foundation Trust, 47 Wimpole Street, London W1G 8SE, UK.
| | - Matteo Cereda
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo (TO), Italy; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
264
|
Chen L, Gu T, Wu T, Ding L, Ge Q, Zhang Y, Ma S. Proteotranscriptomic Integration analyses reveals new mechanistic insights regarding Bombyx mori fluorosis. Food Chem Toxicol 2022; 169:113414. [PMID: 36174832 DOI: 10.1016/j.fct.2022.113414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/07/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
The commercial value of silkworms has been widely explored and the effects of fluoride exposure on silkworms' breeding and silk production cannot be ignored. Bombyx mori is a commonly used model to explore the mechanisms of fluorosis. In the present study, we analyzed the differences in physiological and biochemical indicators after exposing larva to NaF, then evaluated differential genes and proteins. Compared to control, larvae exposed to 600 mg L-1 NaF presented decreased bodyweight, damaged midgut tissue, and were accompanied by oxidative stress. The RNA-seq showed 1493 differentially expressed genes (574 upregulated and 919 downregulated). Meanwhile, the TMT detected 189 differentially expressed proteins (133 upregulated and 56 downregulated). The integrative analysis led to 4 upregulated and 9 downregulated genes and proteins. Finally, we hypothesized that fluoride exposure might affect the intestinal digestion of silkworms, inhibit the gene expression of detoxification enzymes and stimulate cellular immune responses. Our current findings provided new insights into insect fluorosis.
Collapse
Affiliation(s)
- Liang Chen
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China.
| | - Tongyu Gu
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| | - Tong Wu
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| | - Lei Ding
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| | - Qi Ge
- School of the Environment and Safety Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Yao Zhang
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| |
Collapse
|
265
|
He C, Zhang G, Lu Y, Zhou J, Ren Z. DDX17 modulates the expression and alternative splicing of genes involved in apoptosis and proliferation in lung adenocarcinoma cells. PeerJ 2022; 10:e13895. [PMID: 36164607 PMCID: PMC9508879 DOI: 10.7717/peerj.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/22/2022] [Indexed: 01/19/2023] Open
Abstract
Background The DEAD-box RNA-binding protein (RBP) DDX17 has been found to be involved in the tumorigenesis of many types of cancers. However, the role of DDX17 in lung adenocarcinoma (LUAD) remains unclear. Methods We silenced DDX17 expression in A549 LUAD cells by small interfering RNA (siRNA). Cell proliferation and apoptosis assays were performed to explore the functions of DDX17. Knockdown of DDX17 by siRNA significantly inhibited proliferation and induced apoptosis in A549 cells. We used high-throughput RNA sequencing (RNA-seq) to identify differentially expressed genes (DEGs) and alternative splicing (AS) events in DDX17 knockdown LUAD cells. Results DDX17 knockdown increased the expression levels of proapoptotic genes and decreased those of proproliferative genes. Moreover, the DDX17-regulated AS events in A549 cells revealed by computational analysis using ABLas software were strongly validated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and were also validated by analysis of The Cancer Genome Atlas (TCGA)-LUAD dataset. These findings suggest that DDX17 may function as an oncogene by regulating both the expression and AS of proliferation- and apoptosis-associated genes in LUAD cells. Our findings may offer new insights into understanding the molecular mechanisms of LUAD and provide a new therapeutic direction for LUAD.
Collapse
Affiliation(s)
- Cheng He
- Department of Thoracic Oncology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China,Department of Thoracic Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Gan Zhang
- Department of Thoracic Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Yanhong Lu
- Department of Thoracic Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Jingyue Zhou
- Department of Thoracic Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Zixue Ren
- Department of Thoracic Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| |
Collapse
|
266
|
Kim WR, Park EG, Lee YJ, Bae WH, Lee DH, Kim HS. Integration of TE Induces Cancer Specific Alternative Splicing Events. Int J Mol Sci 2022; 23:10918. [PMID: 36142830 PMCID: PMC9502224 DOI: 10.3390/ijms231810918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of messenger RNA (mRNA) precursors contributes to genetic diversity by generating structurally and functionally distinct transcripts. In a disease state, alternative splicing promotes incidence and development of several cancer types through regulation of cancer-related biological processes. Transposable elements (TEs), having the genetic ability to jump to other regions of the genome, can bring about alternative splicing events in cancer. TEs can integrate into the genome, mostly in the intronic regions, and induce cancer-specific alternative splicing by adjusting various mechanisms, such as exonization, providing splicing donor/acceptor sites, alternative regulatory sequences or stop codons, and driving exon disruption or epigenetic regulation. Moreover, TEs can produce microRNAs (miRNAs) that control the proportion of transcripts by repressing translation or stimulating the degradation of transcripts at the post-transcriptional level. Notably, TE insertion creates a cancer-friendly environment by controlling the overall process of gene expression before and after transcription in cancer cells. This review emphasizes the correlative interaction between alternative splicing by TE integration and cancer-associated biological processes, suggesting a macroscopic mechanism controlling alternative splicing by TE insertion in cancer.
Collapse
Affiliation(s)
- Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
267
|
Camp FA, Brunetti TM, Williams MM, Christenson JL, Sreekanth V, Costello JC, Hay ZLZ, Kedl RM, Richer JK, Slansky JE. Antigens Expressed by Breast Cancer Cells Undergoing EMT Stimulate Cytotoxic CD8 + T Cell Immunity. Cancers (Basel) 2022; 14:4397. [PMID: 36139558 PMCID: PMC9496737 DOI: 10.3390/cancers14184397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Antigenic differences formed by alterations in gene expression and alternative splicing are predicted in breast cancer cells undergoing epithelial to mesenchymal transition (EMT) and the reverse plasticity known as MET. How these antigenic differences impact immune interactions and the degree to which they can be exploited to enhance immune responses against mesenchymal cells is not fully understood. We utilized a master microRNA regulator of EMT to alter mesenchymal-like EO771 mammary carcinoma cells to a more epithelial phenotype. A computational approach was used to identify neoantigens derived from the resultant differentially expressed somatic variants (SNV) and alternative splicing events (neojunctions). Using whole cell vaccines and peptide-based vaccines, we find superior cytotoxicity against the more-epithelial cells and explore the potential of neojunction-derived antigens to elicit T cell responses through experiments designed to validate the computationally predicted neoantigens. Overall, results identify EMT-associated splicing factors common to both mouse and human breast cancer cells as well as immunogenic SNV- and neojunction-derived neoantigens in mammary carcinoma cells.
Collapse
Affiliation(s)
- Faye A. Camp
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Tonya M. Brunetti
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michelle M. Williams
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jessica L. Christenson
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Varsha Sreekanth
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - James C. Costello
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zachary L. Z. Hay
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ross M. Kedl
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jennifer K. Richer
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jill E. Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
268
|
Sources of Cancer Neoantigens beyond Single-Nucleotide Variants. Int J Mol Sci 2022; 23:ijms231710131. [PMID: 36077528 PMCID: PMC9455963 DOI: 10.3390/ijms231710131] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The success of checkpoint blockade therapy against cancer has unequivocally shown that cancer cells can be effectively recognized by the immune system and eliminated. However, the identity of the cancer antigens that elicit protective immunity remains to be fully explored. Over the last decade, most of the focus has been on somatic mutations derived from non-synonymous single-nucleotide variants (SNVs) and small insertion/deletion mutations (indels) that accumulate during cancer progression. Mutated peptides can be presented on MHC molecules and give rise to novel antigens or neoantigens, which have been shown to induce potent anti-tumor immune responses. A limitation with SNV-neoantigens is that they are patient-specific and their accurate prediction is critical for the development of effective immunotherapies. In addition, cancer types with low mutation burden may not display sufficient high-quality [SNV/small indels] neoantigens to alone stimulate effective T cell responses. Accumulating evidence suggests the existence of alternative sources of cancer neoantigens, such as gene fusions, alternative splicing variants, post-translational modifications, and transposable elements, which may be attractive novel targets for immunotherapy. In this review, we describe the recent technological advances in the identification of these novel sources of neoantigens, the experimental evidence for their presentation on MHC molecules and their immunogenicity, as well as the current clinical development stage of immunotherapy targeting these neoantigens.
Collapse
|
269
|
Gahete MD, Herman-Sanchez N, Fuentes-Fayos AC, Lopez-Canovas JL, Luque RM. Dysregulation of splicing variants and spliceosome components in breast cancer. Endocr Relat Cancer 2022; 29:R123-R142. [PMID: 35728261 DOI: 10.1530/erc-22-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/16/2022] [Indexed: 12/26/2022]
Abstract
The dysregulation of the splicing process has emerged as a novel hallmark of metabolic and tumor pathologies. In breast cancer (BCa), which represents the most diagnosed cancer type among women worldwide, the generation and/or dysregulation of several oncogenic splicing variants have been described. This is the case of the splicing variants of HER2, ER, BRCA1, or the recently identified by our group, In1-ghrelin and SST5TMD4, which exhibit oncogenic roles, increasing the malignancy, poor prognosis, and resistance to treatment of BCa. This altered expression of oncogenic splicing variants has been closely linked with the dysregulation of the elements belonging to the macromolecular machinery that controls the splicing process (spliceosome components and the associated splicing factors). In this review, we compile the current knowledge demonstrating the altered expression of splicing variants and spliceosomal components in BCa, showing the existence of a growing body of evidence supporting the close implication of the alteration in the splicing process in mammary tumorigenesis.
Collapse
Affiliation(s)
- Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Natalia Herman-Sanchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Juan L Lopez-Canovas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| |
Collapse
|
270
|
Kim GB, Fritsche J, Bunk S, Mahr A, Unverdorben F, Tosh K, Kong H, Maldini CR, Lau C, Srivatsa S, Jiang S, Glover J, Dopkin D, Zhang CX, Schuster H, Kowalewski DJ, Goldfinger V, Ott M, Fuhrmann D, Baues M, Boesmueller H, Schraeder C, Schimmack G, Song C, Hoffgaard F, Roemer M, Tsou CC, Hofmann M, Treiber T, Hutt M, Alten L, Jaworski M, Alpert A, Missel S, Reinhardt C, Singh H, Schoor O, Walter S, Wagner C, Maurer D, Weinschenk T, Riley JL. Quantitative immunopeptidomics reveals a tumor stroma-specific target for T cell therapy. Sci Transl Med 2022; 14:eabo6135. [PMID: 36044599 PMCID: PMC10130759 DOI: 10.1126/scitranslmed.abo6135] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T cell receptor (TCR)-based immunotherapy has emerged as a promising therapeutic approach for the treatment of patients with solid cancers. Identifying peptide-human leukocyte antigen (pHLA) complexes highly presented on tumors and rarely expressed on healthy tissue in combination with high-affinity TCRs that when introduced into T cells can redirect T cells to eliminate tumor but not healthy tissue is a key requirement for safe and efficacious TCR-based therapies. To discover promising shared tumor antigens that could be targeted via TCR-based adoptive T cell therapy, we employed population-scale immunopeptidomics using quantitative mass spectrometry across ~1500 tumor and normal tissue samples. We identified an HLA-A*02:01-restricted pan-cancer epitope within the collagen type VI α-3 (COL6A3) gene that is highly presented on tumor stroma across multiple solid cancers due to a tumor-specific alternative splicing event that rarely occurs outside the tumor microenvironment. T cells expressing natural COL6A3-specific TCRs demonstrated only modest activity against cells presenting high copy numbers of COL6A3 pHLAs. One of these TCRs was affinity-enhanced, enabling transduced T cells to specifically eliminate tumors in vivo that expressed similar copy numbers of pHLAs as primary tumor specimens. The enhanced TCR variants exhibited a favorable safety profile with no detectable off-target reactivity, paving the way to initiate clinical trials using COL6A3-specific TCRs to target an array of solid tumors.
Collapse
Affiliation(s)
- Gloria B Kim
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jens Fritsche
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Sebastian Bunk
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Andrea Mahr
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Felix Unverdorben
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Kevin Tosh
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hong Kong
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Colby R Maldini
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chui Lau
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sriram Srivatsa
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuguang Jiang
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua Glover
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derek Dopkin
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolyn X Zhang
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heiko Schuster
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Daniel J Kowalewski
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | | | - Martina Ott
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - David Fuhrmann
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Maike Baues
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Hans Boesmueller
- Institute of Pathology and Neuropathology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Christoph Schraeder
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Gisela Schimmack
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Colette Song
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Franziska Hoffgaard
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Michael Roemer
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Chih-Chiang Tsou
- Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - Martin Hofmann
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Thomas Treiber
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Meike Hutt
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Leonie Alten
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Maike Jaworski
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Amir Alpert
- Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - Sarah Missel
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Carsten Reinhardt
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Harpreet Singh
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany.,Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - Oliver Schoor
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Steffen Walter
- Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - Claudia Wagner
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Dominik Maurer
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Toni Weinschenk
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany.,Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - James L Riley
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
271
|
Velaga R, Koo KM, Mainwaring PN. Harnessing gene fusion-derived neoantigens for 'cold' breast and prostate tumor immunotherapy. Immunotherapy 2022; 14:1165-1179. [PMID: 36043380 DOI: 10.2217/imt-2022-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Breast and prostate cancers are generally considered immunologically 'cold' tumors due to multiple mechanisms rendering them unresponsive to immune checkpoint blockade therapies. With little success in garnering positive outcomes in modern immunotherapeutic clinical trials, it is prudent to re-examine the role of immunogenic neoantigens in these cold tumors. Gene fusions are driver mutations in hormone-driven cancers that can result in alternative mutation-specific neoantigens to promote immunotherapy sensitivity. This review focuses on 1) gene fusion formation mechanisms in neoantigen generation; 2) gene fusion neoantigens in cancer immunotherapeutic strategies and associated clinical trials; and 3) challenges and opportunities in computational and liquid biopsy technologies. This review is anticipated to initiate further research into gene fusion neoantigens of cold tumors for further experimental validation.
Collapse
Affiliation(s)
- Ravi Velaga
- Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kevin M Koo
- XING Technologies Pty Ltd, Brisbane, QLD 4073, Australia.,The University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
| | | |
Collapse
|
272
|
SF3B1 facilitates HIF1-signaling and promotes malignancy in pancreatic cancer. Cell Rep 2022; 40:111266. [PMID: 36001976 DOI: 10.1016/j.celrep.2022.111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/16/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Mutations in the splicing factor SF3B1 are frequently occurring in various cancers and drive tumor progression through the activation of cryptic splice sites in multiple genes. Recent studies also demonstrate a positive correlation between the expression levels of wild-type SF3B1 and tumor malignancy. Here, we demonstrate that SF3B1 is a hypoxia-inducible factor (HIF)-1 target gene that positively regulates HIF1 pathway activity. By physically interacting with HIF1α, SF3B1 facilitates binding of the HIF1 complex to hypoxia response elements (HREs) to activate target gene expression. To further validate the relevance of this mechanism for tumor progression, we show that a reduction in SF3B1 levels via monoallelic deletion of Sf3b1 impedes tumor formation and progression via impaired HIF signaling in a mouse model for pancreatic cancer. Our work uncovers an essential role of SF3B1 in HIF1 signaling, thereby providing a potential explanation for the link between high SF3B1 expression and aggressiveness of solid tumors.
Collapse
|
273
|
Multi-omics analysis reveals RNA splicing alterations and their biological and clinical implications in lung adenocarcinoma. Signal Transduct Target Ther 2022; 7:270. [PMID: 35989380 PMCID: PMC9393167 DOI: 10.1038/s41392-022-01098-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/18/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Alternative RNA splicing is one of the most important mechanisms of posttranscriptional gene regulation, which contributes to protein diversity in eukaryotes. It is well known that RNA splicing dysregulation is a critical mechanism in tumor pathogenesis and the rationale for the promising splice-switching therapeutics for cancer treatment. Although we have a comprehensive understanding of DNA mutations, abnormal gene expression profiles, epigenomics, and proteomics in lung adenocarcinoma (LUAD), little is known about its aberrant alternative splicing profiles. Here, based on the multi-omics data generated from over 1000 samples, we systematically studied the RNA splicing alterations in LUAD and revealed their biological and clinical implications. We identified 3688 aberrant alternative splicing events (AASEs) in LUAD, most of which were alternative promoter and exon skip. The specific regulatory roles of RNA binding proteins, somatic mutations, and DNA methylations on AASEs were comprehensively interrogated. We dissected the functional implications of AASEs and concluded that AASEs mainly affected biological processes related to tumor proliferation and metastasis. We also found that one subtype of LUAD with a particular AASEs pattern was immunogenic and had a better prognosis and response rate to immunotherapy. These findings revealed novel events related to tumorigenesis and tumor immune microenvironment and laid the foundation for the development of splice-switching therapies for LUAD.
Collapse
|
274
|
Zhang D, Lu W, Zhuo Z, Mei H, Wu X, Cui Y. Construction of a breast cancer prognosis model based on alternative splicing and immune infiltration. Discov Oncol 2022; 13:78. [PMID: 35988113 PMCID: PMC9393119 DOI: 10.1007/s12672-022-00506-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignancy among women in the world. Alternative splicing (AS) is an important mechanism for regulating gene expression and producing proteome diversity, which is closely related to tumorigenesis. Understanding the role of AS in BC may be helpful to reveal new therapeutic targets for clinical interventions. METHODS RNA-seq, clinical and AS data of TCGA-BRCA were downloaded from TCGA and TCGA SpliceSeq databases. AS events associated with prognosis were filtered by univariate Cox regression. The AS risk model of BC was built by Lasso regression, random forest and multivariate Cox regression. The accuracy of the AS risk model and clinicopathological factors were evaluated by time-dependent receiver operating characteristic (ROC) curves. The significant factors were used to construct the nomogram model. Tumor microenvironment analysis, immune infiltration and immune checkpoint analysis were performed to show the differences between the high and low AS risk groups. The expression differences of genes of AS events constituting the risk model in tumor tissues and normal tissues were analyzed, the genes with significant differences were screened, and their relationship with prognosis, tumor microenvironment, immune infiltration and immune checkpoint were analyzed. Finally, Pearson correlation analysis was used to calculate the correlation coefficient between splicing factors (SF) and prognostic AS events in TCGA-BRCA. The results were imported into Cytoscape, and the associated network was constructed. RESULTS A total of 21,232 genes had 45,421 AS events occurring in TCGA-BRCA, while 1604 AS events were found to be significantly correlated with survival. The BRCA risk model consisted of 5 AS events, (TTC39C|44853|AT*- 2.67) + (HSPBP1|52052|AP*- 4.28) + (MAZ|35942|ES*2.34) + (ANK3|11845|AP*1.18) + (ZC3HAV1|81940|AT*1.59), which were confirmed to be valuable for predicting BRCA prognosis to a certain degree, including ROC curve, survival analysis, tumor microenvironment analysis, immune infiltration and immune checkpoint analysis. Based on this, we constructed a nomogram prediction model composed of clinicopathological features and the AS risk signature. Furthermore, we found that MAZ was a core gene indicating the connection of tumor prognosis and AS events. Ultimately, a network of SF-AS regulation was established to reveal the relationship between them. CONCLUSIONS We constructed a nomogram model combined with clinicopathological features and AS risk score to predict the prognosis of BC. The detailed analysis of tumor microenvironment and immune infiltration in the AS risk model may further reveal the potential mechanisms of BC recurrence and development.
Collapse
Affiliation(s)
- Dongni Zhang
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Wenping Lu
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.
| | - Zhili Zhuo
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Heting Mei
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Xiaoqing Wu
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yongjia Cui
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| |
Collapse
|
275
|
Zhong Y, Yan W, Ruan J, Fang M, Yu C, Du S, Rai G, Tao D, Henderson MJ, Fang S. XBP1 variant 1 promotes mitosis of cancer cells involving upregulation of the polyglutamylase TTLL6. Hum Mol Genet 2022; 31:2639-2654. [PMID: 35333353 PMCID: PMC9396943 DOI: 10.1093/hmg/ddac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
XBP1 variant 1 (Xv1) is the most abundant XBP1 variant and is highly enriched across cancer types but nearly none in normal tissues. Its expression is associated with poor patients' survival and is specifically required for survival of malignant cells, but the underlying mechanism is not known. Here we report that Xv1 upregulates the polyglutamylase tubulin tyrosine ligase-like 6 (TTLL6) and promotes mitosis of cancer cells. Like the canonical XBP1, Xv1 mRNA undergoes unconventional splicing by IRE1α under endoplasmic reticulum stress, but it is also constitutively spliced by IRE1β. The spliced Xv1 mRNA encodes the active form of Xv1 protein (Xv1s). RNA sequencing in HeLa cells revealed that Xv1s overexpression regulates expression of genes that are not involved in the canonical unfolded protein response, including TTLL6 as a highly upregulated gene. Gel shift assay and chromatin immunoprecipitation revealed that Xv1s bind to the TTLL6 promoter region. Knockdown of TTLL6 caused death of cancer cells but not benign and normal cells, similar to the effects of knocking down Xv1. Moreover, overexpression of TTLL6 partially rescued BT474 cells from apoptosis induced by either TTLL6 or Xv1 knockdown, supporting TTLL6 as an essential downstream effector of Xv1 in regulating cancer cell survival. TTLL6 is localized in the mitotic spindle of cancer cells. Xv1 or TTLL6 knockdown resulted in decreased spindle polyglutamylation and interpolar spindle, as well as congression failure, mitotic arrest and cell death. These findings suggest that Xv1 is essential for cancer cell mitosis, which is mediated, at least in part, by increasing TTLL6 expression.
Collapse
Affiliation(s)
- Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenjing Yan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jingjing Ruan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pulmonary Medicine, Anhui Medical University First Affiliated Hospital, Hefei, Anhui 230032, China
| | - Mike Fang
- Population and Quantitative Health Sciences Department, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Changjun Yu
- Department of General surgery, Anhui Medical University First Affiliated Hospital, Hefei, Anhui 230032, China
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, UM Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
276
|
Deng Z, Zhan P, Yang K, Liu L, Liu J, Gao W. Identification of personalized neoantigen-based vaccines and immune subtype characteristic analysis of glioblastoma based on abnormal alternative splicing. Am J Cancer Res 2022; 12:3581-3600. [PMID: 36119813 PMCID: PMC9442016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023] Open
Abstract
The development of personalized neoantigen-based vaccines in cancer immunotherapy has shown promise. In this study, a large-scale bioinformatics analysis was performed to identify potential GBM-associated neoantigens based on abnormal alternative splicing, and then screen suitable patients for vaccination. Gene expression profiles and clinical information were collected from TCGA. We filtered the percent-spliced-in (PSI) spectrum of alternative splicing events in the dataset to identify abnormal alternative splicing events. MAF package was used to identify and analyse tumour mutation burden (TMB) in cancer samples. Tumour Immune Estimation Resource (TIMER) was used to calculate and visualize the infiltration of antigen presenting cells (APCs). In addition, consistent clustering algorithm utilized to identify immune subtypes of GBM. Five potential tumour neoantigens (LRP1, TCF12, DERL3, WIPI2, and TSHZ3) were identified in GBM by selecting genes both with abnormal alternative splicing (upregulated) and gene frameshift mutations, in which LRP1 was significantly associated with APCs. According to the expressions of five potential tumour neoantigens, 160 patients with GBM were divided into three immune subtypes. Patients in cluster3 exhibited good prognoses. Furthermore, the characteristics, including TMB, abnormal alternative splicing events, immune activity, immune cells proportion, and association with tumour biomarkers, were unique in each immune subtypes. The characteristics of cluster3 illustrated that cluster3 participants were more suitable candidates for vaccination. LRP1 was identified as a potential neoantigen for immunotherapy against GBM, and patients in cluster3 were more suitable for vaccination. Our findings provide important guidance for the development of novel neoantigens and therapeutic targets in patients with GBM.
Collapse
Affiliation(s)
- Zhifang Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Peiyan Zhan
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Ke Yang
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Li Liu
- Office of Academic Research, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Wenqi Gao
- Institute of Maternal and Child Health, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University and TechnologyWuhan 430015, Hubei, China
| |
Collapse
|
277
|
Ma J, Wu JY, Zhu L. Detection of orthologous exons and isoforms using EGIO. Bioinformatics 2022; 38:4474-4480. [PMID: 35946527 PMCID: PMC9525004 DOI: 10.1093/bioinformatics/btac548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Alternative splicing is an important mechanism to generate transcriptomic and phenotypic diversity. Existing methods have limited power to detect orthologous isoforms. RESULTS We develop a new method, EGIO, to detect orthologous exons and orthologous isoforms from two species. EGIO uses unique exonic regions to construct exon groups, in which process dynamic programming strategy is used to do exon alignment. EGIO could cover all the coding exons within orthologous genes. A comparison between EGIO and ExTraMapper shows that EGIO could detect more orthologous isoforms with conserved sequence and exon structures. We apply EGIO to compare human and chimpanzee protein-coding isoforms expressed in the frontal cortex and identify 6912 genes that express human unique isoforms. Unexpectedly, more human unique isoforms are detected than those conserved between humans and chimpanzees. AVAILABILITY AND IMPLEMENTATION Source code and test data of EGIO are available at https://github.com/wu-lab-egio/EGIO. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jinfa Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jane Y Wu
- To whom correspondence should be addressed. or
| | - Li Zhu
- To whom correspondence should be addressed. or
| |
Collapse
|
278
|
Maheshwari C, Vidoni C, Titone R, Castiglioni A, Lora C, Follo C, Isidoro C. Isolation, Characterization, and Autophagy Function of BECN1-Splicing Isoforms in Cancer Cells. Biomolecules 2022; 12:biom12081069. [PMID: 36008963 PMCID: PMC9405542 DOI: 10.3390/biom12081069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing allows the synthesis of different protein variants starting from a single gene. Human Beclin 1 (BECN1) is a key autophagy regulator that acts as haploinsufficient tumor suppressor since its decreased expression correlates with tumorigenesis and poor prognosis in cancer patients. Recent studies show that BECN1 mRNA undergoes alternative splicing. Here, we report on the isolation and molecular and functional characterization of three BECN1 transcript variants (named BECN1-α, -β and -γ) in human cancer cells. In ovarian cancer NIHOVCAR3, these splicing variants were found along with the canonical wild-type. BECN1-α lacks 143 nucleotides at its C-terminus and corresponds to a variant previously described. BECN1-β and -γ lack the BCL2 homology 3 domain and other regions at their C-termini. Following overexpression in breast cancer cells MDA-MB231, we found that BECN1-α stimulates autophagy. Specifically, BECN1-α binds to Parkin and stimulates mitophagy. On the contrary, BECN1-β reduces autophagy with a dominant negative effect over the endogenous wild-type isoform. BECN1-γ maintains its ability to interact with the vacuolar protein sorting 34 and only has a slight effect on autophagy. It is possible that cancer cells utilize the alternative splicing of BECN1 for modulating autophagy and mitophagy in response to environmental stresses.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlo Follo
- Correspondence: (C.F.); (C.I.); Tel.: +39-0321660507 (C.I.); Fax: +39-0321620421 (C.I.)
| | - Ciro Isidoro
- Correspondence: (C.F.); (C.I.); Tel.: +39-0321660507 (C.I.); Fax: +39-0321620421 (C.I.)
| |
Collapse
|
279
|
Gardner L, Kostarelos K, Mallick P, Dive C, Hadjidemetriou M. Nano-omics: nanotechnology-based multidimensional harvesting of the blood-circulating cancerome. Nat Rev Clin Oncol 2022; 19:551-561. [PMID: 35739399 DOI: 10.1038/s41571-022-00645-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
Over the past decade, the development of 'simple' blood tests that enable cancer screening, diagnosis or monitoring and facilitate the design of personalized therapies without the need for invasive tumour biopsy sampling has been a core ambition in cancer research. Data emerging from ongoing biomarker development efforts indicate that multiple markers, used individually or as part of a multimodal panel, are required to enhance the sensitivity and specificity of assays for early stage cancer detection. The discovery of cancer-associated molecular alterations that are reflected in blood at multiple dimensions (genome, epigenome, transcriptome, proteome and metabolome) and integration of the resultant multi-omics data have the potential to uncover novel biomarkers as well as to further elucidate the underlying molecular pathways. Herein, we review key advances in multi-omics liquid biopsy approaches and introduce the 'nano-omics' paradigm: the development and utilization of nanotechnology tools for the enrichment and subsequent omics analysis of the blood-circulating cancerome.
Collapse
Affiliation(s)
- Lois Gardner
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Manchester, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Catalan Institute of Nanoscience & Nanotechnology (ICN2), UAB Campus, Barcelona, Spain
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Stanford University, California, USA
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Manchester, UK
| | - Marilena Hadjidemetriou
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
280
|
De Kesel J, Fijalkowski I, Taylor J, Ntziachristos P. Splicing dysregulation in human hematologic malignancies: beyond splicing mutations. Trends Immunol 2022; 43:674-686. [PMID: 35850914 DOI: 10.1016/j.it.2022.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Splicing is a fundamental process in pre-mRNA maturation. Whereas alternative splicing (AS) enriches the diversity of the proteome, its aberrant regulation can drive oncogenesis. So far, most attention has been given to spliceosome mutations (SMs) in the context of splicing dysregulation in hematologic diseases. However, in recent years, post-translational modifications (PTMs) and transcriptional alterations of splicing factors (SFs), just as epigenetic signatures, have all been shown to contribute to global splicing dysregulation as well. In addition, the contribution of aberrant splicing to the neoantigen repertoire of cancers has been recognized. With the pressing need for novel therapeutics to combat blood cancers, this article provides an overview of emerging mechanisms that contribute to aberrant splicing, as well as their clinical potential.
Collapse
Affiliation(s)
- Jonas De Kesel
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Igor Fijalkowski
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Justin Taylor
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
281
|
Bokharaie H, Kolch W, Krstic A. Analysis of Alternative mRNA Splicing in Vemurafenib-Resistant Melanoma Cells. Biomolecules 2022; 12:993. [PMID: 35883549 PMCID: PMC9312936 DOI: 10.3390/biom12070993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 01/09/2023] Open
Abstract
Alternative mRNA splicing is common in cancers. In BRAF V600E-mutated malignant melanoma, a frequent mechanism of acquired resistance to BRAF inhibitors involves alternative splicing (AS) of BRAF. The resulting shortened BRAF protein constitutively dimerizes and conveys drug resistance. Here, we have analysed AS in SK-MEL-239 melanoma cells and a BRAF inhibitor (vemurafenib)-resistant derivative that expresses an AS, shortened BRAF V600E transcript. Transcriptome analysis showed differential expression of spliceosome components between the two cell lines. As there is no consensus approach to analysing AS events, we used and compared four common AS softwares based on different principles, DEXSeq, rMATS, ASpli, and LeafCutter. Two of them correctly identified the BRAF V600E AS in the vemurafenib-resistant cells. Only 12 AS events were identified by all four softwares. Testing the AS predictions experimentally showed that these overlapping predictions are highly accurate. Interestingly, they identified AS caused alterations in the expression of melanin synthesis and cell migration genes in the vemurafenib-resistant cells. This analysis shows that combining different AS analysis approaches produces reliable results and meaningful, biologically testable hypotheses.
Collapse
Affiliation(s)
- Honey Bokharaie
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (H.B.); (W.K.)
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (H.B.); (W.K.)
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Aleksandar Krstic
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (H.B.); (W.K.)
| |
Collapse
|
282
|
A Regulatory Axis between Epithelial Splicing Regulatory Proteins and Estrogen Receptor α Modulates the Alternative Transcriptome of Luminal Breast Cancer. Int J Mol Sci 2022; 23:ijms23147835. [PMID: 35887187 PMCID: PMC9319905 DOI: 10.3390/ijms23147835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial splicing regulatory proteins 1 and 2 (ESRP1/2) control the splicing pattern during epithelial to mesenchymal transition (EMT) in a physiological context and in cancer, including breast cancer (BC). Here, we report that ESRP1, but not ESRP2, is overexpressed in luminal BCs of patients with poor prognosis and correlates with estrogen receptor α (ERα) levels. Analysis of ERα genome-binding profiles in cell lines and primary breast tumors showed its binding in the proximity of ESRP1 and ESRP2 genes, whose expression is strongly decreased by ERα silencing in hormone-deprived conditions. The combined knock-down of ESRP1/2 in MCF-7 cells followed by RNA-Seq, revealed the dysregulation of 754 genes, with a widespread alteration of alternative splicing events (ASEs) of genes involved in cell signaling, metabolism, cell growth, and EMT. Functional network analysis of ASEs correlated with ESRP1/2 expression in ERα+ BCs showed RAC1 as the hub node in the protein-protein interactions altered by ESRP1/2 silencing. The comparison of ERα- and ESRP-modulated ASEs revealed 63 commonly regulated events, including 27 detected in primary BCs and endocrine-resistant cell lines. Our data support a functional implication of the ERα-ESRP1/2 axis in the onset and progression of BC by controlling the splicing patterns of related genes.
Collapse
|
283
|
Lehmann KV, Kahles A, Murr M, Rätsch G. RNA Instant Quality Check: Alignment-Free RNA-Degradation Detection. J Comput Biol 2022; 29:857-866. [PMID: 35776515 DOI: 10.1089/cmb.2021.0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With the constant increase of large-scale genomic data projects, automated and high-throughput quality assessment becomes a crucial component of any analysis. Whereas small projects often have a more homogeneous design and a manageable structure allowing for a manual per-sample analysis of quality, large-scale studies tend to be much more heterogeneous and complex. Many quality metrics have been developed to assess the quality of an individual sample on the raw read level. Degradation effects are typically assessed based on the RNA integrity (RIN) score, or on postalignment data. In this study, we show that single commonly used quality criteria such as the RIN score alone are not sufficient to ensure RNA sample quality. We developed a new approach and provide an efficient tool that estimates RNA sample degradation by computing the 5'/3' bias based on all genes in an alignment-free manner. That enables degradation assessment right after data generation and not during the analysis procedure allowing for early intervention in the sample handling process. Our analysis shows that this strategy is fast, robust to annotation and differences in library size, and provides complementary quality information to RIN scores enabling the accurate identification of degraded samples.
Collapse
Affiliation(s)
- Kjong-van Lehmann
- Department of Computer Science, ETH Zürich, Zürich, Switzerland.,Joint Research Center of Computational Biomedicine, University Hospital RWTH Aachen, Aachen, Germany.,Cancer Research Center Cologne Essen, University Hospital Köln, Köln, Germany.,Biomedical Informatics Research, University Hospital Zürich, Zürich, Switzerland.,Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Andre Kahles
- Department of Computer Science, ETH Zürich, Zürich, Switzerland.,Biomedical Informatics Research, University Hospital Zürich, Zürich, Switzerland.,Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Magdalena Murr
- Department of Computer Science, ETH Zürich, Zürich, Switzerland
| | - Gunnar Rätsch
- Department of Computer Science, ETH Zürich, Zürich, Switzerland.,Biomedical Informatics Research, University Hospital Zürich, Zürich, Switzerland.,Swiss Institute of Bioinformatics, Zurich, Switzerland.,Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
284
|
Shang S, Zhao Y, Qian K, Qin Y, Zhang X, Li T, Shan L, Wei M, Xi J, Tang B. The role of neoantigens in tumor immunotherapy. Biomed Pharmacother 2022; 151:113118. [PMID: 35623169 DOI: 10.1016/j.biopha.2022.113118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Tumor neoantigens are aberrant polypeptides produced by tumor cells as a result of genomic mutations. They are also tumor-specific antigens (TSA). Neoantigens are more immunogenic than tumor-related antigens and do not induce autoimmunity. Based on the rapid development of bioinformatics and the continuous update of sequencing technology, cancer immunotherapy with tumor neoantigens has made promising breakthroughs and progress. In this review, the generation, prediction, and identification of novel antigens, as well as the individualized treatments of neoantigens, were first introduced. Secondly, the mechanism of Chimeric Antigen Receptor T-Cell Immunotherapy (CAR-T) therapy and immune checkpoint blockade therapy in the treatment of tumors were outlined, and the three treatment methods were compared. Thirdly, the application of neoantigens in CAR-T therapy and PD-1/PD-L1 blockade therapy was briefly described. The benefits of the neoantigen vaccines over common vaccines were summarized as well. Finally, the prospect of neoantigen therapy was presented.
Collapse
Affiliation(s)
- Shengwen Shang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Yongjie Zhao
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Kaiqiang Qian
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Yuexuan Qin
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Xinyi Zhang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Tianyue Li
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Lidong Shan
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Meili Wei
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Jun Xi
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Bikui Tang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| |
Collapse
|
285
|
Han P, Cao P, Yue J, Kong K, Hu S, Deng Y, Li L, Li F, Zhao B. Knockdown of hnRNPA1 Promotes NSCLC Metastasis and EMT by Regulating Alternative Splicing of LAS1L exon 9. Front Oncol 2022; 12:837248. [PMID: 35814393 PMCID: PMC9260696 DOI: 10.3389/fonc.2022.837248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Tumor metastasis is still an insurmountable obstacle in tumor treatment. Lung cancer represents one of the most common malignancies with high morbidity worldwide. hnRNPA1 has been reported to be involved in the regulation of tumor metastasis, while its specific role in tumor metastasis seems to be controversial and its molecular mechanism in lung cancer metastasis remains to be further elucidated. In this study, we confirmed that knockdown of the hnRNPA1 led to enhanced migration, invasion and EMT transition in lung cancer cells. Bioinformatics analysis of the GSE34992 dataset revealed that hnRNPA1 may regulate the alternative splicing (AS) of LAS1L exon 9. Further AGE assays and RIP assays revealed that hnRNPA1 can directly bind to the LAS1L pre-mRNA to inhibit the splicing of LAS1L exon 9. The RNA pull-down assays showed that hnRNPA1 can specifically bind to the two sites (UAGGGU(WT1) and UGGGGU(WT3)) of LAS1L Intron 9. Further Transwell assays indicated that the expression ratio of LAS1L-L/LAS1L-S regulated by hnRNPA1 can further promote the migration, invasion and EMT transition in lung cancer cells. Moreover, hnRNPA1 expression showed significant heterogeneity in lung cancer tissues, which may contain new research directions and potential therapeutic targets. Our results indicate that hnRNPA1 can affect the metastasis of lung cancer cells by modulating the AS of LAS1L exon 9, highlighting the potential significance of hnRNPA1 in lung cancer metastasis.
Collapse
Affiliation(s)
- Peng Han
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Cao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Yue
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangle Kong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Hu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Zhao, ; Fan Li,
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Zhao, ; Fan Li,
| |
Collapse
|
286
|
Fuller EP, O'Neill RJ, Weiner MP. Derivation of splice junction-specific antibodies using a unique hapten targeting strategy and directed evolution. N Biotechnol 2022; 71:1-10. [PMID: 35750288 DOI: 10.1016/j.nbt.2022.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/05/2022] [Accepted: 06/19/2022] [Indexed: 10/31/2022]
Abstract
Alternative splicing of RNA occurs frequently in eukaryotic cells and can result in multiple protein isoforms that are nearly identical in amino acid sequence, but have unique biological roles. Moreover, the relative abundance of these unique isoforms can be correlative with diseased states and potentially used as biomarkers or therapeutic targets. However, due to high sequence similarities among isoforms, current proteomic methods are incapable of differentiating native protein isoforms derived from most alternative splicing events. Herein, a strategy employing a nonsynonymous, non-native amino acid (nnAA) pseudo-hapten (i.e. an amino acid or amino acid derivative that is different from the native amino acid at a particular position) as a targeting epitope in splice junction-spanning peptides was successful in directed antibody derivation. After isolating nnAA-specific antibodies, directed evolution reduced the antibody's binding dependence on the nnAA pseudo-hapten and improved binding to the native splice junction epitope. The resulting antibodies demonstrated codependent binding affinity to each exon of the splice junction and thus are splice junction- and isoform-specific. Furthermore, epitope scanning demonstrated that positioning of the nnAA pseudo-hapten within a peptide antigen can be exploited to predetermine the isolated antibody's specificity at, or near, amino acid resolution. Thus, this nnAA targeting strategy has the potential to robustly derive splice junction- and site-specific antibodies that can be used in a wide variety of research endeavors to unambiguously differentiate native protein isoforms.
Collapse
Affiliation(s)
- Emily P Fuller
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Abcam, 688 East Main Street, Branford, CT 06405, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
287
|
Xiang H, Zhang L, Bu F, Guan X, Chen L, Zhang H, Zhao Y, Chen H, Zhang W, Li Y, Lee LJ, Mei Z, Rao Y, Gu Y, Hou Y, Mu F, Dong X. A Novel Proteogenomic Integration Strategy Expands the Breadth of Neo-Epitope Sources. Cancers (Basel) 2022; 14:cancers14123016. [PMID: 35740681 PMCID: PMC9220843 DOI: 10.3390/cancers14123016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor-specific antigens can activate T cell-based antitumor immune responses and are ideal targets for cancer immunotherapy. However, their identification is still challenging. Although mass spectrometry can directly identify human leukocyte antigen (HLA) binding peptides in tumor cells, it focuses on tumor-specific antigens derived from annotated protein-coding regions constituting only 1.5% of the genome. We developed a novel proteogenomic integration strategy to expand the breadth of tumor-specific epitopes derived from all genomic regions. Using the colorectal cancer cell line HCT116 as a model, we accurately identified 10,737 HLA-presented peptides, 1293 of which were non-canonical peptides that traditional database searches could not identify. Moreover, we found eight tumor neo-epitopes derived from somatic mutations, four of which were not previously reported. Our findings suggest that this new proteogenomic approach holds great promise for increasing the number of tumor-specific antigen candidates, potentially enlarging the tumor target pool and improving cancer immunotherapy.
Collapse
Affiliation(s)
- Haitao Xiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (H.X.); (X.G.); (W.Z.); (Y.L.)
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Le Zhang
- BGI-GenoImmune, BGI-Shenzhen, Shenzhen 518083, China; (L.Z.); (L.J.L.)
| | - Fanyu Bu
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Xiangyu Guan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (H.X.); (X.G.); (W.Z.); (Y.L.)
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Lei Chen
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Haibo Zhang
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Yuntong Zhao
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Huanyi Chen
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Weicong Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (H.X.); (X.G.); (W.Z.); (Y.L.)
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
| | - Yijian Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (H.X.); (X.G.); (W.Z.); (Y.L.)
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen 518083, China
| | - Leo Jingyu Lee
- BGI-GenoImmune, BGI-Shenzhen, Shenzhen 518083, China; (L.Z.); (L.J.L.)
| | - Zhanlong Mei
- BGI, Shenzhen 518083, China; (Z.M.); (Y.R.); (Y.H.)
| | - Yuan Rao
- BGI, Shenzhen 518083, China; (Z.M.); (Y.R.); (Y.H.)
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Yong Hou
- BGI, Shenzhen 518083, China; (Z.M.); (Y.R.); (Y.H.)
| | - Feng Mu
- BGI, Shenzhen 518083, China; (Z.M.); (Y.R.); (Y.H.)
- Correspondence: (F.M.); (X.D.)
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen 518103, China; (F.B.); (L.C.); (H.Z.); (Y.Z.); (H.C.); (Y.G.)
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen 518083, China
- Correspondence: (F.M.); (X.D.)
| |
Collapse
|
288
|
Park B, Heo SJ, Lee YJ, Seo MK, Hong J, Shin EC, Jung I, Kim S. HLA-I-restricted CD8 + T cell immunity may accelerate tumorigenesis in conjunction with VHL inactivation. iScience 2022; 25:104467. [PMID: 35677644 PMCID: PMC9167969 DOI: 10.1016/j.isci.2022.104467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
CD8+ T cells recognize and kill tumor cells with HLA-I tumor antigens in early tumorigenesis, the efficiency of which differs according to antigen-recognition coverage, as shown in earlier tumor onset in HLA-I homozygosity. However, the universality of these associations remains unknown. Here, we assessed the tumor type and driver mutation specificity in the association between tumor onset age and HLA-I zygosity. Statistical analyses identified an unexpected negative relationship in tumors with VHL biallelic loss, wherein HLA-I heterozygosity was associated with earlier tumor onset, while all others showed either no or a positive association. Testing on an independent dataset reproduced the VHL-dependent acceleration of tumor onset in the HLA-I heterozygous group, confirming the association. Further speculation proposed VEGF-A-mediated T cell exhaustion under VHL inactivation as a potential mechanism. Our findings suggest that CD8+ T cell immunity in early tumor suppression can be conditional to the genetic status of tumors and may even lead to adverse consequences. HLA homozygosity reduces antigen coverage and is associated with earlier tumor onset Tumors with VHL−/−, such as ccRCC, have the opposite association In VHL−/− tumors, CD8+ T cell immunity may have adverse effects in imunosurveillance
Collapse
Affiliation(s)
- BeumJin Park
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Jae Heo
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Joon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Mi-Kyoung Seo
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiyun Hong
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Inkyung Jung
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
289
|
Ladewig E, Michelini F, Jhaveri K, Castel P, Carmona J, Fairchild L, Zuniga AG, Arruabarrena-Aristorena A, Cocco E, Blawski R, Kittane S, Zhang Y, Sallaku M, Baldino L, Hristidis V, Chandarlapaty S, Abdel-Wahab O, Leslie C, Scaltriti M, Toska E. The Oncogenic PI3K-Induced Transcriptomic Landscape Reveals Key Functions in Splicing and Gene Expression Regulation. Cancer Res 2022; 82:2269-2280. [PMID: 35442400 PMCID: PMC9354703 DOI: 10.1158/0008-5472.can-22-0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway regulates proliferation, survival, and metabolism and is frequently activated across human cancers. A comprehensive elucidation of how this signaling pathway controls transcriptional and cotranscriptional processes could provide new insights into the key functions of PI3K signaling in cancer. Here, we undertook a transcriptomic approach to investigate genome-wide gene expression and transcription factor activity changes, as well as splicing and isoform usage dynamics, downstream of PI3K. These analyses uncovered widespread alternatively spliced isoforms linked to proliferation, metabolism, and splicing in PIK3CA-mutant cells, which were reversed by inhibition of PI3Kα. Analysis of paired tumor biopsies from patients with PIK3CA-mutated breast cancer undergoing treatment with PI3Kα inhibitors identified widespread splicing alterations that affect specific isoforms in common with the preclinical models, and these alterations, namely PTK2/FRNK and AFMID isoforms, were validated as functional drivers of cancer cell growth or migration. Mechanistically, isoform-specific splicing factors mediated PI3K-dependent RNA splicing. Treatment with splicing inhibitors rendered breast cancer cells more sensitive to the PI3Kα inhibitor alpelisib, resulting in greater growth inhibition than alpelisib alone. This study provides the first comprehensive analysis of widespread splicing alterations driven by oncogenic PI3K in breast cancer. The atlas of PI3K-mediated splicing programs establishes a key role for the PI3K pathway in regulating splicing, opening new avenues for exploiting PI3K signaling as a therapeutic vulnerability in breast cancer. SIGNIFICANCE Transcriptomic analysis reveals a key role for the PI3K pathway in regulating RNA splicing, uncovering new mechanisms by which PI3K regulates proliferation and metabolism in breast cancer. See related commentary by Claridge and Hopkins, p. 2216.
Collapse
Affiliation(s)
- Erik Ladewig
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Flavia Michelini
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Komal Jhaveri
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pau Castel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York
| | - Javier Carmona
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lauren Fairchild
- Weill Cornell Medical College, New York, New York
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, New York
| | - Adler G. Zuniga
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Baltimore, Maryland
| | - Amaia Arruabarrena-Aristorena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Translational prostate cancer Research lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Derio, Spain
| | - Emiliano Cocco
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Ryan Blawski
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Baltimore, Maryland
| | - Srushti Kittane
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland
| | - Yuhan Zhang
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland
| | - Mirna Sallaku
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laura Baldino
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vasilis Hristidis
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christina Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eneda Toska
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland
| |
Collapse
|
290
|
Proteomic Profiling Identifies Co-Regulated Expression of Splicing Factors as a Characteristic Feature of Intravenous Leiomyomatosis. Cancers (Basel) 2022; 14:cancers14122907. [PMID: 35740573 PMCID: PMC9221257 DOI: 10.3390/cancers14122907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Intravenous leiomyomatosis (IVLM) is a rare benign smooth muscle tumour that is characterised by intravenous growth in the uterine and pelvic veins. Previous DNA copy number and transcriptomic studies have shown that IVLM harbors unique genomic and transcriptomic alterations when compared to uterine leiomyoma (uLM), which may account for their distinct clinical behaviour. Here we undertake the first comparative proteomic analysis of IVLM and other smooth muscle tumours (comprising uLM, soft tissue leiomyoma and benign metastasizing leiomyoma) utilising data-independent acquisition mass spectrometry. We show that, at the protein level, IVLM is defined by the unique co-regulated expression of splicing factors. In particular, IVLM is enriched in two clusters composed of co-regulated proteins from the hnRNP, LSm, SR and Sm classes of the spliceosome complex. One of these clusters (Cluster 3) is associated with key biological processes including nascent protein translocation and cell signalling by small GTPases. Taken together, our study provides evidence of co-regulated expression of splicing factors in IVLM compared to other smooth muscle tumours, which suggests a possible role for alternative splicing in the pathogenesis of IVLM.
Collapse
|
291
|
Han F, Yang B, Zhou M, Huang Q, Mai M, Huang Z, Lai M, Xu E, Zhang H. GLTSCR1 coordinates alternative splicing and transcription elongation of ZO1 to regulate colorectal cancer progression. J Mol Cell Biol 2022; 14:mjac009. [PMID: 35218185 PMCID: PMC9188103 DOI: 10.1093/jmcb/mjac009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 11/12/2022] Open
Abstract
Alternative splicing (AS) and transcription elongation are vital biological processes, and their dysregulation causes multiple diseases, including tumors. However, the coregulatory mechanism of AS and transcription elongation in tumors remains unclear. This study demonstrates a novel AS pattern of tight junction protein 1 (ZO1) regulated by the RNA polymerase II elongation rate in colorectal cancer (CRC). Glioma tumor suppressor candidate region gene 1 (GLTSCR1) decreases the transcription elongation rate of ZO1 to provide a time window for binding of the splicing factor HuR to the specific motif in intron 22 of ZO1 and spliceosome recognition of the weak 3' and 5' splice sites in exon 23 to promote exon 23 inclusion. Since exon 23 inclusion in ZO1 suppresses migration and invasion of CRC cells, our findings suggest a novel potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Fengyan Han
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China
| | - Beibei Yang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China
| | - Mingyue Zhou
- Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Qiong Huang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Minglang Mai
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China
| | - Zhaohui Huang
- Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Maode Lai
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Enping Xu
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
292
|
Wang J, Ling S, Ni J, Wan Y. Novel γδ T cell-based prognostic signature to estimate risk and aid therapy in hepatocellular carcinoma. BMC Cancer 2022; 22:638. [PMID: 35681134 PMCID: PMC9185956 DOI: 10.1186/s12885-022-09662-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/12/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Numerous studies have revealed that gamma delta (γδ) T cell infiltration plays a crucial regulatory role in hepatocellular carcinoma (HCC) development. Nonetheless, a comprehensive analysis of γδ T cell infiltration in prognosis evaluation and therapeutic prediction remains unclear. METHODS Multi-omic data on HCC patients were obtained from public databases. The CIBERSORT algorithm was applied to decipher the tumor immune microenvironment (TIME) of HCC. Weighted gene co-expression network analysis (WGCNA) was performed to determine significant modules with γδ T cell-specific genes. Kaplan-Meier survival curves and receiver operating characteristic analyses were used to validate prognostic capability. Additionally, the potential role of RFESD inhibition by si-RFESD in vitro was investigated using EdU and CCK-8 assays. RESULTS A total of 16,421 genes from 746 HCC samples (616 cancer and 130 normal) were identified based on three distinct cohorts. Using WGCNA, candidate modules (brown) with 1755 significant corresponding genes were extracted as γδ T cell-specific genes. Next, a novel risk signature consisting of 11 hub genes was constructed using multiple bioinformatic analyses, which presented great prognosis prediction reliability. The risk score exhibited a significant correlation with ICI and chemotherapeutic targets. HCC samples with different risks experienced diverse signalling pathway activities. The possible interaction of risk score with tumor mutation burden (TMB) was further analyzed. Subsequently, the potential functions of the RFESD gene were explored in HCC, and knockdown of RFESD inhibited cell proliferation in HCC cells. Finally, a robust prognostic risk-clinical nomogram was developed and validated to quantify clinical outcomes. CONCLUSIONS Collectively, comprehensive analyses focusing on γδ T cell patterns will provide insights into prognosis prediction, the mechanisms of immune infiltration, and advanced therapy strategies in HCC.
Collapse
Affiliation(s)
- Jingrui Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Zhejiang, Hangzhou, China
| | - Sunbin Ling
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Zhejiang, Hangzhou, China
| | - Jie Ni
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Zhejiang, Hangzhou, China
| | - Yafeng Wan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Zhejiang, Hangzhou, China.
| |
Collapse
|
293
|
Campisi L, Chizari S, Ho JSY, Gromova A, Arnold FJ, Mosca L, Mei X, Fstkchyan Y, Torre D, Beharry C, Garcia-Forn M, Jiménez-Alcázar M, Korobeynikov VA, Prazich J, Fayad ZA, Seldin MM, De Rubeis S, Bennett CL, Ostrow LW, Lunetta C, Squatrito M, Byun M, Shneider NA, Jiang N, La Spada AR, Marazzi I. Clonally expanded CD8 T cells characterize amyotrophic lateral sclerosis-4. Nature 2022; 606:945-952. [PMID: 35732742 PMCID: PMC10089623 DOI: 10.1038/s41586-022-04844-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/09/2022] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogenous neurodegenerative disorder that affects motor neurons and voluntary muscle control1. ALS heterogeneity includes the age of manifestation, the rate of progression and the anatomical sites of symptom onset. Disease-causing mutations in specific genes have been identified and define different subtypes of ALS1. Although several ALS-associated genes have been shown to affect immune functions2, whether specific immune features account for ALS heterogeneity is poorly understood. Amyotrophic lateral sclerosis-4 (ALS4) is characterized by juvenile onset and slow progression3. Patients with ALS4 show motor difficulties by the time that they are in their thirties, and most of them require devices to assist with walking by their fifties. ALS4 is caused by mutations in the senataxin gene (SETX). Here, using Setx knock-in mice that carry the ALS4-causative L389S mutation, we describe an immunological signature that consists of clonally expanded, terminally differentiated effector memory (TEMRA) CD8 T cells in the central nervous system and the blood of knock-in mice. Increased frequencies of antigen-specific CD8 T cells in knock-in mice mirror the progression of motor neuron disease and correlate with anti-glioma immunity. Furthermore, bone marrow transplantation experiments indicate that the immune system has a key role in ALS4 neurodegeneration. In patients with ALS4, clonally expanded TEMRA CD8 T cells circulate in the peripheral blood. Our results provide evidence of an antigen-specific CD8 T cell response in ALS4, which could be used to unravel disease mechanisms and as a potential biomarker of disease state.
Collapse
Affiliation(s)
- Laura Campisi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Shahab Chizari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jessica S Y Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasia Gromova
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Frederick J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Lorena Mosca
- Medical Genetics Unit, Department of Laboratory Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Xueyan Mei
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yesai Fstkchyan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denis Torre
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cindy Beharry
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Jiménez-Alcázar
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Centre, Madrid, Spain
| | | | - Jack Prazich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Craig L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Lyle W Ostrow
- Neuromuscular Division of the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christian Lunetta
- NEMO Clinical Center, Fondazione Serena Onlus, Milan, Italy
- Neurorehabilitation Department, Istituti Clinici Scientifici Maugeri, IRCCS, Milan, Italy
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Minji Byun
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Ning Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Albert R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA.
- Department of Neurology, University of California, Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
294
|
Zhao Y, Sun H, Zhao Y, Liu Q, Liu Y, Hou Y, Jin W. NSrp70 suppresses metastasis in triple-negative breast cancer by modulating Numb/TβR1/EMT axis. Oncogene 2022; 41:3409-3422. [PMID: 35568738 DOI: 10.1038/s41388-022-02349-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Alternative splicing of mRNA precursors allows cancer cells to create different protein isoforms that promote growth and survival. Compared to normal cells, cancer cells frequently exhibit a higher diversity of their transcriptomes. A comprehensive understanding of splicing regulation is required to correct the splicing alterations for the future precision oncology. A quantitative proteomic screen was performed to identify the regulators associated the metastasis in triple-negative breast cancer. Multiple in vitro and in vivo functional analyses were used to study the effects of NSrp70 on breast cancer metastasis. Next, transcriptomic sequencing (RNA-seq) and alternative splicing bioinformatics analysis was applied to screen the potential targets of NSrp70. Moreover, in vitro splicing assays, RNA pull-down, and RNA immunoprecipitation assay were used to confirm the specific binding between NSrp70 and downstream target genes. Furthermore, the prognostic value of NSrp70 was analyzed in a cohort of patients by performing IHC. We uncovered NSrp70 as a novel suppressor of breast cancer metastasis. We discovered that NSrp70 inhibited the skipped exon alternative splicing of NUMB, promoted the degradation of transforming growth factor receptor 1 through lysosome pathway, and regulated TGFβ/SMAD-mediated epithelial-mesenchymal transition phenotype in breast cancer cells. Furthermore, high NSrp70 expression correlated with a better prognosis in breast cancer patients. Our findings revealed that splicing regulator NSrp70 serves as a metastasis suppressor.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hefen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yuanyuan Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiqi Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yifeng Hou
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
295
|
Robles-Oteiza C, Wu CJ. Editorial overview: Vaccines: Reinvigorating therapeutic cancer vaccines. Curr Opin Immunol 2022; 76:102176. [PMID: 35429774 PMCID: PMC9612210 DOI: 10.1016/j.coi.2022.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 12/05/2022]
Abstract
Lessons learned from the rapid deployment of vaccines during the COVID-19 pandemic are reinvigorating the cancer vaccine field. Using delivery platforms including mRNA and synthetic long peptides, recent clinical trials have demonstrated that cancer vaccines are safe, feasible, and can be associated with the generation of antigen-specific memory T cells and, in some cases, durable clinical responses. Despite these advances, fundamental questions remain regarding the optimal delivery platforms and antigen targets to use in cancer vaccines. Ongoing and future studies that harness advances in the identification of novel sources of antigens, the prediction of immunogenic antigens, and the use of single-cell technologies to profile antigen-specific T cells will hopefully reveal correlates with clinical outcomes and provide a mechanistic basis for future progress.
Collapse
Affiliation(s)
- Camila Robles-Oteiza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
296
|
Zhang J, Huang D, Saw PE, Song E. Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends Immunol 2022; 43:523-545. [PMID: 35624021 DOI: 10.1016/j.it.2022.04.010] [Citation(s) in RCA: 263] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint blockade (ICB) therapies have achieved clinical benefit, but most 'immune-cold' solid tumors are not responsive. The diversity of immune evasion mechanisms remains a key obstacle in turning nonresponsive 'cold' tumors into responsive 'hot' ones. Therefore, exploring the mechanisms of such transitions and tumor immunotyping can provide significant insights into designing effective therapeutic strategies against cancer. Here, we focus on the latest advances regarding local and systemic regulatory mechanisms of immune responses in cold and hot tumors. We also highlight the necessity for tumor immunotyping through the assessment of multiple immunological variables using various diagnostic techniques and biomarkers. Finally, we discuss the challenges and potential clinical applications of immunophenotyping to turn cold tumors hot, which may further guide combined immunotherapies.
Collapse
Affiliation(s)
- Jiahui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
297
|
Identification of gene signatures for COAD using feature selection and Bayesian network approaches. Sci Rep 2022; 12:8761. [PMID: 35610288 PMCID: PMC9130243 DOI: 10.1038/s41598-022-12780-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
The combination of TCGA and GTEx databases will provide more comprehensive information for characterizing the human genome in health and disease, especially for underlying the cancer genetic alterations. Here we analyzed the gene expression profile of COAD in both tumor samples from TCGA and normal colon tissues from GTEx. Using the SNR-PPFS feature selection algorithms, we discovered a 38 gene signatures that performed well in distinguishing COAD tumors from normal samples. Bayesian network of the 38 genes revealed that DEGs with similar expression patterns or functions interacted more closely. We identified 14 up-DEGs that were significantly correlated with tumor stages. Cox regression analysis demonstrated that tumor stage, STMN4 and FAM135B dysregulation were independent prognostic factors for COAD survival outcomes. Overall, this study indicates that using feature selection approaches to select key gene signatures from high-dimensional datasets can be an effective way for studying cancer genomic characteristics.
Collapse
|
298
|
Hatat AS, Benoit-Pilven C, Pucciarelli A, de Fraipont F, Lamothe L, Perron P, Rey A, Giaj Levra M, Toffart AC, Auboeuf D, Eymin B, Gazzeri S. Altered splicing of ATG16-L1 mediates acquired resistance to tyrosine kinase inhibitors of EGFR by blocking autophagy in non-small cell lung cancer. Mol Oncol 2022; 16:3490-3508. [PMID: 35593080 PMCID: PMC9533692 DOI: 10.1002/1878-0261.13229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 11/11/2022] Open
Abstract
Despite the initial efficacy of using tyrosine kinase inhibitors of epidermal growth factor receptor (EGFR-TKIs) for treating patients with non-small cell lung cancer (NSCLC), resistance inevitably develops. Recent studies highlight a link between alternative splicing and cancer drug response. Therefore, we aimed to identify deregulated splicing events that play a role in resistance to EGFR-TKI. By using RNA sequencing, reverse transcription PCR (RT-PCR) and RNA interference, we showed that overexpression of a splice variant of the autophagic gene ATG16-L1 that retains exon 8 and encodes the β-isoform of autophagy-related protein 16-1 (ATG16-L1-β) concurs acquired resistance to EGFR-TKI in NSCLC cells. Using matched biopsies, we found increased levels of ATG16-L1-β at the time of progression in 3 of 11 NSCLC patients treated with EGFR-TKI. Mechanistically, gefitinib-induced autophagy was impaired in resistant cells that accumulated ATG16-L1-β. Neutralization of ATG16-L1-β restored autophagy in response to gefitinib, induced apoptosis and inhibited the growth of in ovo tumor xenografts. Conversely, overexpression of ATG16-L1-β in parental sensitive cells prevented gefitinib-induced autophagy and increased cell survival. These results support a role for defective autophagy in acquired resistance to EGFR-TKIs and identify splicing regulation of ATG16-L1 as a therapeutic vulnerability that could be explored for improving EGFR-targeted cancer therapy.
Collapse
Affiliation(s)
- Anne-Sophie Hatat
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Clara Benoit-Pilven
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| | - Amélie Pucciarelli
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Florence de Fraipont
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France.,Molecular Genetic Unit, Grenoble-Alpes University Hospital, Grenoble, France
| | - Lucie Lamothe
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Pascal Perron
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Amandine Rey
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| | - Matteo Giaj Levra
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France.,Thoracic Oncology Unit, Grenoble-Alpes University Hospital, Grenoble, France
| | - Anne-Claire Toffart
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France.,Thoracic Oncology Unit, Grenoble-Alpes University Hospital, Grenoble, France
| | - Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| | - Beatrice Eymin
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Sylvie Gazzeri
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
299
|
Alternative Splicing of the Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT) Is Regulated by RBFOX2 in Lymphoid Malignancies. Mol Cell Biol 2022; 42:e0050321. [PMID: 35404107 PMCID: PMC9119065 DOI: 10.1128/mcb.00503-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aberrant alternative splicing (AS) of pre-mRNAs promotes the development and proliferation of cancerous cells. Accordingly, we had previously observed higher levels of the aryl hydrocarbon receptor nuclear translocator (ARNT) spliced variant isoform 1 in human lymphoid malignancies compared to that in normal lymphoid cells, which is a consequence of increased inclusion of alternative exon 5. ARNT is a transcription factor that has been implicated in the survival of various cancers. Notably, we found that ARNT isoform 1 promoted the growth and survival of lymphoid malignancies, but the regulatory mechanism controlling ARNT AS is unclear. Here, we report cis- and trans-regulatory elements which are important for the inclusion of ARNT exon 5. Specifically, we identified recognition motifs for the RNA-binding protein RBFOX2, which are required for RBFOX2-mediated exon 5 inclusion. RBFOX2 upregulation was observed in lymphoid malignancies, correlating with the observed increase in ARNT exon 5 inclusion. Moreover, suppression of RBFOX2 significantly reduced ARNT isoform 1 levels and cell growth. These observations reveal RBFOX2 as a critical regulator of ARNT AS in lymphoid malignancies and suggest that blocking the ARNT-specific RBFOX2 motifs to decrease ARNT isoform 1 levels is a viable option for targeting the growth of lymphoid malignancies.
Collapse
|
300
|
Perna F, Espinoza-Gutarra MR, Bombaci G, Farag SS, Schwartz JE. Immune-Based Therapeutic Interventions for Acute Myeloid Leukemia. Cancer Treat Res 2022; 183:225-254. [PMID: 35551662 DOI: 10.1007/978-3-030-96376-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, clonally heterogeneous, myeloid malignancy, with a 5-year overall survival of approximately 27%. It constitutes the most common acute leukemia in adults, with an incidence of 3-5 cases per 100,000 in the United States. Despite great advances in understanding the molecular mechanisms underpinning leukemogenesis, the past several decades had seen little change to the backbone of therapy, comprised of an anthracycline-based induction regimen for those who are fit enough to receive it, followed by risk-stratified post-remission therapy with consolidation cytarabine or allogeneic stem cell transplantation (allo-SCT). Allo-SCT is the most fundamental form of immunotherapy in which donor cytotoxic T and NK cells recognize and eradicate residual AML in the graft-versus-leukemia (GvL) effect. Building on that, several alternative or synergistic approaches to exploit both self and foreign immunity against AML have been developed. Checkpoint inhibitors, for example, CTLA-4 inhibitors, PD-1 inhibitors, and PD-L1 inhibitors block proteins found on T cells or cancer cells that stop the immune system from attacking the cancer cells. They have been used with limited success in both the AML relapsed/refractory (R/R) and post SCT settings. AML tumor mutational burden is low compared to solid tumors and thus, it is less likely to generate neoantigens and respond to antibody-mediated checkpoint blockade that has shown unprecedented results in solid tumors. Therefore, alternative therapeutic strategies that work independently of the T cell receptor (TCR) specificity have been developed. They include bispecific antibodies, which recruit T cells through CD3 engagement, and in AML have shown an overall response rate ranging between 14 and 30% in early phase trials. Chimeric Antigen Receptor (CAR) T cell therapy is a type of treatment in which T cells are genetically engineered to produce a recombinant receptor that redirects the specificity and function of T lymphocytes. However, lack of cell surface targets exclusively expressed on AML cells including Leukemic Stem Cells (LSCs) combined with clonal heterogeneity represents the biggest challenge in developing CAR therapy for AML. Antibody-Drug Conjugates (ADC) constitute the only FDA-approved immunotherapy to treat AML with Gemtuzumab Ozogamicin, a CD33-specific ADC used in CEBPα-mutated AML. The identification of additional cell surface targets is critical for the development of other ADC's potentially useful in the induction and maintenance regimens, given the ease at which these reagents can be generated and managed. Here, we will review those immune-based therapeutic interventions and highlight active areas of research investigations toward fulfillment of the great promise of immunotherapy to AML.
Collapse
Affiliation(s)
- Fabiana Perna
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA.
| | - Manuel R Espinoza-Gutarra
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Giuseppe Bombaci
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Sherif S Farag
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Jennifer E Schwartz
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|