251
|
Yu J, Wang Q, Zhang X, Guo Z, Cui X. Mechanisms of Neoantigen-Targeted Induction of Pyroptosis and Ferroptosis: From Basic Research to Clinical Applications. Front Oncol 2021; 11:685377. [PMID: 34123855 PMCID: PMC8191503 DOI: 10.3389/fonc.2021.685377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neoantigens are tumor-specific antigens (TSAs) that are only expressed in tumor cells. They are ideal targets enabling T cells to recognize tumor cells and stimulate a potent antitumor immune response. Pyroptosis and ferroptosis are newly discovered types of programmed cell death (PCD) that are different from apoptosis, cell necrosis, and autophagy. Studies of ferroptosis and pyroptosis of cancer cells are increasing, and strategies to modify the tumor microenvironment (TME) through ferroptosis to inhibit the occurrence and development of cancer, improve prognosis, and increase the survival rate are popular research topics. In addition, adoptive T cell therapy (ACT), including chimeric antigen receptor T cell (CAR-T) technology and T cell receptor engineered T cell (TCR-T) technology, and checkpoint blocking tumor immunotherapies (such as anti-PD- 1 and anti-PD-L1 agents), tumor vaccines and other therapeutic technologies that rely on tumor neoantigens are rapidly being developed. In this article, the relationship between neoantigens and pyroptosis and ferroptosis as well as the clinical role of neoantigens is reviewed.
Collapse
Affiliation(s)
- Jie Yu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Qing Wang
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Xiaoyun Zhang
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Zhiliang Guo
- The Department of Spine Surgery, The 80th Group Army Hospital of Chinese People's Liberation Army (PLA) of China, Weifang, China
| | - Xiaodong Cui
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| |
Collapse
|
252
|
Wang Q, Bin C, Xue Q, Gao Q, Huang A, Wang K, Tang N. GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis. Cell Death Dis 2021; 12:426. [PMID: 33931597 PMCID: PMC8087704 DOI: 10.1038/s41419-021-03718-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence supports that ferroptosis plays an important role in tumor growth inhibition. Sorafenib, originally identified as an inhibitor of multiple oncogenic kinases, has been shown to induce ferroptosis in hepatocellular carcinoma (HCC). However, some hepatoma cell lines are less sensitive to sorafenib-induced ferroptotic cell death. Glutathione S-transferase zeta 1 (GSTZ1), an enzyme in the catabolism of phenylalanine, suppresses the expression of the master regulator of cellular redox homeostasis nuclear factor erythroid 2-related factor 2 (NRF2). This study aimed to investigate the role and underlying molecular mechanisms of GSTZ1 in sorafenib-induced ferroptosis in HCC. GSTZ1 was significantly downregulated in sorafenib-resistant hepatoma cells. Mechanistically, GSTZ1 depletion enhanced the activation of the NRF2 pathway and increased the glutathione peroxidase 4 (GPX4) level, thereby suppressing sorafenib-induced ferroptosis. The combination of sorafenib and RSL3, a GPX4 inhibitor, significantly inhibited GSTZ1-deficient cell viability and promoted ferroptosis and increased ectopic iron and lipid peroxides. In vivo, the combination of sorafenib and RSL3 had a synergic therapeutic effect on HCC progression in Gstz1-/- mice. In conclusion, this finding demonstrates that GSTZ1 enhanced sorafenib-induced ferroptosis by inhibiting the NRF2/GPX4 axis in HCC cells. Combination therapy of sorafenib and GPX4 inhibitor RSL3 may be a promising strategy in HCC treatment.
Collapse
Affiliation(s)
- Qiujie Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Cheng Bin
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qiang Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
253
|
Zhao T, Guo X, Sun Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis 2021; 12:529-551. [PMID: 33815881 PMCID: PMC7990372 DOI: 10.14336/ad.2020.0912] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential component in many biological processes in the human body. It is critical for the visual phototransduction cascade in the retina. However, excess iron can be toxic. Iron accumulation and reduced efficiency of intracellular antioxidative defense systems predispose the aging retina to oxidative stress-induced cell death. Age-related macular degeneration (AMD) is characterized by retinal iron accumulation and lipid peroxidation. The mechanisms underlying AMD include oxidative stress-mediated death of retinal pigment epithelium (RPE) cells and subsequent death of retinal photoreceptors. Understanding the mechanism of the disruption of iron and redox homeostasis in the aging retina and AMD is crucial to decipher these mechanisms of cell death and AMD pathogenesis. The mechanisms of retinal cell death in AMD are an area of active investigation; previous studies have proposed several types of cell death as major mechanisms. Ferroptosis, a newly discovered programmed cell death pathway, has been associated with the pathogenesis of several neurodegenerative diseases. Ferroptosis is initiated by lipid peroxidation and is characterized by iron-dependent accumulation. In this review, we provide an overview of the mechanisms of iron accumulation and lipid peroxidation in the aging retina and AMD, with an emphasis on ferroptosis.
Collapse
Affiliation(s)
- Tantai Zhao
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaojian Guo
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
254
|
Zhai Z, Zou P, Liu F, Xia Z, Li J. Ferroptosis Is a Potential Novel Diagnostic and Therapeutic Target for Patients With Cardiomyopathy. Front Cell Dev Biol 2021; 9:649045. [PMID: 33869204 PMCID: PMC8047193 DOI: 10.3389/fcell.2021.649045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiomyocyte death is a fundamental progress in cardiomyopathy. However, the mechanism of triggering the death of myocardial cells remains unclear. Ferroptosis, which is the nonapoptotic, iron-dependent, and peroxidation-driven programmed cell death pathway, that is abundant and readily accessible, was not discovered until recently with a pharmacological approach. New researches have demonstrated the close relationship between ferroptosis and the development of many cardiovascular diseases, and several ferroptosis inhibitors, iron chelators, and small antioxidant molecules can relieve myocardial injury by blocking the ferroptosis pathways. Notably, ferroptosis is gradually being considered as an important cell death mechanism in the animal models with multiple cardiomyopathies. In this review, we will discuss the mechanism of ferroptosis and the important role of ferroptosis in cardiomyopathy with a special emphasis on the value of ferroptosis as a potential novel diagnostic and therapeutic target for patients suffering from cardiomyopathy in the future.
Collapse
Affiliation(s)
- Zhenyu Zhai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengtao Zou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuxiang Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zirong Xia
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
255
|
Chen X, Yu C, Kang R, Kroemer G, Tang D. Cellular degradation systems in ferroptosis. Cell Death Differ 2021; 28:1135-1148. [PMID: 33462411 PMCID: PMC8027807 DOI: 10.1038/s41418-020-00728-1] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
In eukaryotic cells, macromolecular homeostasis requires selective degradation of damaged units by the ubiquitin-proteasome system (UPS) and autophagy. Thus, dysfunctional degradation systems contribute to multiple pathological processes. Ferroptosis is a type of iron-dependent oxidative cell death driven by lipid peroxidation. Various antioxidant systems, especially the system xc--glutathione-GPX4 axis, play a significant role in preventing lipid peroxidation-mediated ferroptosis. The endosomal sorting complex required for transport-III (ESCRT-III)-dependent membrane fission machinery counteracts ferroptosis by repairing membrane damage. Moreover, cellular degradation systems play a dual role in regulating the ferroptotic response, depending on the cargo they degrade. The key ferroptosis repressors, such as SLC7A11 and GPX4, are degraded by the UPS. In contrast, the overactivation of selective autophagy, including ferritinophagy, lipophagy, clockophagy and chaperone-mediated autophagy, promotes ferroptotic death by degrading ferritin, lipid droplets, circadian proteins, and GPX4, respectively. Autophagy modulators (e.g., BECN1, STING1/TMEM173, CTSB, HMGB1, PEBP1, MTOR, AMPK, and DUSP1) also determine the ferroptotic response in a context-dependent manner. In this review, we provide an updated overview of the signals and mechanisms of the degradation system regulating ferroptosis, opening new horizons for disease treatment strategies.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 511436, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
- Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China.
- Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
256
|
Shi Z, Zhang L, Zheng J, Sun H, Shao C. Ferroptosis: Biochemistry and Biology in Cancers. Front Oncol 2021; 11:579286. [PMID: 33868986 PMCID: PMC8047310 DOI: 10.3389/fonc.2021.579286] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
The challenge of eradicating cancer is that cancer cells possess diverse mechanisms to protect themselves from clinical strategies. Recently, ferroptosis has been shown to exhibit appreciable anti-tumor activity that could be harnessed for cancer therapy in the future. Ferroptosis is an iron-dependent form of regulated cell death that is characterized by the oxidization of polyunsaturated fatty acids (PUFAs) and accumulation of lipid peroxides. Ferroptosis has been closely correlated with numerous biological processes, such as amino acid metabolism, glutathione metabolism, iron metabolism, and lipid metabolism, as well as key regulators including GPX4, FSP1, NRF2, and p53. Although ferroptosis could be involved in killing various cancer cells, multiple aspects of this phenomenon remain unresolved. In this review, we summarize the biochemistry and biology of ferroptosis in diverse cancers and discuss the potential mechanisms of ferroptosis, which might pave the way for guiding cancer therapeutics.
Collapse
Affiliation(s)
- Zhiyuan Shi
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Lei Zhang
- School of Public Health, Xiamen Univerisity, Xiamen, China
| | - Jianzhong Zheng
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Huimin Sun
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Chen Shao
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
257
|
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 2021; 22:266-282. [PMID: 33495651 PMCID: PMC8142022 DOI: 10.1038/s41580-020-00324-8] [Citation(s) in RCA: 3739] [Impact Index Per Article: 934.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
The research field of ferroptosis has seen exponential growth over the past few years, since the term was coined in 2012. This unique modality of cell death, driven by iron-dependent phospholipid peroxidation, is regulated by multiple cellular metabolic pathways, including redox homeostasis, iron handling, mitochondrial activity and metabolism of amino acids, lipids and sugars, in addition to various signalling pathways relevant to disease. Numerous organ injuries and degenerative pathologies are driven by ferroptosis. Intriguingly, therapy-resistant cancer cells, particularly those in the mesenchymal state and prone to metastasis, are exquisitely vulnerable to ferroptosis. As such, pharmacological modulation of ferroptosis, via both its induction and its inhibition, holds great potential for the treatment of drug-resistant cancers, ischaemic organ injuries and other degenerative diseases linked to extensive lipid peroxidation. In this Review, we provide a critical analysis of the current molecular mechanisms and regulatory networks of ferroptosis, the potential physiological functions of ferroptosis in tumour suppression and immune surveillance, and its pathological roles, together with a potential for therapeutic targeting. Importantly, as in all rapidly evolving research areas, challenges exist due to misconceptions and inappropriate experimental methods. This Review also aims to address these issues and to provide practical guidelines for enhancing reproducibility and reliability in studies of ferroptosis. Finally, we discuss important concepts and pressing questions that should be the focus of future ferroptosis research.
Collapse
Affiliation(s)
- Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA.
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany.
- Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
258
|
McGrath EP, Centonze FG, Chevet E, Avril T, Lafont E. Death sentence: The tale of a fallen endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119001. [PMID: 33705817 DOI: 10.1016/j.bbamcr.2021.119001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
Endoplasmic Reticulum (ER) stress signaling is an adaptive mechanism triggered when protein folding demand overcomes the folding capacity of this compartment, thereby leading to the accumulation of improperly folded proteins. This stress signaling pathway is named the Unfolded Protein Response (UPR) and aims at restoring ER homeostasis. However, if this fails, mechanisms orienting cells towards death processes are initiated. Herein, we summarize the most recent findings connecting ER stress and the UPR with identified death mechanisms including apoptosis, necrosis, pyroptosis, ferroptosis, and autophagy. We highlight new avenues that could be investigated and controlled through actionable mechanisms in physiology and pathology.
Collapse
Affiliation(s)
| | | | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Tony Avril
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | |
Collapse
|
259
|
Affiliation(s)
- Qing Shen
- Temasek Life Sciences Laboratory; and Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail: (QS); (NIN)
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory; and Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail: (QS); (NIN)
| |
Collapse
|
260
|
Mirzaei S, Zarrabi A, Hashemi F, Zabolian A, Saleki H, Azami N, Hamzehlou S, Farahani MV, Hushmandi K, Ashrafizadeh M, Khan H, Kumar AP. Nrf2 Signaling Pathway in Chemoprotection and Doxorubicin Resistance: Potential Application in Drug Discovery. Antioxidants (Basel) 2021; 10:antiox10030349. [PMID: 33652780 PMCID: PMC7996755 DOI: 10.3390/antiox10030349] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Doxorubicin (DOX) is extensively applied in cancer therapy due to its efficacy in suppressing cancer progression and inducing apoptosis. After its discovery, this chemotherapeutic agent has been frequently used for cancer therapy, leading to chemoresistance. Due to dose-dependent toxicity, high concentrations of DOX cannot be administered to cancer patients. Therefore, experiments have been directed towards revealing underlying mechanisms responsible for DOX resistance and ameliorating its adverse effects. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling is activated to increase levels of reactive oxygen species (ROS) in cells to protect them against oxidative stress. It has been reported that Nrf2 activation is associated with drug resistance. In cells exposed to DOX, stimulation of Nrf2 signaling protects cells against cell death. Various upstream mediators regulate Nrf2 in DOX resistance. Strategies, both pharmacological and genetic interventions, have been applied for reversing DOX resistance. However, Nrf2 induction is of importance for alleviating side effects of DOX. Pharmacological agents with naturally occurring compounds as the most common have been used for inducing Nrf2 signaling in DOX amelioration. Furthermore, signaling networks in which Nrf2 is a key player for protection against DOX adverse effects have been revealed and are discussed in the current review.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; (A.Z.); (M.A.)
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Mahdi Vasheghani Farahani
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran;
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; (A.Z.); (M.A.)
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
261
|
MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chem Biol 2021; 28:765-775.e5. [PMID: 33539732 DOI: 10.1016/j.chembiol.2021.01.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a type of nonapoptotic cell death driven by lipid peroxidation. Here, we show a key role of MGST1 in inhibiting ferroptosis in cell cultures and mouse xenograft models. Ferroptosis activators induce MGST1 upregulation in human pancreatic ductal adenocarcinoma (PDAC) cell lines in an NFE2L2-dependent manner. The genetic depletion of MGST1 or NFE2L2 has a similar effect in promoting ferroptosis, whereas the re-expression of MGST1 restores the resistance of NFE2L2-knockdown cells to ferroptosis. MGST1 inhibits ferroptotic cancer cell death partly by binding to ALOX5, resulting in reduced lipid peroxidation. The expression of MGST1 is positively correlated with NFE2L2 expression in pancreatic tumors, which is implicated in the poor prognosis of patients with PDAC. These findings not only provide a valuable insight into the defense mechanism against ferroptotic cell death, but also indicate that targeting the MGST1 redox-sensitive pathway may be a promising strategy for the treatment of PDAC.
Collapse
|
262
|
Li N, Jiang W, Wang W, Xiong R, Wu X, Geng Q. Ferroptosis and its emerging roles in cardiovascular diseases. Pharmacol Res 2021; 166:105466. [PMID: 33548489 DOI: 10.1016/j.phrs.2021.105466] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/29/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Ferroptosis is a new form of regulated cell death (RCD) driven by iron-dependent lipid peroxidation, which is morphologically and mechanistically distinct from other forms of RCD including apoptosis, autophagic cell death, pyroptosis and necroptosis. Recently, ferroptosis has been found to participate in the development of various cardiovascular diseases (CVDs) including doxorubicin-induced cardiotoxicity, ischemia/reperfusion-induced cardiomyopathy, heart failure, aortic dissection and stroke. Cardiovascular homeostasis is indulged in delicate equilibrium of assorted cell types composing the heart or vessels, and how ferroptosis contributes to the pathophysiological responses in CVD progression is unclear. Herein, we reviewed recent discoveries on the basis of ferroptosis and its involvement in CVD pathogenesis, together with related therapeutic potentials, aiming to provide insights on fundamental mechanisms of ferroptosis and implications in CVDs and associated disorders.
Collapse
Affiliation(s)
- Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyang Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaojing Wu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
263
|
Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res 2021; 31:107-125. [PMID: 33268902 PMCID: PMC8026611 DOI: 10.1038/s41422-020-00441-1] [Citation(s) in RCA: 2203] [Impact Index Per Article: 550.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Cell death can be executed through different subroutines. Since the description of ferroptosis as an iron-dependent form of non-apoptotic cell death in 2012, there has been mounting interest in the process and function of ferroptosis. Ferroptosis can occur through two major pathways, the extrinsic or transporter-dependent pathway and the intrinsic or enzyme-regulated pathway. Ferroptosis is caused by a redox imbalance between the production of oxidants and antioxidants, which is driven by the abnormal expression and activity of multiple redox-active enzymes that produce or detoxify free radicals and lipid oxidation products. Accordingly, ferroptosis is precisely regulated at multiple levels, including epigenetic, transcriptional, posttranscriptional and posttranslational layers. The transcription factor NFE2L2 plays a central role in upregulating anti-ferroptotic defense, whereas selective autophagy may promote ferroptotic death. Here, we review current knowledge on the integrated molecular machinery of ferroptosis and describe how dysregulated ferroptosis is involved in cancer, neurodegeneration, tissue injury, inflammation, and infection.
Collapse
Affiliation(s)
- Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, 94800, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, 75015, France.
- Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, 17176, Sweden.
| |
Collapse
|
264
|
Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 2021; 18:280-296. [PMID: 33514910 DOI: 10.1038/s41571-020-00462-0] [Citation(s) in RCA: 1627] [Impact Index Per Article: 406.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
The discovery of regulated cell death processes has enabled advances in cancer treatment. In the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been implicated in the development and therapeutic responses of various types of tumours. Experimental reagents (such as erastin and RSL3), approved drugs (for example, sorafenib, sulfasalazine, statins and artemisinin), ionizing radiation and cytokines (such as IFNγ and TGFβ1) can induce ferroptosis and suppress tumour growth. However, ferroptotic damage can trigger inflammation-associated immunosuppression in the tumour microenvironment, thus favouring tumour growth. The extent to which ferroptosis affects tumour biology is unclear, although several studies have found important correlations between mutations in cancer-relevant genes (for example, RAS and TP53), in genes encoding proteins involved in stress response pathways (such as NFE2L2 signalling, autophagy and hypoxia) and the epithelial-to-mesenchymal transition, and responses to treatments that activate ferroptosis. Herein, we present the key molecular mechanisms of ferroptosis, describe the crosstalk between ferroptosis and tumour-associated signalling pathways, and discuss the potential applications of ferroptosis in the context of systemic therapy, radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China. .,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
265
|
Liu J, Song X, Kuang F, Zhang Q, Xie Y, Kang R, Kroemer G, Tang D. NUPR1 is a critical repressor of ferroptosis. Nat Commun 2021; 12:647. [PMID: 33510144 PMCID: PMC7843652 DOI: 10.1038/s41467-021-20904-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022] Open
Abstract
Ferroptosis is a type of iron-dependent regulated cell death, representing an emerging disease-modulatory mechanism. Transcription factors play multiple roles in ferroptosis, although the key regulator for ferroptosis in iron metabolism remains elusive. Using NanoString technology, we identify NUPR1, a stress-inducible transcription factor, as a driver of ferroptosis resistance. Mechanistically, NUPR1-mediated LCN2 expression blocks ferroptotic cell death through diminishing iron accumulation and subsequent oxidative damage. Consequently, LCN2 depletion mimics NUPR1 deficiency with respect to ferroptosis induction, whereas transfection-enforced re-expression of LCN2 restores resistance to ferroptosis in NUPR1-deficient cells. Pharmacological or genetic blockade of the NUPR1-LCN2 pathway (using NUPR1 shRNA, LCN2 shRNA, pancreas-specific Lcn2 conditional knockout mice, or the small molecule ZZW-115) increases the activity of the ferroptosis inducer erastin and worsens pancreatitis, in suitable mouse models. These findings suggest a link between NUPR1-regulated iron metabolism and ferroptosis susceptibility.
Collapse
Affiliation(s)
- Jiao Liu
- The Third Affiliated Hospital, Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, 510600, Guangdong, China
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Feimei Kuang
- The Third Affiliated Hospital, Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, 510600, Guangdong, China
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.
- Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.
- Université Pierre et Marie Curie, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
- Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden.
| | - Daolin Tang
- The Third Affiliated Hospital, Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, 510600, Guangdong, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
266
|
Deng HF, Yue LX, Wang NN, Zhou YQ, Zhou W, Liu X, Ni YH, Huang CS, Qiu LZ, Liu H, Tan HL, Tang XL, Wang YG, Ma ZC, Gao Y. Mitochondrial Iron Overload-Mediated Inhibition of Nrf2-HO-1/GPX4 Assisted ALI-Induced Nephrotoxicity. Front Pharmacol 2021; 11:624529. [PMID: 33584308 PMCID: PMC7873870 DOI: 10.3389/fphar.2020.624529] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 01/31/2023] Open
Abstract
Aristolactam I (ALI) is an active component derived from some Traditional Chinese medicines (TCMs), and also the important metabolite of aristolochic acid. Long-term administration of medicine-containing ALI was reported to be related to aristolochic acid nephropathy (AAN), which was attributed to ALI-induced nephrotoxicity. However, the toxic mechanism of action involved is still unclear. Recently, pathogenic ferroptosis mediated lipid peroxidation was demonstrated to cause kidney injury. Therefore, this study explored the role of ferroptosis induced by mitochondrial iron overload in ALI-induced nephrotoxicity, aiming to identify the possible toxic mechanism of ALI-induced chronic nephropathy. Our results showed that ALI inhibited HK-2 cell activity in a dose-dependent manner and significantly suppressed glutathione (GSH) levels, accompanying by significant increases in intracellular 4-hydroxynonenal (4-HNE) and intracellular iron ions. Moreover, the ALI-mediated cytotoxicity could be reversed by deferoxamine mesylate (DFO). Compared with other inhibitors, Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, obviously alleviated ALI-induced cytotoxicity. Furthermore, we have shown that ALI could remarkably increase the levels of superoxide anion and ferrous ions in mitochondria, and induce mitochondrial damage and condensed mitochondrial membrane density, the morphological characteristics of ferroptosis, all of which could be reversed by DFO. Interestingly, ALI dose-dependently inhibited these protein contents of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and glutathione peroxidase 4 (GPX4), which could be partly rescued by Tin-protoporphyrin IX (SnPP) and mitoTEMPO co-treatment. In conclusion, our results demonstrated that mitochondrial iron overload-mediated antioxidant system inhibition would assist ALI-induced ferroptosis in renal tubular epithelial cells, and Nrf2-HO-1/GPX4 antioxidative system could be an important intervention target to prevent medicine containing ALI-induced nephropathy.
Collapse
Affiliation(s)
- Hui-Fang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lan-Xin Yue
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ning-Ning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yong-Qiang Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xian Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu-Hao Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Cong-Shu Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li-Zhen Qiu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hong-Ling Tan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiang-Lin Tang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu-Guang Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zeng-Chun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
267
|
Hu N, Bai L, Dai E, Han L, Kang R, Li H, Tang D. Pirin is a nuclear redox-sensitive modulator of autophagy-dependent ferroptosis. Biochem Biophys Res Commun 2021; 536:100-106. [PMID: 33373853 DOI: 10.1016/j.bbrc.2020.12.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023]
Abstract
In regulated cell death, genetically encoded molecular machinery destroys cells. This process is not only essential for organ development and homeostasis, but also leads to pathological diseases. One form of regulated cell death is ferroptosis, which is an iron-dependent oxidative cell death caused by lipid peroxidation. Although inducing ferroptosis is an emerging anticancer strategy, the molecular mechanism underlying tumor resistance to ferroptotic cell death is still unclear. Here, we show that pirin (PIR), an iron-binding nuclear protein, plays a previously unrecognized role in mediating ferroptosis resistance in human pancreatic cancer cells. The transcription factor NFE2L2 mediates the upregulation of PIR during ferroptosis caused by small-molecule compounds (e.g., erastin or RSL3). PIR is a nuclear redox sensor and regulator, and increasing it limits the oxidative damage of DNA and the subsequent cytoplasmic transport and extracellular release of HMGB1. In contrast, the depletion of PIR initiates HMGB1-dependent autophagy by binding to BECN1, and subsequently promotes ferroptosis by activating ACSL4. Consequently, in cell cultures and xenograft mouse models, blocking PIR signaling enhances ferroptosis-mediated tumor growth suppression. Together, these findings provide new insights into the molecular mechanisms of autophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Nanjun Hu
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Lulu Bai
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Leng Han
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hongjun Li
- Physical Examination Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
268
|
Therapeutic potential of bicyclol in liver diseases: Lessons from a synthetic drug based on herbal derivative in traditional Chinese medicine. Int Immunopharmacol 2020; 91:107308. [PMID: 33383448 DOI: 10.1016/j.intimp.2020.107308] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Bicyclol, an innovative chemical drug with proprietary intellectual property rights in China, is based on derivative of traditional Chinese medicine (TCM) Schisandra chinensis (Wuweizi) of North. Mounting data has proved that bicyclol has therapeutic potential in various pathological conditions in liver. In this narrative review, we provide the first summary of pharmacological activities, pharmacokinetic characteristics and toxicity of bicyclol, and discuss future research perspectives. Our results imply that bicyclol has a wide spectrum of pharmacological properties, including anti-viral, anti-inflammatory, immuno-regulatory, anti-oxidative, antisteatotic, anti-fibrotic, antitumor, cell death regulatory effects and modulation of heat shock proteins. Pharmacokinetic studies have indicated that bicyclol is the main substrate of CYP3A/2E1. Additionally, no obvious drug interactions have been found when bicyclol is administered simultaneously with other prescriptions. Furthermore, the results of chronic toxicity have strongly addressed that bicyclol has no noticeable toxic effects on all biochemical indices and pathological examinations of the main organs. In view of good pharmacological actions and safety, bicyclol is anticipated to be a potential candidate for various liver diseases, including acute liver injury, fulminant hepatitis, non-alcoholic fatty liver disease, fibrosis and hepatocellular carcinoma. Further studies are therefore required to delineate its molecular mechanisms and targets to confer this well-designed drug a far greater potency. We hope that bicyclol-based therapeutics for liver diseases might be broadly used in clinical practice worldwide.
Collapse
|
269
|
Zang H, Wu W, Qi L, Tan W, Nagarkatti P, Nagarkatti M, Wang X, Cui T. Autophagy Inhibition Enables Nrf2 to Exaggerate the Progression of Diabetic Cardiomyopathy in Mice. Diabetes 2020; 69:2720-2734. [PMID: 32948607 PMCID: PMC7679777 DOI: 10.2337/db19-1176] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Nuclear factor-erythroid factor 2-related factor 2 (Nrf2) may either ameliorate or worsen diabetic cardiomyopathy. However, the underlying mechanisms are poorly understood. Herein we report a novel mechanism of Nrf2-mediated myocardial damage in type 1 diabetes (T1D). Global Nrf2 knockout (Nrf2KO) hardly affected the onset of cardiac dysfunction induced by T1D but slowed down its progression in mice independent of sex. In addition, Nrf2KO inhibited cardiac pathological remodeling, apoptosis, and oxidative stress associated with both onset and advancement of cardiac dysfunction in T1D. Such Nrf2-mediated progression of diabetic cardiomyopathy was confirmed by a cardiomyocyte-restricted (CR) Nrf2 transgenic approach in mice. Moreover, cardiac autophagy inhibition via CR knockout of autophagy-related 5 gene (CR-Atg5KO) led to early onset and accelerated development of cardiomyopathy in T1D, and CR-Atg5KO-induced adverse phenotypes were rescued by additional Nrf2KO. Mechanistically, chronic T1D leads to glucolipotoxicity inhibiting autolysosome efflux, which in turn intensifies Nrf2-driven transcription to fuel lipid peroxidation while inactivating Nrf2-mediated antioxidant defense and impairing Nrf2-coordinated iron metabolism, thereby leading to ferroptosis in cardiomyocytes. These results demonstrate that diabetes over time causes autophagy deficiency, which turns off Nrf2-mediated defense while switching on an Nrf2-operated pathological program toward ferroptosis in cardiomyocytes, thereby worsening the progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Huimei Zang
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC
| | - Weiwei Wu
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC
| | - Lei Qi
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD
| | - Taixing Cui
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC
| |
Collapse
|
270
|
Song S, Gao Y, Sheng Y, Rui T, Luo C. Targeting NRF2 to suppress ferroptosis in brain injury. Histol Histopathol 2020; 36:383-397. [PMID: 33242213 DOI: 10.14670/hh-18-286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain injury is accompanied by serious iron metabolism disorder and oxidative stress. As a novel form of regulated cell death (RCD) depending on lipid peroxidation caused by iron overload, ferroptosis (FPT) further aggravates brain injury, which is different from apoptosis, autophagy and other traditional cell death in terms of biochemistry, morphology and genetics. Noteworthy, transcriptional regulator NRF2 plays a key role in the cell antioxidant system, and many genes related to FPT are under the control of NRF2, including genes for iron regulation, thiol-dependent antioxidant system, enzymatic detoxification of RCS and carbonyls, NADPH regeneration and ROS sources from mitochondria or extra-mitochondria, which place NRF2 in the key position of regulating the ferroptotic death. Importantly, NRF2 can reduce iron load and resist FPT. In the future, it is expected to open up a new way to treat brain injury by targeting NRF2 to alleviate FPT in brain.
Collapse
Affiliation(s)
- Shunchen Song
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yaxuan Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yi Sheng
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Tongyu Rui
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
271
|
Zhou SY, Cui GZ, Yan XL, Wang X, Qu Y, Guo ZN, Jin H. Mechanism of Ferroptosis and Its Relationships With Other Types of Programmed Cell Death: Insights for Potential Interventions After Intracerebral Hemorrhage. Front Neurosci 2020; 14:589042. [PMID: 33281547 PMCID: PMC7691292 DOI: 10.3389/fnins.2020.589042] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a fatal cerebrovascular disease with high morbidity and mortality, for which no effective therapies are currently available. Brain tissue damage caused by ICH is mediated by a newly identified form of non-apoptotic programmed cell death, called ferroptosis. Ferroptosis is characterized by the iron-induced accumulation of lipid reactive oxygen species (ROS), leading to intracellular oxidative stress. Lipid ROS cause damage to nucleic acids, proteins, and cell membranes, eventually resulting in ferroptosis. Numerous biological processes are involved in ferroptosis, including iron metabolism, lipid peroxidation, and glutathione biosynthesis; therefore, iron chelators, lipophilic antioxidants, and other specific inhibitors can suppress ferroptosis, suggesting that these modulators are beneficial for treating brain injury due to ICH. Accumulating evidence indicates that ferroptosis differs from other types of programmed cell death, such as necroptosis, apoptosis, oxytosis, and pyroptosis, in terms of ultrastructural characteristics, signaling pathways, and outcomes. Although several studies have emphasized the importance of ferroptosis due to ICH, the detailed mechanism underlying ferroptosis remains unclear. This review summarizes the available evidence on the mechanism underlying ferroptosis and its relationship with other types of cell death, with the aim to identify therapeutic targets and potential interventions for ICH.
Collapse
Affiliation(s)
- Sheng-Yu Zhou
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Guo-Zhen Cui
- Department of Hepatology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
272
|
Fasting Drives Nrf2-Related Antioxidant Response in Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21207780. [PMID: 33096672 PMCID: PMC7589317 DOI: 10.3390/ijms21207780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
A common metabolic condition for living organisms is starvation/fasting, a state that could play systemic-beneficial roles. Complex adaptive responses are activated during fasting to help the organism to maintain energy homeostasis and avoid nutrient stress. Metabolic rearrangements during fasting cause mild oxidative stress in skeletal muscle. The nuclear factor erythroid 2-related factor 2 (Nrf2) controls adaptive responses and remains the major regulator of quenching mechanisms underlying different types of stress. Here, we demonstrate a positive role of fasting as a protective mechanism against oxidative stress in skeletal muscle. In particular, by using in vivo and in vitro models of fasting, we found that typical Nrf2-dependent genes, including those controlling iron (e.g., Ho-1) and glutathione (GSH) metabolism (e.g., Gcl, Gsr) are induced along with increased levels of the glutathione peroxidase 4 (Gpx4), a GSH-dependent antioxidant enzyme. These events are associated with a significant reduction in malondialdehyde, a well-known by-product of lipid peroxidation. Our results suggest that fasting could be a valuable approach to boost the adaptive anti-oxidant responses in skeletal muscle.
Collapse
|
273
|
Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 2020; 12:599-620. [PMID: 33000412 PMCID: PMC8310547 DOI: 10.1007/s13238-020-00789-5] [Citation(s) in RCA: 1309] [Impact Index Per Article: 261.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
The cystine/glutamate antiporter SLC7A11 (also commonly known as xCT) functions to import cystine for glutathione biosynthesis and antioxidant defense and is overexpressed in multiple human cancers. Recent studies revealed that SLC7A11 overexpression promotes tumor growth partly through suppressing ferroptosis, a form of regulated cell death induced by excessive lipid peroxidation. However, cancer cells with high expression of SLC7A11 (SLC7A11high) also have to endure the significant cost associated with SLC7A11-mediated metabolic reprogramming, leading to glucose- and glutamine-dependency in SLC7A11high cancer cells, which presents potential metabolic vulnerabilities for therapeutic targeting in SLC7A11high cancer. In this review, we summarize diverse regulatory mechanisms of SLC7A11 in cancer, discuss ferroptosis-dependent and -independent functions of SLC7A11 in promoting tumor development, explore the mechanistic basis of SLC7A11-induced nutrient dependency in cancer cells, and conceptualize therapeutic strategies to target SLC7A11 in cancer treatment. This review will provide the foundation for further understanding SLC7A11 in ferroptosis, nutrient dependency, and tumor biology and for developing novel effective cancer therapies.
Collapse
|
274
|
Wang L, Chen Y, Mi Y, Qiao J, Jin H, Li J, Lu Z, Wang Q, Zou Z. ATF2 inhibits ani-tumor effects of BET inhibitor in a negative feedback manner by attenuating ferroptosis. Biochem Biophys Res Commun 2020; 558:216-223. [PMID: 33008584 DOI: 10.1016/j.bbrc.2020.08.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
BET inhibitor (BETi) has potential therapeutic effects on human cancer especially in breast cancer. However, the detailed mechanisms remain unclear. Herein, we found that BETi JQ1 and I-BET-151 (I-BET) activated ATF2 through JNK1/2 pathway in breast cancer cells MDA-MB-231 (MB-231). In addition, overexpression of ATF2 blocked the reduction of cell viability induced by JQ1 or I-BET in breast cancer MB-231 and BT-549 cells, cervical cancer HeLa cells and lung cancer A549 cells. The induction of cell death by BETi was also attenuated by ATF2 in MB-231 and BT-549 cells. By contrast, depletion of ATF2 increased cancer cell sensitivity to BETi. In MB-231 cells xenograft model, ATF2 significantly inhibited the anti-tumor effects of JQ1. By detection of the oxidized form gluthione, malondialdehyde and lipid ROS, we showed that overexpression of ATF2 inhibited ferroptosis induced by BETi, whereas depletion of ATF2 promoted ferroptosis by BETi. Furthermore, the underlying mechanisms of ATF2-reduced ferroptosis were investigated. Overexpressed and depleted ATF2 were found to significantly upregulate and downregulate NRF2 protein and mRNA expression, respectively. The significantly positive correlations between NRF2 and ATF2 gene expression were found in breast, lung and cervical cancer tissues from TCGA database. In NRF2-depleted MB-231 cells, ATF2 failed to attenuate JQ1-stimulated ferroptosis. All these results suggested that ATF2 inhibited BETi-induced ferroptosis by increasing NRF2 expression. Altogether, our findings illustrated ATF2 suppressed ani-tumor effects of BETi in a negative feedback manner by attenuating ferroptosis. BETi combined with ATF2 or NRF2 inhibitor might be a novel strategy for treatment of human cancer.
Collapse
Affiliation(s)
- Lina Wang
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital. Zhengzhou, 450008, China; MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Yanjun Mi
- Department of Medical Oncology, Xiamen Cancer Hospital, First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Jianghua Qiao
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital. Zhengzhou, 450008, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Juntao Li
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital. Zhengzhou, 450008, China
| | - Zhenduo Lu
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital. Zhengzhou, 450008, China
| | - Qiming Wang
- Department of Clinical Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
275
|
Lin CC, Chi JT. Ferroptosis of epithelial ovarian cancer: genetic determinants and therapeutic potential. Oncotarget 2020; 11:3562-3570. [PMID: 33062192 PMCID: PMC7533070 DOI: 10.18632/oncotarget.27749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancer (OVCA) is the most lethal gynecologic cancer. Current treatment for OVCA involves surgical debulking of the tumors followed by combination chemotherapies. While most patients achieve complete remission, many OVCA will recur and develop chemo-resistance. Whereas recurrent OVCA may be treated by angiogenesis inhibitors, PARP inhibitors, or immunotherapies, the clinical outcomes of recurrence OVCA are still unsatisfactory. One new promising anti-tumor strategy is ferroptosis, a novel form of regulated cell death featured by lipid peroxidation. In this review, we have summarized several recent studies on the ferroptosis of OVCA. Also, we summarize our current understanding of various genetic determinants of ferroptosis and their underlying mechanisms in OVCA. Furthermore, ferroptosis can be combined with other standard cancer therapeutics, which has shown synergistic effects. Therefore, such a combination of therapeutics could lead to new therapeutic strategies to improve the response rate and overcome resistance. By understanding the genetic determinants and underlying mechanisms, ferroptosis may have significant therapeutic potential to improve the clinical outcome of women with OVCA.
Collapse
Affiliation(s)
- Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
276
|
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; the Third Affiliated Hospital; School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; the Third Affiliated Hospital; School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|