251
|
Zhang T, Prasad P, Cai P, He C, Shan D, Rauth AM, Wu XY. Dual-targeted hybrid nanoparticles of synergistic drugs for treating lung metastases of triple negative breast cancer in mice. Acta Pharmacol Sin 2017; 38:835-847. [PMID: 28216624 PMCID: PMC5520182 DOI: 10.1038/aps.2016.166] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/26/2016] [Indexed: 12/21/2022]
Abstract
Lung metastasis is the major cause of death in patients with triple negative breast
cancer (TNBC), an aggressive subtype of breast cancer with no effective therapy at
present. It has been proposed that dual-targeted therapy, ie, targeting
chemotherapeutic agents to both tumor vasculature and cancer cells, may offer some
advantages. The present work was aimed to develop a dual-targeted synergistic drug
combination nanomedicine for the treatment of lung metastases of TNBC. Thus,
Arg-Gly-Asp peptide (RGD)-conjugated, doxorubicin (DOX) and mitomycin C (MMC)
co-loaded polymer-lipid hybrid nanoparticles (RGD-DMPLN) were prepared and
characterized. The synergism between DOX and MMC and the effect of RGD-DMPLN on cell
morphology and cell viability were evaluated in human MDA-MB-231 cells in
vitro. The optimal RGD density on nanoparticles (NPs) was identified based on
the biodistribution and tumor accumulation of the NPs in a murine lung metastatic
model of MDA-MB-231 cells. The microscopic distribution of RGD-conjugated NPs in lung
metastases was examined using confocal microscopy. The anticancer efficacy of
RGD-DMPLN was investigated in the lung metastatic model. A synergistic ratio of DOX
and MMC was found in the MDA-MB-231 human TNBC cells. RGD-DMPLN induced morphological
changes and enhanced cytotoxicity in vitro. NPs with a median RGD density
showed the highest accumulation in lung metastases by targeting both tumor
vasculature and cancer cells. Compared to free drugs, RGD-DMPLN exhibited
significantly low toxicity to the host, liver and heart. Compared to non-targeted
DMPLN or free drugs, administration of RGD-DMPLN (10 mg/kg, iv) resulted in a
4.7-fold and 31-fold reduction in the burden of lung metastases measured by
bioluminescence imaging, a 2.4-fold and 4.0-fold reduction in the lung metastasis
area index, and a 35% and 57% longer median survival time, respectively.
Dual-targeted RGD-DMPLN, with optimal RGD density, significantly inhibited the
progression of lung metastasis and extended host survival.
Collapse
|
252
|
Dai W, Wang X, Song G, Liu T, He B, Zhang H, Wang X, Zhang Q. Combination antitumor therapy with targeted dual-nanomedicines. Adv Drug Deliv Rev 2017; 115:23-45. [PMID: 28285944 DOI: 10.1016/j.addr.2017.03.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
Abstract
Combination therapy is one of the important treatment strategies for cancer at present. However, the outcome of current combination therapy based on the co-administration of conventional dosage forms is suboptimal, due to the short half-lives of chemodrugs, their deficient tumor selectivity and so forth. Nanotechnology-based targeted delivery systems show great promise in addressing the associated problems and providing superior therapeutic benefits. In this review, we focus on the combination of therapeutic strategies between different nanomedicines or drug-loaded nanocarriers, rather than the co-delivery of different drugs via a single nanocarrier. We introduce the general concept of various targeting strategies of nanomedicines, present the principles of combination antitumor therapy with dual-nanomedicines, analyze their advantages and limitations compared with co-delivery strategies, and overview the recent advances of combination therapy based on targeted nanomedicines. Finally, we reviewed the challenges and future perspectives regarding the selection of therapeutic agents, targeting efficiency and the gap between the preclinical and clinical outcome.
Collapse
Affiliation(s)
- Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyou Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Ge Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Tongzhou Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
253
|
Zhang B, Song Y, Wang T, Yang S, Zhang J, Liu Y, Zhang N, Garg S. Efficient co-delivery of immiscible hydrophilic/hydrophobic chemotherapeutics by lipid emulsions for improved treatment of cancer. Int J Nanomedicine 2017; 12:2871-2886. [PMID: 28435264 PMCID: PMC5391159 DOI: 10.2147/ijn.s129091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Combinational nanomedicine is becoming a topic of much interest in cancer therapy, although its translation into the clinic remains extremely challenging. One of the main obstacles lies in the difficulty to efficiently co-deliver immiscible hydrophilic/hydrophobic drugs into tumor sites. The aim of this study was to develop co-loaded lipid emulsions (LEs) to co-deliver immiscible hydrophilic/hydrophobic drugs to improve cancer therapy and to explore the co-delivery abilities between co-loaded LEs and mixture formulation. Multiple oxaliplatin/irinotecan drug–phospholipid complexes (DPCs) were formulated. Co-loaded LEs were prepared using DPC technique to efficiently encapsulate both drugs. Co-loaded LEs exhibited uniform particle size distribution, desired stability and synchronous release profiles in both drugs. Co-loaded LEs demonstrated superior anti-tumor activity compared with the simple solution mixture and the mixture of single-loaded LEs. Furthermore, co-loaded nanocarriers could co-deliver both drugs into the same cells more efficiently and exhibited the optimized synergistic effect. These results indicate that co-loaded LEs could be a desired formulation for enhanced cancer therapy with potential application prospects. The comparison between co-loaded LEs and mixture formulation is significant for pharmaceutical designs aimed at co-delivery of multiple drugs.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Yunmei Song
- Centre for Pharmaceutical Innovation and Development (CPID), School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Tianqi Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Shaomei Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Jing Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation and Development (CPID), School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
254
|
Local co-administration of gene-silencing RNA and drugs in cancer therapy: State-of-the art and therapeutic potential. Cancer Treat Rev 2017; 55:128-135. [PMID: 28363142 DOI: 10.1016/j.ctrv.2017.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
Gene-silencing miRNA and siRNA are emerging as attractive therapeutics with potential to suppress any genes, which could be especially useful in combination cancer therapy to overcome multidrug resistant (MDR) cancer. Nanomedicine aims to advance cancer treatment through functional nanocarriers that delivers one or more therapeutics to cancer tissue and cells with minimal off-target effects and suitable release kinetics and dosages. Although much effort has gone into developing circulating nanocarriers with targeting functionality for systemic administration, another alternative and straightforward approach is to utilize formulations to be administered directly to the site of action, such as pulmonary and intratumoral delivery. The combination of gene-silencing RNA with drugs in nanocarriers for localized delivery is emerging with promising results. In this review, the current progress and strategies for local co-administration of RNA and drug for synergistic effects and future potential in cancer treatment are presented and discussed. Key advances in RNA-drug anticancer synergy and localized delivery systems were combined with a review of the available literature on local co-administration of RNA and drug for cancer treatment. It is concluded that advanced delivery systems for local administration of gene-silencing RNA and drug hold potential in treatment of cancer, depending on indication. In particular, there are promising developments using pulmonary delivery and intratumoral delivery in murine models, but further research should be conducted on other local administration strategies, designs that achieve effective intracellular delivery and maximize synergy and feasibility for clinical use.
Collapse
|
255
|
Bar-Zeev M, Livney YD, Assaraf YG. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist Updat 2017; 31:15-30. [PMID: 28867241 DOI: 10.1016/j.drup.2017.05.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
256
|
Ling L, Yao C, Du Y, Ismail M, He R, Hou Y, Zhang Y, Li X. Assembled liposomes of dual podophyllotoxin phospholipid: preparation, characterization and in vivo anticancer activity. Nanomedicine (Lond) 2017; 12:657-672. [DOI: 10.2217/nnm-2016-0396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: A novel amphiphilic prodrug dual podophyllotoxin (PPT) succinate glycerophosphorylcholine (Di-PPT-GPC) assembled liposomes was developed to improve efficiency of PPT. Materials & methods: Di-PPT-GPC liposomes were prepared by thin film technique and characterized by dynamic light scattering and cryo-electron microscopy. Results: In vitro release studies showed that Di-PPT-GPC liposomes could significantly release PPT in weakly acidic environment but had good stability under biological conditions. Methyl tetrazolium assay data revealed that the liposomes have comparable cytotoxicities to free PPT against MCF-7, HeLa and U87 cells. More importantly, in vivo antitumor evaluation indicated that Di-PPT-GPC liposomes exhibited favorable tumor growth inhibition without side effects. Conclusion: Di-PPT-GPC liposomes might have potential to promote the therapeutic effect of PPT for cancer therapy.
Collapse
Affiliation(s)
- Longbing Ling
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chen Yao
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yawei Du
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Muhammad Ismail
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ruiyu He
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yongpeng Hou
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ying Zhang
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
257
|
Zhang RX, Ahmed T, Li LY, Li J, Abbasi AZ, Wu XY. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. NANOSCALE 2017; 9:1334-1355. [PMID: 27973629 DOI: 10.1039/c6nr08486a] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polymer-lipid hybrid nanoparticles (PLN) are an emerging nanocarrier platform made from building blocks of polymers and lipids. PLN integrate the advantages of biomimetic lipid-based nanoparticles (i.e. solid lipid nanoparticles and liposomes) and biocompatible polymeric nanoparticles. PLN are constructed from diverse polymers and lipids and their numerous combinations, which imparts PLN with great versatility for delivering drugs of various properties to their nanoscale targets. PLN can be classified into two types based on their hybrid nanoscopic structure and assembly methods: Type-I monolithic matrix and Type-II core-shell systems. This article reviews the history of PLN development, types of PLN, lipid and polymer candidates, fabrication methods, and unique properties of PLN. The applications of PLN in delivery of therapeutic or imaging agents alone or in combination for cancer treatment are summarized and illustrated with examples. Important considerations for the rational design of PLN for advanced nanoscale drug delivery are discussed, including selection of excipients, synthesis processes governing formulation parameters, optimization of nanoparticle properties, improvement of particle surface functionality to overcome macroscopic, microscopic and cellular biological barriers. Future directions and potential clinical translation of PLN are also suggested.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Lily Yi Li
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Jason Li
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Azhar Z Abbasi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| |
Collapse
|
258
|
Jia Y, Omri A, Krishnan L, McCluskie MJ. Potential applications of nanoparticles in cancer immunotherapy. Hum Vaccin Immunother 2017; 13:63-74. [PMID: 27870598 PMCID: PMC5287329 DOI: 10.1080/21645515.2016.1245251] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/20/2016] [Accepted: 10/02/2016] [Indexed: 02/08/2023] Open
Abstract
In recent years considerable progress has been made in the field of cancer immunotherapy whereby treatments that modulate the body's own immune system are used to combat cancer. This has the potential to not only elicit strong anti-cancer immune responses which can break pre-existing tolerance and help promote tumor regression, but could also induce immunological memory which may help prevent tumor recurrence. In order to ensure effective delivery of immunotherapeutic agents, such as vaccines, checkpoint inhibitors, chemotherapeutic agents and nucleic acids, a safe and effective delivery system is often required. One such approach is the use of multifunctional nanoparticles (NPs), such as liposomes, polymers, micelles, dendrimers, inorganic NPs, and hybrid NPs, which have the potential to combine the delivery of a diverse range of therapeutic immunomodulators thereby increasing the efficacy of tumor cell killing. This review focuses on recent progress in NP-mediated immunotherapy for the treatment of cancer.
Collapse
Affiliation(s)
- Yimei Jia
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Abdelwahab Omri
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, Canada
- The Novel Drug & Vaccine Delivery Systems Facility, Laurentian University, Sudbury, Ontario, Canada
| | - Lakshmi Krishnan
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Michael J. McCluskie
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| |
Collapse
|
259
|
Sun W, Wang Y, Cai M, Lin L, Chen X, Cao Z, Zhu K, Shuai X. Codelivery of sorafenib and GPC3 siRNA with PEI-modified liposomes for hepatoma therapy. Biomater Sci 2017; 5:2468-2479. [DOI: 10.1039/c7bm00866j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel liposomal system incorporating branched PEI was prepared to efficiently codeliver sorafenib and GPC3 siRNA for hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Weitong Sun
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Yong Wang
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Mingyue Cai
- Department of Minimally Invasive Interventional Radiology and Department of Radiology
- The Second Affiliated Hospital of Guangzhou Medical University
- Guangzhou
- China
| | - Liteng Lin
- Department of Minimally Invasive Interventional Radiology and Department of Radiology
- The Second Affiliated Hospital of Guangzhou Medical University
- Guangzhou
- China
| | - Xiaoyan Chen
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Zhong Cao
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology and Department of Radiology
- The Second Affiliated Hospital of Guangzhou Medical University
- Guangzhou
- China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| |
Collapse
|
260
|
Zhu H, Wang Y, Hussain A, Zhang Z, Shen Y, Guo S. Nanodiamond mediated co-delivery of doxorubicin and malaridine to maximize synergistic anti-tumor effects on multi-drug resistant MCF-7/ADR cells. J Mater Chem B 2017; 5:3531-3540. [DOI: 10.1039/c7tb00449d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel nanodiamond based nanoparticle co-loading of doxorubicin and malaridine with pH-responsive co-release properties was developed for maximizing synergistic anti-tumor effects on multi-drug resistant MCF-7/ADR cells.
Collapse
Affiliation(s)
- Hao Zhu
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yun Wang
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Abid Hussain
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Zhipeng Zhang
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yuanyuan Shen
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Shengrong Guo
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| |
Collapse
|
261
|
A New Method for Evaluating Actual Drug Release Kinetics of Nanoparticles inside Dialysis Devices via Numerical Deconvolution. J Control Release 2016; 243:11-20. [DOI: 10.1016/j.jconrel.2016.09.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/13/2016] [Accepted: 09/26/2016] [Indexed: 01/02/2023]
|