251
|
Xu L, Wang X, Wang X. Characterization of the internal dynamics and conformational space of zinc-bound amyloid β peptides by replica-exchange molecular dynamics simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:575-86. [DOI: 10.1007/s00249-013-0906-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/07/2013] [Accepted: 04/12/2013] [Indexed: 12/26/2022]
|
252
|
Jose JC, Sengupta N. Molecular dynamics simulation studies of the structural response of an isolated Aβ1–42 monomer localized in the vicinity of the hydrophilic TiO2 surface. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:487-94. [DOI: 10.1007/s00249-013-0900-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/21/2013] [Accepted: 03/21/2013] [Indexed: 12/12/2022]
|
253
|
Zhang T, Zhang J, Derreumaux P, Mu Y. Molecular mechanism of the inhibition of EGCG on the Alzheimer Aβ(1-42) dimer. J Phys Chem B 2013; 117:3993-4002. [PMID: 23537203 DOI: 10.1021/jp312573y] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidence supports that amyloid β (Aβ) oligomers are the major causative agents leading to neural cell death in Alzheimer's disease. The polyphenol (-)-epigallocatechin gallate (EGCG) was recently reported to inhibit Aβ fibrillization and redirect Aβ aggregation into unstructured, off-pathway oligomers. Given the experimental challenge to characterize the structures of Aβ/EGCG complexes, we performed extensive atomistic replica exchange molecular dynamics simulations of Aβ1-42 dimer in the present and absence of EGCG in explicit solvent. Our equilibrium Aβ dimeric structures free of EGCG are consistent with the collision cross section from ion-mobility mass spectrometry and the secondary structure composition from circular dichroism experiment. In the presence of EGCG, the Aβ structures are characterized by increased inter-center-of-mass distances, reduced interchain and intrachain contacts, reduced β-sheet content, and increased coil and α-helix contents. Analysis of the free energy surfaces reveals that the Aβ dimer with EGCG adopts new conformations, affecting therefore its propensity to adopt fibril-prone states. Overall, this study provides, for the first time, insights on the equilibrium structures of Aβ1-42 dimer in explicit aqueous solution and an atomic picture of the EGCG-mediated conformational change on Aβ dimer.
Collapse
Affiliation(s)
- Tong Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | | | |
Collapse
|
254
|
Coskuner O, Wise-Scira O, Perry G, Kitahara T. The structures of the E22Δ mutant-type amyloid-β alloforms and the impact of E22Δ mutation on the structures of the wild-type amyloid-β alloforms. ACS Chem Neurosci 2013; 4:310-20. [PMID: 23421682 DOI: 10.1021/cn300149j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Structural differences between the intrinsically disordered fibrillogenic wild-type Aβ40 and Aβ42 peptides are linked to Alzheimer's disease. Recently, the E22Δ genetic missense mutation was detected in patients exhibiting Alzheimer's-disease type dementia. However, detailed knowledge about the E22Δ mutant-type Aβ40 and Aβ42 alloform structures as well as the differences from the wild-type Aβ40 and Aβ42 alloform structures is currently lacking. In this study, we present the structures of the E22Δ mutant-type Aβ40 and Aβ42 alloforms as well as the impact of E22Δ mutation on the wild-type Aβ40 and Aβ42 alloform structures. For this purpose, we performed extensive microsecond-time scale parallel tempering molecular dynamics simulations coupled with thermodynamic calculations. For studying the residual secondary structure component transition stabilities, we developed and applied a new theoretical strategy in our studies. We find that the E22Δ mutant-type Aβ40 might have a higher tendency toward aggregation due to more abundant β-sheet formation in the C-terminal region in comparison to the E22Δ mutant-type Aβ42 peptide. More abundant α-helix is formed in the mid-domain regions of the E22Δ mutant-type Aβ alloforms rather than in their wild-type forms. The turn structure at Ala21-Ala30 of the wild-type Aβ, which has been linked to the aggregation process, is less abundant upon E22Δ mutation of both Aβ alloforms. Intramolecular interactions between the N-terminal and central hydrophobic core (CHC), N- and C-terminal, and CHC and C-terminal regions are less abundant or disappear in the E22Δ mutant-type Aβ alloform structures. The thermodynamic trends indicate that the wild-type Aβ42 tends to aggregate more than the wild-type Aβ40 peptide, which is in agreement with experiments. However, this trend is vice versa for the E22Δ mutant-type alloforms. The structural properties of the E22Δ mutant-type Aβ40 and Aβ42 peptides reported herein may prove useful for the development of new drugs to block the formation of toxic E22Δ mutant-type oligomers by either stabilizing helical or destabilizing β-sheet structure in the C-terminal region of these two mutant alloforms.
Collapse
Affiliation(s)
- Orkid Coskuner
- Department
of Chemistry and ‡Neurosciences Institute, The University of Texas at San Antonio, One UTSA Circle, San Antonio,
Texas 78249, United States
| | - Olivia Wise-Scira
- Department
of Chemistry and ‡Neurosciences Institute, The University of Texas at San Antonio, One UTSA Circle, San Antonio,
Texas 78249, United States
| | - George Perry
- Department
of Chemistry and ‡Neurosciences Institute, The University of Texas at San Antonio, One UTSA Circle, San Antonio,
Texas 78249, United States
| | - Taizo Kitahara
- Department
of Chemistry and ‡Neurosciences Institute, The University of Texas at San Antonio, One UTSA Circle, San Antonio,
Texas 78249, United States
| |
Collapse
|
255
|
Sethi A, Tian J, Vu DM, Gnanakaran S. Identification of minimally interacting modules in an intrinsically disordered protein. Biophys J 2013; 103:748-57. [PMID: 22947936 DOI: 10.1016/j.bpj.2012.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 06/20/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022] Open
Abstract
The conformational characterization of intrinsically disordered proteins (IDPs) is complicated by their conformational heterogeneity and flexibility. If an IDP could somehow be divided into smaller fragments and reconstructed later, theoretical and spectroscopic studies could probe its conformational variability in detail. Here, we used replica molecular-dynamics simulations and network theory to explore whether such a divide-and-conquer strategy is feasible for α-synuclein, a prototypical IDP. We characterized the conformational variability of α-synuclein by conducting >100 unbiased all-atom molecular-dynamics simulations, for a total of >10 μs of trajectories. In these simulations, α-synuclein formed a heterogeneous ensemble of collapsed coil states in an aqueous environment. These states were stabilized by heterogeneous contacts between sequentially distant regions. We find that α-synuclein contains residual secondary structures in the collapsed states, and the heterogeneity in the collapsed state makes it feasible to split α-synuclein into sequentially contiguous minimally interacting fragments. This study reveals previously unknown characteristics of α-synuclein and provides a new (to our knowledge) approach for studying other IDPs.
Collapse
Affiliation(s)
- Anurag Sethi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | | | | |
Collapse
|
256
|
Shanmuganathan A, Bishop AC, French KC, McCallum SA, Makhatadze GI. Bacterial expression and purification of the amyloidogenic peptide PAPf39 for multidimensional NMR spectroscopy. Protein Expr Purif 2013; 88:196-200. [PMID: 23314347 DOI: 10.1016/j.pep.2013.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/18/2012] [Accepted: 01/02/2013] [Indexed: 11/16/2022]
Abstract
PAPf39 is a 39 residue peptide fragment from human prostatic acidic phosphatase that forms amyloid fibrils in semen. These fibrils have been implicated in facilitating HIV transmission. To enable structural studies of PAPf39 by NMR spectroscopy, efficient methods allowing the production of milligram quantities of isotopically labeled peptide are essential. Here, we report the high-yield expression and purification of uniformly (13)C- and (15)N-labeled PAPf39 peptide, through expression as a fusion to ubiquitin at the N-terminus and an intein at the C-terminus. This allows the study of the PAPf39 monomer conformational ensemble by NMR spectroscopy. To this end, we performed the NMR chemical shift assignment of the PAPf39 peptide in the monomeric state at low pH.
Collapse
Affiliation(s)
- Aranganathan Shanmuganathan
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
257
|
Lam AR, Rodriguez JJ, Rojas A, Scheraga HA, Mukamel S. Tracking the mechanism of fibril assembly by simulated two-dimensional ultraviolet spectroscopy. J Phys Chem A 2013; 117:342-50. [PMID: 23214934 DOI: 10.1021/jp3101267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of plaque deposits in the human brain. The main component of these plaques consists of highly ordered structures called amyloid fibrils, formed by the amyloid β-peptide (Aβ). The mechanism connecting Aβ and AD is yet undetermined. In a previous study, a coarse-grained united-residue model and molecular dynamics simulations were used to model the growth mechanism of Aβ amyloid fibrils. On the basis of these simulations, a dock/lock mechanism was proposed, in which Aβ fibrils grow by adding monomers at either end of an amyloid fibril template. To examine the structures in the early time-scale formation and growth of amyloid fibrils, simulated two-dimensional ultraviolet spectroscopy is used. These early structures are monitored in the far ultraviolet regime (λ = 190-250 nm) in which the computed signals originate from the backbone nπ* and ππ* transitions. These signals show distinct cross-peak patterns that can be used, in combination with molecular dynamics, to monitor local dynamics and conformational changes in the secondary structure of Aβ-peptides. The protein geometry-correlated chiral xxxy signal and the non-chiral combined signal xyxy-xyyx were found to be sensitive to, and in agreement with, a dock/lock pathway.
Collapse
Affiliation(s)
- A R Lam
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-2025, USA.
| | | | | | | | | |
Collapse
|
258
|
Sgarbossa A, Monti S, Lenci F, Bramanti E, Bizzarri R, Barone V. The effects of ferulic acid on β-amyloid fibrillar structures investigated through experimental and computational techniques. Biochim Biophys Acta Gen Subj 2013; 1830:2924-37. [PMID: 23291428 DOI: 10.1016/j.bbagen.2012.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/29/2012] [Accepted: 12/21/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Current research has indicated that small natural compounds could interfere with β-amyloid fibril growth and have the ability to disassemble preformed folded structures. Ferulic acid (FA), which possesses both hydrophilic and hydrophobic moieties and binds to peptides/proteins, is a potential candidate against amyloidogenesis. The molecular mechanisms connected to this action have not been elucidated in detail yet. METHODS Here the effects of FA on preformed fibrils are investigated by means of a concerted experimental-computational approach. Spectroscopic techniques, such as FTIR, fluorescence, size exclusion chromatography and confocal microscopy in combination with molecular dynamics simulations are used to identify those features which play a key role in the destabilization of the aggregates. RESULTS Experimental findings highlight that FA has disruptive effects on the fibrils. The computational analysis suggests that dissociation of peptides from the amyloid superstructures could take place along the fibril axis and be primarily determined by the cooperative rupture of the backbone hydrogen bonds and of the Asp-Lys salt bridges. CONCLUSION FA clusters could induce a sort of stabilization and tightening of the fibril structure in the short term and its disruption in the long term, inhibiting further fibril re-assembly through FA screening effects. GENERAL SIGNIFICANCE The combination of experimental and computational techniques could be successfully used to identify the disrupting action of FA on preformed Aβ fibrils in water solution.
Collapse
Affiliation(s)
- Antonella Sgarbossa
- Biophysics Institute, National Research Council, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
259
|
Avadisian M, Gunning PT. Extolling the benefits of molecular therapeutic lipidation. MOLECULAR BIOSYSTEMS 2013; 9:2179-88. [DOI: 10.1039/c3mb70147f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
260
|
Abstract
Coarse-grained models for protein folding and aggregation are used to explore large dimension scales and timescales that are inaccessible to all-atom models in explicit aqueous solution. Combined with enhanced configuration search methods, these simplified models with various levels of granularity offer the possibility to determine equilibrium structures, compare folding kinetics and thermodynamics with experiments for single proteins and understand the dynamic assembly of amyloid proteins leading to neurodegenerative diseases. I shall describe recent progress in developing such models, and discuss their potentials and limitations in probing the folding and misfolding of proteins with computer simulations.
Collapse
|
261
|
Chong SH, Yim J, Ham S. Structural heterogeneity in familial Alzheimer's disease mutants of amyloid-beta peptides. MOLECULAR BIOSYSTEMS 2013; 9:997-1003. [DOI: 10.1039/c2mb25457c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
262
|
Jana AK, Jose JC, Sengupta N. Critical roles of key domains in complete adsorption of Aβ peptide on single-walled carbon nanotubes: insights with point mutations and MD simulations. Phys Chem Chem Phys 2013. [DOI: 10.1039/c2cp42933k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
263
|
Mittal J, Yoo TH, Georgiou G, Truskett TM. Structural ensemble of an intrinsically disordered polypeptide. J Phys Chem B 2012. [PMID: 23205890 DOI: 10.1021/jp308984e] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intrinsically disordered proteins (IDPs), which play key roles in cell signaling and regulation, do not display specific tertiary structure when isolated in solution. Instead, they dynamically explore an ensemble of unfolded configurations, adopting more stable, ordered structures only after binding to their ligands. Whether ligands induce IDP structural changes upon binding or simply bind to pre-existing conformers that are populated within the IDP's structural ensemble is not well understood. Molecular simulations can provide information with the spatiotemporal resolution necessary to resolve these issues. Here, we report on the conformational ensemble of a 15-residue wild-type p53 fragment from the TAD domain and its mutant (TAD-P27L) obtained by replica exchange molecular dynamics simulation using an optimized (fully atomistic, explicit solvent) protein model and the experimental validation of the simulation results. We use a clustering method based on structural similarity to identify conformer states populated by the peptides in solution from the simulated ensemble. We show that p53 populates solution structures that strongly resemble the ligand (MDM2)-bound structure, but at the same time, the conformational free-energy landscape is relatively flat in the absence of the ligand.
Collapse
Affiliation(s)
- Jeetain Mittal
- Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States.
| | | | | | | |
Collapse
|
264
|
Lin YS, Pande VS. Effects of familial mutations on the monomer structure of Aβ₄₂. Biophys J 2012; 103:L47-9. [PMID: 23260058 DOI: 10.1016/j.bpj.2012.11.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/15/2012] [Accepted: 11/08/2012] [Indexed: 12/25/2022] Open
Abstract
Amyloid beta (Aβ) peptide plays an important role in Alzheimer's disease. A number of mutations in the Aβ sequence lead to familial Alzheimer's disease, congophilic amyloid angiopathy, or hereditary cerebral hemorrhage with amyloid. Using molecular dynamics simulations of ∼200 μs for each system, we characterize and contrast the consequences of four pathogenic mutations (Italian, Dutch, Arctic, and Iowa) for the structural ensemble of the Aβ monomer. The four familial mutations are found to have distinct consequences for the monomer structure.
Collapse
|
265
|
Lemkul JA, Bevan DR. The role of molecular simulations in the development of inhibitors of amyloid β-peptide aggregation for the treatment of Alzheimer's disease. ACS Chem Neurosci 2012; 3:845-56. [PMID: 23173066 DOI: 10.1021/cn300091a] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/27/2012] [Indexed: 12/26/2022] Open
Abstract
The pathogenic aggregation of the amyloid β-peptide (Aβ) is considered a hallmark of the progression of Alzheimer's disease, the leading cause of senile dementia in the elderly and one of the principal causes of death in the United States. In the absence of effective therapeutics, the incidence and economic burden associated with the disease are expected to rise dramatically in the coming decades. Targeting Aβ aggregation is an attractive therapeutic approach, though structural insights into the nature of Aβ aggregates from traditional experiments are elusive, making drug design difficult. Theoretical methods have been used for several years to augment experimental work and drive progress forward in Alzheimer's drug design. In this Review, we will describe how two common techniques, molecular docking and molecular dynamics simulations, are being applied in developing small molecules as effective therapeutics against monomeric, oligomeric, and fibrillated forms of Aβ. Recent successes and important limitations will be discussed, and we conclude by providing a perspective on the future of this field by citing recent examples of sophisticated approaches used to better characterize interactions of small molecules with Aβ and other amyloidogenic proteins.
Collapse
Affiliation(s)
- Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - David R. Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
266
|
Jameson LP, Smith NW, Dzyuba SV. Dye-binding assays for evaluation of the effects of small molecule inhibitors on amyloid (aβ) self-assembly. ACS Chem Neurosci 2012; 3:807-19. [PMID: 23173064 DOI: 10.1021/cn300076x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/06/2012] [Indexed: 01/07/2023] Open
Abstract
Dye-binding assays, such as those utilizing Congo red and thioflavin T, are among the most widely used tools to probe the aggregation of amyloidogenic biomolecules and for the evaluation of small molecule inhibitors of amyloid aggregation and fibrillization. A number of recent reports have indicated that these dye-binding assays could be prone to false positive effects when assessing inhibitors' potential toward Aβ peptides, species involved in Alzheimer's disease. Specifically, this review focuses on the application of thioflavin T for determining the efficiency of small molecule inhibitors of Aβ aggregation and addresses potential reasons that might be associated with the false positive effects in an effort to increase reliability of dye-binding assays.
Collapse
Affiliation(s)
- Laramie P. Jameson
- Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Nicholas W. Smith
- Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Sergei V. Dzyuba
- Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
267
|
Roychaudhuri R, Yang M, Deshpande A, Cole GM, Frautschy S, Lomakin A, Benedek GB, Teplow DB. C-terminal turn stability determines assembly differences between Aβ40 and Aβ42. J Mol Biol 2012; 425:292-308. [PMID: 23154165 DOI: 10.1016/j.jmb.2012.11.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/25/2012] [Accepted: 11/03/2012] [Indexed: 12/31/2022]
Abstract
Oligomerization of the amyloid β-protein (Aβ) is a seminal event in Alzheimer's disease. Aβ42, which is only two amino acids longer than Aβ40, is particularly pathogenic. Why this is so has not been elucidated fully. We report here results of computational and experimental studies revealing a C-terminal turn at Val36-Gly37 in Aβ42 that is not present in Aβ40. The dihedral angles of residues 36 and 37 in an Ile31-Ala42 peptide were consistent with β-turns, and a β-hairpin-like structure was indeed observed that was stabilized by hydrogen bonds and by hydrophobic interactions between residues 31-35 and residues 38-42. In contrast, Aβ(31-40) mainly existed as a statistical coil. To study the system experimentally, we chemically synthesized Aβ peptides containing amino acid substitutions designed to stabilize or destabilize the hairpin. The triple substitution Gly33Val-Val36Pro-Gly38Val ("VPV") facilitated Aβ42 hexamer and nonamer formation, while inhibiting formation of classical amyloid-type fibrils. These assemblies were as toxic as were assemblies from wild-type Aβ42. When substituted into Aβ40, the VPV substitution caused the peptide to oligomerize similarly to Aβ42. The modified Aβ40 was significantly more toxic than Aβ40. The double substitution d-Pro36-l-Pro37 abolished hexamer and dodecamer formation by Aβ42 and produced an oligomer size distribution similar to that of Aβ40. Our data suggest that the Val36-Gly37 turn could be the sine qua non of Aβ42. If true, this structure would be an exceptionally important therapeutic target.
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Li Y, Ji C, Xu W, Zhang JZH. Dynamical stability and assembly cooperativity of β-sheet amyloid oligomers--effect of polarization. J Phys Chem B 2012; 116:13368-73. [PMID: 23101885 DOI: 10.1021/jp3086599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The soluble intermediate oligomers of amyloidogenic proteins are suspected to be more cytotoxic than the mature fibrils in neurodegenerative disorders. Here, the dynamic stability and assembly cooperativity of a model oligomer of human islet amyloid polypeptide (hIAPP) segments were explored by means of all-atom molecular dynamics (MD) simulations under different force fields including AMBER99SB, OPLS, and polarized protein-specific charge (PPC) model. Simulation results show that the dynamic stability of β-sheet oligomers is seriously impacted by electrostatic polarization. Without inclusion of polarization (simulation under standard AMBER and OPLS force field), the β-sheet oligomers are dynamically unstable during MD simulation. For comparison, simulation results under PPC give significantly more stable dynamical structures of the oligomers. Furthermore, calculation of electrostatic interaction energy between the neighboring β strands with an approximate polarizable method produces energetic evidence for cooperative assembly of β-strand oligomers. This result supports a picture of downhill-like cooperative assembly of β strands during fibrillation process. The present study demonstrates the critical role of polarization in dynamic stability and assembly cooperativity of β-sheet-rich amyloid oligomers.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai, China
| | | | | | | |
Collapse
|
269
|
Lee CF, Bird S, Shaw M, Jean L, Vaux DJ. Combined effects of agitation, macromolecular crowding, and interfaces on amyloidogenesis. J Biol Chem 2012; 287:38006-19. [PMID: 22988239 PMCID: PMC3488071 DOI: 10.1074/jbc.m112.400580] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/17/2012] [Indexed: 11/06/2022] Open
Abstract
Amyloid formation and accumulation is a hallmark of protein misfolding diseases and is associated with diverse pathologies including type II diabetes and Alzheimer's disease (AD). In vitro, amyloidogenesis is widely studied in conditions that do not simulate the crowded and viscous in vivo environment. A high volume fraction of most biological fluids is occupied by various macromolecules, a phenomenon known as macromolecular crowding. For some amyloid systems (e.g. α-synuclein) and under shaking condition, the excluded volume effect of macromolecular crowding favors aggregation, whereas increased viscosity reduces the kinetics of these reactions. Amyloidogenesis can also be catalyzed by hydrophobic-hydrophilic interfaces, represented by the air-water interface in vitro and diverse heterogeneous interfaces in vivo (e.g. membranes). In this study, we investigated the effects of two different crowding polymers (dextran and Ficoll) and two different experimental conditions (with and without shaking) on the fibrilization of amyloid-β peptide, a major player in AD pathogenesis. Specifically, we demonstrate that, during macromolecular crowding, viscosity dominates over the excluded volume effect only when the system is spatially non homogeneous (i.e. an air-water interface is present). We also show that the surfactant activity of the crowding agents can critically influence the outcome of macromolecular crowding and that the structure of the amyloid species formed may depend on the polymer used. This suggests that, in vivo, the outcome of amyloidogenesis may be affected by both macromolecular crowding and spatial heterogeneity (e.g. membrane turn-over). More generally, our work suggests that any factors causing changes in crowding may be susceptibility factors in AD.
Collapse
Affiliation(s)
- Chiu Fan Lee
- the Max Planck Institute for the Physics of Complex Systems, Noethnitzerstr. 38, Dresden 01187, Germany, and
| | - Sarah Bird
- the Medical School, Medical Sciences Office, John Radcliffe Hospital, Oxford University Clinical School, Oxford, OX3 9DU, United Kingdom
| | - Michael Shaw
- From the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Létitia Jean
- From the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - David J. Vaux
- From the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
270
|
Lockhart C, Kim S, Klimov DK. Explicit Solvent Molecular Dynamics Simulations of Aβ Peptide Interacting with Ibuprofen Ligands. J Phys Chem B 2012; 116:12922-32. [DOI: 10.1021/jp306208n] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christopher Lockhart
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Seongwon Kim
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Dmitri K. Klimov
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| |
Collapse
|
271
|
Characteristics of aquaporin expression surrounding senile plaques and cerebral amyloid angiopathy in Alzheimer disease. J Neuropathol Exp Neurol 2012; 71:750-9. [PMID: 22805778 DOI: 10.1097/nen.0b013e3182632566] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Senile plaques (SPs) containing amyloid β peptide (Aβ) 1-42 are the major species present in Alzheimer disease (AD), whereas Aβ1-40 is the major constituent of arteriolar walls affected by cerebral amyloid angiopathy. The water channel proteins astrocytic aquaporin 1 (AQP1) and aquaporin 4 (AQP4) are known to be abnormally expressed in AD brains, but the expression of AQPs surrounding SPs and cerebral amyloid angiopathy has not been described in detail. Here, we investigated whether AQP expression is associated with each species of Aβ deposited in human brains affected by either sporadic or familial AD. Immunohistochemical analysis demonstrated more numerous AQP1-positive reactive astrocytes in the AD cerebral cortex than in controls, located close to Aβ42- or Aβ40-positive SPs. In AD cases, however, AQP1-positive astrocytes were not often observed in Aβ-rich areas, and there was a significant negative correlation between the levels of AQP1 and Aβ42 assessed semiquantitatively. We also found that Aβ plaque-like AQP4 was distributed in association with Aβ42- or Aβ40-positive SPs and that the degree of AQP4 expression around Aβ40-positive vessels was variable. These findings suggest that a defined population of AQP1-positive reactive astrocytes may modify Aβ deposition in the AD brain, whereas the Aβ deposition process might alter astrocytic expression of AQP4.
Collapse
|
272
|
Valensin D, Gabbiani C, Messori L. Metal compounds as inhibitors of β-amyloid aggregation. Perspectives for an innovative metallotherapeutics on Alzheimer's disease. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
273
|
Nomura K, Okamoto A, Yano A, Higai S, Kondo T, Kamba S, Kurita N. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
274
|
Ngo ST, Li MS. Curcumin binds to Aβ1-40 peptides and fibrils stronger than ibuprofen and naproxen. J Phys Chem B 2012; 116:10165-75. [PMID: 22877239 DOI: 10.1021/jp302506a] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Binding of curcumin, naproxen, and ibuprofen to Aβ1-40 peptide and its fibrils is studied by docking method and all-atom molecular dynamics simulations. The Gromos96 43a1 force field and simple point charge model of water have been used for molecular dynamics simulations. It is shown that if the receptor is a monomer then naproxen and ibuprofen are bound to the same place that is different from the binding position of curcumin. However all of three ligands have the same binding pocket in fibrillar structures. The binding mechanism is studied in detail showing that the van der Waals interaction between ligand and receptor dominates over the electrostatic interaction. The binding free energies obtained by the molecular mechanic-Poisson-Boltzmann surface area method indicate that curcumin displays higher binding affinity than nonsteroidal anti-inflammatory drugs. Our results are in good agreement with the experiments.
Collapse
Affiliation(s)
- Son Tung Ngo
- Institute for Computational Science and Technology , 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam, and
| | | |
Collapse
|
275
|
Maksyutov AZ, Bakulina AY, Gutkina NI, Kovalenko SP. Introduction of foreign peptides in surface loops of alkaline phosphatase. Mol Biol 2012. [DOI: 10.1134/s0026893312020094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
276
|
Combining conformational sampling and selection to identify the binding mode of zinc-bound amyloid peptides with bifunctional molecules. J Comput Aided Mol Des 2012; 26:963-76. [PMID: 22829296 DOI: 10.1007/s10822-012-9588-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/05/2012] [Indexed: 01/12/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) has been suggested to be related with the aggregation of amyloid β (Aβ) peptides. Metal ions (e.g. Cu, Fe, and Zn) are supposed to induce the aggregation of Aβ. Recent development of bifunctional molecules that are capable of interacting with Aβ and chelating biometal ions provides promising therapeutics to AD. However, the molecular mechanism for how Aβ, metal ions, and bifunctional molecules interact with each other is still elusive. In this study, the binding mode of Zn(2+)-bound Aβ with bifunctional molecules was investigated by the combination of conformational sampling of full-length Aβ peptides using replica exchange molecular dynamics simulations (REMD) and conformational selection using molecular docking and classical MD simulations. We demonstrate that Zn(2+)-bound Aβ((1-40)) and Aβ((1-42)) exhibit different conformational ensemble. Both Aβ peptides can adopt various conformations to recognize typical bifunctional molecules with different binding affinities. The bifunctional molecules exhibit their dual functions by first preferentially interfering with hydrophobic residues 17-21 and/or 30-35 of Zn(2+)-bound Aβ. Additional interactions with residues surrounding Zn(2+) could possibly disrupt interactions between Zn(2+) and Aβ, which then facilitate these small molecules to chelate Zn(2+). The binding free energy calculations further demonstrate that the association of Aβ with bifunctional molecules is driven by enthalpy. Our results provide a feasible approach to understand the recognition mechanism of disordered proteins with small molecules, which could be helpful to the design of novel AD drugs.
Collapse
|
277
|
Lemkul JA, Bevan DR. Morin Inhibits the Early Stages of Amyloid β-Peptide Aggregation by Altering Tertiary and Quaternary Interactions to Produce “Off-Pathway” Structures. Biochemistry 2012; 51:5990-6009. [DOI: 10.1021/bi300113x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - David R. Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
278
|
Viet MH, Li MS. Amyloid peptide Aβ40 inhibits aggregation of Aβ42: Evidence from molecular dynamics simulations. J Chem Phys 2012; 136:245105. [DOI: 10.1063/1.4730410] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
279
|
Xi W, Li W, Wang W. Template induced conformational change of amyloid-β monomer. J Phys Chem B 2012; 116:7398-405. [PMID: 22670893 DOI: 10.1021/jp300389g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Population of aggregation-prone conformers for the monomeric amyloid-β (Aβ) can dramatically speed up its fibrillar aggregation. In this work, we study the effect of preformed template on the conformational distributions of the monomeric Aβ by replica exchange molecular dynamics. Our results show that the template consisting of Aβ peptides with cross-β structure can induce the formation of β-rich conformations for the monomeric Aβ, which is the key feature of the aggregation-prone conformers. Similar effect is observed when the hIAPP peptides and poly alanine peptides were used as templates, suggesting that the template effect is insensitive to the sequence details of the template peptides. In comparison, the template with helical structure has no significant effects on the β-propensity of the monomeric Aβ. Analysis to the interaction details revealed that the template tends to disrupt the intrapeptide interactions of the monomeric Aβ, which are absent in the fibrillar state, suggesting that the preformed template can reorganize the intrapeptide interactions of the monomeric Aβ during the capturing stage and reduce the energy frustrations for the fibrillar aggregations.
Collapse
Affiliation(s)
- Wenhui Xi
- National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
280
|
Zhao LN, Long H, Mu Y, Chew LY. The toxicity of amyloid β oligomers. Int J Mol Sci 2012; 13:7303-7327. [PMID: 22837695 PMCID: PMC3397527 DOI: 10.3390/ijms13067303] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/01/2012] [Accepted: 06/08/2012] [Indexed: 12/13/2022] Open
Abstract
In this review, we elucidate the mechanisms of Aβ oligomer toxicity which may contribute to Alzheimer's disease (AD). In particular, we discuss on the interaction of Aβ oligomers with the membrane through the process of adsorption and insertion. Such interaction gives rises to phase transitions in the sub-structures of the Aβ peptide from α-helical to β-sheet structure. By means of a coarse-grained model, we exhibit the tendency of β-sheet structures to aggregate, thus providing further insights to the process of membrane induced aggregation. We show that the aggregated oligomer causes membrane invagination, which is a precursor to the formation of pore structures and ion channels. Other pathological progressions to AD due to Aβ oligomers are also covered, such as their interaction with the membrane receptors, and their direct versus indirect effects on oxidative stress and intraneuronal accumulation. We further illustrate that the molecule curcumin is a potential Aβ toxicity inhibitor as a β-sheet breaker by having a high propensity to interact with certain Aβ residues without binding to them. The comprehensive understanding gained from these current researches on the various toxicity mechanisms show promises in the provision of better therapeutics and treatment strategies in the near future.
Collapse
Affiliation(s)
- Li Na Zhao
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731, Singapore; E-Mails: (L.N.Z.); (H.W.L.)
| | - HonWai Long
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731, Singapore; E-Mails: (L.N.Z.); (H.W.L.)
- High Performance Computing Centre, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Lock Yue Chew
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731, Singapore; E-Mails: (L.N.Z.); (H.W.L.)
| |
Collapse
|
281
|
Lin YS, Bowman GR, Beauchamp KA, Pande VS. Investigating how peptide length and a pathogenic mutation modify the structural ensemble of amyloid beta monomer. Biophys J 2012; 102:315-24. [PMID: 22339868 DOI: 10.1016/j.bpj.2011.12.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/12/2011] [Accepted: 12/01/2011] [Indexed: 12/21/2022] Open
Abstract
The aggregation of amyloid beta (Aβ) peptides plays an important role in the development of Alzheimer's disease. Despite extensive effort, it has been difficult to characterize the secondary and tertiary structure of the Aβ monomer, the starting point for aggregation, due to its hydrophobicity and high aggregation propensity. Here, we employ extensive molecular dynamics simulations with atomistic protein and water models to determine structural ensembles for Aβ(42), Aβ(40), and Aβ(42)-E22K (the Italian mutant) monomers in solution. Sampling of a total of >700 microseconds in all-atom detail with explicit solvent enables us to observe the effects of peptide length and a pathogenic mutation on the disordered Aβ monomer structural ensemble. Aβ(42) and Aβ(40) have crudely similar characteristics but reducing the peptide length from 42 to 40 residues reduces β-hairpin formation near the C-terminus. The pathogenic Italian E22K mutation induces helix formation in the region of residues 20-24. This structural alteration may increase helix-helix interactions between monomers, resulting in altered mechanism and kinetics of Aβ oligomerization.
Collapse
Affiliation(s)
- Yu-Shan Lin
- Department of Chemistry, Stanford University, Stanford, California, USA
| | | | | | | |
Collapse
|
282
|
Cruz L, Rao JS, Teplow DB, Urbanc B. Dynamics of metastable β-hairpin structures in the folding nucleus of amyloid β-protein. J Phys Chem B 2012; 116:6311-25. [PMID: 22587454 PMCID: PMC3394227 DOI: 10.1021/jp301619v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The amyloid β-protein (Aβ), which is present predominately as a 40- or 42-residue peptide, is postulated to play a seminal role in the pathogenesis of Alzheimer's disease (AD). Folding of the Aβ(21-30) decapeptide region is a critical step in the aggregation of Aβ. We report results of constant temperature all-atom molecular dynamics simulations in explicit water of the dynamics of monomeric Aβ(21-30) and its Dutch [Glu22Gln], Arctic [Glu22Gly], and Iowa [Asp23Asn] isoforms that are associated with familial forms of cerebral amyloid angiopathy and AD. The simulations revealed a variety of loop conformers that exhibited a hydrogen bond network involving the Asp23 and Ser26 amino acids. A population of conformers, not part of the loop population, was found to form metastable β-hairpin structures with the highest probability in the Iowa mutant. At least three β-hairpin structures were found that differed in their hydrogen bonding register, average number of backbone hydrogen bonds, and lifetimes. Analysis revealed that the Dutch mutant had the longest β-hairpin lifetime (≥500 ns), closely followed by the Iowa mutant (≈500 ns). Aβ(21-30) and the Arctic mutant had significantly lower lifetimes (≈200 ns). Hydrophobic packing of side chains was responsible for enhanced β-hairpin lifetimes in the Dutch and Iowa mutants, whereas lifetimes in Aβ(21-30) and its Arctic mutant were influenced by the backbone hydrogen bonding. The data suggest that prolonged β-hairpin lifetimes may impact peptide pathogenicity in vivo.
Collapse
Affiliation(s)
- L Cruz
- Department of Physics, 3141 Chestnut Street, Drexel University, Philadelphia, Pennsylvania 19104, United States.
| | | | | | | |
Collapse
|
283
|
Ye W, Chen Y, Wang W, Yu Q, Li Y, Zhang J, Chen HF. Insight into the stability of cross-β amyloid fibril from VEALYL short peptide with molecular dynamics simulation. PLoS One 2012; 7:e36382. [PMID: 22590535 PMCID: PMC3349666 DOI: 10.1371/journal.pone.0036382] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/30/2012] [Indexed: 12/13/2022] Open
Abstract
Amyloid fibrils are found in many fatal neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, type II diabetes, and prion disease. The VEALYL short peptide from insulin has been confirmed to aggregate amyloid-like fibrils. However, the aggregation mechanism of amyloid fibril is poorly understood. Here, we utilized molecular dynamics simulation to analyse the stability of VEALYL hexamer. The statistical results indicate that hydrophobic residues play key roles in stabilizing VEALYL hexamer. Single point and two linkage mutants confirmed that Val1, Leu4, and Tyr5 of VEALYL are key residues. The consistency of the results for the VEALYL oligomer suggests that the intermediate states might be trimer (3-0) and pentamer(3-2). These results can help us to obtain an insight into the aggregation mechanism of amyloid fibril. These methods can be used to study the stability of amyloid fibril from other short peptides.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Yue Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Qingfen Yu
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Yixue Li
- Shanghai Center for Bioinformation Technology, Shanghai, China
- * E-mail: (HC); (YL); (JZ)
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail: (HC); (YL); (JZ)
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
- Shanghai Center for Bioinformation Technology, Shanghai, China
- * E-mail: (HC); (YL); (JZ)
| |
Collapse
|
284
|
Ono K, Li L, Takamura Y, Yoshiike Y, Zhu L, Han F, Mao X, Ikeda T, Takasaki JI, Nishijo H, Takashima A, Teplow DB, Zagorski MG, Yamada M. Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding. J Biol Chem 2012; 287:14631-43. [PMID: 22393064 PMCID: PMC3340280 DOI: 10.1074/jbc.m111.325456] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/28/2012] [Indexed: 11/06/2022] Open
Abstract
Cerebral deposition of amyloid β protein (Aβ) is an invariant feature of Alzheimer disease (AD), and epidemiological evidence suggests that moderate consumption of foods enriched with phenolic compounds reduce the incidence of AD. We reported previously that the phenolic compounds myricetin (Myr) and rosmarinic acid (RA) inhibited Aβ aggregation in vitro and in vivo. To elucidate a mechanistic basis for these results, we analyzed the effects of five phenolic compounds in the Aβ aggregation process and in oligomer-induced synaptic toxicities. We now report that the phenolic compounds blocked Aβ oligomerization, and Myr promoted significant NMR chemical shift changes of monomeric Aβ. Both Myr and RA reduced cellular toxicity and synaptic dysfunction of the Aβ oligomers. These results suggest that Myr and RA may play key roles in blocking the toxicity and early assembly processes associated with Aβ through different binding.
Collapse
Affiliation(s)
- Kenjiro Ono
- From the Department of Neurology and Neurobiology and Aging, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan
| | - Lei Li
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yusaku Takamura
- System Emotional Science, University of Toyama, Toyama 930-0194, Japan
| | - Yuji Yoshiike
- the Laboratory for Alzheimer's Disease, Brain Science Institute, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan, and
| | - Lijun Zhu
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Fang Han
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Xian Mao
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Tokuhei Ikeda
- From the Department of Neurology and Neurobiology and Aging, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan
| | - Jun-ichi Takasaki
- From the Department of Neurology and Neurobiology and Aging, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan
| | - Hisao Nishijo
- System Emotional Science, University of Toyama, Toyama 930-0194, Japan
| | - Akihiko Takashima
- the Laboratory for Alzheimer's Disease, Brain Science Institute, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan, and
| | - David B. Teplow
- Department of Neurology and Mary S. Easton Center for Alzheimer's Disease Research at UCLA, David Geffen School of Medicine, and Molecular Biology Institute and Brain Research Institute, UCLA, Los Angeles, California 90095
| | - Michael G. Zagorski
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Masahito Yamada
- From the Department of Neurology and Neurobiology and Aging, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan
| |
Collapse
|
285
|
Yu X, Wang Q, Lin Y, Zhao J, Zhao C, Zheng J. Structure, orientation, and surface interaction of Alzheimer amyloid-β peptides on the graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6595-6605. [PMID: 22468636 DOI: 10.1021/la3002306] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The misfolding and aggregation of amyloid-β (Aβ) peptides into amyloid fibrils in solution and on the cell membrane has been linked to the pathogenesis of Alzheimer's disease. Although it is well-known that the presence of different surfaces can accelerate the aggregation of Aβ peptides into fibrils, surface-induced conformation, orientation, aggregation, and adsorption of Aβ peptides have not been well understood at the atomic level. Here, we perform all-atom explicit-water molecular dynamics (MD) simulations to study the orientation change, conformational dynamics, surface interaction of small Aβ aggregates with different sizes (monomer to tetramer), and conformations (α-helix and β-hairpin) upon adsorption on the graphite surface, in comparison with Aβ structures in bulk solution. Simulation results show that hydrophobic graphite induces the quick adsorption of Aβ peptides regardless of their initial conformations and sizes. Upon the adsorption, Aβ prefers to adopt random structure for monomers and to remain β-rich-structure for small oligomers, but not helical structures. More importantly, due to the amphiphilic sequence of Aβ and the hydrophobic nature of graphite, hydrophobic C-terminal residues of higher-order Aβ oligomers appear to have preferential interactions with the graphite surface for facilitating Aβ fibril formation and fibril growth. In combination of atomic force microscopy (AFM) images and MD simulation results, a postulated mechanism is proposed to describe the structure and kinetics of Aβ aggregation from aqueous solution to the graphite surface, providing parallel insights into Aβ aggregation on biological cell membranes.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | | | | | | | | | | |
Collapse
|
286
|
Tian J, Sethi A, Anunciado D, Vu DM, Gnanakaran S. Characterization of a disordered protein during micellation: interactions of α-synuclein with sodium dodecyl sulfate. J Phys Chem B 2012; 116:4417-24. [PMID: 22439820 PMCID: PMC3357070 DOI: 10.1021/jp210339f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To better understand the interaction of α-synuclein (αSyn) with lipid membranes, we carried out self-assembly molecular dynamics simulations of αSyn with monomeric and micellar sodium dodecyl sulfate (SDS), a widely used membrane mimic. We find that both electrostatic and hydrophobic forces contribute to the interactions of αSyn with SDS. In the presence of αSyn, our simulations suggest that SDS aggregates along the protein chain and forms small-size micelles at very early times. Aggregation is followed by formation of a collapsed protein-SDS micelle complex, which is consistent with experimental results. Finally, interaction of αSyn with preformed micelles induces alterations in the shape of the micelle, and the N-terminal helix (residues 3 through 37) tends to associate with micelles. Overall, our simulations provide an atomistic description of the early time scale αSyn-SDS interaction during the self-assembly of SDS into micelles.
Collapse
Affiliation(s)
- Jianhui Tian
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos 87545
| | - Anurag Sethi
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos 87545
| | - Divina Anunciado
- Physical Chemistry & Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos 87545
| | - Dung M. Vu
- Physical Chemistry & Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos 87545
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos 87545
| |
Collapse
|
287
|
Hunter S, Brayne C. Relationships between the amyloid precursor protein and its various proteolytic fragments and neuronal systems. Alzheimers Res Ther 2012; 4:10. [PMID: 22498202 PMCID: PMC3583130 DOI: 10.1186/alzrt108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and in its familial form is associated with mutations in the amyloid precursor protein (APP) and the presenilins (PSs). Much data regarding the interactions of APP, its proteolytic fragments and PS have been generated, expanding our understanding of the roles of these proteins in mechanisms underlying cognitive function and revealing many complex relationships with wide ranging cellular systems. In this review, we examine the multiple interactions of APP and its proteolytic fragments with other neuronal systems in terms of feedback loops and use these relationships to build a map. We highlight the complexity involved in the APP proteolytic system and discuss alternative perspectives on the roles of APP and its proteolytic fragments in dynamic processes associated with disease progression in AD. We highlight areas where data are missing and suggest potential confounding factors. We suggest that a systems biology approach enhances representations of the data and may be more useful in modelling both normal cognition and disease processes.
Collapse
Affiliation(s)
- Sally Hunter
- Institute of Public Health, University of Cambridge, Forvie site, Robinson Way, Cambridge CB2 0SR, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Forvie site, Robinson Way, Cambridge CB2 0SR, UK
| |
Collapse
|
288
|
Barz B, Urbanc B. Dimer formation enhances structural differences between amyloid β-protein (1-40) and (1-42): an explicit-solvent molecular dynamics study. PLoS One 2012; 7:e34345. [PMID: 22509291 PMCID: PMC3324527 DOI: 10.1371/journal.pone.0034345] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 02/26/2012] [Indexed: 11/18/2022] Open
Abstract
Amyloid β-protein (Aβ) is central to the pathology of Alzheimer's disease. A 5% difference in the primary structure of the two predominant alloforms, Aβ(1-40) and Aβ(1-42), results in distinct assembly pathways and toxicity properties. Discrete molecular dynamics (DMD) studies of Aβ(1-40) and Aβ(1-42) assembly resulted in alloform-specific oligomer size distributions consistent with experimental findings. Here, a large ensemble of DMD-derived Aβ(1-40) and Aβ(1-42) monomers and dimers was subjected to fully atomistic molecular dynamics (MD) simulations using the OPLS-AA force field combined with two water models, SPCE and TIP3P. The resulting all-atom conformations were slightly larger, less compact, had similar turn and lower β-strand propensities than those predicted by DMD. Fully atomistic Aβ(1-40) and Aβ(1-42) monomers populated qualitatively similar free energy landscapes. In contrast, the free energy landscape of Aβ(1-42) dimers indicated a larger conformational variability in comparison to that of Aβ(1-40) dimers. Aβ(1-42) dimers were characterized by an increased flexibility in the N-terminal region D1-R5 and a larger solvent exposure of charged amino acids relative to Aβ(1-40) dimers. Of the three positively charged amino acids, R5 was the most and K16 the least involved in salt bridge formation. This result was independent of the water model, alloform, and assembly state. Overall, salt bridge propensities increased upon dimer formation. An exception was the salt bridge propensity of K28, which decreased upon formation of Aβ(1-42) dimers and was significantly lower than in Aβ(1-40) dimers. The potential relevance of the three positively charged amino acids in mediating the Aβ oligomer toxicity is discussed in the light of available experimental data.
Collapse
Affiliation(s)
- Bogdan Barz
- Physics Department, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Brigita Urbanc
- Physics Department, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
289
|
Zhu X, Bora RP, Barman A, Singh R, Prabhakar R. Dimerization of the Full-Length Alzheimer Amyloid β-Peptide (Aβ42) in Explicit Aqueous Solution: A Molecular Dynamics Study. J Phys Chem B 2012; 116:4405-16. [DOI: 10.1021/jp210019h] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaoxia Zhu
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146,
United States
| | - Ram Prasad Bora
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146,
United States
| | - Arghya Barman
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146,
United States
| | - Rajiv Singh
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146,
United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146,
United States
| |
Collapse
|
290
|
Côté S, Laghaei R, Derreumaux P, Mousseau N. Distinct dimerization for various alloforms of the amyloid-beta protein: Aβ(1-40), Aβ(1-42), and Aβ(1-40)(D23N). J Phys Chem B 2012; 116:4043-55. [PMID: 22409719 DOI: 10.1021/jp2126366] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Amyloid-beta protein is related to Alzheimer's disease, and various experiments have shown that oligomers as small as the dimer are cytotoxic. Two alloforms are mainly produced: Aβ(1-40) and Aβ(1-42). They have very different oligomer distributions, and it was recently suggested, from experimental studies, that this variation may originate from structural differences in their dimer structures. Little structural information is available on the Aβ dimer, however, and to complement experimental observations, we simulated the folding of the wild-type Aβ(1-40) and Aβ(1-42) dimers as well as the mutated Aβ(1-40)(D23N) dimer using an accurate coarse-grained force field coupled to Hamiltonian-temperature replica exchange molecular dynamics. The D23N variant impedes the salt-bridge formation between D23 and K28 seen in the wild-type Aβ, leading to very different fibrillation properties and final amyloid fibrils. Our results show that the Aβ(1-42) dimer has a higher propensity than the Aβ(1-40) dimer to form β-strands at the central hydrophobic core (residues 17-21) and at the C-terminal (residues 30-42), which are two segments crucial to the oligomerization of Aβ. The free energy landscape of the Aβ(1-42) dimer is also broader and more complex than that of the Aβ(1-40) dimer. Interestingly, D23N also impacts the free energy landscape by increasing the population of configurations with higher β-strand propensities when compared against Aβ(40). In addition, while Aβ(1-40)(D23N) displays a higher β-strand propensity at the C-terminal, its solvent accessibility does not change with respect to the wild-type sequence. Overall, our results show the strong impact of the two amino acids Ile41-Ala42 and the salt-bridge D23-K28 on the folding of the Aβ dimer.
Collapse
Affiliation(s)
- Sébastien Côté
- Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
291
|
Wise-Scira O, Xu L, Kitahara T, Perry G, Coskuner O. Amyloid-β peptide structure in aqueous solution varies with fragment size. J Chem Phys 2012; 135:205101. [PMID: 22128957 DOI: 10.1063/1.3662490] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Various fragment sizes of the amyloid-β (Aβ) peptide have been utilized to mimic the properties of the full-length Aβ peptide in solution. Among these smaller fragments, Aβ16 and Aβ28 have been investigated extensively. In this work, we report the structural and thermodynamic properties of the Aβ16, Aβ28, and Aβ42 peptides in an aqueous solution environment. We performed replica exchange molecular dynamics simulations along with thermodynamic calculations for investigating the conformational free energies, secondary and tertiary structures of the Aβ16, Aβ28, and Aβ42 peptides. The results show that the thermodynamic properties vary from each other for these peptides. Furthermore, the secondary structures in the Asp1-Lys16 and Asp1-Lys28 regions of Aβ42 cannot be completely captured by the Aβ16 and Aβ28 fragments. For example, the β-sheet structures in the N-terminal region of Aβ16 and Aβ28 are either not present or the abundance is significantly decreased in Aβ42. The α-helix and β-sheet abundances in Aβ28 and Aβ42 show trends--to some extent--with the potential of mean forces but no such trend could be obtained for Aβ16. Interestingly, Arg5 forms salt bridges with large abundances in all three peptides. The formation of a salt bridge between Asp23-Lys28 is more preferred over the Glu22-Lys28 salt bridge in Aβ28 but this trend is vice versa for Aβ42. This study shows that the Asp1-Lys16 and Asp1-Lys28 regions of the full length Aβ42 peptide cannot be completely mimicked by studying the Aβ16 and Aβ28 peptides.
Collapse
Affiliation(s)
- Olivia Wise-Scira
- The University of Texas at San Antonio, Department of Chemistry, One UTSA Circle, San Antonio, Texas 78249, USA
| | | | | | | | | |
Collapse
|
292
|
Olubiyi OO, Strodel B. Structures of the amyloid β-peptides Aβ1-40 and Aβ1-42 as influenced by pH and a D-peptide. J Phys Chem B 2012; 116:3280-91. [PMID: 22300010 DOI: 10.1021/jp2076337] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this simulation study, we present a comparison of the secondary structure of the two major alloforms of the Alzheimer's peptide (Aβ(1-40) and Aβ(1-42)) on the basis of molecular dynamics (MD) simulations on thea microsecond time scale using the two GROMOS96 force fields ffG43a2 and ffG53a6. We observe peptide and force-field related differences in the sampled conformations of Aβ(1-40) and Aβ(1-42), which we characterize in terms of NMR chemical shifts calculated from the MD trajectories and validate against the corresponding experimental NMR results. From this analysis, we can conclude that ffG53a6 is better able to model the structural propensities of Aβ(1-40) and Aβ(1-42) than ffG43a2. Furthermore, we provide a description of the influences of pH and binding of D3, a 12-residue D-enantiomeric peptide with demonstrated antiamyloid effects, on the structure of Aβ(1-42). We demonstrate that, under slightly acidic conditions, protonation of the three histidine residues in Aβ(1-42) promotes the formation of β-sheets via a reduction in electrostatic repulsion between the two terminal regions. Our studies further reveal that the binding between D3 and Aβ(1-42) is driven by electrostatic interactions between negatively charged Aβ(1-42) residues and the five positively charged arginine residues of D3. The binding of D3 was found to induce large conformational changes in the amyloid peptide, with a reduction in β-sheet units being the most significant effect recorded, possibly explaining the observed amyloid-inhibiting properties of the D-peptide.
Collapse
Affiliation(s)
- Olujide O Olubiyi
- Institute of Complex Systems: Structural Biochemistry, Research Centre Jülich, Germany
| | | |
Collapse
|
293
|
Han M, Hansmann UHE. Replica exchange molecular dynamics of the thermodynamics of fibril growth of Alzheimer's Aβ42 peptide. J Chem Phys 2012; 135:065101. [PMID: 21842950 DOI: 10.1063/1.3617250] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The growth of amyloid fibrils is studied by replica exchange molecular dynamics in an implicit solvent. Our data indicate that extremely long simulation times (at least a few hundred ns) are necessary to study the thermodynamics of fibril elongation in detail. However some aspects of the aggregation process are already accessible on the time scales available in the present study. A peak in the specific heat indicates a docking temperature of T(dock) ≈ 320 K. Irreversible locking requires lower temperatures with the locking temperature estimated as T(lock) ≈ 280 K. In our simulation the fibril grows from both sides with the C-terminal of the incoming monomer attaching to the C-terminal of the peptides in the fibril forming a β-sheet on the fibril edge. Our simulation indicates that the C-terminal is crucial for aggregation.
Collapse
Affiliation(s)
- Ming Han
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA.
| | | |
Collapse
|
294
|
Matthes D, Gapsys V, de Groot BL. Driving forces and structural determinants of steric zipper peptide oligomer formation elucidated by atomistic simulations. J Mol Biol 2012; 421:390-416. [PMID: 22326493 DOI: 10.1016/j.jmb.2012.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/27/2012] [Accepted: 02/01/2012] [Indexed: 12/20/2022]
Abstract
Understanding the structural and energetic requirements of non-fibrillar oligomer formation harbors the potential to decipher an important yet still elusive part of amyloidogenic peptide and protein aggregation. Low-molecular-weight oligomers are described to be transient and polymorphic intermediates in the nucleated self-assembly process to highly ordered amyloid fibers and were additionally found to exhibit a profound cytotoxicity. However, detailed structural information on the oligomeric species involved in the nucleation cannot be readily inferred from experiments. Here, we study the spontaneous assembly of steric zipper peptides from the tau protein, insulin and α-synuclein with atomistic molecular dynamics simulations on the microsecond timescale. Detailed analysis of the forces driving the oligomerization reveals a common two-step process akin to a general condensation-ordering mechanism and thus provides a rational understanding of the molecular basis of peptide self-assembly. Our results suggest that the initial formation of partially ordered peptide oligomers is governed by the solvation free energy, whereas the dynamical ordering and emergence of β-sheets are mainly driven by optimized inter-peptide interactions in the collapsed state. A novel mapping technique based on collective coordinates is employed to highlight similarities and differences in the conformational ensemble of small oligomer structures. Elucidating the dynamical and polymorphic β-sheet oligomer conformations at atomistic detail furthermore suggests complementary sheet packing characteristics similar to steric zipper structures, but with a larger heterogeneity in the strand alignment pattern and sheet-to-sheet arrangements compared to the cross-β motif found in the fibrillar or crystalline states.
Collapse
Affiliation(s)
- Dirk Matthes
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
295
|
Doran TM, Anderson EA, Latchney SE, Opanashuk LA, Nilsson BL. Turn nucleation perturbs amyloid β self-assembly and cytotoxicity. J Mol Biol 2012; 421:315-28. [PMID: 22326870 DOI: 10.1016/j.jmb.2012.01.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 10/14/2022]
Abstract
The accumulation of senile plaques composed of amyloid β (Aβ) fibrils is a hallmark of Alzheimer's disease, although prefibrillar oligomeric species are believed to be the primary neurotoxic congeners in the pathogenesis of Alzheimer's disease. Uncertainty regarding the mechanistic relationship between Aβ oligomer and fibril formation and the cytotoxicity of these aggregate species persists. β-Turn formation has been proposed to be a potential rate-limiting step during Aβ fibrillogenesis. The effect of turn nucleation on Aβ self-assembly was probed by systematically replacing amino acid pairs in the putative turn region of Aβ (residues 24-27) with d-ProGly ((D)PG), an effective turn-nucleating motif. The kinetic, thermodynamic, and cytotoxic effects of these mutations were characterized. It was found that turn formation dramatically accelerated Aβ fibril self-assembly dependent on the site of turn nucleation. The cytotoxicity of the three (D)PG-containing Aβ variants was significantly lower than that of wild-type Aβ40, presumably due to decreased oligomer populations as a function of a more rapid progression to mature fibrils; oligomer populations were not eliminated, however, suggesting that turn formation is also a feature of oligomer structures. These results indicate that turn nucleation is a critical step in Aβ40 fibril formation.
Collapse
Affiliation(s)
- Todd M Doran
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | |
Collapse
|
296
|
Johanssen V, Barnham K, Masters C, Hill A, Collins S. Generating recombinant C-terminal prion protein fragments of exact native sequence. Neurochem Int 2012; 60:318-26. [DOI: 10.1016/j.neuint.2011.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
|
297
|
Gu L, Ngo S, Guo Z. Solid-support electron paramagnetic resonance (EPR) studies of Aβ40 monomers reveal a structured state with three ordered segments. J Biol Chem 2012; 287:9081-9. [PMID: 22277652 DOI: 10.1074/jbc.m111.292086] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease is associated with the pathological accumulation of amyloid-β peptide (Aβ) in the brain. Soluble Aβ oligomers formed during early aggregation process are believed to be neurotoxins and causative agents in Alzheimer disease. Aβ monomer is the building block for amyloid assemblies. A comprehensive understanding of the structural features of Aβ monomer is crucial for delineating the mechanism of Aβ oligomerization. Here we investigated the structures of Aβ40 monomer using a solid-support approach, in which Aβ40 monomers are tethered on the solid support via an N-terminal His tag to prevent further aggregation. EPR spectra of tethered Aβ40 with spin labels at 18 different positions show that Aβ40 monomers adopt a completely disordered structure under denaturing conditions. Under native conditions, however, EPR spectra suggest that Aβ40 monomers adopt both a disordered state and a structured state. The structured state of Aβ40 monomer has three more ordered segments at 14-18, 29-30, and 38-40. Interactions between these segments may stabilize the structured state, which likely plays an important role in Aβ aggregation.
Collapse
Affiliation(s)
- Lei Gu
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
298
|
Chong SH, Park M, Ham S. Structural and Thermodynamic Characteristics That Seed Aggregation of Amyloid-β Protein in Water. J Chem Theory Comput 2012; 8:724-34. [DOI: 10.1021/ct200757a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Song-Ho Chong
- Department
of Chemistry, Sookmyung Women’s University,
Hyochangwon-gil 52, Yongsan-gu, Seoul, 140-742, Korea
| | - Mirae Park
- Department
of Chemistry, Sookmyung Women’s University,
Hyochangwon-gil 52, Yongsan-gu, Seoul, 140-742, Korea
| | - Sihyun Ham
- Department
of Chemistry, Sookmyung Women’s University,
Hyochangwon-gil 52, Yongsan-gu, Seoul, 140-742, Korea
| |
Collapse
|
299
|
Abstract
A variety of neurodegenerative diseases are associated with amyloid plaques, which begin as soluble protein oligomers but develop into amyloid fibrils. Our incomplete understanding of this process underscores the need to decipher the principles governing protein aggregation. Mechanisms of in vivo amyloid formation involve a number of coconspirators and complex interactions with membranes. Nevertheless, understanding the biophysical basis of simpler in vitro amyloid formation is considered important for discovering ligands that preferentially bind regions harboring amyloidogenic tendencies. The determination of the fibril structure of many peptides has set the stage for probing the dynamics of oligomer formation and amyloid growth through computer simulations. Most experimental and simulation studies, however, have been interpreted largely from the perspective of proteins: the role of solvent has been relatively overlooked in oligomer formation and assembly to protofilaments and amyloid fibrils. In this Account, we provide a perspective on how interactions with water affect folding landscapes of amyloid beta (Aβ) monomers, oligomer formation in the Aβ16-22 fragment, and protofilament formation in a peptide from yeast prion Sup35. Explicit molecular dynamics simulations illustrate how water controls the self-assembly of higher order structures, providing a structural basis for understanding the kinetics of oligomer and fibril growth. Simulations show that monomers of Aβ peptides sample a number of compact conformations. The formation of aggregation-prone structures (N*) with a salt bridge, strikingly similar to the structure in the fibril, requires overcoming a high desolvation barrier. In general, sequences for which N* structures are not significantly populated are unlikely to aggregate. Oligomers and fibrils generally form in two steps. First, water is expelled from the region between peptides rich in hydrophobic residues (for example, Aβ16-22), resulting in disordered oligomers. Then the peptides align along a preferred axis to form ordered structures with anti-parallel β-strand arrangement. The rate-limiting step in the ordered assembly is the rearrangement of the peptides within a confining volume. The mechanism of protofilament formation in a polar peptide fragment from the yeast prion, in which the two sheets are packed against each other and create a dry interface, illustrates that water dramatically slows self-assembly. As the sheets approach each other, two perfectly ordered one-dimensional water wires form. They are stabilized by hydrogen bonds to the amide groups of the polar side chains, resulting in the formation of long-lived metastable structures. Release of trapped water from the pore creates a helically twisted protofilament with a dry interface. Similarly, the driving force for addition of a solvated monomer to a preformed fibril is water release; the entropy gain and favorable interpeptide hydrogen bond formation compensate for entropy loss in the peptides. We conclude by offering evidence that a two-step model, similar to that postulated for protein crystallization, must also hold for higher order amyloid structure formation starting from N*. Distinct water-laden polymorphic structures result from multiple N* structures. Water plays multifarious roles in all of these protein aggregations. In predominantly hydrophobic sequences, water accelerates fibril formation. In contrast, water-stabilized metastable intermediates dramatically slow fibril growth rates in hydrophilic sequences.
Collapse
Affiliation(s)
- D Thirumalai
- Biophysics Program, Institute for Physical Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.
| | | | | |
Collapse
|
300
|
Härd T, Lendel C. Inhibition of amyloid formation. J Mol Biol 2012; 421:441-65. [PMID: 22244855 DOI: 10.1016/j.jmb.2011.12.062] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 12/26/2022]
Abstract
Amyloid is aggregated protein in the form of insoluble fibrils. Amyloid deposition in human tissue-amyloidosis-is associated with a number of diseases including all common dementias and type II diabetes. Considerable progress has been made to understand the mechanisms leading to amyloid formation. It is, however, not yet clear by which mechanisms amyloid and protein aggregates formed on the path to amyloid are cytotoxic. Strategies to prevent protein aggregation and amyloid formation are nevertheless, in many cases, promising and even successful. This review covers research on intervention of amyloidosis and highlights several examples of how inhibition of protein aggregation and amyloid formation has been achieved in practice. For instance, rational design can provide drugs that stabilize a native folded state of a protein, protein engineering can provide new binding proteins that sequester monomeric peptides from aggregation, small molecules and peptides can be designed to block aggregation or direct it into non-cytotoxic paths, and monoclonal antibodies have been developed for therapies towards neurodegenerative diseases based on inhibition of amyloid formation and clearance.
Collapse
Affiliation(s)
- Torleif Härd
- Department of Molecular Biology, Swedish University of Agricultural Sciences, SE-751 24 Uppsala, Sweden.
| | | |
Collapse
|