251
|
Osteoarthritis pathogenesis - a complex process that involves the entire joint. J Med Life 2014; 7:37-41. [PMID: 24653755 PMCID: PMC3956093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/08/2014] [Indexed: 10/26/2022] Open
Abstract
Osteoarthritis is the most common joint disorder and a major cause of disability with a major socio-economic impact. In these circumstances is very important to understand its pathogenesis. Although previous research focused primarily on changes in the articular cartilage, more recent studies have highlighted the importance of the subchondral bone, synovium, menisci, ligaments, periarticular muscles and nerves. Now osteoarthritis is viewed as a multifactorial disease affecting the whole joint.
Collapse
|
252
|
Ozeki N, Muneta T, Koga H, Katagiri H, Otabe K, Okuno M, Tsuji K, Kobayashi E, Matsumoto K, Saito H, Saito T, Sekiya I. Transplantation of Achilles tendon treated with bone morphogenetic protein 7 promotes meniscus regeneration in a rat model of massive meniscal defect. ACTA ACUST UNITED AC 2014; 65:2876-86. [PMID: 23897174 PMCID: PMC4034586 DOI: 10.1002/art.38099] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/16/2013] [Indexed: 01/17/2023]
Abstract
Objective This study was undertaken to examine whether bone morphogenetic protein 7 (BMP-7) induces ectopic cartilage formation in the rat tendon, and whether transplantation of tendon treated with BMP-7 promotes meniscal regeneration. Additionally, we analyzed the relative contributions of host and donor cells on the healing process after tendon transplantation in a rat model. Methods BMP-7 was injected in situ into the Achilles tendon of rats, and the histologic findings and gene profile were evaluated. Achilles tendon injected with 1 μg of BMP-7 was transplanted into a meniscal defect in rats. The regenerated meniscus and articular cartilage were evaluated at 4, 8, and 12 weeks. Achilles tendon from LacZ-transgenic rats was transplanted into the meniscal defect in wild-type rats, and vice versa. Results Injection of BMP-7 into the rat Achilles tendon induced the fibrochondrocyte differentiation of tendon cells and changed the collagen gene profile of tendon tissue to more closely approximate meniscal tissue. Transplantation of the rat Achilles tendon into a meniscal defect increased meniscal size. The rats that received the tendon treated with BMP-7 had a meniscus matrix that exhibited increased Safranin O and type II collagen staining, and showed a delay in articular cartilage degradation. Using LacZ-transgenic rats, we determined that the regeneration of the meniscus resulted from contribution from both donor and host cells. Conclusion Our findings indicate that BMP-7 induces ectopic cartilage formation in rat tendons. Transplantation of Achilles tendon treated with BMP-7 promotes meniscus regeneration and prevents cartilage degeneration in a rat model of massive meniscal defect. Native cells in the rat Achilles tendon contribute to meniscal regeneration.
Collapse
Affiliation(s)
- Nobutake Ozeki
- Tokyo Medical and Dental University, Tokyo, Japan; Yokohama City University, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Sasho T, Tsuruoka H, Saito M, Akagi R, Muramatsu Y, Mukoyama S, Yamaguchi S. Time interval from initial surgery for torn discoid lateral meniscus to the contralateral knee surgery. Asia Pac J Sports Med Arthrosc Rehabil Technol 2014. [DOI: 10.1016/j.asmart.2013.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
254
|
Park DY, Min BH, Kim DW, Song BR, Kim M, Kim YJ. Polyethylene wear particles play a role in development of osteoarthritis via detrimental effects on cartilage, meniscus, and synovium. Osteoarthritis Cartilage 2013; 21:2021-9. [PMID: 24161707 DOI: 10.1016/j.joca.2013.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/31/2013] [Accepted: 09/28/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE While ultra-high molecular weight polyethylene (UHMWPE) wear particles are known to cause periprosthetic osteolysis, its interaction with other intra-articular tissues in the case of partial joint arthroplasties is not well understood. We hypothesized that UHMWPE particles per se would interact with intra-articular tissue, which by acting as inflammatory reservoirs, would subsequently induce osteoarthritic (OA) changes. Our goal was to assess the inflammatory response, phagocytic activity, as well as apoptosis of intra-articular cells in the presence of UHMWPE particles in vitro, and the in vivo response of those tissues after intra-articular injection of particles in a murine model. DESIGN Three cell types were used for the in vitro study; chondrocytes, meniscal fibrochondrocytes, and synoviocytes. Each cell type was cultured with two different concentrations of UHMWPE particles. Pro-inflammatory cytokine production, phagocytosis, and apoptosis were analyzed. In vivo experiments were done by injecting two concentrations of UHMWPE particles into normal and murine OA model knee joints. RESULTS In vitro experiments showed that UHMWPE particles increase pro-inflammatory cytokine and mediator (IL-1β, IL-6, TNF-α, Nitric Oxide, and Prostaglandin E2) production, phagocytosis of particles, and apoptosis in all cell types. In vivo experiment showed degeneration of cartilage and meniscus, as well as synovitis after particle injection. CONCLUSIONS UHMWPE wear particles per se exert detrimental effects in cartilage, synovium, and meniscus of the knee joint resulting in pro-inflammatory cytokine release, phagocytosis of particles and apoptosis. Particles induced and exacerbated OA changes in a murine model.
Collapse
Affiliation(s)
- D Y Park
- Department of Anatomy, Ajou University School of Medicine, San 5 Wonchon-dong, Youngtong-gu, Suwon, Kyounggi-do 443-721, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
255
|
Rai MF, Patra D, Sandell LJ, Brophy RH. Transcriptome analysis of injured human meniscus reveals a distinct phenotype of meniscus degeneration with aging. ACTA ACUST UNITED AC 2013; 65:2090-101. [PMID: 23658108 DOI: 10.1002/art.37984] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/16/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Meniscus tears are associated with a heightened risk of osteoarthritis. This study aimed to advance our understanding of the metabolic state of injured human meniscus at the time of arthroscopic partial meniscectomy through transcriptome-wide analysis of gene expression in relation to the patient's age and degree of cartilage chondrosis. METHODS The degree of chondrosis of knee cartilage was recorded at the time of meniscectomy in symptomatic patients without radiographic osteoarthritis. RNA preparations from resected menisci (n = 12) were subjected to transcriptome-wide microarray and QuantiGene Plex analyses. Variations in the relative changes in gene expression with age and chondrosis were analyzed, and integrated biologic processes were investigated computationally. RESULTS We identified a set of genes in torn menisci that were differentially expressed with age and chondrosis. There were 866 genes that were differentially regulated (≥1.5-fold difference and P < 0.05) with age and 49 with chondrosis. In older patients, genes associated with cartilage and skeletal development and extracellular matrix synthesis were repressed, while those involved in immune response, inflammation, cell cycle, and cellular proliferation were stimulated. With chondrosis, genes representing cell catabolism (cAMP catabolic process) and tissue and endothelial cell development were repressed, and those involved in T cell differentiation and apoptosis were elevated. CONCLUSION Differences in age-related gene expression suggest that in older adults, meniscal cells might dedifferentiate and initiate a proliferative phenotype. Conversely, meniscal cells in younger patients appear to respond to injury, but they maintain the differentiated phenotype. Definitive molecular signatures identified in damaged meniscus could be segregated largely with age and, to a lesser extent, with chondrosis.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63017, USA
| | | | | | | |
Collapse
|
256
|
Biological activities of phosphocitrate: a potential meniscal protective agent. BIOMED RESEARCH INTERNATIONAL 2013; 2013:726581. [PMID: 23936839 PMCID: PMC3726015 DOI: 10.1155/2013/726581] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/12/2013] [Accepted: 06/19/2013] [Indexed: 12/26/2022]
Abstract
Phosphocitrate (PC) inhibited meniscal calcification and the development of calcium crystal-associated osteoarthritis (OA) in Hartley guinea pigs. However, the mechanisms remain elusive. This study sought to examine the biological activities of PC in the absence of calcium crystals and test the hypothesis that PC is potentially a meniscal protective agent. We found that PC downregulated the expression of many genes classified in cell proliferation, ossification, prostaglandin metabolic process, and wound healing, including bloom syndrome RecQ helicase-like, cell division cycle 7 homolog, cell division cycle 25 homolog C, ankylosis progressive homolog, prostaglandin-endoperoxide synthases-1/cyclooxygenase-1, and plasminogen activator urokinase receptor. In contrast, PC stimulated the expression of many genes classified in fibroblast growth factor receptor signaling pathway, collagen fibril organization, and extracellular structure organization, including fibroblast growth factor 7, collagen type I, alpha 1, and collagen type XI, alpha 1. Consistent with its effect on the expression of genes classified in cell proliferation, collagen fibril organization, and ossification, PC inhibited the proliferation of OA meniscal cells and meniscal cell-mediated calcification while stimulating the production of collagens. These findings indicate that PC is potentially a meniscal-protective agent and a disease-modifying drug for arthritis associated with severe meniscal degeneration.
Collapse
|
257
|
Grogan SP, Chung PH, Soman P, Chen P, Lotz MK, Chen S, D’Lima DD. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater 2013; 9:7218-26. [PMID: 23523536 DOI: 10.1016/j.actbio.2013.03.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 12/17/2022]
Abstract
Meniscus degeneration due to age or injury can lead to osteoarthritis. Although promising, current cell-based approaches show limited success. Here we present three-dimensional methacrylated gelatin (GelMA) scaffolds patterned via projection stereolithography to emulate the circumferential alignment of cells in native meniscus tissue. Cultured human avascular zone meniscus cells from normal meniscus were seeded on the scaffolds. Cell viability was monitored, and new tissue formation was assessed by gene expression analysis and histology after 2weeks in serum-free culture with transforming growth factor β1 (10ngml(-1)). Light, confocal and scanning electron microscopy were used to observe cell-GelMA interactions. Tensile mechanical testing was performed on unseeded, fresh scaffolds and 2-week-old cell-seeded and unseeded scaffolds. 2-week-old cell-GelMA constructs were implanted into surgically created meniscus defects in an explant organ culture model. No cytotoxic effects were observed 3weeks after implantation, and cells grew and aligned to the patterned GelMA strands. Gene expression profiles and histology indicated promotion of a fibrocartilage-like meniscus phenotype, and scaffold integration with repair tissue was observed in the explant model. We show that micropatterned GelMA scaffolds are non-toxic, produce organized cellular alignment, and promote meniscus-like tissue formation. Prefabrication of GelMA scaffolds with architectures mimicking the meniscus collagen bundle organization shows promise for meniscal repair. Furthermore, the technique presented may be scaled up to repair larger defects.
Collapse
|
258
|
Longo UG, Loppini M, Romeo G, Maffulli N, Denaro V. Histological scoring systems for tissue-engineered, ex vivo and degenerative meniscus. Knee Surg Sports Traumatol Arthrosc 2013; 21:1569-76. [PMID: 22829330 DOI: 10.1007/s00167-012-2142-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/09/2012] [Indexed: 02/05/2023]
Abstract
PURPOSE Because its function is strictly related to the quality of meniscal tissue, one of the most important outcome measures for the evaluation of meniscal repair effectiveness is the assessment of histological features. Data on the validation and application of the histological scoring systems in research settings and specific fields of meniscal disorders are lacking. The available histological scoring systems to assess meniscal tissue were systematically evaluated. METHODS Histological scoring systems for the analysis of degenerative meniscal changes, ex vivo and tissue-engineered meniscal repair were reviewed. Furthermore, the validity and applicability of the scoring systems were assessed. RESULTS The Copenhaver classification and Mankin score have been modified to classify the degeneration of collagen bundles in the meniscal structure. The Pauli score seems to be a comprehensive and simple scoring system for the evaluation of both macroscopic and histologic meniscal changes related to ageing and osteoarthritic degeneration. The Zhang score may be used for ex vivo gene therapy in meniscus healing. The Ishida score seems to be the most adequate for the evaluation of tissue-engineered meniscal repair. CONCLUSION Although several histological scoring systems are available to assess meniscal structure, only few of them have been validated for specific application in research settings. Validated scores are required to provide a standardized data collection to allow the comparison of results of different research groups. Further experimental and clinical studies are needed to find a comprehensive and validated histological scoring system in the field of meniscus repair. LEVEL OF EVIDENCE Systematic review of Level III studies, Level III.
Collapse
Affiliation(s)
- Umile Giuseppe Longo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy
| | | | | | | | | |
Collapse
|
259
|
Gao SG, Zeng C, Li LJ, Luo W, Zhang FJ, Tian J, Cheng C, Tu M, Xiong YL, Jiang W, Xu M, Lei GH. Correlation between senescence-associated beta-galactosidase expression in articular cartilage and disease severity of patients with knee osteoarthritis. Int J Rheum Dis 2013; 19:226-32. [PMID: 26112901 DOI: 10.1111/1756-185x.12096] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The purposes of this study were to investigate senescence-associated beta-galactosidase (SA-beta-Gal) levels in articular cartilage of knee osteoarthritis (OA) and the relationship with severity of the disease. METHODS All the 50 cartilage tissues, including normal (controls) and OA cartilage were ascribed to four groups of normal, mild lesions, moderate lesions and severe lesions on the basis of the modified Mankin score. Immunohistochemistry was used to assess the SA-beta-Gal expression in articular cartilage. RESULTS No SA-beta-Gal staining was observed in the normal articular cartilage samples. SA-beta-Gal staining was found in a subset of the chondrocytes close to the lesion site of mild, moderate and severe damaged knee OA cartilage. The percentage of SA-beta-Gal-positive chondrocytes in articular cartilage was 0% in controls, 13.00 ± 5.77% in mild lesions, 31.65 ± 6.91% in moderate lesions and 51.95 ± 6.21% in severe lesions. SA-beta-Gal expression in mild lesions, moderate lesions and severe lesions was higher compared with that of controls (P < 0.0001). SA-beta-Gal expression in moderate lesions and severe lesions were higher with respect to mild lesion samples (P < 0.0001). SA-beta-Gal expression in severe lesions was elevated compared with those of moderate lesions (P < 0.0001). Subsequent analysis showed that articular cartilage SA-beta-Gal levels correlated with severity of disease (Spearman's ρ = 0.94, P < 0.0001). CONCLUSION SA-beta-Gal expression in articular cartilage is associated with progressive knee OA joint damage and is a potential indictor of disease severity.
Collapse
Affiliation(s)
- Shu-Guang Gao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Orthopaedics Institute of Central South University, Changsha, Hunan, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang-Jun Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Orthopaedics, Changsha Central Hospital, Changsha, Hunan, China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang-Jie Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Cheng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Tu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Lin Xiong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Jiang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mai Xu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guang-Hua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Orthopaedics Institute of Central South University, Changsha, Hunan, China
| |
Collapse
|
260
|
Son M, Goodman SB, Chen W, Hargreaves B, Gold G, Levenston M. Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition. Osteoarthritis Cartilage 2013; 21:796-805. [PMID: 23499673 PMCID: PMC3909565 DOI: 10.1016/j.joca.2013.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/04/2013] [Accepted: 03/01/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Changes in T1ρ and T2 magnetic resonance relaxation times have been associated with articular cartilage degeneration, but similar relationships for meniscal tissue have not been extensively investigated. This work examined relationships between T1ρ and T2 measurements and biochemical and mechanical properties across regions of degenerate human menisci. DESIGN Average T1ρ and T2 relaxation times were determined for nine regions each of seven medial and 13 lateral menisci from 14 total knee replacement patients. Sulfated glycosaminoglycan (sGAG), collagen and water contents were measured for each region. Biomechanical measurements of equilibrium compressive, dynamic compressive and dynamic shear moduli were made for anterior, central and posterior regions. RESULTS T1ρ and T2 times showed similar regional patterns, with longer relaxation times in the (radially) middle region compared to the inner and outer regions. Pooled over all regions, T1ρ and T2 times showed strong correlations both with one another and with water content. Correlations with biochemical content varied depending on normalization to wet or dry mass, and both imaging parameters showed stronger correlations with collagen compared to sGAG content. Mechanical properties displayed moderate inverse correlations with increasing T1ρ and T2 times and water content. CONCLUSION Both T1ρ and T2 relaxation times correlated strongly with water content and moderately with mechanical properties in osteoarthritic menisci, but not as strongly with sGAG or collagen contents alone. While the ability of magnetic resonance imaging (MRI) to detect early osteoarthritic changes remains the subject of investigation, these results suggest that T1ρ and T2 relaxation times have limited ability to detect compositional variations in degenerate menisci.
Collapse
Affiliation(s)
- M. Son
- Department of Bioengineering, Stanford University, Stanford, CA
| | - S. B. Goodman
- Department of Bioengineering, Stanford University, Stanford, CA
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA
| | - W. Chen
- GE Healthcare, Menlo Park, CA
| | | | - G.E. Gold
- Department of Bioengineering, Stanford University, Stanford, CA
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA
- Department of Radiology, Stanford University, Stanford, CA
| | - M.E. Levenston
- Department of Bioengineering, Stanford University, Stanford, CA
- Department of Mechanical Engineering, Stanford University, Stanford, CA
- To whom correspondence should be addressed 233 Durand Building Stanford, CA 94305-4038 Ph: 650-723-9464 Fax: 650-725-1587
| |
Collapse
|
261
|
Katagiri H, Muneta T, Tsuji K, Horie M, Koga H, Ozeki N, Kobayashi E, Sekiya I. Transplantation of aggregates of synovial mesenchymal stem cells regenerates meniscus more effectively in a rat massive meniscal defect. Biochem Biophys Res Commun 2013; 435:603-9. [PMID: 23685144 DOI: 10.1016/j.bbrc.2013.05.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 05/07/2013] [Indexed: 01/05/2023]
Abstract
Transplantation of mesenchymal stem cells (MSCs) derived from synovium is a possible therapy for meniscus regeneration. We have previously reported that intraarticular injection of 5 million synovial MSCs promoted meniscal regeneration in rat meniscal defects. However, if a similar cell number per body weight were required, preparation of required human MSCs would not be practical in a clinical situation. The use of aggregates of MSCs may be one of the solutions. Here, we investigated whether the use of aggregates of synovial MSCs regenerated meniscus more effectively in a rat meniscectomized model. The total number of synovial MSCs was adjusted to 25,000 cells, and aggregates consisting of MSCs or 25,000 MSCs suspended in PBS were placed on the meniscal defects. Five million MSCs suspended in PBS were also used as another control. For the regenerated menisci, the area was larger and the histological findings were closer to that of the normal meniscus in the aggregate groups than to that in the suspension groups at 4 weeks. The effects of transplantation of aggregates were still observed at 12 weeks. Luminescence intensity remained higher at 3 weeks and thereafter in the aggregate group than in the suspension group when the same number of luciferase expressing MSCs were transplanted. We confirmed that MSCs transplanted as aggregates existed in the regenerated meniscus focally and partially. Transplantation of aggregates of synovial MSCs regenerated meniscus more effectively in a rat massive meniscal defect.
Collapse
Affiliation(s)
- Hiroki Katagiri
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
262
|
Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 2013; 5:77-94. [PMID: 23641259 DOI: 10.1177/1759720x12467868] [Citation(s) in RCA: 741] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) has traditionally been classified as a noninflammatory arthritis; however, the dichotomy between inflammatory and degenerative arthritis is becoming less clear with the recognition of a plethora of ongoing immune processes within the OA joint and synovium. Synovitis is defined as inflammation of the synovial membrane and is characteristic of classical inflammatory arthritidies. Increasingly recognized is the presence of synovitis in a significant proportion of patients with primary OA, and based on this observation, further studies have gone on to implicate joint inflammation and synovitis in the pathogenesis of OA. However, clinical OA is not one disease but a final common pathway secondary to many predisposing factors, most notably age, joint trauma, altered biomechanics, and obesity. How such biochemical and mechanical processes contribute to the progressive joint failure characteristic of OA is tightly linked to the interplay of joint damage, the immune response to perceived damage, and the subsequent state of chronic inflammation resulting in propagation and progression toward the phenotype recognized as clinical OA. This review will discuss a wide range of evolving data leading to our current hypotheses regarding the role of immune activation and inflammation in OA onset and progression. Although OA can affect any joint, most commonly the knee, hip, spine, and hands, this review will focus primarily on OA of the knee as this is the joint most well characterized by epidemiologic, imaging, and translational studies investigating the association of inflammation with OA.
Collapse
Affiliation(s)
- Jeremy Sokolove
- Department of Medicine/ Immunology, VA Palo Alto Health Care System, 3801 Miranda Ave, Mail Stop 154R, Palo Alto, CA 94034 Stanford University, Palo Alto, CA, USA
| | | |
Collapse
|
263
|
Musumeci G, Leonardi R, Carnazza ML, Cardile V, Pichler K, Weinberg AM, Loreto C. Aquaporin 1 (AQP1) expression in experimentally induced osteoarthritic knee menisci: an in vivo and in vitro study. Tissue Cell 2013; 45:145-152. [PMID: 23164158 DOI: 10.1016/j.tice.2012.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 01/01/2023]
Abstract
Osteoarthritis (OA) of the knee is a major problem in our society. The development of new treatment options for OA is limited, because the pathophysiological mechanisms are not clearly understood, especially on the molecular level. Aquaporin 1 (AQP1) is a specific protein channels for water transport; it is expressed in articular chondrocytes, human synovitis, in chondrocytes of patients with rheumatoid arthritis or OA and in chondrocyte-like cells of human intervertebral disc. The aim of this study was to investigate the expression of AQP1, through immunohistochemistry, immunocytochemistry and Western blot, in experimentally induced OA knee menisci. AQP1 was studied in vivo in knee OA menisci from 36 rats that underwent medial or lateral meniscectomy, and in vitro on fibrochondrocytes derived from knee OA menisci rats. OA in rats was experimentally induced and tested by histomorphometric analysis. Histological results demonstrated structural alterations in OA menisci accompanied by a very strong AQP1 immunohistochemical and immunocytochemical staining. The Western blot analysis confirmed a strong expression of AQP1 in OA fibrochondrocytes cells. The results of the present research suggest that an activation of AQP1, induced by the OA process, may represent an endogenous mechanism, which can be used to control the tissue degeneration within OA articular joints.
Collapse
Affiliation(s)
- G Musumeci
- Department of Bio-Medical Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
264
|
Chiang SW, Tsai PH, Chang YC, Wang CY, Chung HW, Lee HS, Chou MC, Hsu YC, Huang GS. T2 values of posterior horns of knee menisci in asymptomatic subjects. PLoS One 2013; 8:e59769. [PMID: 23555775 PMCID: PMC3610938 DOI: 10.1371/journal.pone.0059769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/18/2013] [Indexed: 02/07/2023] Open
Abstract
Purpose The magnetic resonance (MR) T2 value of cartilage is a reliable indicator of tissue properties and therefore may be used as an objective diagnostic tool in early meniscal degeneration. The purpose of this study was to investigate age, gender, location, and zonal differences in MR T2 value of the posterior horns of knee menisci in asymptomatic subjects. Methods Sixty asymptomatic volunteers (30 men and 30 women) were enrolled and divided into three different age groups: 20–34, 35–49 and 50–70 years. The inclusion criteria were BMI<30 kg/cm2, normalized Western Ontario and McMaster Universities (WOMAC) pain score of zero, and no evidence of meniscal and ligamentous abnormalities on routine knee MR imaging. The T2 values were measured on images acquired with a T2-weighted fat-suppressed turbo spin-echo sequence at 3T. Results The mean T2 values in both medial and lateral menisci for the 20–34, 35–49, and 50–70 age groups were 9.94 msec±0.94, 10.73 msec±1.55, and 12.36 msec±2.27, respectively, for women and 9.17 msec±0.74, 9.64 msec±0.67, and 10.95 msec±1.33, respectively, for men. The T2 values were significantly higher in the 50–70 age group than the 20–34 age group (P<0.001) and in women than in men (P = 0.001, 0.004, and 0.049 for each respective age group). T2 values were significantly higher in medial menisci than in lateral menisci only in women age 50–70 (3.33 msec, P = 0.006) and in the white zone and red/white zone of the 50–70 and 35–49 age groups than that of the 20–34 age group (2.47, 1.02; 2.77, 1.16 msec, respectively, all P<0.01). Conclusion The MR T2 values of the posterior meniscal horns increase with increasing age in women and are higher in women than in men. The age-related rise of T2 values appears to be more severe in medial menisci than in lateral menisci. Differences exist in the white zone and red/white zone.
Collapse
Affiliation(s)
- Shih-Wei Chiang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, ROC
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ping-Huei Tsai
- Imaging Research Center, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Radiology, Wan Fang Hospital, Taipei, Taiwan, ROC
| | - Yue-Cune Chang
- Department of Mathematics, Tamkang University, Taipei, Taiwan, ROC
| | - Chao-Ying Wang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, ROC
| | - Herng-Sheng Lee
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ming-Chung Chou
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Yi-Chih Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Guo-Shu Huang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- * E-mail:
| |
Collapse
|
265
|
Influence of soft tissues on the proximal bony tibial slope measured with two-dimensional MRI. Knee Surg Sports Traumatol Arthrosc 2013; 21:372-9. [PMID: 22476528 DOI: 10.1007/s00167-012-1990-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Despite increasing interest in the functional anatomy of the menisci, little information is available regarding the relationship between the tibial slope and the menisci. It was hypothesized that the meniscus would reduce the differences in slope between the medial and lateral compartments and would mitigate the effects of age and gender on the tibial slope. METHODS MRI sagittal images from 101 patients were used in this study. The angle between a line tangent to the medial and lateral tibial bony slope and the proximal tibial anatomical axis was measured on sagittal MRI images (bony slope). The angle between the tangent line to the highest point of the anterior and posterior horn of the meniscus and the proximal tibial anatomical axis was also determined (soft tissue slope). The measurements were carried out twice by two observers. The influence of gender and age on these parameters was analysed. RESULTS Repeated measures analysis of variance showed good inter- and intra-observer reliability for both bony and soft tissue slope (ICC (0.87-0.93) and (0.91-0.97) for inter- and intra-observer reliability, respectively). In both compartments, the soft tissue significantly reduced the tibial slope towards the horizontal plane. In addition, the soft tissue slope was significantly more horizontal in the lateral compartment compared to the medial compartment (p < 0.01). These differences were not influenced by age or gender. CONCLUSION The menisci of the knee generate a more horizontal tibial slope when measured on MRI. The soft tissue slope is more horizontal in the lateral compartment of the knee compared to the medial compartment. LEVEL OF EVIDENCE Diagnostic, Level III.
Collapse
|
266
|
Levy YD, Hasegawa A, Patil S, Koziol JA, Lotz MK, D’Lima DD. Histopathological changes in the human posterior cruciate ligament during aging and osteoarthritis: correlations with anterior cruciate ligament and cartilage changes. Ann Rheum Dis 2013; 72:271-7. [PMID: 22872023 PMCID: PMC3538921 DOI: 10.1136/annrheumdis-2012-201730] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To determine the histological patterns of posterior cruciate ligament (PCL) degeneration during aging and in relation to changes in articular cartilage and anterior cruciate ligament (ACL) across the entire adult age spectrum. METHODS Human knee joints (n=120 from 65 donors) were processed within 72 h of postmortem. Articular cartilage surfaces were graded macroscopically. Each PCL was histologically evaluated for inflammation, mucinous changes, chondroid metaplasia, cystic changes and orientation of collagen fibres. The severity of PCL degeneration was classified as normal, mild, moderate or severe. PCL scores were compared to ACL and cartilage scores from the same knees. RESULTS All knees had intact PCL. Histologically, 6% were normal, 76% showed mild, 12% moderate and 9% severe degeneration. Fibre disorientation was the most prevalent and severe change. Histological grades of PCL and ACL correlated, but significantly fewer PCL than ACL showed severe changes. There was a weaker correlation between aging and total histological PCL scores (R=0.26) compared to aging and ACL scores (R=0.42). ACL scores correlated with cartilage scores (R=0.54) while PCL scores increased with the severity of osteoarthritis from grades 0 to III but not between osteoarthritis grades III-IV (R=0.32). In knees with ruptured ACL, the PCL scores correlated with cartilage scores of the lateral compartment. CONCLUSIONS PCL histopathological changes were less severe than in the ACL. PCL degeneration was associated with ACL and cartilage damage. The lack of correlation with age indicates independent pathways for PCL versus ACL degeneration.
Collapse
Affiliation(s)
- Yadin D. Levy
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, California, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Akihiko Hasegawa
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Shantanu Patil
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, California, USA
| | - James A. Koziol
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Martin K. Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Darryl D. D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, California, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
267
|
Effect of open wedge high tibial osteotomy on the lateral compartment in sheep. Part I: Analysis of the lateral meniscus. Knee Surg Sports Traumatol Arthrosc 2013; 21:39-48. [PMID: 22898914 DOI: 10.1007/s00167-012-2176-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/30/2012] [Indexed: 12/24/2022]
Abstract
PURPOSE To evaluate whether medial open wedge high tibial osteotomy (HTO) results in structural and biochemical changes in the lateral meniscus in adult sheep. METHODS Three experimental groups with biplanar osteotomies of the right proximal tibiae were tested: (a) closing wedge HTO resulting in 4.5° of tibial varus, (b) open wedge HTO resulting in 4.5° of tibial valgus (standard correction) and (c) open wedge HTO resulting in 9.5° of valgus (overcorrection), each of which was compared to the contralateral knees with normal limb axes. After 6 months, the lateral menisci were macroscopically and microscopically evaluated. The proteoglycan and DNA contents of the red-red and white-white zones of the anterior, middle and posterior third were determined. RESULTS Semiquantitative macroscopic and microscopic grading revealed no structural differences between groups. The red-red zone of the middle third of the lateral menisci of animals that underwent overcorrection exhibited a significant 0.7-fold decrease in mean DNA contents compared with the control knee without HTO (P = 0.012). Comparative estimation of the DNA and proteoglycan contents and proteoglycan/DNA ratios of all other parts and zones of the lateral menisci did not reveal significant differences between groups. CONCLUSION Open wedge HTO does not lead to significant macroscopic and microscopic structural changes in the lateral meniscus after 6 months in vivo. Overcorrection significantly decreases the proliferative activity of the cells in the red-red zone of the middle third in the sheep model.
Collapse
|
268
|
Abstract
PURPOSE OF REVIEW Aging is a primary risk factor for the development of osteoarthritis and the understanding of how aging processes contribute to the development of osteoarthritis is an important area of active research. The most recent literature in this area was reviewed in order to update investigators on the status of the field. RECENT FINDINGS The field is beginning to move beyond a cartilage focus to include other joint tissues relevant to osteoarthritis such as ligaments, meniscus, and bone. Synovitis also appears to play a role in osteoarthritis but has not been a focus of aging studies. Studies in small animals, including mice and rats, demonstrate age-related changes that can contribute to osteoarthritis and show that animal age is a key factor to be considered in interpreting the results of studies using surgically induced models of osteoarthritis. There is accumulating evidence that cellular processes such as damage-induced cell senescence contribute to osteoarthritis and a growing body of literature on the role of epigenetic regulation of gene expression in aging and osteoarthritis. SUMMARY Not all osteoarthritis is due to aging processes in joint tissues, but the age-related changes being discovered certainly could play a major contributing role.
Collapse
Affiliation(s)
- Richard F Loeser
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| |
Collapse
|
269
|
Karasik D, Cohen-Zinder M. The genetic pleiotropy of musculoskeletal aging. Front Physiol 2012; 3:303. [PMID: 22934054 PMCID: PMC3429074 DOI: 10.3389/fphys.2012.00303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/11/2012] [Indexed: 12/30/2022] Open
Abstract
Musculoskeletal aging is detrimental to multiple bodily functions and starts early, probably in the fourth decade of an individual's life. Sarcopenia is a health problem that is expected to only increase as a greater portion of the population lives longer; prevalence of the related musculoskeletal diseases is similarly expected to increase. Unraveling the biological and biomechanical associations and molecular mechanisms underlying these diseases represents a formidable challenge. There are two major problems making disentangling the biological complexity of musculoskeletal aging difficult: (a) it is a systemic, rather than "compartmental," problem, which should be approached accordingly, and (b) the aging per se is neither well defined nor reliably measurable. A unique challenge of studying any age-related condition is a need of distinguishing between the "norm" and "pathology," which are interwoven throughout the aging organism. We argue that detecting genes with pleiotropic functions in musculoskeletal aging is needed to provide insights into the potential biological mechanisms underlying inter-individual differences insusceptibility to the musculoskeletal diseases. However, exploring pleiotropic relationships among the system's components is challenging both methodologically and conceptually. We aimed to focus on genetic aspects of the cross-talk between muscle and its "neighboring" tissues and organs (tendon, bone, and cartilage), and to explore the role of genetics to find the new molecular links between skeletal muscle and other parts of the "musculoskeleton." Identification of significant genetic variants underlying the musculoskeletal system's aging is now possible more than ever due to the currently available advanced genomic technologies. In summary, a "holistic" genetic approach is needed to study the systems's normal functioning and the disease predisposition in order to improve musculoskeletal health.
Collapse
Affiliation(s)
- David Karasik
- Faculty of Medicine in the Galilee, Bar-Ilan University Safed, Israel
| | | |
Collapse
|
270
|
Lotz M, Loeser RF. Effects of aging on articular cartilage homeostasis. Bone 2012; 51:241-8. [PMID: 22487298 PMCID: PMC3372644 DOI: 10.1016/j.bone.2012.03.023] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 01/08/2023]
Abstract
This review is focused on aging-related changes in cells and extracellular matrix of the articular cartilage. Major extracellular matrix changes are a reduced thickness of cartilage, proteolysis, advanced glycation and calcification. The cellular changes include reduced cell density, cellular senescence with abnormal secretory profiles, and impaired cellular defense mechanisms and anabolic responses. The extracellular and cellular changes compound each other, leading to biomechanical dysfunction and tissue destruction. The consequences of aging-related changes for joint homeostasis and risk for osteoarthritis are discussed. This article is part of a Special Issue entitled "Osteoarthritis".
Collapse
Affiliation(s)
- Martin Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard F. Loeser
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
271
|
UTE-T2∗ mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear. Osteoarthritis Cartilage 2012; 20:486-94. [PMID: 22306000 PMCID: PMC5823016 DOI: 10.1016/j.joca.2012.01.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/06/2012] [Accepted: 01/11/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Meniscus tear is a known risk factor for osteoarthritis (OA). Quantitative assessment of meniscus degeneration, prior to surface break-down, is important to identification of early disease potentially amenable to therapeutic interventions. This work examines the diagnostic potential of ultrashort echo time-enhanced T2∗ (UTE-T2∗) mapping to detect human meniscus degeneration in vitro and in vivo in subjects at risk of developing OA. DESIGN UTE-T2∗ maps of 16 human cadaver menisci were compared to histological evaluations of meniscal structural integrity and clinical magnetic resonance imaging (MRI) assessment by a musculoskeletal radiologist. In vivo UTE-T2∗ maps were compared in 10 asymptomatic subjects and 25 ACL-injured patients with and without concomitant meniscal tear. RESULTS In vitro, UTE-T2∗ values tended to be lower in histologically and clinically normal meniscus tissue and higher in torn or degenerate tissue. UTE-T2∗ map heterogeneity reflected collagen disorganization. In vivo, asymptomatic meniscus UTE-T2∗ values were repeatable within 9% (root-mean-square average coefficient of variation). Posteromedial meniscus UTE-T2∗ values in ACL-injured subjects with clinically diagnosed medial meniscus tear (n=10) were 87% higher than asymptomatics (n=10, P<0.001). Posteromedial menisci UTE-T2∗ values of ACL-injured subjects without concomitant medial meniscal tear (n=15) were 33% higher than asymptomatics (P=0.001). Posterolateral menisci UTE-T2∗ values also varied significantly with degree of joint pathology (P=0.001). CONCLUSION Significant elevations of UTE-T2∗ values in the menisci of ACL-injured subjects without clinical evidence of subsurface meniscal abnormality suggest that UTE-T2∗ mapping is sensitive to sub-clinical meniscus degeneration. Further study is needed to determine whether elevated subsurface meniscus UTE-T2∗ values predict progression of meniscal degeneration and development of OA.
Collapse
|
272
|
|
273
|
Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. ACTA ACUST UNITED AC 2012; 64:1697-707. [PMID: 22392533 DOI: 10.1002/art.34453] [Citation(s) in RCA: 2041] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Richard F Loeser
- Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | | | | | |
Collapse
|
274
|
|
275
|
Madry H, Luyten FP, Facchini A. Biological aspects of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2012; 20:407-22. [PMID: 22009557 DOI: 10.1007/s00167-011-1705-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/04/2011] [Indexed: 01/15/2023]
Abstract
PURPOSE Early OA primarily affects articular cartilage and involves the entire joint, including the subchondral bone, synovial membrane, menisci and periarticular structures. The aim of this review is to highlight the molecular basis and histopathological features of early OA. METHODS Selective review of literature. RESULTS Risk factors for developing early OA include, but are not limited to, a genetic predisposition, mechanical factors such as axial malalignment, and aging. In early OA, the articular cartilage surface is progressively becoming discontinuous, showing fibrillation and vertical fissures that extend not deeper than into the mid-zone of the articular cartilage, reflective of OARSI grades 1.0-3.0. Early changes in the subchondral bone comprise a progressive increase in subchondral plate and subarticular spongiosa thickness. Early OA affects not only the articular cartilage and the subchondral bone but also other structures of the joint, such as the menisci, the synovial membrane, the joint capsule, ligaments, muscles and the infrapatellar fat pad. Genetic markers or marker combinations may become useful in the future to identify early OA and patients at risk. CONCLUSION The high socioeconomic impact of OA suggests that a better insight into the mechanisms of early OA may be a key to develop more targeted reconstructive therapies at this first stage of the disease. LEVEL OF EVIDENCE Systematic review, Level II.
Collapse
Affiliation(s)
- Henning Madry
- Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Kirrbergerstrasse, Building 37, 66421, Homburg, Germany.
| | | | | |
Collapse
|