251
|
Zhang J, Vikrant K, Kim KH, Dong F. Photocatalytic destruction of volatile aromatic compounds by platinized titanium dioxide in relation to the relative effect of the number of methyl groups on the benzene ring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153605. [PMID: 35114233 DOI: 10.1016/j.scitotenv.2022.153605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The photocatalytic destruction (PCD) of volatile organic compounds (VOC) into environmentally benign compounds is one of the most ideal routes for the management of indoor air quality. It is nevertheless not easy to achieve the mineralization of aromatic VOC through PCD technology because of their recalcitrant structures (i.e., conjugated π benzene ring). In this research, the PCD potential against three model aromatic hydrocarbons (i.e., benzene (B), toluene (T), and m-xylene (X): namely, BTX) has been explored using a titanium dioxide (TiO2) supported platinum (Pt) catalyst after the high-temperature hydrogen (H2)-based reduction (R) pre-treatment (i.e., Pt/TiO2-R). The effects of the key process variables (e.g., relative humidity (RH), oxygen (O2) content, flow rate, VOC concentration, and the co-presence of VOC) on the PCD efficiency and related mechanisms were also assessed in detail. The PCD efficiency is seen to increase with the rise in the increasing number of methyl groups on the benzene ring (in the order of benzene (46.5%), toluene (68.2%), and m-xylene (95.9%)), as the adsorption and activation of the VOC molecule on the photocatalyst surface are promoted by the increased distribution of electrons on the benzene ring. The BTX were oxidated subsequently by the photogenerated reactive oxygen species (ROS), i.e., the hydroxyl radicals (•OH) and superoxide anion radicals (•O2-). The overall results of this study are expected to help expand the applicability of photocatalysis towards air quality management by offering detailed insights into the factors and processes governing the photocatalytic decomposition of aromatic VOCs.
Collapse
Affiliation(s)
- Jinjian Zhang
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
252
|
Improvement of the Photocatalytic Activity of Au/TiO2 Nanocomposites by Prior Treatment of TiO2 with Microplasma in an NH3 and H2O2 Solution. J 2022. [DOI: 10.3390/j5020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plasmonic photocatalytic nanocomposites of TiO2 and Au nanoparticles (NPs) have recently attracted the attention of researchers, who aim to improve the photocatalytic activity of potential TiO2 NPs. In this study, we report photocatalytic activity enhancement for a Au/TiO2 nanocomposite prepared by the plasma–liquid interaction method using an atmospheric microplasma apparatus. The enhanced photocatalytic activity of the prepared Au/TiO2 is demonstrated by the degradation of methylene blue (MB) in water under both ultraviolet (UV) and visible light irradiation. The prior treatment of TiO2 with microplasma in a NH3 and H2O2 solution is found to strongly improve the photocatalytic activity of both the treated TiO2 NPs, as well as the synthesized Au/TiO2 nanocomposite.
Collapse
|
253
|
Feng J, Long C, Yao LJ, Hu CL, Mao JG. α- and β-Ag 4P 2S 7: Two Semiconductors with Promising Photocatalytic Hydrogen Production Based on a Density Functional Theory Study. Inorg Chem 2022; 61:6711-6714. [PMID: 35481753 DOI: 10.1021/acs.inorgchem.2c00815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, a new chiral compound with short Ag-Ag distances, namely, β-Ag4P2S7 (P3121), has been discovered by a solid-state method. Density functional theory (DFT) calculations show that both α and β phases exhibit suitable band gaps, low reduction potentials, and large visible-light absorption coefficients, as well as excellent band edges for carrier separation, suggesting their promising application in photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Jianghe Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Chen Long
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Li-Jia Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| |
Collapse
|
254
|
Shehab MA, Sharma N, Valsesia A, Karacs G, Kristály F, Koós T, Leskó AK, Nánai L, Hernadi K, Németh Z. Preparation and Photocatalytic Performance of TiO 2 Nanowire-Based Self-Supported Hybrid Membranes. Molecules 2022; 27:molecules27092951. [PMID: 35566300 PMCID: PMC9099960 DOI: 10.3390/molecules27092951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, the use of hybrid structures and multi-component materials is gaining ground in the fields of environmental protection, water treatment and removal of organic pollutants. This study describes promising, cheap and photoactive self-supported hybrid membranes as a possible solution for wastewater treatment applications. In the course of this research work, the photocatalytic performance of titania nanowire (TiO2 NW)-based hybrid membranes in the adsorption and degradation of methylene blue (MB) under UV irradiation was investigated. Characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffractometry (XRD) were used to study the morphology and surface of the as-prepared hybrid membranes. We tested the photocatalytic efficiency of the as-prepared membranes in decomposing methylene blue (MB) under UV light irradiation. The hybrid membranes achieved the removal of MB with a degradation efficiency of 90% in 60 min. The high efficiency can be attributed to the presence of binary components in the membrane that enhanced both the adsorption capability and the photocatalytic ability of the membranes. The results obtained suggest that multicomponent hybrid membranes could be promising candidates for future photocatalysis-based water treatment technologies that also take into account the principles of circular economy.
Collapse
Affiliation(s)
- Mohammed Ahmed Shehab
- Faculty of Materials Science and Engineering, University of Miskolc, H-3515 Miskolc, Hungary;
- Polymers and Petrochemicals Engineering Department, Basrah University for Oil and Gas, Basrah 61004, Iraq
| | - Nikita Sharma
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515 Miskolc, Hungary;
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy;
| | - Gábor Karacs
- MTA-ME Materials Science Research Group, ELKH, H-3515 Miskolc, Hungary;
| | - Ferenc Kristály
- Institute of Mineralogy and Geology, University of Miskolc, H-3515 Miskolc, Hungary;
| | - Tamás Koós
- Institute of Energy and Quality Affairs, University of Miskolc, H-3515 Miskolc, Hungary; (T.K.); (A.K.L.)
| | - Anett Katalin Leskó
- Institute of Energy and Quality Affairs, University of Miskolc, H-3515 Miskolc, Hungary; (T.K.); (A.K.L.)
| | - Lilla Nánai
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary;
| | - Klara Hernadi
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary;
- Correspondence: (K.H.); (Z.N.)
| | - Zoltán Németh
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515 Miskolc, Hungary;
- Correspondence: (K.H.); (Z.N.)
| |
Collapse
|
255
|
Abid HN, Al-Keisy A, Ahmed DS, Salih AT, Khammas A. pH dependent synthesis and characterization of bismuth molybdate nanostructure for photocatalysis degradation of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37633-37643. [PMID: 35066842 DOI: 10.1007/s11356-021-18064-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Bismuth molybdate (Bi2MoO6) nanostructures has attracted many researches as an advanced photocalysts for the organic contaminants. In this paper, bismuth molybdate Bi2MoO6 nanoparticles were synthesized using a simple hydrothermal method at varied pH (2, 4, 6, 8, and 10) for 15 h at 180 °C. The results reveal the variation pH precursor solutions have a significant impact on the morphology, phase formations, and photocatalytic activity of samples. The synthesized samples at low pH level were characterized by FESEM analysis revealing Bi2MoO6 nanoplates have formed while gradually convert to Bi2MoO6 spherical nanoparticle at high PH level as shown in energy dispersive X-ray spectroscopy (DES) peaks. The X-ray diffraction patterns reveal characteristic peaks corresponding to mixed phases of Bi2MoO6 and cubic Bi4MoO9 at high pH value. The optical absorption study exhibit Bi2MoO6 nanoplates absorbed visible light with blue shift when compared to the cubic Bi4MoO9 structures. Moreover, the photocatalytic activity results revealed that nanoplates in pH = 4 sample has excellent photocatalytic activity for degradation of rhodamine (RhB), methylene orange (MO), and phenol under visible-light irradiation (λ > 400 nm) as well as exhibit the photodegradation 90% of phenol within 300 min.
Collapse
Affiliation(s)
- Huda N Abid
- Applied Sciences Department, University of Technology-Iraq, Baghdad, Iraq
| | - Amar Al-Keisy
- Nanotechnology and Advanced Materials Research Center, University of Technology-Iraq, Baghdad, Iraq.
| | - Duha S Ahmed
- Applied Sciences Department, University of Technology-Iraq, Baghdad, Iraq
| | - Ammar T Salih
- Applied Sciences Department, University of Technology-Iraq, Baghdad, Iraq
- Nanotechnology and Advanced Materials Research Center, University of Technology-Iraq, Baghdad, Iraq
| | - Abbas Khammas
- Nanotechnology and Advanced Materials Research Center, University of Technology-Iraq, Baghdad, Iraq
| |
Collapse
|
256
|
Ariga K. Mechano-Nanoarchitectonics: Design and Function. SMALL METHODS 2022; 6:e2101577. [PMID: 35352500 DOI: 10.1002/smtd.202101577] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/12/2022] [Indexed: 05/27/2023]
Abstract
Mechanical stimuli have rather ambiguous and less-specific features among various physical stimuli, but most materials exhibit a certain level of responses upon mechanical inputs. Unexplored sciences remain in mechanical responding systems as one of the frontiers of materials science. Nanoarchitectonics approaches for mechanically responding materials are discussed as mechano-nanoarchitectonics in this review article. Recent approaches on molecular and materials systems with mechanical response capabilities are first exemplified with two viewpoints: i) mechanical control of supramolecular assemblies and materials and ii) mechanical control and evaluation of atom/molecular level structures. In the following sections, special attentions on interfacial environments for mechano-nanoarchitectonics are emphasized. The section entitled iii) Mechanical Control of Molecular System at Dynamic Interface describes coupling of macroscopic mechanical forces and molecular-level phenomena. Delicate mechanical forces can be applied to functional molecules embedded at the air-water interface where operation of molecular machines and tuning of molecular receptors upon macroscopic mechanical actions are discussed. Finally, the important role of the interfacial media are further extended to the control of living cells as described in the section entitled iv) Mechanical Control of Biosystems. Pioneering approaches on cell fate regulations at liquid-liquid interfaces are discussed in addition to well-known mechanobiology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
257
|
Šojić Merkulov D, Vlazan P, Poienar M, Bognár S, Ianasi C, Sfirloaga P. Sustainable removal of 17α-ethynylestradiol from aqueous environment using rare earth doped lanthanum manganite nanomaterials. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
258
|
Abstract
Electrochemical reduction of CO2 (ECO2R) is gaining attention as a promising approach to store excess or intermittent electricity generated from renewable energies in the form of valuable chemicals such as CO, HCOOH, CH4, and so on. Selective ECO2R to CH4 is a challenging target because the rate-determining step of CH4 formation, namely CO* protonation, competes with hydrogen evolution reaction and the C–C coupling toward the production of longer-chain chemicals. Herein, a Cu-TiO2 composite catalyst consisting of CuOx clusters or Cu nanoparticles (CuNPs), which are isolated on the TiO2 grain surface, was synthesized using a one-pot solvothermal method and subsequent thermal treatment. The Cu-TiO2 catalyst exhibited high selectivity for CH4, and the ratio of FE for CH4 to total FE for all products in ECO2R reached 70%.
Collapse
|
259
|
Irine TM, Rathika A, Gobalakrishnan S, Isaac RSR, Sanjith S, Chidhambaram N. Leveraging the Photocatalytic Degradation Efficiency of Solution Combustion Derived ZnO Photocatalyst through Palladium Doping. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- T. M. Irine
- Research Scholar (Reg. No. 19213092132011), Department of Physics and Research Centre Muslim Arts College Thiruvithancode, Kanyakumari District Tamil Nadu 629 174 India
| | - A. Rathika
- Research Scholar (Reg. No. 19213092132011), Department of Physics and Research Centre Muslim Arts College Thiruvithancode, Kanyakumari District Tamil Nadu 629 174 India
| | - S. Gobalakrishnan
- Department of Nanotechnology Noorul Islam Centre for Higher Education (Deemed to be University) Kumaracoil, Kanyakumari District Tamil Nadu 629 180 India
| | - R. S. Rimal Isaac
- Department of Nanotechnology Noorul Islam Centre for Higher Education (Deemed to be University) Kumaracoil, Kanyakumari District Tamil Nadu 629 180 India
| | - S. Sanjith
- Department of Computer Science St Alphonsa College of Arts and Science, Soosaipuram Karinkal Tamil Nadu 629157 India
| | - N. Chidhambaram
- Department of Physics Rajah Serfoji Government College (Autonomous) Thanjavur Tamil Nadu 613 005 India
| |
Collapse
|
260
|
Fabrication and Characterization of Inverse-Opal Titania Films for Enhancement of Photocatalytic Activity. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Novel materials with a periodic structure have recently been intensively studied for various photonic and photocatalytic applications due to an efficient light harvesting ability. Here, inverse opal titania (IOT) has been investigated for possible enhancement of photocatalytic activity. The IOT films were prepared on a glass support from silica and polystyrene (PS) opals by sandwich-vacuum-assisted infiltration and co-assembly methods, respectively. The reference sample was prepared by the same method (the latter) but with PS particles of different sizes, and thus without photonic feature. The modification of preparation conditions was performed to prepare the films with a high quality and different photonic properties, i.e., photonic bandgap (PBG) and slow photons’ wavelengths. The morphology and optical properties were characterized by scanning electron microscopy (SEM) and UV/vis spectroscopy, respectively. The photocatalytic activity was evaluated (also in dependence on the irradiation angle) for oxidative decomposition of acetaldehyde gas under irradiation with blue LED by measuring the rate of evolved carbon dioxide (CO2). It has been found that PBG wavelength depends on the size of particles forming opal, the void diameter of IOT, and irradiation angle, as expected from Bragg’s law. The highest activity (more than two-fold enhancement in the comparison to the reference) has been achieved for the IOT sample of 226-nm void diameter and PBG wavelengths at 403 nm, prepared from almost monodisperse PS particles of 252-nm diameter. Interestingly, significant decrease in activity (five times lower than reference) has been obtained for the IOT sample of also high quality but with 195-nm voids, and thus PBG at 375 nm (prohibited light). Accordingly, it has been proposed that the perfect tunning of photonic properties (here the blue-edge slow-photon effect) with bandgap energy of photocatalyst (e.g., absorption of anatase) results in the improved photocatalytic performance.
Collapse
|
261
|
Choi HM, Kim YJ, Choi ET, Lee TY, Lee SJ. Use of porphyrin-containing polymers of intrinsic microporosity as selective photocatalysts for oxidative detoxification of chemical warfare agent simulant. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyrin-based polymers of intrinsic microporosity (PIMs) in photocatalytic degradation of a mustard-gas simulant (2-chloroethyl ethyl sulfide (2-CEES)) was demonstrated. Under blue-ultraviolet (UV) light-emitting diode (LED) irradiation, porphyrin-based PIMs PP-H2 and PP-Zn(II) worked as effective heterogeneous photocatalysts for oxidation of 2-CEES. Solvent played an important role in the conversion and selectivity of 2-CEES oxidation. When AcCN was used as a solvent, PP-H2and PP-Zn(II) demonstrated complete conversion of 2-CEES in 30 and 50 min, respectively, whereas they showed complete conversion at 60 and 70 min, respectively, when MeOH was used as a solvent. Moreover, these PIMs produced 2-chloroethyl ethyl sulfoxide (2-CEESO) as a major product with small amounts of 2-chloroethyl ethyl sulfone (2-CEESO[Formula: see text], ethyl methoxyethyl sulfoxide (EMSO), and vinyl sulfoxide (EVS) as side products in most solvents. However, when MeOH was used as a solvent, highly toxic 2-CEESO2 was not observed as a side product. Furthermore, these PIMs showed no significant changes in photocatalytic activity even after five cycles of reuse, indicating their high stability. Thus, the series of PIMs prepared herein can perform well as heterogeneous catalysts in photooxidation of 2-CEES under blue-UV LED light, with PP-H2 being the most effective oxidation catalyst, leading to fast conversion and high selectivity.
Collapse
Affiliation(s)
- Hye Min Choi
- Department of Chemistry, SCSL, Korea University, Seoul 02841, Republic of Korea
| | - Ye Ji Kim
- Department of Chemistry, SCSL, Korea University, Seoul 02841, Republic of Korea
| | - E Tae Choi
- Department of Chemistry, SCSL, Korea University, Seoul 02841, Republic of Korea
| | - Tai Yong Lee
- Department of Chemistry, SCSL, Korea University, Seoul 02841, Republic of Korea
| | - Suk Joong Lee
- Department of Chemistry, SCSL, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
262
|
Photocatalytic Activity in the In-Flow Degradation of NO on Porous TiO2–Coated Glasses from Hybrid Inorganic–Organic Thin Films Prepared by a Combined ALD/MLD Deposition Strategy. COATINGS 2022. [DOI: 10.3390/coatings12040488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A combined ALD/MLD (where ALD and MLD stand for atomic and molecular layer deposition, respectively) deposition strategy using TiCl4, H2O and HQ (hydroquinone) as precursors has been applied for the preparation of inorganic–organic thin films on soda-lime glasses. The alternate deposition of TiO2 layers, by pulsing TiCl4/H2O (ALD), and hybrid layers, using TiCl4/HQ (MLD), results in the formation of thin films that are precursors for porous TiO2-coatings after removal of the HQ template by annealing. The coated-glassed show good photocatalytic activity in the degradation of NO with up to 15% reduction of NO concentration in three successive photocatalytic cycles of 5 h each. Surface Scanning Electron Microscopy (SEM) images show that the TiO2-coating is composed of large grains that are made up of finer subgrains resulting in a porous structure with an average pore size of 3–4 nm. Transmission Electron Microscopy (TEM) images show two regions, a porous columnar structure on top and a denser region over the glass substrate. Energy Dispersive X-Ray (EDX) analysis, nanocrystal electron diffraction and Raman spectroscopy confirm the presence of the anatase phase, which, together with the porosity of the material, accounts for the observed photocatalytic activity.
Collapse
|
263
|
Camposeco R, Torres AE, Zanella R. Influence of the Preparation Method of Au, Pd, Pt, and Rh/TiO2 Nanostructures and Their Catalytic Activity on the CO Oxidation at Low Temperature. Top Catal 2022. [DOI: 10.1007/s11244-022-01607-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
264
|
Wu H, Wang M, Jing F, Kong D, Chen Y, Jia C, Li J. Enhanced photocatalytic hydrogen production performance of pillararene-doped mesoporous TiO2 with extended visible-light response. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
265
|
Rossetti M, Falk GDS, Klein AN, Gómez González SY, Binder C, Hotza D. Plasma-assisted rapid sintering of nanotitania powders. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
266
|
Ren Y, Cai J, Cheung H, Shao H, Au K, Chow T, Wen W, Ling L, Chen S. Controlling microbial activity on walls by a photocatalytic nanocomposite paint: A field study. Am J Infect Control 2022; 50:427-434. [PMID: 34536501 DOI: 10.1016/j.ajic.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/01/2022]
Abstract
BACKGROUND Bacteria and fungi that grow on the walls can cause allergic reactions and infectious diseases in human. We proposed a low-cost and easy-to-operate testing protocol for large scale field studies to evaluate the long-term antimicrobial performance of a novel WOx paint in 2 primary schools. METHODS In Tun Mun and Tin Shui Wai schools, WOx paints were painted on semi-outdoor and indoor walls and daily chlorine disinfection was applied after class in TSW School. A guidance was proposed for the protocol using the ATP biofluorescence method for large-scale field studies. ATP swab samples were taken at locations with and without the WOx paint on a control basis with a sampling frequency once a week for three months. The ATP values were then processed and presented in box plots. RESULTS In both schools, the median log-scale ATP values of walls with WOx paint were at least 0.5-log lower than those without WOx paint. The WOx paint also performed better than daily chlorine disinfection in reducing microbial activities in long-term. CONCLUSIONS The proposed testing protocol is suitable to evaluate long-term performance of an antimicrobial paint by analyzing its microbial activity in large-scale field tests. The WOx paint shows long-term effectiveness in reducing microbial activities on wall surfaces in both indoor and semi-outdoor environments.
Collapse
|
267
|
Panimalar S, Logambal S, Thambidurai R, Inmozhi C, Uthrakumar R, Muthukumaran A, Rasheed RA, Gatasheh MK, Raja A, Kennedy J, Kaviyarasu K. Effect of Ag doped MnO 2 nanostructures suitable for wastewater treatment and other environmental pollutant applications. ENVIRONMENTAL RESEARCH 2022; 205:112560. [PMID: 34915030 DOI: 10.1016/j.envres.2021.112560] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
A modest sol-gel method has been employed to prepare the pure and Ag doped MnO2 nanoparticles and methodologically studied their physical, morphological, and photosensitive properties through XRD, TEM, EDAX, Raman, UV, PL and N2 adsorption - desorption study. Tetragonal crystalline arrangement with spherical nanoparticles was found out through XRD and TEM studies. The EDAX studies further supported that formation Ag in the MnO2 crystal matrix. The bandgap energy of Ag doped MnO2 was absorbed through UV spectra. Photo -generated recombination process and surface related defects were further recognized by PL spectra. Through visible light irradiation, the photo - degradation of methyl orange (MO) and phenol dye solutions were observed. The optimum condition of (10 wt% of Ag) Ag doped MnO2 catalyst showed tremendous photocatalytic efficiency towards MO than phenol under same experimental study.
Collapse
Affiliation(s)
- S Panimalar
- Department of Physics, Periyar University, Salem, 636011, Tamil Nadu, India
| | - S Logambal
- Department of Physics, Government Arts College (Autonomous), Salem, 636007, Tamil Nadu, India
| | - R Thambidurai
- Department of Physics, Government Arts College (Autonomous), Salem, 636007, Tamil Nadu, India
| | - C Inmozhi
- Department of Physics, Government Arts College for Women, Salem, 636008, Tamil Nadu, India.
| | - R Uthrakumar
- Department of Physics, Government Arts College (Autonomous), Salem, 636007, Tamil Nadu, India
| | - Azhaguchamy Muthukumaran
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, India
| | - Rabab Ahmed Rasheed
- Histology & Cell Biology Department, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - A Raja
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - J Kennedy
- National Isotope Centre, GNS Science, PO Box 31312, Lower Hutt, 5010, New Zealand
| | - K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province, South Africa.
| |
Collapse
|
268
|
Yang TY, Zhang Y, Zhang GL, Zhang JJ, Zhang YH. A Sulfonated Porphyrin Polymer/P25m Composite for Highly Selective Photocatalytic Conversion of CO2 into CH4. Catal Letters 2022. [DOI: 10.1007/s10562-022-03986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
269
|
Romanovskaya NI, Manorik PA, Vorobets VS, Kolbasov GY, Ermokhina NI, Kishenya YV, Sotnik SA, Yaremov PS, Polishchuk AV. Photoelectrochemical and Electrocatalytic Behaviors of TiO2 Nanostructures and TiO2−Au Nanocomposites: Effect of Synthesis Conditions. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2022. [DOI: 10.3103/s1068375522010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
270
|
Koller AJ, Saini S, Chaple IF, Joaqui‐Joaqui MA, Paterson BM, Ma MT, Blower PJ, Pierre VC, Robinson JR, Lapi SE, Boros E. A General Design Strategy Enabling the Synthesis of Hydrolysis‐Resistant, Water‐Stable Titanium(IV) Complexes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Angus J. Koller
- Department of Chemistry Stony Brook University Stony Brook NY 11794 USA
| | - Shefali Saini
- Department of Radiology University of Alabama at Birmingham Birmingham AL 25294 USA
| | - Ivis F. Chaple
- Department of Radiology University of Alabama at Birmingham Birmingham AL 25294 USA
| | | | - Brett M. Paterson
- School of Biomedical Engineering and Imaging Sciences King's College London St. Thomas Hospital London SE1 7EH UK
| | - Michelle T. Ma
- School of Biomedical Engineering and Imaging Sciences King's College London St. Thomas Hospital London SE1 7EH UK
| | - Philip J. Blower
- School of Biomedical Engineering and Imaging Sciences King's College London St. Thomas Hospital London SE1 7EH UK
| | - Valérie C. Pierre
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | | | - Suzanne E. Lapi
- Department of Radiology University of Alabama at Birmingham Birmingham AL 25294 USA
| | - Eszter Boros
- Department of Chemistry Stony Brook University Stony Brook NY 11794 USA
| |
Collapse
|
271
|
Matias ML, Pimentel A, Reis-Machado AS, Rodrigues J, Deuermeier J, Fortunato E, Martins R, Nunes D. Enhanced Fe-TiO 2 Solar Photocatalysts on Porous Platforms for Water Purification. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1005. [PMID: 35335818 PMCID: PMC8955547 DOI: 10.3390/nano12061005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023]
Abstract
In this study, polyethylene glycol-modified titanium dioxide (PEG-modified TiO2) nanopowders were prepared using a fast solvothermal method under microwave irradiation, and without any further calcination processes. These nanopowders were further impregnated on porous polymeric platforms by drop-casting. The effect of adding iron with different molar ratios (1, 2, and 5%) of iron precursor was investigated. The characterization of the produced materials was carried out by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Optical characterization of all the materials was also carried out. SEM showed that pure TiO2 and Fe-TiO2 nanostructures presented similar nanosized and spherical particles, which uniformly covered the substrates. From XRD, pure TiO2 anatase was obtained for all nanopowders produced, which was further confirmed by Raman spectroscopy on the impregnated substrates. XPS and UV-VIS absorption spectroscopy emission spectra revealed that the presence of Fe ions on the Fe-TiO2 nanostructures led to the introduction of new intermediate energy levels, as well as defects that contributed to an enhancement in the photocatalytic performance. The photocatalytic results under solar radiation demonstrated increased photocatalytic activity in the presence of the 5% Fe-TiO2 nanostructures (Rhodamine B degradation of 85% after 3.5 h, compared to 74% with pure TiO2 for the same exposure time). The photodegradation rate of RhB dye with the Fe-TiO2 substrate was 1.5-times faster than pure TiO2. Reusability tests were also performed. The approach developed in this work originated novel functionalized photocatalytic platforms, which were revealed to be promising for the removal of organic dyes from wastewater.
Collapse
Affiliation(s)
- Maria Leonor Matias
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Ana Pimentel
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Ana S. Reis-Machado
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Joana Rodrigues
- Physics Department & I3N, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Jonas Deuermeier
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Daniela Nunes
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| |
Collapse
|
272
|
Amano M, Recuenco MC, Hashimoto K, Shibata H. Synthesis and Photocatalytic Activity of Hexagonal Plate-like Shaped Au Nanoparticles/ZnO Composite Particles under Visible-light Irradiation. J Oleo Sci 2022; 71:771-778. [PMID: 35296575 DOI: 10.5650/jos.ess22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We synthesized Au nanoparticle (AuNP)/ZnO composite particles in presence of an anionic surfactant and evaluated their photocatalytic activity under visible-light irradiation. AuNPs synthesized from HAuCl4 in the presence of amylase and the precursor solutions of ZnO were mixed, followed by a hydrothermal process, to synthesize crystal face-controlled AuNP/ZnO composite particles. X-ray diffraction (XRD) patterns and ultraviolet-visible (UV-Vis) spectra confirmed the formation of AuNP/ZnO composite particles. Furthermore, different Au to Zn concentration ratios in the precursor solutions resulted in different amounts of AuNPs in the composite particles. In addition, the average size of the AuNP/ZnO composite particles decreased with increasing Au to Zn concentration ratio. We believe AuNPs act as the nuclei for ZnO particle formation. The photocatalytic activity of the AuNP/ZnO composite particles was evaluated by the photodegradation of methylene blue (MB) under visible-light irradiation. The photodegradation rate of MB was higher with AuNP/ZnO composite particles compared to that with the ZnO particles synthesized in the absence of AuNPs. The AuNP/ZnO composite particles exhibit photocatalytic activity under visible-light irradiation owing to the enhanced charge separation efficiency and the localized surface plasmon resonance effect.
Collapse
Affiliation(s)
- Masato Amano
- Faculty of Engineering, Chiba Institute of Technology
| | | | | | | |
Collapse
|
273
|
Wang G, Bi W, Zhang Q, Dong X, Zhang X. Hydrothermal carbonation carbon-based photocatalysis under visible light: Modification for enhanced removal of organic pollutant and novel insight into the photocatalytic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127821. [PMID: 34810004 DOI: 10.1016/j.jhazmat.2021.127821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/01/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal carbonation carbon (HTCC) is emerging as a promising alternative for photocatalytic removal of contaminants from water. However, the catalytic activity of HTCC is limited by its poor charge transfer ability, and its photocatalytic mechanism remains unclear. Herein, a unique photosensitization-like mechanism was firstly found on Fe modified HTCC (Fe-HTCC) derived from glucose for effective removal of organic pollutants. Under visible light illumination, the organic pollutant coordinated with Fe-HTCC enabled electrons transfer from its highest occupied molecular orbital (HOMO) to conduction band (CB) of Fe-HTCC, which not only oxidized pollutant itself, but also generated oxygen-centered radical for reducing O2 into O2•- towards pollutant removal. The degradation kinetic constant of sulfamethoxazole (SMX) over Fe-HTCC was about 1024.4 and 20.5 times higher than that of HTCC and g-C3N4, respectively. The enhanced performance of Fe-HTCC was originated from dual role of Fe modification: one is to boost the electron-deficient C sites which prefer to coordinate with amino or hydroxyl of pollutants; the other is to enhance the linkage of discrete polyfuran chains in Fe-HTCC for effective electron transfer from pollutant to Fe-HTCC. This work provides new insight into the synthesis and mechanism of HTCC-based high-efficiency photocatalyst for water decontamination.
Collapse
Affiliation(s)
- Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wenxin Bi
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qunmei Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
274
|
Rengifo-Herrera JA, Osorio-Vargas P, Pulgarin C. A critical review on N-modified TiO 2 limits to treat chemical and biological contaminants in water. Evidence that enhanced visible light absorption does not lead to higher degradation rates under whole solar light. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127979. [PMID: 34883373 DOI: 10.1016/j.jhazmat.2021.127979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 05/27/2023]
Abstract
Intensive research has been focused on the synthesis of N-modified TiO2 materials having visible light absorption in order to get higher solar photocatalytic degradation rates of pollutants in water. However, an exhaustive revision of the topic underlines several controversial issues related to N-modified TiO2 materials; these issues concern (a) the methodology used for preparation, (b) the assessment of the structural characteristics, (c) the mechanistic action modes and (d) the raisons argued to explain the limited performances of the prepared materials for organic and biological targets photodegradation in water. Taking advantage of last year's progress in analytical chemistry and in material characterization methods, the authors show, for example, that some works in the literature controversially attribute the term nitrogen doping without enough analytical evidence. Additionally, some papers describe N-modified TiO2 photocatalysts as being able to generate holes with enough oxidative potential to form hydroxyl radicals under visible light. This last assertion often derives from a no pertinent use of illumination sources, light filters, or targets or a limited understanding of the thermodynamic aspects of the studied systems. None of N-containing materials prepared by herein presented methods leads, under solar light, to a significant enhancement in pollutants degradation and microorganism's inactivation kinetics.
Collapse
Affiliation(s)
- Julián A Rengifo-Herrera
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" (CINDECA) (CCT-La Plata CONICET, UNLP, CICPBA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47No. 257, 1900 La Plata, Argentina.
| | - Paula Osorio-Vargas
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" (CINDECA) (CCT-La Plata CONICET, UNLP, CICPBA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47No. 257, 1900 La Plata, Argentina; Laboratory of Thermal and Catalytic Processes (LPTC-UBB), Universidad del Bío-Bío, Facultad de Inngeniería, Departamento Ingeniería en Maderas, Concepción, Chile
| | - C Pulgarin
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland; Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Colombian Academy of Exact, Physical and Natural Sciences, Carrera 28A No. 39A-63, Bogotá, Colombia.
| |
Collapse
|
275
|
Breuch R, Klein D, Moers C, Siefke E, Wickleder C, Kaul P. Development of Gold Nanoparticle-Based SERS Substrates on TiO2-Coating to Reduce the Coffee Ring Effect. NANOMATERIALS 2022; 12:nano12050860. [PMID: 35269348 PMCID: PMC8912524 DOI: 10.3390/nano12050860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023]
Abstract
Hydrophilic surface-enhanced Raman spectroscopy (SERS) substrates were prepared by a combination of TiO2-coatings of aluminium plates through a direct titanium tetraisopropoxide (TTIP) coating and drop coated by synthesised gold nanoparticles (AuNPs). Differences between the wettability of the untreated substrates, the slowly dried Ti(OH)4 substrates and calcinated as well as plasma treated TiO2 substrates were analysed by water contact angle (WCA) measurements. The hydrophilic behaviour of the developed substrates helped to improve the distribution of the AuNPs, which reflects in overall higher lateral SERS enhancement. Surface enhancement of the substrates was tested with target molecule rhodamine 6G (R6G) and a fibre-coupled 638 nm Raman spectrometer. Additionally, the morphology of the substrates was characterised using scanning electron microscopy (SEM) and Raman microscopy. The studies showed a reduced influence of the coffee ring effect on the particle distribution, resulting in a more broadly distributed edge region, which increased the spatial reproducibility of the measured SERS signal in the surface-enhanced Raman mapping measurements on mm scale.
Collapse
Affiliation(s)
- René Breuch
- Institute of Safety and Security Research, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (D.K.); (C.M.); (E.S.)
- Correspondence: (R.B.); (P.K.)
| | - Daniel Klein
- Institute of Safety and Security Research, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (D.K.); (C.M.); (E.S.)
| | - Cassandra Moers
- Institute of Safety and Security Research, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (D.K.); (C.M.); (E.S.)
| | - Eleni Siefke
- Institute of Safety and Security Research, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (D.K.); (C.M.); (E.S.)
| | - Claudia Wickleder
- Inorganic Chemistry, Department Chemie and Biologie, Cµ—Center for Micro- and Nanochemistry and (Bio)Technology, Faculty of Science and Technology, University of Siegen, Adolf-Reichwein-Str., 57068 Siegen, Germany;
| | - Peter Kaul
- Institute of Safety and Security Research, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (D.K.); (C.M.); (E.S.)
- Correspondence: (R.B.); (P.K.)
| |
Collapse
|
276
|
Moradeeya PG, Sharma A, Kumar MA, Basha S. Titanium dioxide based nanocomposites - Current trends and emerging strategies for the photocatalytic degradation of ruinous environmental pollutants. ENVIRONMENTAL RESEARCH 2022; 204:112384. [PMID: 34785207 DOI: 10.1016/j.envres.2021.112384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Many ruinous pollutants are omnipresent in the environment and among them; pesticides are xenobiotic and pose to be a bio-recalcitrance. Their detrimental ecological and environmental impacts attract attention of environmental excerpts and the surge of stringent regulations have endows the need of a technically feasible treatment. This critical review emphasizes about the occurrence, abundance and fate of structurally distinct pesticides in different environment. The practiced remedial strategies and in particular, the advanced oxidation processes (AOPs) those utilize the photo-catalytic properties of nano-composites for the degradation of pollutants are critically discussed. Photo-catalytic degradation utilizes many composite materials at nano-scale level, wherein synthesis of nano-composites with appropriate precursors and other adjoining functional moieties are of prime importance. Therefore, suitable starter materials along with the reaction conditions are prerequisite for effectively tailoring the nano-composites. The aforementioned aspects and their customized applications are critically discussed. The associated challenges, opportunities and process economics of degradation using photo-catalytic AOP techniques are highlighted and in addition, the review tries to explain how best the photo-degradation can be a stand-alone tool with a societal importance. Conclusively, the future prospects for undertaking new researches in photo-catalytic breakdown of pollutants that can be judiciously sustainable.
Collapse
Affiliation(s)
- Pareshkumar G Moradeeya
- Hyderabad Zonal Laboratory, CSIR-National Environmental Engineering Research Institute, IICT Campus, Tarnaka, Hyderabad, 500 007, Telangana, India; Department of Environmental Science & Engineering, Marwadi Education Foundation, Rajkot, 360 003, Gujarat, India
| | - Archana Sharma
- Department of Environmental Science & Engineering, Marwadi Education Foundation, Rajkot, 360 003, Gujarat, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Shaik Basha
- Hyderabad Zonal Laboratory, CSIR-National Environmental Engineering Research Institute, IICT Campus, Tarnaka, Hyderabad, 500 007, Telangana, India.
| |
Collapse
|
277
|
Ma Y, Yue W, Xua Z, Ye Z, Zhang J. Highly active β-NaYF4:Yb/Er-N-TiO2 nanoparticles for NIR light driven Rhodamine B degradation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
278
|
Jadoun S, Yáñez J, Mansilla HD, Riaz U, Chauhan NPS. Conducting polymers/zinc oxide-based photocatalysts for environmental remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2063-2083. [PMID: 35221834 PMCID: PMC8857745 DOI: 10.1007/s10311-022-01398-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/17/2022] [Indexed: 05/03/2023]
Abstract
The accessibility to clean water is essential for humans, yet nearly 250 million people die yearly due to contamination by cholera, dysentery, arsenicosis, hepatitis A, polio, typhoid fever, schistosomiasis, malaria, and lead poisoning, according to the World Health Organization. Therefore, advanced materials and techniques are needed to remove contaminants. Here, we review nanohybrids combining conducting polymers and zinc oxide for the photocatalytic purification of waters, with focus on in situ polymerization, template synthesis, sol-gel method, and mixing of semiconductors. Advantages include less corrosion of zinc oxide, less charge recombination and more visible light absorption, up to 53%.
Collapse
Affiliation(s)
- Sapana Jadoun
- Facultad de Ciencias Químicas, Departamento de Química Analítica e Inorgánica, Universidad de Concepción, 4070371 Edmundo Larenas 129, Concepción, Chile
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, 110025 India
| | - Jorge Yáñez
- Facultad de Ciencias Químicas, Departamento de Química Analítica e Inorgánica, Universidad de Concepción, 4070371 Edmundo Larenas 129, Concepción, Chile
| | - Héctor D. Mansilla
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad de Concepción, 4070371 Edmundo Larenas 129, Concepción, Chile
| | - Ufana Riaz
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, 110025 India
| | | |
Collapse
|
279
|
Wu Z, Li L, Zhou X, Parkin IP, Zhao X, Liu B. A light-heat synergism in the sub-bandgap photocatalytic response of pristine TiO 2: a study of in situ diffusion reflectance and conductance. Phys Chem Chem Phys 2022; 24:5618-5626. [PMID: 35175261 DOI: 10.1039/d1cp04941k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pristine TiO2 materials are mainly used as photocatalysts under super-bandgap light illumination. The sub-bandgap (SBG) photocatalytic response has seldom been investigated and the mechanism of action remains unclear. In the current research, we firstly study the SBG light electronic transition of pristine P25 TiO2 by means of in situ diffusion reflectance and (photo)conductance measurements under finely controllable conditions. It is revealed that the SBG light can promote valence band (VB) electrons to the exponentially-distributed gap states of the TiO2, which can then be thermally activated to the CB states. A hole in the VB and an electron in the CB can be generated by the synergism of a SBG photon and heat. It is also seen that the photoinduced electrons can transfer to O2 through the CB states, and that the holes can be captured by isopropanol molecules. As a result, isopropanol dehydrogenation can occur over pristine TiO2 under SBG light illumination. It is seen that the photocatalytic activity increases with temperature and the energy of the SBG photons, in agreement with the light-heat synergistic electric transition via the exponential gap states. The present research reveals a mechanism for the SBG light photocatalytic response of pristine TiO2 materials, which is important in designing highly-active visible light active photocatalysts.
Collapse
Affiliation(s)
- Zhizhou Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei Province, China.
| | - Liuyang Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei Province, China.
| | - Xuedong Zhou
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei Province, China.
| | - Ivan P Parkin
- Department of Chemistry, Materials Chemistry Centre, University College London, London, WC1H 0AJ, UK
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei Province, China.
| | - Baoshun Liu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei Province, China.
| |
Collapse
|
280
|
Abstract
Photocatalytic and antibacterial properties of TiO2-based SaniTise™ glass by Pilkington were studied with an aim to benchmark this first commercial UVA-activated antimicrobial glass and to evaluate its efficacy in indoor-like conditions. For comparison, the antibacterial and photocatalytic activity of self-cleaning BIOCLEAN® glass and photocatalytically inactive clear float PLANICLEAR® control glass were analysed. The presence of an anatase TiO2 layer was demonstrated on the surface of SaniTise™ and BIOCLEAN®. Photocatalytic degradation of organic model dye and antibacterial activity against Escherichia coli and Staphylococcus aureus were higher on SaniTise™ than on BIOCLEAN®. In a liquid antibacterial assay corresponding to ISO 27447 format, 4h exposure of bacteria to the SaniTise™ surface under UVA resulted in >2.8 log decrease in E. coli and >2.5 log decrease in S. aureus viable cell counts. In experiments with the more application-relevant “dry droplet method”, significantly higher antibacterial activity was observed up to the level where during 4h at ≤50% RH complete inactivation of bacteria was observed also on PLANICLEAR® control glass. The latter raises concerns about the real-life relevancy of the standard test conditions and suggests that at low air humidity conditions, shorter exposure periods than suggested by current antimicrobial testing protocols should be targeted by photocatalytically active antibacterial surfaces.
Collapse
|
281
|
Wu YN, Cai SL, Lu L, Zhang L, Cheng F, Muddassir M, Sakiyama H. Photocatalytic performance and mechanism of Rhodamine B with two new Zn(II)-based coordination polymers under UV-light. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
282
|
Liu L, Xu M, Ye Y, Zhang B. On the degradation of (micro)plastics: Degradation methods, influencing factors, environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151312. [PMID: 34743885 DOI: 10.1016/j.scitotenv.2021.151312] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Plastics and microplastics are difficult to degrade in the natural environment due to their hydrophobicity, the presence of stable covalent bonds and functional groups that are not susceptible to attack. In nature, microplastics are more likely to attract other substances due to their large specific surface area, which further prevents degradation from occurring. Some of these substances are toxic and harmful, and can be spread to various organisms through the food chain along with the microplastics to cause harm to them. Degradation is an effective way to eliminate plastic pollution, and a comprehensive understanding of the methods and mechanisms of plastic degradation is necessary, because it is the result of synergistic effects of several degradation methods, both in nature and in consideration of future engineering applications. The authors firstly summarize the degradation methods of (micro)plastics; secondly, review the influence of intrinsic properties and environmental factors during the degradation process; finally, discuss the environmental impact of the degradation products of (micro)plastics. It is evident that the degradation of (micro)plastics still has many challenges to overcome, and there are no mature and effective methods that can be applied in engineering practice or widely used in nature. Therefore, there is an urgent need for research on the degradation of (micro)plastics.
Collapse
Affiliation(s)
- Lingchen Liu
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, PR China
| | - Mingjie Xu
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, PR China
| | - Yuheng Ye
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, PR China
| | - Bin Zhang
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, PR China; School of Food and Biotechnology of Xihua University, Chengdu 610039, PR China.
| |
Collapse
|
283
|
Liu X, Xu C, Xie S, Zhu L, Wang X. Evaluation of photodegradation performance by paper microzones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150916. [PMID: 34653466 DOI: 10.1016/j.scitotenv.2021.150916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Currently, the performance evaluation of catalysts usually requires expensive instruments. Hence, it is imperative to develop an alternative, green and sustainable method to investigate the photocatalytic reaction processes. Herein, the variation of degradation performance of different wastewaters with different dosage of P25 TiO2 was evaluated to verify the reliability of the paper microzones method (PMZs). The optimum P25 TiO2 dosage of 1 g/L for the degradation of methylene blue (MB) (UV light for 6 mins) and 0.5 g/L for the degradation of fuchsin basic (FB) (UV light for 5 mins) was obtained by the PMZs method. For the photocatalytic degradation of trivalent iron ion complexed salicylic acid (Fe(III)-SA) solution, the R2 values of 0.904 and 0.801 were obtained for the photocatalytic reaction kinetics by PMZs and spectrophotometry, respectively, which again indicated the high reliability of PMZs. The accuracy of the results obtained by PMZs method relative to the spectrophotometric method ranged from 68.80% to 87.54% when degrading MB, FB, mixture of MB and FB, and Fe(III)-SA by P25 TiO2. Therefore, the PMZs method is all in line with the requirements of low-carbon environmental protection and green chemistry, and has broad application prospects in the future.
Collapse
Affiliation(s)
- Xian Liu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Chengxiang Xu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Shiwei Xie
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Lei Zhu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
284
|
A Simple Preparation Method of Graphene and TiO2 Loaded Activated Carbon Fiber and Its Application for Indoor Formaldehyde Degradation. SEPARATIONS 2022. [DOI: 10.3390/separations9020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Formaldehyde has a significant impact on human health. This study used a simple dipping method to load graphene-titanium dioxide (GR-TiO2) on activated carbon fibers (ACFs). The microstructure of GR-TiO2/ACF hybrid material was observed by SEM, combined with XRD and BET analysis. The result showed that the GR-TiO2/ACF hybrid material had a specific surface area of 893.08 m2/g and average pore size of 2.35 nm. The formaldehyde degradation efficiency of the prepared material was tested under different conditions, such as ultraviolet (UV) radiation, air supply volume, relative humidity, initial mass concentration. The results showed that the UV radiation intensity, airflow and the initial mass concentration were positively correlated with the formaldehyde removal rate, and the relative humidity was negatively correlated with the formaldehyde removal rate. The GR-TiO2/ACF hybrid material had a maximum formaldehyde removal rate of 85.54% within 120 min.
Collapse
|
285
|
Kovalevskiy N, Cherepanova S, Gerasimov E, Lyulyukin M, Solovyeva M, Prosvirin I, Kozlov D, Selishchev D. Enhanced Photocatalytic Activity and Stability of Bi 2WO 6 - TiO 2-N Nanocomposites in the Oxidation of Volatile Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:359. [PMID: 35159704 PMCID: PMC8838994 DOI: 10.3390/nano12030359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
The development of active and stable photocatalysts for the degradation of volatile organic compounds under visible light is important for efficient light utilization and environmental protection. Titanium dioxide doped with nitrogen is known to have a high activity but it exhibits a relatively low stability due to a gradual degradation of nitrogen species under highly powerful radiation. In this paper, we show that the combination of N-doped TiO2 with bismuth tungstate prevents its degradation during the photocatalytic process and results in a very stable composite photocatalyst. The synthesis of Bi2WO6-TiO2-N composites is preformed through the hydrothermal treatment of an aqueous medium containing nanocrystalline N-doped TiO2, as well as bismuth (III) nitrate and sodium tungstate followed by drying in air. The effect of the molar ratio between the components on their characteristics and photocatalytic activity is discussed. In addition to an enhanced stability, the composite photocatalysts with a low content of Bi2WO6 also exhibit an enhanced activity that is substantially higher than the activity of individual TiO2-N and Bi2WO6 materials. Thus, the Bi2WO6-TiO2-N composite has the potential as an active and stable photocatalyst for efficient purification of air.
Collapse
Affiliation(s)
- Nikita Kovalevskiy
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
- Research and Educational Center “Institute of Chemical Technologies”, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana Cherepanova
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Evgeny Gerasimov
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Mikhail Lyulyukin
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Maria Solovyeva
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Igor Prosvirin
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Denis Kozlov
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
| | - Dmitry Selishchev
- Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia; (N.K.); (S.C.); (E.G.); (M.L.); (M.S.); (I.P.); (D.K.)
- Research and Educational Center “Institute of Chemical Technologies”, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
286
|
Kawawaki T, Kawachi M, Yazaki D, Akinaga Y, Hirayama D, Negishi Y. Development and Functionalization of Visible-Light-Driven Water-Splitting Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:344. [PMID: 35159689 PMCID: PMC8838403 DOI: 10.3390/nano12030344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023]
Abstract
With global warming and the depletion of fossil resources, our fossil fuel-dependent society is expected to shift to one that instead uses hydrogen (H2) as a clean and renewable energy. To realize this, the photocatalytic water-splitting reaction, which produces H2 from water and solar energy through photocatalysis, has attracted much attention. However, for practical use, the functionality of water-splitting photocatalysts must be further improved to efficiently absorb visible (Vis) light, which accounts for the majority of sunlight. Considering the mechanism of water-splitting photocatalysis, researchers in the various fields must be employed in this type of study to achieve this. However, for researchers in fields other than catalytic chemistry, ceramic (semiconductor) materials chemistry, and electrochemistry to participate in this field, new reviews that summarize previous reports on water-splitting photocatalysis seem to be needed. Therefore, in this review, we summarize recent studies on the development and functionalization of Vis-light-driven water-splitting photocatalysts. Through this summary, we aim to share current technology and future challenges with readers in the various fields and help expedite the practical application of Vis-light-driven water-splitting photocatalysts.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Center for Space System Innovation, Tokyo University of Science, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masanobu Kawachi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Daichi Yazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Yuki Akinaga
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Daisuke Hirayama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Center for Space System Innovation, Tokyo University of Science, Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
287
|
Du X, Peng Y, Albero J, Li D, Hu C, García H. Synthetic Fuels from Biomass: Photocatalytic Hydrodecarboxylation of Octanoic Acid by Ni Nanoparticles Deposited on TiO 2. CHEMSUSCHEM 2022; 15:e202102107. [PMID: 34841693 DOI: 10.1002/cssc.202102107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Decarboxylation of low-value fatty acids from biomass is a simple process to produce synthetic fuels suitable to be blended with gasoline or diesel. The present study reports the photocatalytic decarboxylation of octanoic acid in the presence of H2 by a series of modified TiO2 to form mixtures of n-heptane and tetradecane as major products in variable proportions, depending on the photocatalyst and the reaction conditions. It was found that the photocatalytic activity increases upon an optimal reductive NaBH4 treatment, presumably by generation of surface oxygen vacancies and by the deposition of Ni nanoparticles in the appropriate loading. Under the optimized conditions, an almost complete octanoic acid conversion and a combined selectivity to n-heptane and tetradecane over 80 % were reached at 10 h of UV/Vis light irradiation with a 300 W Xe lamp. No changes in the photocatalytic performance were observed for six consecutive runs. The present results illustrate the possibility that photocatalytic decarboxylation offers for the transformation of biomass into synthetic fuels under mild conditions.
Collapse
Affiliation(s)
- Xiangze Du
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
- Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas, Universitat Politecnica de Valencia, Av. De los Naranjos s/n, 46022, Valencia, Spain
| | - Yong Peng
- Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas, Universitat Politecnica de Valencia, Av. De los Naranjos s/n, 46022, Valencia, Spain
| | - Josep Albero
- Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas, Universitat Politecnica de Valencia, Av. De los Naranjos s/n, 46022, Valencia, Spain
| | - Dan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Hermenegildo García
- Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas, Universitat Politecnica de Valencia, Av. De los Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
288
|
Enhanced Photocatalytic Activity of Hierarchical Bi2WO6 Microballs by Modification with Noble Metals. Catalysts 2022. [DOI: 10.3390/catal12020130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Visible-responsive photocatalysts for environmental purification and fuel generation are, currently, highly sought after. Among the possible candidates, Bi2WO6 (BWO) has been considered due to its efficient light harvesting, stability, and promising activities. Here, hierarchical BWO microballs have been prepared using a hydrothermal method, and additionally modified with deposits of noble metals (gold, silver, copper, palladium and platinum) by the photodeposition method. The structure, morphology, photoabsorption properties, and surface composition of bare and metal-modified BWO samples were investigated by XRD, SEM, DRS and XPS analyses. The photocatalytic activity was evaluated by the oxidative degradation of model dye (methyl orange (MO)) under UV/vis, and hydrogen generation under vis and/or UV irradiation. It was found that hierarchical morphology is detrimental for high photocatalytic activity in both tested systems, resulting in the improved degradation of MO (ca. 65% during 90 min of UV/vis irradiation), and hydrogen evolution (0.1 and 0.4 μmol h−1 under vis and UV/vis irradiation, respectively). Moreover, the type of noble metal and its properties influence the overall photocatalytic performance. It was found that, under UV/vis irradiation, only platinum accelerates hydrogen evolution, whereas under vis irradiation the activity follows the order: BWO < BWO/Cu < BWO/Ag < BWO/Pt < BWO/Pd < BWO/Au. It was concluded that zero-valent metal is recommended for high vis response, probably due to plasmonic photocatalysis, efficient light harvesting ability, and co-catalytic role.
Collapse
|
289
|
Sustainable Green Nanotechnologies for Innovative Purifications of Water: Synthesis of the Nanoparticles from Renewable Sources. NANOMATERIALS 2022; 12:nano12020263. [PMID: 35055280 PMCID: PMC8779975 DOI: 10.3390/nano12020263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023]
Abstract
Polluting the natural water resources is a serious global issue, which is confirmed by the fact that today at least 2 billion people consume water from contaminated sources. The conventional wastewater treatment methods cannot effectively remove the persistent pollutants (e.g., drugs, organic dyes, pesticides) from the aqueous environment. Heterogeneous photocatalysis is a promising and sustainable alternative for water remediation. It is based on the interaction between light irradiation and the semiconductors (e.g., TiO2, ZnO) as photocatalysts, but these compounds, unfortunately, have some disadvantages. Hence, great attention has been paid to the nanotechnology as a possible way of improvement. Nanomaterials have extraordinary properties; however, their conventional synthesis is often difficult and requires a significant amount of dangerous chemicals. This concise topical review gives recent updates and trends in development of sustainable and green pathways in the synthesis of nanomaterials, as well as in their application for water remediation. In our review we put emphasis on the eco-friendly, mostly plant extract-based materials. The importance of this topic, including this study as well, is proved by the growing number of publications since 2018. Due to the current serious environmental issues (e.g., global warming, shortage of pure and quality water), it is necessary for the traditional TiO2 and ZnO semiconductors to be replaced with the harmless, non-toxic, and more powerful nanocomposites as photocatalysts. Not only because of their higher efficiency as compared to the bulk semiconductors, but also because of the presence of biomolecules that can add up to the pollutant removal efficiency, which has been already confirmed in many researches. However, despite the fact that the application of heterogeneous photocatalysis together with green nanotechnology is absolutely the future in water purification, there are some challenges which have to be overcome. The exact effects of the biomolecules obtained from plants in the synthesis of nanoparticles, as well as in the photocatalytic processes, are not exactly known and require further investigation. Furthermore, heterogeneous photocatalysis is a well-known and commonly examined process; however, its practical use outside the laboratory is expensive and difficult. Thus, it has to be simplified and improved in order to be available for everyone. The aim of our review is to suggest and prove that using these bio-inspired compounds it is possible to reduce human footprint in the nature.
Collapse
|
290
|
Study of dielectric relaxation and charge transport of titanium dioxide-polyvinyl chloride nanocomposites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04000-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
291
|
Zheng P, Liu J, Zhang X, Chen L, Ma L, Zhang Q. Facile synthesis of a nano titanium catalyst and its performance in selective oxidation of aromatic and pyridinic alcohols under visible light. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00180b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of alcohols to the corresponding carbonyl compounds is of great significance in chemical synthesis and fine chemical production.
Collapse
Affiliation(s)
- Peng Zheng
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianguo Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Xinghua Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Qi Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| |
Collapse
|
292
|
Chauhan A, Dhenadhayalan N, Yeh JC, Lin KC. Photocatalytic degradation-based efficient elimination of pesticides using ruthenium/gold metal nanoparticle-anchored zirconium dioxide. NEW J CHEM 2022. [DOI: 10.1039/d2nj03361e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ruthenium and gold metal nanoparticles-incorporated zirconium dioxide (ZrO2@Ru and ZrO2@Au) nanostructures were developed as promising photocatalysts for wastewater remediation.
Collapse
Affiliation(s)
- Anuj Chauhan
- Department of Chemistry, National Taiwan University, Taipei-10617, Taiwan
| | | | - Jen-Chen Yeh
- Department of Chemistry, National Taiwan University, Taipei-10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei-10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei-10617, Taiwan
| |
Collapse
|
293
|
Kumari MLA, Devi LG, Maia G, Chen TW, Al-Zaqri N, Ali MA. Mechanochemical synthesis of ternary heterojunctions TiO 2(A)/TiO 2(R)/ZnO and TiO 2(A)/TiO 2(R)/SnO 2 for effective charge separation in semiconductor photocatalysis: A comparative study. ENVIRONMENTAL RESEARCH 2022; 203:111841. [PMID: 34380049 DOI: 10.1016/j.envres.2021.111841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
TiO2, ZnO, and SnO2 metal oxides were synthesized by the sol-gel method and heterojunctions were fabricated by combining TiO2 with either ZnO or SnO2 in a 1:1 ratio using mechanochemical ball milling process. The ball milling process promotes phase transition of TiO2 from anatase to rutile and yields ternary heterojunction of the type TiO2(A)/TiO2(R)/ZnO and TiO2(A)/TiO2(R)/SnO2 (A-anatase and R-rutile). These ternary heterojunctions were characterized by various analytical techniques and its photocatalytic efficiency is evaluated using 4-Chloro Phenol as a model compound under UV and solar light. The enhanced catalytic activity of TiO2(A)/TiO2(R)/ZnO heterojunction is attributed to the formation of Ti3+-Vo defect states which leads to the efficient charge carrier separation. During the ball milling process severe crystal deformation takes place in TiO2 and ZnO lattices by creating crystal lattice distortion which leads to the formation of defects due to valency mismatch between Ti4+ and Zn2+. A mechanistic pathway is proposed for the enhanced photocatalytic activity of the ternary heterojunctions.
Collapse
Affiliation(s)
- M L Aruna Kumari
- Department of Post Graduate Studies in Chemistry, Bangalore University, Bengaluru, 560001, India; Department of Chemistry, M. S. Ramaiah College of Arts, Science, and Commerce, Bengaluru, 560054, India.
| | - L Gomathi Devi
- Department of Post Graduate Studies in Chemistry, Bangalore University, Bengaluru, 560001, India
| | - Gilberto Maia
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, Campo Grande, MS, 79074-460, Brazil
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
294
|
Harris-Lee TR, Johnson SAL, Wang L, Fletcher PJ, Zhang J, Bentley C, Bowen CR, Marken F. TiO 2 nanocrystal rods on titanium microwires: growth, vacuum annealing, and photoelectrochemical oxygen evolution. NEW J CHEM 2022. [DOI: 10.1039/d2nj00045h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titania nanocrystal rods grown hydrothermally onto titanium microwire are mechanically robust and photoelectrochemically active.
Collapse
Affiliation(s)
- Thom R. Harris-Lee
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | | - Lina Wang
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Philip J. Fletcher
- Materials and Chemical Characterisation Facility (MC2), University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, Vic 3800, Australia
| | - Cameron Bentley
- School of Chemistry, Monash University, Clayton, Vic 3800, Australia
| | - Christopher R. Bowen
- Department of Mechanical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
295
|
Chairungsri W, Subkomkaew A, Kijjanapanich P, Chimupala Y. Direct dye wastewater photocatalysis using immobilized titanium dioxide on fixed substrate. CHEMOSPHERE 2022; 286:131762. [PMID: 34375832 DOI: 10.1016/j.chemosphere.2021.131762] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Photocatalysis is a promising technology that can be applied to the dyeing of wastewater. During the process of photocatalysis, titanium dioxide (TiO2) is often used as a catalyst due to its low cost and broad availability. However, the use of TiO2 powders can result in certain difficulties associated with separating TiO2 from the treated wastewater. Therefore, immobilization of TiO2 on two different substrates, including glass and iron beads, was studied in this body of research work. The composite materials were prepared by spraying liquid dispersion onto the substrates, and the materials were then calcined at different temperatures (600-750 °C). At 700 °C calcination temperature, SEM and EDS analyses revealed that the particles of TiO2 were evenly distributed on the substrates. Importantly, the deposited TiO2 particles are mixed-phase anatase and rutile structures, both of which are considered beneficial to the photocatalysis process. Ultimately, a degree of direct dye photodegradation efficiency of 64.0 % at 4 h was achieved from the composite materials that were calcined at 700 °C. The degradation efficiency of the reused catalyst was not significantly changed in the second cycle revealing their capability in reusable. The stability of immobilized TiO2 onto the fixed substrates was still high after the second use.
Collapse
Affiliation(s)
- Woottikrai Chairungsri
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Arisa Subkomkaew
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pimluck Kijjanapanich
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yothin Chimupala
- Research Laboratory of Pollution Treatment and Environmental Materials, Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
296
|
Machida S, Niwa S, Usuki S, Nakata K, Ogawa M, Yasumori A, Katsumata KI. Facile solvothermal synthesis of plate-like submicron NaNbO 3 particles. CrystEngComm 2022. [DOI: 10.1039/d2ce00665k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platy particles of NaNbO3 were successfully prepared by a solvothermal reaction using a methanol/ethanol mixed solvent, in contrast to the formation of cubic NaNbO3 particles from methanol alone.
Collapse
Affiliation(s)
- Shingo Machida
- Department of Material Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Shoma Niwa
- Department of Material Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Sho Usuki
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan
| | - Kazuya Nakata
- Division of Sciences for Biological System, Institute of Agriculture, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Tumbol Payupnai, Amphoe Wangchan, Rayong 21210, Thailand
- Japan Advanced Institute of Science & Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Atsuo Yasumori
- Department of Material Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Ken-ichi Katsumata
- Department of Material Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
297
|
Ni T, Cui X, Li Q, Yan Y, Wang F, Yang Z, Chang K, Liu G. N, S-CDs Decorated Mesoporous TiO2 Composite with Improved Photocatalytic Activity under Visible Light. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
298
|
Basu SS, Donode SK, Sengupta S, Basu JK. Boosting charge migration in V 2O 5 nanorods by niobium doping for enhanced photocatalytic activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj02428d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Niobium dopants have improved the structural and optoelectronic properties of V2O5 nanorods, resulting in enhanced charge kinetics for photocatalytic and photoelectrochemical activity.
Collapse
Affiliation(s)
- Soumya Shankar Basu
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Shweta Kishor Donode
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Sonali Sengupta
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Jayanta Kumar Basu
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
299
|
Bang J, Kwon H, Kim S, Kang SB. Preparation of InP quantum dots-TiO2 nanoparticle composites with enhanced visible light induced photocatalytic activity. CrystEngComm 2022. [DOI: 10.1039/d2ce00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Environmentally friendly InP-based quantum dots (QDs) are expected to be ideal visible-light-harvesting materials because of their unique photophysical properties. Herein, we report on the results of using a combination of...
Collapse
|
300
|
Ding B, Li H, Wang R, Dong B, Cao L. Vertically Aligned Nanorods Fe 2TiO 5 and Coupling of NiMoO 4/CoMoO 4 as A Hole-Transfer Cocatalyst for Enhancing Photoelectrochemical Water Oxidation Performance. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01253g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe2TiO5, a promising photoanode material for photoelectrochemical (PEC) splitting water, was limited by its poor conductivity and short carrier diffusion length. Herein, a novel Fe2TiO5 nanorods with the new cocatalyst...
Collapse
|