251
|
Ponicsan SL, Houel S, Old WM, Ahn NG, Goodrich JA, Kugel JF. The non-coding B2 RNA binds to the DNA cleft and active-site region of RNA polymerase II. J Mol Biol 2013; 425:3625-38. [PMID: 23416138 DOI: 10.1016/j.jmb.2013.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/17/2012] [Accepted: 01/29/2013] [Indexed: 12/11/2022]
Abstract
The B2 family of short interspersed elements is transcribed into non-coding RNA by RNA polymerase III. The ~180-nt B2 RNA has been shown to potently repress mRNA transcription by binding tightly to RNA polymerase II (Pol II) and assembling with it into complexes on promoter DNA, where it keeps the polymerase from properly engaging the promoter DNA. Mammalian Pol II is an ~500-kDa complex that contains 12 different protein subunits, providing many possible surfaces for interaction with B2 RNA. We found that the carboxy-terminal domain of the largest Pol II subunit was not required for B2 RNA to bind Pol II and repress transcription in vitro. To identify the surface on Pol II to which the minimal functional region of B2 RNA binds, we coupled multi-step affinity purification, reversible formaldehyde cross-linking, peptide sequencing by mass spectrometry, and analysis of peptide enrichment. The Pol II peptides most highly recovered after cross-linking to B2 RNA mapped to the DNA binding cleft and active-site region of Pol II. These studies determine the location of a defined nucleic acid binding site on a large, native, multi-subunit complex and provide insight into the mechanism of transcriptional repression by B2 RNA.
Collapse
Affiliation(s)
- Steven L Ponicsan
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309-0596, USA
| | | | | | | | | | | |
Collapse
|
252
|
Mandal AK, Pandey R, Jha V, Mukerji M. Transcriptome-wide expansion of non-coding regulatory switches: evidence from co-occurrence of Alu exonization, antisense and editing. Nucleic Acids Res 2013; 41:2121-37. [PMID: 23303787 PMCID: PMC3575813 DOI: 10.1093/nar/gks1457] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 12/13/2012] [Accepted: 12/13/2012] [Indexed: 12/18/2022] Open
Abstract
Non-coding RNAs from transposable elements of human genome are gaining prominence in modulating transcriptome dynamics. Alu elements, as exonized, edited and antisense components within same transcripts could create novel regulatory switches in response to different transcriptional cues. We provide the first evidence for co-occurrences of these events at transcriptome-wide scale through integrative analysis of data sets across diverse experimental platforms and tissues. This involved the following: (i) positional anchoring of Alu exonization events in the UTRs and CDS of 4663 transcript isoforms from RefSeq mRNAs and (ii) mapping on to them A→I editing events inferred from ∼7 million ESTs from dbEST and antisense transcripts identified from virtual serial analysis of gene expression tags represented in Cancer Genome Anatomy Project next-generation sequencing data sets across 20 tissues. We observed significant enrichment of these events in the 3'UTR as well as positional preference within the embedded Alus. More than 300 genes had co-occurrence of all these events at the exon level and were significantly enriched in apoptosis and lysosomal processes. Further, we demonstrate functional evidence of such dynamic interactions between Alu-mediated events in a time series data from Integrated Personal Omics Profiling during recovery from a viral infection. Such 'single transcript-multiple fate' opportunity facilitated by Alu elements may modulate transcriptional response, especially during stress.
Collapse
Affiliation(s)
- Amit K. Mandal
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India and Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Rajesh Pandey
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India and Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Vineet Jha
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India and Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Mitali Mukerji
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India and Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| |
Collapse
|
253
|
Tabuchi Y, Furusawa Y, Kariya A, Wada S, Ohtsuka K, Kondo T. Common gene expression patterns responsive to mild temperature hyperthermia in normal human fibroblastic cells. Int J Hyperthermia 2013; 29:38-50. [PMID: 23311377 DOI: 10.3109/02656736.2012.753163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Heat stress induces complex cellular responses, and its detailed molecular mechanisms still remain to be clarified. The objective of this study was to investigate the molecular mechanisms underlying cellular responses to mild hyperthermia (MHT) in normal human fibroblastic (NHF) cells. MATERIALS AND METHODS Cells were treated with MHT (41°C, 30 min) and then cultured at 37°C. Gene expression was determined by the GeneChip® system and bioinformatics tools. RESULTS Treatment of the NHF cell lines, Hs68 and OUMS-36, with MHT did not affect the cell viability or cell cycle. In contrast, many probe sets were differentially expressed by >1.5-fold in both cell lines after MHT treatment. Of the 1,196 commonly and differentially expressed probe sets analysed by k-means clustering, three gene clusters, Up-I, Down-I and Down-II, were observed. Interestingly, two gene networks were obtained from the up-regulated genes in cluster Up-I. The gene network E contained DDIT3 and HSPA5 and was mainly associated with the biological process of endoplasmic reticulum stress, while the network S contained HBEGF and LIF and was associated with the biological process of cell survival. Eighteen genes were validated by quantitative real-time polymerase chain reaction, consistent with the microarray data, in four kinds of NHF cells. CONCLUSIONS Common genes that were differentially expressed and/or acted within a gene network in response to MHT in NHF cells were identified. These findings provide the molecular basis for a further understanding of the mechanisms of the MHT response in NHF cells.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Centre, University of Toyama, Japan.
| | | | | | | | | | | |
Collapse
|
254
|
Casacuberta E, González J. The impact of transposable elements in environmental adaptation. Mol Ecol 2013; 22:1503-17. [DOI: 10.1111/mec.12170] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Elena Casacuberta
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra); Passeig Maritim de la Barceloneta 37-49 Barcelona 08003 Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra); Passeig Maritim de la Barceloneta 37-49 Barcelona 08003 Spain
| |
Collapse
|
255
|
Zhang J, Mujahid H, Hou Y, Nallamilli BR, Peng Z. Plant Long ncRNAs: A New Frontier for Gene Regulatory Control. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.45128] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
256
|
Abstract
Recent studies show that transcription of the mammalian genome is not only pervasive but also enormously complex. It is estimated that an average of 10 transcription units, the vast majority of which make long noncoding RNAs (lncRNAs), may overlap each traditional coding gene. These lncRNAs include not only antisense, intronic, and intergenic transcripts but also pseudogenes and retrotransposons. Do they universally have function, or are they merely transcriptional by-products of conventional coding genes? A glimpse into the molecular biology of multiple emerging lncRNA systems reveals the "Wild West" landscape of their functions and mechanisms and the key problems to solve in the years ahead toward understanding these intriguing macromolecules.
Collapse
Affiliation(s)
- Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02138, USA.
| |
Collapse
|
257
|
Dridi S. Alu mobile elements: from junk DNA to genomic gems. SCIENTIFICA 2012; 2012:545328. [PMID: 24278713 PMCID: PMC3820591 DOI: 10.6064/2012/545328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/06/2012] [Indexed: 06/02/2023]
Abstract
Alus, the short interspersed repeated sequences (SINEs), are retrotransposons that litter the human genomes and have long been considered junk DNA. However, recent findings that these mobile elements are transcribed, both as distinct RNA polymerase III transcripts and as a part of RNA polymerase II transcripts, suggest biological functions and refute the notion that Alus are biologically unimportant. Indeed, Alu RNAs have been shown to control mRNA processing at several levels, to have complex regulatory functions such as transcriptional repression and modulating alternative splicing and to cause a host of human genetic diseases. Alu RNAs embedded in Pol II transcripts can promote evolution and proteome diversity, which further indicates that these mobile retroelements are in fact genomic gems rather than genomic junks.
Collapse
Affiliation(s)
- Sami Dridi
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA
| |
Collapse
|
258
|
Gong Z, Zhang S, Zhang W, Huang H, Li Q, Deng H, Ma J, Zhou M, Xiang J, Wu M, Li X, Xiong W, Li X, Li Y, Zeng Z, Li G. Long non-coding RNAs in cancer. SCIENCE CHINA-LIFE SCIENCES 2012; 55:1120-4. [PMID: 23233227 DOI: 10.1007/s11427-012-4413-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 11/10/2012] [Indexed: 12/28/2022]
Affiliation(s)
- Zhaojian Gong
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Hu Q, Tanasa B, Trabucchi M, Li W, Zhang J, Ohgi KA, Rose DW, Glass CK, Rosenfeld MG. DICER- and AGO3-dependent generation of retinoic acid-induced DR2 Alu RNAs regulates human stem cell proliferation. Nat Struct Mol Biol 2012; 19:1168-75. [PMID: 23064648 PMCID: PMC3743530 DOI: 10.1038/nsmb.2400] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/05/2012] [Indexed: 11/09/2022]
Abstract
Although liganded nuclear receptors have been established to regulate RNA polymerase II (Pol II)-dependent transcription units, their role in regulating Pol III-transcribed DNA repeats remains largely unknown. Here we report that ~2-3% of the ~100,000-200,000 total human DR2 Alu repeats located in proximity to activated Pol II transcription units are activated by the retinoic acid receptor (RAR) in human embryonic stem cells to generate Pol III-dependent RNAs. These transcripts are processed, initially in a DICER-dependent fashion, into small RNAs (~28-65 nt) referred to as repeat-induced RNAs that cause the degradation of a subset of crucial stem-cell mRNAs, including Nanog mRNA, which modulate exit from the proliferative stem-cell state. This regulation requires AGO3-dependent accumulation of processed DR2 Alu transcripts and the subsequent recruitment of AGO3-associated decapping complexes to the target mRNA. In this way, the RAR-dependent and Pol III-dependent DR2 Alu transcriptional events in stem cells functionally complement the Pol II-dependent neuronal transcriptional program.
Collapse
Affiliation(s)
- QiDong Hu
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
260
|
ncRNAs and thermoregulation: a view in prokaryotes and eukaryotes. FEBS Lett 2012; 586:4061-9. [PMID: 23098758 DOI: 10.1016/j.febslet.2012.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 11/24/2022]
Abstract
During cellular stress response, a widespread inhibition of transcription and blockade of splicing and other post-transcriptional processing is detected, while certain specific genes are induced. In particular, free-living cells constantly monitor temperature. When the thermal condition changes, they activate a set of genes coding for proteins that participate in the response. Non-coding RNAs, ncRNAs, and conformational changes in specific regions of mRNAs seem also to be crucial regulators that enable the cell to adjust its physiology to environmental changes. They exert their effects following the same principles in all organisms and may affect all steps of gene expression. These ncRNAs and structural elements as related to thermal stress response in bacteria are reviewed. The resemblances to eukaryotic ncRNAs are highlighted.
Collapse
|
261
|
Qu Z, Adelson DL. Evolutionary conservation and functional roles of ncRNA. Front Genet 2012; 3:205. [PMID: 23087702 PMCID: PMC3466565 DOI: 10.3389/fgene.2012.00205] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/24/2012] [Indexed: 11/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of transcribed RNA molecules without protein-coding potential. They were regarded as transcriptional noise, or the byproduct of genetic information flow from DNA to protein for a long time. However, in recent years, a number of studies have shown that ncRNAs are pervasively transcribed, and most of them show evidence of evolutionary conservation, although less conserved than protein-coding genes. More importantly, many ncRNAs have been confirmed as playing crucial regulatory roles in diverse biological processes and tumorigenesis. Here we summarize the functional significance of this class of “dark matter” in terms its genomic organization, evolutionary conservation, and broad functional classes.
Collapse
Affiliation(s)
- Zhipeng Qu
- School of Molecular and Biomedical Science, The University of Adelaide Adelaide, SA, Australia
| | | |
Collapse
|
262
|
Structural insights into transcriptional repression by noncoding RNAs that bind to human Pol II. J Mol Biol 2012; 425:3639-48. [PMID: 22954660 DOI: 10.1016/j.jmb.2012.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/14/2012] [Accepted: 08/28/2012] [Indexed: 11/22/2022]
Abstract
Gene transcription is regulated in response to environmental changes and developmental cues. In mammalian cells subjected to stress conditions such as heat shock, transcription of most protein-coding genes decreases, while the transcription of heat shock protein genes increases. Repression involves direct binding to RNA polymerase II (Pol II) of certain noncoding RNAs (ncRNAs) that are upregulated upon heat shock. Another class of ncRNAs is also upregulated and binds to Pol II but does not inhibit transcription. Incorporation of repressive ncRNAs into pre-initiation complexes prevents transcription initiation, while non-repressive ncRNAs are displaced from Pol II by TFIIF. Here, we present cryo-electron microscopy reconstructions of human Pol II in complex with six different ncRNAs from mouse and human. Our structures show that both repressive and non-repressive ncRNAs bind to a conserved binding site within the cleft of Pol II. The site, which is also shared with a previously characterized yeast aptamer, is close to the active center and, thus, in an ideal position to regulate transcription. Importantly, additional RNA elements extend flexibly beyond the docking site. We propose that the differences concerning the repressive activity of the ncRNAs analyzed must be due to the distinct character of these more unstructured, flexible segments of the RNA that emanate from the cleft.
Collapse
|
263
|
Jády BE, Ketele A, Kiss T. Human intron-encoded Alu RNAs are processed and packaged into Wdr79-associated nucleoplasmic box H/ACA RNPs. Genes Dev 2012; 26:1897-910. [PMID: 22892240 PMCID: PMC3435494 DOI: 10.1101/gad.197467.112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/16/2012] [Indexed: 11/25/2022]
Abstract
Alu repetitive sequences are the most abundant short interspersed DNA elements in the human genome. Full-length Alu elements are composed of two tandem sequence monomers, the left and right Alu arms, both derived from the 7SL signal recognition particle RNA. Since Alu elements are common in protein-coding genes, they are frequently transcribed into pre-mRNAs. Here, we demonstrate that the right arms of nascent Alu transcripts synthesized within pre-mRNA introns are processed into metabolically stable small RNAs. The intron-encoded Alu RNAs, termed AluACA RNAs, are structurally highly reminiscent of box H/ACA small Cajal body (CB) RNAs (scaRNAs). They are composed of two hairpin units followed by the essential H (AnAnnA) and ACA box motifs. The mature AluACA RNAs associate with the four H/ACA core proteins: dyskerin, Nop10, Nhp2, and Gar1. Moreover, the 3' hairpin of AluACA RNAs carries two closely spaced CB localization motifs, CAB boxes (UGAG), which bind Wdr79 in a cumulative fashion. In contrast to canonical H/ACA scaRNPs, which concentrate in CBs, the AluACA RNPs accumulate in the nucleoplasm. Identification of 348 human AluACA RNAs demonstrates that intron-encoded AluACA RNAs represent a novel, large subgroup of H/ACA RNAs, which are apparently confined to human or primate cells.
Collapse
Affiliation(s)
- Beáta E Jády
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 31062 Toulouse Cedex 9, France
| | | | | |
Collapse
|
264
|
ERK1/2 activation is a therapeutic target in age-related macular degeneration. Proc Natl Acad Sci U S A 2012; 109:13781-6. [PMID: 22869729 DOI: 10.1073/pnas.1206494109] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Deficient expression of the RNase III DICER1, which leads to the accumulation of cytotoxic Alu RNA, has been implicated in degeneration of the retinal pigmented epithelium (RPE) in geographic atrophy (GA), a late stage of age-related macular degeneration that causes blindness in millions of people worldwide. Here we show increased extracellular-signal-regulated kinase (ERK) 1/2 phosphorylation in the RPE of human eyes with GA and that RPE degeneration in mouse eyes and in human cell culture induced by DICER1 depletion or Alu RNA exposure is mediated via ERK1/2 signaling. Alu RNA overexpression or DICER1 knockdown increases ERK1/2 phosphorylation in the RPE in mice and in human cell culture. Alu RNA-induced RPE degeneration in mice is rescued by intravitreous administration of PD98059, an inhibitor of the ERK1/2-activating kinase MEK1, but not by inhibitors of other MAP kinases such as p38 or JNK. These findings reveal a previously unrecognized function of ERK1/2 in the pathogenesis of GA and provide a mechanistic basis for evaluation of ERK1/2 inhibition in treatment of this disease.
Collapse
|
265
|
Long non-coding RNA in epigenetic gene silencing. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
266
|
Capshew CR, Dusenbury KL, Hundley HA. Inverted Alu dsRNA structures do not affect localization but can alter translation efficiency of human mRNAs independent of RNA editing. Nucleic Acids Res 2012; 40:8637-45. [PMID: 22735697 PMCID: PMC3458544 DOI: 10.1093/nar/gks590] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With over one million copies, Alu elements are the most abundant repetitive elements in the human genome. When transcribed, interaction between two Alus that are in opposite orientation gives rise to double-stranded RNA (dsRNA). Although the presence of dsRNA in the cell was previously thought to only occur during viral infection, it is now known that cells express many endogenous small dsRNAs, such as short interfering RNA (siRNAs) and microRNA (miRNAs), which regulate gene expression. It is possible that long dsRNA structures formed from Alu elements influence gene expression. Here, we report that human mRNAs containing inverted Alu elements are present in the mammalian cytoplasm. The presence of these long intramolecular dsRNA structures within 3′-UTRs decreases translational efficiency, and although the structures undergo extensive editing in vivo, the effects on translation are independent of the presence of inosine. As inverted Alus are predicted to reside in >5% of human protein-coding genes, these intramolecular dsRNA structures are important regulators of gene expression.
Collapse
Affiliation(s)
- Claire R Capshew
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
267
|
Yakovchuk P, Goodrich JA, Kugel JF. B2 RNA represses TFIIH phosphorylation of RNA polymerase II. Transcription 2012; 2:45-9. [PMID: 21326911 DOI: 10.4161/trns.2.1.14306] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 12/12/2022] Open
Abstract
Mouse B2 RNA represses RNA polymerase II (Pol II) transcription during the cellular heat shock response. B2 RNA binds Pol II, enters complexes at promoters, and keeps the polymerase from engaging the DNA. Here we show that phosphorylation of Ser5 residues in the Pol II carboxy terminal domain (CTD) decreases after heat shock at the promoter of the repressed actin gene in mouse cells, despite the continued presence of Cdk7 and cyclin H. Biochemical assays revealed that B2 RNA, when present with Pol II in promoter-bound complexes, specifically represses CTD phosphorylation by TFIIH.
Collapse
Affiliation(s)
- Petro Yakovchuk
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, USA
| | | | | |
Collapse
|
268
|
Zhang X, Sun S, Pu JKS, Tsang ACO, Lee D, Man VOY, Lui WM, Wong STS, Leung GKK. Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol Dis 2012; 48:1-8. [PMID: 22709987 DOI: 10.1016/j.nbd.2012.06.004] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/30/2012] [Accepted: 06/07/2012] [Indexed: 12/30/2022] Open
Abstract
Glioma is the commonest form of primary brain tumor in adults with varying malignancy grades and histological subtypes. Long non-coding RNAs (lncRNAs) are a novel class of non-protein-coding transcripts that have been shown to play important roles in cancer development. To discover novel tumor-related lncRNAs and determine their associations with glioma subtypes, we first applied a lncRNA classification pipeline to identify 1970 lncRNAs that were represented on Affymetrix HG-U133 Plus 2.0 array. We then analyzed the lncRNA expression patterns in a set of previously published glioma gene expression profiles of 268 clinical specimens, and identified sets of lncRNAs that were unique to different histological subtypes (astrocytic versus oligodendroglial tumors) and malignancy grades. These lncRNAs signatures were then subject to validation in another non-overlapping, independent data set that contained 157 glioma samples. This is the first reported study that correlates lncRNA expression profiles with malignancy grade and histological differentiation in human gliomas. Our findings indicate the potential roles of lncRNAs in the biogenesis, development and differentiation of gliomas, and provide an important platform for future studies.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
269
|
The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc Natl Acad Sci U S A 2012; 109:8646-51. [PMID: 22586128 DOI: 10.1073/pnas.1205654109] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A genome-wide association study of papillary thyroid carcinoma (PTC) pinpointed two independent SNPs (rs944289 and rs965513) located in regions containing no annotated genes (14q13.3 and 9q22.33, respectively). Here, we describe a unique, long, intergenic, noncoding RNA gene (lincRNA) named Papillary Thyroid Carcinoma Susceptibility Candidate 3 (PTCSC3) located 3.2 kb downstream of rs944289 at 14q.13.3 and the expression of which is strictly thyroid specific. By quantitative PCR, PTCSC3 expression was strongly down-regulated (P = 2.84 × 10(-14)) in thyroid tumor tissue of 46 PTC patients and the risk allele (T) was associated with the strongest suppression (genotype [TT] (n = 21) vs. [CT] (n = 19), P = 0.004). In adjacent unaffected thyroid tissue, the genotype [TT] was associated with up-regulation of PTCSC3 ([TT] (n = 21) vs. [CT] (n = 19), P = 0.034). The SNP rs944289 was located in a binding site for the CCAAT/enhancer binding proteins (C/EBP) α and β. The risk allele destroyed the binding site in silico. Both C/EBPα and C/EBPβ activated the PTCSC3 promoter in reporter assays (P = 0.0009 and P = 0.0014, respectively) and the risk allele reduced the activation compared with the nonrisk allele (C) (P = 0.026 and P = 0.048, respectively). Restoration of PTCSC3 expression in PTC cell line cells (TPC-1 and BCPAP) inhibited cell growth (P = 0.002 and P = 0.019, respectively) and affected the expression of genes involved in DNA replication, recombination and repair, cellular movement, tumor morphology, and cell death. Our data suggest that SNP rs944289 predisposes to PTC through a previously uncharacterized, long intergenic noncoding RNA gene (PTCSC3) that has the characteristics of a tumor suppressor.
Collapse
|
270
|
Fan J, Papadopoulos V. Transcriptional regulation of translocator protein (Tspo) via a SINE B2-mediated natural antisense transcript in MA-10 Leydig cells. Biol Reprod 2012; 86:147, 1-15. [PMID: 22378763 DOI: 10.1095/biolreprod.111.097535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Translocator protein (18 kDa; TSPO) is a mitochondrial cholesterol- and drug-binding protein involved in cholesterol import into mitochondria, the rate-limiting step in steroidogenesis. TSPO is expressed at high levels in Leydig cells of the testis, and its expression levels dictate the ability of the cells to form androgen. In search of mechanisms that regulate Tspo expression, a number of transcription factors acting on its promoter region have been identified. We report herein the presence of a mechanism of regulation of Tspo expression via complementation with a natural antisense transcript (NAT). At the Tspo locus, a short interspersed repetitive element (SINE) of the SINE B2 family has the potential for high transcriptional activity. The extension of the SINE B2 element-mediated transcript overlapped with exon 3 of the Tspo gene and formed a NAT specific for Tspo (Tspo-NAT) in MA-10 mouse tumor Leydig cells. The identified Tspo-NAT was also found in testis and kidney tissues. Overexpression of the Tspo-NAT regulated Tspo gene expression and its function in steroid formation in MA-10 cells. Time-course studies have indicated that Tspo-NAT expression is regulated by cAMP and could regulate TSPO levels to maintain optimal steroid production by MA-10 Leydig cells. Taken together, these results suggest a new micro-transcriptional mechanism that regulates Tspo expression and thus steroidogenesis via an intron-based SINE B2-driven NAT specific for the Tspo gene.
Collapse
Affiliation(s)
- Jinjiang Fan
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
271
|
Abstract
The human genome encodes thousands of long noncoding RNAs (lncRNAs). Although most remain functionally uncharacterized biological "dark matter," lncRNAs have garnered considerable attention for their diverse roles in human biology, including developmental programs and tumor suppressor gene networks. As the number of lncRNAs associated with human disease grows, ongoing research efforts are focusing on their regulatory mechanisms. New technologies that enable enumeration of lncRNA interaction partners and determination of lncRNA structure are well positioned to drive deeper understanding of their functions and involvement in pathogenesis. In turn, lncRNAs may become targets for therapeutic intervention or new tools for biotechnology.
Collapse
Affiliation(s)
- Lance Martin
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.
Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Howard Y. Chang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.
Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
272
|
Abstract
The discovery of large numbers of long non-coding RNAs (lncRNAs) has been driven by genome-wide transcriptional analyses. Compared to small ncRNAs, lncRNAs have been shown to harbor biological activities, but the functions of the great majority of lncRNAs are not known. There is growing evidence that lncRNAs can regulate gene expression at epigenetic, transcription, and post-transcription levels and widely take part in various physiological and pathological processes, such as participating in cell development, immunity, oncogenesis, clinical disease processes, etc. Here, the current research efforts on the function of lncRNA in recent years were summarized.
Collapse
|
273
|
Martínez-Guitarte JL, Planelló R, Morcillo G. Overexpression of long non-coding RNAs following exposure to xenobiotics in the aquatic midge Chironomus riparius. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 110-111:84-90. [PMID: 22277249 DOI: 10.1016/j.aquatox.2011.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 05/31/2023]
Abstract
Non-coding RNAs (ncRNAs) represent an important transcriptional output of eukaryotic genomes. In addition to their functional relevance as housekeeping and regulatory elements, recent studies have suggested their involvement in rather unexpected cellular functions. The aim of this work was to analyse the transcriptional behaviour of non-coding RNAs in the toxic response to pollutants in Chironomus riparius, a reference organism in aquatic toxicology. Three well-characterized long non-coding sequences were studied: telomeric repeats, Cla repetitive elements and the SINE CTRT1. Transcription levels were evaluated by RT-PCR after 24-h exposures to three current aquatic contaminants: bisphenol A (BPA), benzyl butyl phthalate (BBP) and the heavy metal cadmium (Cd). Upregulation of telomeric transcripts was found after BPA treatments. Moreover, BPA significantly activated Cla transcription, which also appeared to be increased by cadmium, whereas BBP did not affect the transcription levels of these sequences. Transcription of SINE CTRT1 was not altered by any of the chemicals tested. These data are discussed in the light of previous studies that have shown a response by long ncRNAS (lncRNAs) to cellular stressors, indicating a relationship with environmental stimuli. Our results demonstrated for the first time the ability of bisphenol A to activate non-coding sequences mainly located at telomeres and centromeres. Overall, this study provides evidence that xenobiotics can induce specific responses in ncRNAs derived from repetitive sequences that could be relevant in the toxic response, and also suggests that ncRNAs could represent a novel class of potential biomarkers in toxicological assessment.
Collapse
Affiliation(s)
- José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| | | | | |
Collapse
|
274
|
Abstract
Non-coding RNAs have been found to regulate many cellular processes and thus expand the functional genetic repertoire contained within the genome. With the recent advent of genomic tools, it is now evident that these RNA molecules play central regulatory roles in many transcriptional programs. Here we discuss how they are targeted to promoters in several cases and how they operate at specific points in the transcription cycle to precisely control gene expression.
Collapse
Affiliation(s)
- Tyler Faust
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
275
|
Kugel JF, Goodrich JA. Non-coding RNAs: key regulators of mammalian transcription. Trends Biochem Sci 2012; 37:144-51. [PMID: 22300815 DOI: 10.1016/j.tibs.2011.12.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 12/14/2022]
Abstract
Non-coding RNAs (ncRNAs) are now recognized as active participants in controlling many biological processes. Indeed, these products of transcription can even control the process of transcription itself. In the past several years, ncRNAs have been found to regulate transcription of single genes, as well as entire transcriptional programs, affecting the expression of hundreds to thousands of genes in response to developmental or environmental signals. Compared to more classical protein regulators, the list of ncRNAs that regulate mRNA transcription in mammalian cells is still small; however, the rate at which new ncRNA transcriptional regulators are being discovered is rapid, suggesting that models for how gene expression is controlled will continue to be redefined as this field develops.
Collapse
Affiliation(s)
- Jennifer F Kugel
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA.
| | | |
Collapse
|
276
|
Abstract
Alu elements are primate-specific repeats and comprise 11% of the human genome. They have wide-ranging influences on gene expression. Their contribution to genome evolution, gene regulation and disease is reviewed.
Collapse
|
277
|
Teves SS, Henikoff S. Heat shock reduces stalled RNA polymerase II and nucleosome turnover genome-wide. Genes Dev 2011; 25:2387-97. [PMID: 22085965 DOI: 10.1101/gad.177675.111] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heat shock rapidly induces expression of a subset of genes while globally repressing transcription, making it an attractive system to study alterations in the chromatin landscape that accompany changes in gene regulation. We characterized these changes in Drosophila cells by profiling classical low-salt-soluble chromatin, RNA polymerase II (Pol II), and nucleosome turnover dynamics at single-base-pair resolution. With heat shock, low-salt-soluble chromatin and stalled Pol II levels were found to decrease within gene bodies, but no overall changes were detected at transcriptional start sites. Strikingly, nucleosome turnover decreased genome-wide within gene bodies upon heat shock in a pattern similar to that observed with inhibition of Pol II elongation, especially at genes involved in the heat-shock response. Relatively high levels of nucleosome turnover were also observed throughout the bodies of genes with paused Pol II. These observations suggest that down-regulation of transcription during heat shock involves reduced nucleosome mobility and that this process has evolved to promote heat-shock gene regulation. Our ability to precisely map both nucleosomal and subnucleosomal particles directly from low-salt-soluble chromatin extracts to assay changes in the chromatin landscape provides a simple general strategy for epigenome characterization.
Collapse
Affiliation(s)
- Sheila S Teves
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
278
|
de Andrade A, Wang M, Bonaldo MF, Xie H, Soares MB. Genetic and epigenetic variations contributed by Alu retrotransposition. BMC Genomics 2011; 12:617. [PMID: 22185517 PMCID: PMC3272032 DOI: 10.1186/1471-2164-12-617] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 12/20/2011] [Indexed: 12/16/2022] Open
Abstract
Background De novo retrotransposition of Alu elements has been recognized as a major driver for insertion polymorphisms in human populations. In this study, we exploited Alu-anchored bisulfite PCR libraries to identify evolutionarily recent Alu element insertions, and to investigate their genetic and epigenetic variation. Results A total of 327 putatively recent Alu insertions were identified, altogether represented by 1,762 sequence reads. Nearly all such de novo retrotransposition events (316/327) were novel. Forty-seven out of forty-nine randomly selected events, corresponding to nineteen genomic loci, were sequence-verified. Alu element insertions remained hemizygous in one or more individuals in sixteen of the nineteen genomic loci. The Alu elements were found to be enriched for young Alu families with characteristic sequence features, such as the presence of a longer poly(A) tail. In addition, we documented the occurrence of a duplication of the AT-rich target site in their immediate flanking sequences, a hallmark of retrotransposition. Furthermore, we found the sequence motif (TT/AAAA) that is recognized by the ORF2P protein encoded by LINE-1 in their 5'-flanking regions, consistent with the fact that Alu retrotransposition is facilitated by LINE-1 elements. While most of these Alu elements were heavily methylated, we identified an Alu localized 1.5 kb downstream of TOMM5 that exhibited a completely unmethylated left arm. Interestingly, we observed differential methylation of its immediate 5' and 3' flanking CpG dinucleotides, in concordance with the unmethylated and methylated statuses of its internal 5' and 3' sequences, respectively. Importantly, TOMM5's CpG island and the 3 Alu repeats and 1 MIR element localized upstream of this newly inserted Alu were also found to be unmethylated. Methylation analyses of two additional genomic loci revealed no methylation differences in CpG dinucleotides flanking the Alu insertion sites in the two homologous chromosomes, irrespective of the presence or absence of the insertion. Conclusions We anticipate that the combination of methodologies utilized in this study, which included repeat-anchored bisulfite PCR sequencing and the computational analysis pipeline herein reported, will prove invaluable for the generation of genetic and epigenetic variation maps.
Collapse
Affiliation(s)
- Alexandre de Andrade
- Falk Brain Tumor Center, Cancer Biology and Epigenomics Program, Children's Memorial Research Center, Chicago, IL 60614-3394, USA
| | | | | | | | | |
Collapse
|
279
|
Abstract
Long noncoding RNAs (lncRNAs) have important regulatory roles and can function at the level of chromatin. To determine where lncRNAs bind to chromatin, we developed capture hybridization analysis of RNA targets (CHART), a hybridization-based technique that specifically enriches endogenous RNAs along with their targets from reversibly cross-linked chromatin extracts. CHART was used to enrich the DNA and protein targets of endogenous lncRNAs from flies and humans. This analysis was extended to genome-wide mapping of roX2, a well-studied ncRNA involved in dosage compensation in Drosophila. CHART revealed that roX2 binds at specific genomic sites that coincide with the binding sites of proteins from the male-specific lethal complex that affects dosage compensation. These results reveal the genomic targets of roX2 and demonstrate how CHART can be used to study RNAs in a manner analogous to chromatin immunoprecipitation for proteins.
Collapse
|
280
|
Pandey R, Mandal AK, Jha V, Mukerji M. Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism. Genome Biol 2011; 12:R117. [PMID: 22112862 PMCID: PMC3334603 DOI: 10.1186/gb-2011-12-11-r117] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/09/2011] [Accepted: 11/23/2011] [Indexed: 01/22/2023] Open
Abstract
Background Alu RNAs are present at elevated levels in stress conditions and, consequently, Alu repeats are increasingly being associated with the physiological stress response. Alu repeats are known to harbor transcription factor binding sites that modulate RNA pol II transcription and Alu RNAs act as transcriptional co-repressors through pol II binding in the promoter regions of heat shock responsive genes. An observation of a putative heat shock factor (HSF) binding site in Alu led us to explore whether, through HSF binding, these elements could further contribute to the heat shock response repertoire. Results Alu density was significantly enriched in transcripts that are down-regulated following heat shock recovery in HeLa cells. ChIP analysis confirmed HSF binding to a consensus motif exhibiting positional conservation across various Alu subfamilies, and reporter constructs demonstrated a sequence-specific two-fold induction of these sites in response to heat shock. These motifs were over-represented in the genic regions of down-regulated transcripts in antisense oriented Alus. Affymetrix Exon arrays detected antisense signals in a significant fraction of the down-regulated transcripts, 50% of which harbored HSF sites within 5 kb. siRNA knockdown of the selected antisense transcripts led to the over-expression, following heat shock, of their corresponding down-regulated transcripts. The antisense transcripts were significantly enriched in processes related to RNA pol III transcription and the TFIIIC complex. Conclusions We demonstrate a non-random presence of Alu repeats harboring HSF sites in heat shock responsive transcripts. This presence underlies an antisense-mediated mechanism that represents a novel component of Alu and HSF involvement in the heat shock response.
Collapse
Affiliation(s)
- Rajesh Pandey
- Genomics and Molecular Medicine, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR-IGIB), Delhi- India
| | | | | | | |
Collapse
|
281
|
Managadze D, Rogozin IB, Chernikova D, Shabalina SA, Koonin EV. Negative correlation between expression level and evolutionary rate of long intergenic noncoding RNAs. Genome Biol Evol 2011; 3:1390-404. [PMID: 22071789 PMCID: PMC3242500 DOI: 10.1093/gbe/evr116] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mammalian genomes contain numerous genes for long noncoding RNAs (lncRNAs). The functions of the lncRNAs remain largely unknown but their evolution appears to be constrained by purifying selection, albeit relatively weakly. To gain insights into the mode of evolution and the functional range of the lncRNA, they can be compared with much better characterized protein-coding genes. The evolutionary rate of the protein-coding genes shows a universal negative correlation with expression: highly expressed genes are on average more conserved during evolution than the genes with lower expression levels. This correlation was conceptualized in the misfolding-driven protein evolution hypothesis according to which misfolding is the principal cost incurred by protein expression. We sought to determine whether long intergenic ncRNAs (lincRNAs) follow the same evolutionary trend and indeed detected a moderate but statistically significant negative correlation between the evolutionary rate and expression level of human and mouse lincRNA genes. The magnitude of the correlation for the lincRNAs is similar to that for equal-sized sets of protein-coding genes with similar levels of sequence conservation. Additionally, the expression level of the lincRNAs is significantly and positively correlated with the predicted extent of lincRNA molecule folding (base-pairing), however, the contributions of evolutionary rates and folding to the expression level are independent. Thus, the anticorrelation between evolutionary rate and expression level appears to be a general feature of gene evolution that might be caused by similar deleterious effects of protein and RNA misfolding and/or other factors, for example, the number of interacting partners of the gene product.
Collapse
Affiliation(s)
- David Managadze
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
282
|
Zong X, Tripathi V, Prasanth KV. RNA splicing control: yet another gene regulatory role for long nuclear noncoding RNAs. RNA Biol 2011; 8:968-77. [PMID: 21941126 DOI: 10.4161/rna.8.6.17606] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mammalian genome harbors a large number of long non-coding RNAs (lncRNAs) that do not code for proteins, but rather they exert their function directly as RNA molecules. LncRNAs are involved in executing several vital cellular functions. They facilitate the recruitment of proteins to specific chromatin sites, ultimately regulating processes like dosage compensation and genome imprinting. LncRNAs are also known to regulate nucleocytoplasmic transport of macromolecules. A large number of the regulatory lncRNAs are retained within the cell nucleus and constitute a subclass termed nuclear-retained RNAs (nrRNAs). NrRNAs are speculated to be involved in crucial gene regulatory networks, acting as structural scaffolds of subnuclear domains. NrRNAs modulate gene expression by influencing chromatin modification, transcription and post-transcriptional gene processing. The cancer-associated Metastasis-associated lung adenocarcinoma transcript1 (MALAT1) is one such long nrRNA that regulates pre-mRNA processing in mammalian cells. Thus far, our understanding about the roles played by nrRNAs and their relevance in disease pathways is only 'a tip of an iceberg'. It will therefore be crucial to unravel the functions for the vast number of long nrRNAs, buried within the complex mine of the human genome.
Collapse
Affiliation(s)
- Xinying Zong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
283
|
Ponting CP, Nellåker C, Meader S. Rapid turnover of functional sequence in human and other genomes. Annu Rev Genomics Hum Genet 2011; 12:275-99. [PMID: 21721940 DOI: 10.1146/annurev-genom-090810-183115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The amount of a genome's sequence that is functional has been surprisingly difficult to estimate accurately. This has severely hindered analyses asking whether the amount of functional genomic sequence correlates with organismal complexity. Most studies estimate these amounts by considering nucleotide substitution rates within aligned sequences. These approaches show reduced power to identify sequence that is aligned, functional, and constrained only within narrowly defined phyla. The neutral indel model exploits insertions or deletions (indels) rather than substitutions in predicting functional sequence. Surprisingly, this method indicates that half of all functional sequence is specific to individual eutherian lineages. This review considers the rates at which coding or noncoding and functional or nonfunctional sequence changes among mammalian genomes. In contrast to the slow rate at which protein-coding sequence changes, functional noncoding sequence appears to change or be turned over at rapid rates in mammals.
Collapse
Affiliation(s)
- Chris P Ponting
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom.
| | | | | |
Collapse
|
284
|
Pandey R, Mukerji M. From 'JUNK' to Just Unexplored Noncoding Knowledge: the case of transcribed Alus. Brief Funct Genomics 2011; 10:294-311. [DOI: 10.1093/bfgp/elr029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
285
|
Katz S, Kushnir O, Tovy A, Siman Tov R, Ankri S. The Entamoeba histolytica methylated LINE-binding protein EhMLBP provides protection against heat shock. Cell Microbiol 2011; 14:58-70. [DOI: 10.1111/j.1462-5822.2011.01697.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
286
|
Dunn IS. RNA templating of molecular assembly and covalent modification patterning in early molecular evolution and modern biosystems. J Theor Biol 2011; 284:32-41. [PMID: 21703277 DOI: 10.1016/j.jtbi.2011.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/23/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
The Direct RNA Template (DRT) hypothesis proposes that an early stage of genetic code evolution involved RNA molecules acting as stereochemical recognition templates for assembly of specific amino acids in sequence-ordered arrays, providing a framework for directed covalent peptide bond formation. It is hypothesized here that modern biological precedents may exist for RNA-based structural templating with functional analogies to hypothetical DRT systems. Beyond covalent molecular assembly, an extension of the DRT concept can include RNA molecules acting as dynamic structural template guides for the specific non-covalent assembly of multi-subunit complexes, equivalent to structural assembly chaperones. However, despite numerous precedents for RNA molecules acting as scaffolds for protein complexes, true RNA-mediated assembly chaperoning appears to be absent in modern biosystems. Another level of function with parallels to a DRT system is possible if RNA structural motifs dynamically guided specific patterns of catalytic modifications within multiple target sites in a pre-formed polymer or macromolecular complex. It is suggested that this type of structural RNA templating could logically play a functional role in certain areas of biology, one of which is the glycome of complex organisms. If any such RNA templating processes are shown to exist, they would share no necessary evolutionary relationships with events during early molecular evolution, but may promote understanding of the practical limits of biological RNA functions now and in the ancient RNA World. Awareness of these formal possibilities may also assist in the current search for functions of extensive non-coding RNAs in complex organisms, or for efforts towards artificial rendering of DRT systems.
Collapse
Affiliation(s)
- Ian S Dunn
- CytoCure LLC, 100 Cummings Center, Beverly, MA 01915, USA.
| |
Collapse
|
287
|
Misfolded human tRNA isodecoder binds and neutralizes a 3' UTR-embedded Alu element. Proc Natl Acad Sci U S A 2011; 108:E794-802. [PMID: 21896722 DOI: 10.1073/pnas.1103698108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several classes of small noncoding RNAs are key players in cellular metabolism including mRNA decoding, RNA processing, and mRNA stability. Here we show that a tRNA(Asp) isodecoder, corresponding to a human tRNA-derived sequence, binds to an embedded Alu RNA element contained in the 3' UTR of the human aspartyl-tRNA synthetase mRNA. This interaction between two well-known classes of RNA molecules, tRNA and Alu RNA, is driven by an unexpected structural motif and induces a global rearrangement of the 3' UTR. Besides, this 3' UTR contains two functional polyadenylation signals. We propose a model where the tRNA/Alu interaction would modulate the accessibility of the two alternative polyadenylation sites and regulate the stability of the mRNA. This unique regulation mechanism would link gene expression to RNA polymerase III transcription and may have implications in a primate-specific signal pathway.
Collapse
|
288
|
Mourier T. Retrotransposon-centered analysis of piRNA targeting shows a shift from active to passive retrotransposon transcription in developing mouse testes. BMC Genomics 2011; 12:440. [PMID: 21884594 PMCID: PMC3175481 DOI: 10.1186/1471-2164-12-440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 09/01/2011] [Indexed: 12/31/2022] Open
Abstract
Background Piwi-associated RNAs (piRNAs) bind transcripts from retrotransposable elements (RTE) in mouse germline cells and seemingly act as guides for genomic methylation, thereby repressing the activity of RTEs. It is currently unknown if and how Piwi proteins distinguish RTE transcripts from other cellular RNAs. During germline development, the main target of piRNAs switch between different types of RTEs. Using the piRNA targeting of RTEs as an indicator of RTE activity, and considering the entire population of genomic RTE loci along with their age and location, this study aims at further elucidating the dynamics of RTE activity during mouse germline development. Results Due to the inherent sequence redundancy between RTE loci, assigning piRNA targeting to specific loci is problematic. This limits the analysis, although certain features of piRNA targeting of RTE loci are apparent. As expected, young RTEs display a much higher level of piRNA targeting than old RTEs. Further, irrespective of age, RTE loci near protein-coding coding genes are targeted to a greater extent than RTE loci far from genes. During development, a shift in piRNA targeting is observed, with a clear increase in the relative piRNA targeting of RTEs residing within boundaries of protein-coding gene transcripts. Conclusions Reanalyzing published piRNA sequences and taking into account the features of individual RTE loci provide novel insight into the activity of RTEs during development. The obtained results are consistent with some degree of proportionality between what transcripts become substrates for Piwi protein complexes and the level by which the transcripts are present in the cell. A transition from active transcription of RTEs to passive co-transcription of RTE sequences residing within protein-coding transcripts appears to take place in postnatal development. Hence, the previously reported increase in piRNA targeting of SINEs in postnatal testis development does not necessitate widespread active transcription of SINEs, but may simply be explained by the prevalence of SINEs residing in introns.
Collapse
Affiliation(s)
- Tobias Mourier
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.
| |
Collapse
|
289
|
Godfried Sie CP, Kuchka M. RNA Editing adds flavor to complexity. BIOCHEMISTRY (MOSCOW) 2011; 76:869-81. [DOI: 10.1134/s0006297911080025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
290
|
Abstract
Short interspersed elements (SINEs) are mobile genetic elements that invade the genomes of many eukaryotes. Since their discovery about 30 years ago, many gaps in our understanding of the biology and function of SINEs have been filled. This review summarizes the past and recent advances in the studies of SINEs. The structure and origin of SINEs as well as the processes involved in their amplification, transcription, RNA processing, reverse transcription, and integration of a SINE copy into the genome are considered. Then we focus on the significance of SINEs for the host genomes. While these genomic parasites can be deleterious to the cell, the long-term being in the genome has made SINEs a valuable source of genetic variation providing regulatory elements for gene expression, alternative splice sites, polyadenylation signals, and even functional RNA genes.
Collapse
Affiliation(s)
- Dmitri A Kramerov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
291
|
Teixeira ARL, Hecht MM, Guimaro MC, Sousa AO, Nitz N. Pathogenesis of chagas' disease: parasite persistence and autoimmunity. Clin Microbiol Rev 2011; 24:592-630. [PMID: 21734249 PMCID: PMC3131057 DOI: 10.1128/cmr.00063-10] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute Trypanosoma cruzi infections can be asymptomatic, but chronically infected individuals can die of Chagas' disease. The transfer of the parasite mitochondrial kinetoplast DNA (kDNA) minicircle to the genome of chagasic patients can explain the pathogenesis of the disease; in cases of Chagas' disease with evident cardiomyopathy, the kDNA minicircles integrate mainly into retrotransposons at several chromosomes, but the minicircles are also detected in coding regions of genes that regulate cell growth, differentiation, and immune responses. An accurate evaluation of the role played by the genotype alterations in the autoimmune rejection of self-tissues in Chagas' disease is achieved with the cross-kingdom chicken model system, which is refractory to T. cruzi infections. The inoculation of T. cruzi into embryonated eggs prior to incubation generates parasite-free chicks, which retain the kDNA minicircle sequence mainly in the macrochromosome coding genes. Crossbreeding transfers the kDNA mutations to the chicken progeny. The kDNA-mutated chickens develop severe cardiomyopathy in adult life and die of heart failure. The phenotyping of the lesions revealed that cytotoxic CD45, CD8(+) γδ, and CD8α(+) T lymphocytes carry out the rejection of the chicken heart. These results suggest that the inflammatory cardiomyopathy of Chagas' disease is a genetically driven autoimmune disease.
Collapse
Affiliation(s)
- Antonio R L Teixeira
- Chagas Disease Multidisciplinary Research Laboratory, University of Brasilia, Federal District, Brazil.
| | | | | | | | | |
Collapse
|
292
|
Mirouze M, Paszkowski J. Epigenetic contribution to stress adaptation in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:267-74. [PMID: 21450514 DOI: 10.1016/j.pbi.2011.03.004] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 05/18/2023]
Abstract
Plant epigenetics has recently gained unprecedented interest, not only as a subject of basic research but also as a possible new source of beneficial traits for plant breeding. We discuss here mechanisms of epigenetic regulation that should be considered when undertaking the latter. Since these mechanisms are responsible for the formation of heritable epigenetic gene variants (epialleles) and also regulate transposons mobility, both aspects could be exploited to broaden plant phenotypic and genetic variation, which could improve long-term plant adaptation to environmental challenges and, thus, increase productivity.
Collapse
Affiliation(s)
- Marie Mirouze
- Department of Plant Biology, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva 4, Switzerland.
| | | |
Collapse
|
293
|
Khaitan D, Dinger ME, Mazar J, Crawford J, Smith MA, Mattick JS, Perera RJ. The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res 2011; 71:3852-62. [PMID: 21558391 DOI: 10.1158/0008-5472.can-10-4460] [Citation(s) in RCA: 381] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The identification of cancer-associated long noncoding RNAs (lncRNAs) and the investigation of their molecular and biological functions are important to understand the molecular biology of cancer and its progression. Although the functions of lncRNAs and the mechanisms regulating their expression are largely unknown, recent studies are beginning to unravel their importance in human health and disease. Here, we report that a number of lncRNAs are differentially expressed in melanoma cell lines in comparison to melanocytes and keratinocyte controls. One of these lncRNAs, SPRY4-IT1 (GenBank accession ID AK024556), is derived from an intron of the SPRY4 gene and is predicted to contain several long hairpins in its secondary structure. RNA-FISH analysis showed that SPRY4-IT1 is predominantly localized in the cytoplasm of melanoma cells, and SPRY4-IT1 RNAi knockdown results in defects in cell growth, differentiation, and higher rates of apoptosis in melanoma cell lines. Differential expression of both SPRY4 and SPRY4-IT1 was also detected in vivo, in 30 distinct patient samples, classified as primary in situ, regional metastatic, distant metastatic, and nodal metastatic melanoma. The elevated expression of SPRY4-IT1 in melanoma cells compared to melanocytes, its accumulation in cell cytoplasm, and effects on cell dynamics, including increased rate of wound closure on SPRY4-IT1 overexpression, suggest that the higher expression of SPRY4-IT1 may have an important role in the molecular etiology of human melanoma.
Collapse
Affiliation(s)
- Divya Khaitan
- Sanford Burnham Medical Research Institute, Orlando, Florida 32827, USA
| | | | | | | | | | | | | |
Collapse
|
294
|
van der Vos KE, Balaj L, Skog J, Breakefield XO. Brain tumor microvesicles: insights into intercellular communication in the nervous system. Cell Mol Neurobiol 2011; 31:949-59. [PMID: 21553248 DOI: 10.1007/s10571-011-9697-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/12/2011] [Indexed: 02/03/2023]
Abstract
Brain tumors are heterogeneous tumors composed of differentiated tumor cells that resemble various neural cells and a small number of multipotent cancer stem cells. These tumors modify normal cells in their environment to promote tumor growth, invasion and metastases by various ways. Recent publications show that glioblastoma cells release microvesicles that contain a select subset of cellular proteins and RNAs. These microvesicles are avidly taken up by normal cells in cell culture and can change the translational profile of these cells through delivery of tumor-derived mRNAs, which are translated into functional proteins. In addition to mRNA and proteins, microvesicles have been shown to contain microRNAs, non-coding RNAs and DNA. This commentary explores the recent advances in this novel intercellular communication route and discusses the potential physiological role of microvesicles in brain tumorigenesis.
Collapse
|
295
|
Mattick JS. The central role of RNA in human development and cognition. FEBS Lett 2011; 585:1600-16. [DOI: 10.1016/j.febslet.2011.05.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/03/2011] [Indexed: 12/22/2022]
|
296
|
Hamm CA, Costa FF. The impact of epigenomics on future drug design and new therapies. Drug Discov Today 2011; 16:626-35. [PMID: 21570477 DOI: 10.1016/j.drudis.2011.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/23/2011] [Accepted: 04/19/2011] [Indexed: 12/11/2022]
Abstract
The future of drug design and the development of new therapeutics will rely on our ability to unravel the complexities of the epigenome in normal and disease states. Proper epigenetic regulation is essential for normal differentiation in embryogenesis and development. Conversely, abnormal epigenetic regulation is a feature of complex diseases, including cancer, diabetes, heart disease and other pathologies. Epigenetic therapies hold promise for a wide range of biological applications, from cancer treatment to the establishment of induced pluripotent stem cells. The creation of more specific and effective epigenetic therapies, however, requires a more complete understanding of epigenomic landscapes. Here, we give a historical overview of the epigenomics field and how epigenetic modifications can affect embryo development and disease etiology. We also discuss the impact of current and future epigenetic drugs.
Collapse
Affiliation(s)
- Christopher A Hamm
- Cancer Biology and Epigenomics Program, Children's Memorial Research Center and Northwestern University's Feinberg School of Medicine, 2430N. Halsted St, Box 220, Chicago, IL, USA
| | | |
Collapse
|
297
|
Nikitina TV, Tischenko LI, Schulz WA. Recent insights into regulation of transcription by RNA polymerase III and the cellular functions of its transcripts. Biol Chem 2011; 392:395-404. [PMID: 21417954 DOI: 10.1515/bc.2011.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The products of transcription by the multisubunit enzyme RNA polymerase III (Pol III), such as 5S rRNA, tRNAs, U6 snRNA, are important for cell growth, proliferation and differentiation. The known range of the Pol III transcriptome has expanded over recent years, and novel functions of the newly discovered and already well known transcripts have been identified, including regulation of stress responses and apoptosis. Furthermore, transcription by Pol III has turned out to be strongly regulated, differing between diverse class III genes, among cell types and under stress conditions. The mechanisms involved in regulation of Pol III transcription are being elucidated and disturbances in that regulation have been implicated in various diseases, including cancer. This review summarizes the novel data on the regulation of RNA polymerase III transcription, including epigenetic and gene specific mechanisms and outlines recent insights into the cellular functions of the Pol III transcriptome, in particular of SINE RNAs.
Collapse
Affiliation(s)
- Tatyana V Nikitina
- Department of Biochemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | | | | |
Collapse
|
298
|
Hjelmeland LM. Dark matters in AMD genetics: epigenetics and stochasticity. Invest Ophthalmol Vis Sci 2011; 52:1622-31. [PMID: 21429863 DOI: 10.1167/iovs.10-6765] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Leonard M Hjelmeland
- Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, California, USA.
| |
Collapse
|
299
|
Abstract
New DNA sequencing technologies have provided novel insights into eukaryotic genomes, epigenomes, and the transcriptome, including the identification of new non-coding RNA (ncRNA) classes such as promoter-associated RNAs and long RNAs. Moreover, it is now clear that up to 90% of eukaryotic genomes are transcribed, generating an extraordinary range of RNAs with no coding capacity. Taken together, these new discoveries are modifying the status quo in genomic science by demonstrating that the eukaryotic gene pool is divided into two distinct categories of transcripts: protein-coding and non-coding. The function of the majority of ncRNAs produced by the transcriptome is largely unknown; however, it is probable that many are associated with epigenetic mechanisms. The purpose of this review is to describe the most recent discoveries in the ncRNA field that implicate these molecules as key players in the epigenome.
Collapse
Affiliation(s)
- Fabrício F Costa
- Cancer Biology and Epigenomics Program, Children's Memorial Research Center and Northwestern University's Feinberg School of Medicine, 2300 Children's Plaza, Chicago, IL, USA.
| |
Collapse
|
300
|
Berger A, Strub K. Multiple Roles of Alu-Related Noncoding RNAs. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:119-46. [PMID: 21287136 DOI: 10.1007/978-3-642-16502-3_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repetitive Alu and Alu-related elements are present in primates, tree shrews (Scandentia), and rodents and have expanded to 1.3 million copies in the human genome by nonautonomous retrotransposition. Pol III transcription from these elements occurs at low levels under normal conditions but increases transiently after stress, indicating a function of Alu RNAs in cellular stress response. Alu RNAs assemble with cellular proteins into ribonucleoprotein complexes and can be processed into the smaller scAlu RNAs. Alu and Alu-related RNAs play a role in regulating transcription and translation. They provide a source for the biogenesis of miRNAs and, embedded into mRNAs, can be targeted by miRNAs. When present as inverted repeats in mRNAs, they become substrates of the editing enzymes, and their modification causes the nuclear retention of these mRNAs. Certain Alu elements evolved into unique transcription units with specific expression profiles producing RNAs with highly specific cellular functions.
Collapse
Affiliation(s)
- Audrey Berger
- Department of Cell Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | | |
Collapse
|