251
|
Chandrasekar T, Yang JC, Gao AC, Evans CP. Targeting molecular resistance in castration-resistant prostate cancer. BMC Med 2015; 13:206. [PMID: 26329698 PMCID: PMC4556222 DOI: 10.1186/s12916-015-0457-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/19/2015] [Indexed: 12/20/2022] Open
Abstract
Multiple mechanisms of resistance contribute to the inevitable progression of hormone-sensitive prostate cancer to castration-resistant prostate cancer (CRPC). Currently approved therapies for CRPC include systemic chemotherapy (docetaxel and cabazitaxel) and agents targeting the resistance pathways leading to CRPC, including enzalutamide and abiraterone. While there is significant survival benefit, primary and secondary resistance to these therapies develops rapidly. Up to one-third of patients have primary resistance to enzalutamide and abiraterone; the remaining patients eventually progress on treatment. Understanding the mechanisms of resistance resulting in progression as well as identifying new targetable pathways remains the focus of current prostate cancer research. We review current knowledge of mechanisms of resistance to the currently approved treatments, development of adjunctive therapies, and identification of new pathways being targeted for therapeutic purposes.
Collapse
Affiliation(s)
| | - Joy C Yang
- Department of Urology, University of California, Davis, USA.
| | - Allen C Gao
- Department of Urology, University of California, Davis, USA.
| | - Christopher P Evans
- Department of Urology, University of California, Davis, USA. .,, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA.
| |
Collapse
|
252
|
Yang F, Chen Y, Shen T, Guo D, Dakhova O, Ittmann MM, Creighton CJ, Zhang Y, Dang TD, Rowley DR. Stromal TGF-β signaling induces AR activation in prostate cancer. Oncotarget 2015; 5:10854-69. [PMID: 25333263 PMCID: PMC4279415 DOI: 10.18632/oncotarget.2536] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/27/2014] [Indexed: 01/15/2023] Open
Abstract
AR signaling is essential for the growth and survival of prostate cancer (PCa), including most of the lethal castration-resistant PCa (CRPC). We previously reported that TGF-β signaling in prostate stroma promotes prostate tumor angiogenesis and growth. By using a PCa/stroma co-culture model, here we show that stromal TGF-β signaling induces comprehensive morphology changes of PCa LNCaP cells. Furthermore, it induces AR activation in LNCaP cells in the absence of significant levels of androgen, as evidenced by induction of several AR target genes including PSA, TMPRSS2, and KLK4. SD-208, a TGF-β receptor 1 specific inhibitor, blocks this TGF-β induced biology. Importantly, stromal TGF-β signaling together with DHT induce robust activation of AR. MDV3100 effectively blocks DHT-induced, but not stromal TGF-β signaling induced AR activation in LNCaP cells, indicating that stromal TGF-β signaling induces both ligand-dependent and ligand-independent AR activation in PCa. TGF-β induces the expression of several growth factors and cytokines in prostate stromal cells, including IL-6, and BMP-6. Interestingly, BMP-6 and IL-6 together induces robust AR activation in these co-cultures, and neutralizing antibodies against BMP-6 and IL-6 attenuate this action. Altogether, our study strongly suggests tumor stromal microenvironment induced AR activation as a direct mechanism of CRPC.
Collapse
Affiliation(s)
- Feng Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Yizhen Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Tao Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Dan Guo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Olga Dakhova
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Yiqun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Truong D Dang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - David R Rowley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
253
|
Joshi G, Singh PK, Negi A, Rana A, Singh S, Kumar R. Growth factors mediated cell signalling in prostate cancer progression: Implications in discovery of anti-prostate cancer agents. Chem Biol Interact 2015; 240:120-33. [PMID: 26297992 DOI: 10.1016/j.cbi.2015.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/16/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
Abstract
Cancer is one of the leading causes of mortality amongst world's population, in which prostate cancer is one of the most encountered malignancies among men. Globally, it is the sixth leading cause of cancer-related death in men. Prostate cancer is more prevalent in the developed world and is increasing at alarming rates in the developing countries. Prostate cancer is mostly a very sluggish progressing disease, caused by the overproduction of steroidal hormones like dihydrotestosterone or due to over-expression of enzymes such as 5-α-reductase. Various studies have revealed that growth factors play a crucial role in the progression of prostate cancer as they act either by directly elevating the level of steroidal hormones or upregulating enzyme efficacy by the active feedback mechanism. Presently, treatment options for prostate cancer include radiotherapy, surgery and chemotherapy. If treatment is done with prevailing traditional chemotherapy; it leads to resistance and development of androgen-independent prostate cancer that further complicates the situation with no cure option left. The current review article is an attempt to cover and establish an understanding of some major signalling pathways intervened through survival factors (IGF-1R), growth factors (TGF-α, EGF), Wnt, Hedgehog, interleukin, cytokinins and death factor receptor which are frequently dysregulated in prostate cancer. This will enable the researchers to design and develop better therapeutic strategies targeting growth factors and their cross talks mediated prostate cancer cell signalling.
Collapse
Affiliation(s)
- Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India
| | - Pankaj Kumar Singh
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India
| | - Arvind Negi
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India
| | - Anil Rana
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India
| | - Sandeep Singh
- Centre for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies, Central University of Punjab, Bathinda 151001, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, India.
| |
Collapse
|
254
|
Shameem R, Hamid MS, Xu KY, Wu S. Comparative analysis of the effectiveness of abiraterone before and after docetaxel in patients with metastatic castration-resistant prostate cancer. World J Clin Oncol 2015; 6:64-72. [PMID: 26266103 PMCID: PMC4530380 DOI: 10.5306/wjco.v6.i4.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 05/13/2015] [Accepted: 06/08/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the efficacy and safety of abiraterone in patients with and without prior chemotherapy.
METHODS: The databases including PubMed and abstracts presented at the American Society of Clinical Oncology meetings up to April 2014 were systematically searched. Eligible studies included randomized controlled trials (RCTs) in which abiraterone plus prednisone was compared to placebo plus prednisone in metastatic castration-resistant prostate cancer (CRPC) patients. The summary incidence, relative risk, hazard ratio and 95%CI were calculated using random or fixed-effects models. Heterogeneity test was performed to test between-study differences in efficacy and toxicity.
RESULTS: A total of two phase III RCTs were included in our analysis, with metastatic CPRC patients before (n = 1088) and after chemotherapy (n = 1195). Prior chemotherapy did not significantly alter the effect of abiraterone on overall survival (P = 0.92) and prostate-specific antigen (PSA) progression-free survival (P = 0.13), but reduced its effect on radiographic-progression-free survival (P = 0.04), objective response rate (P < 0.001), and PSA response rate (P < 0.001). Prior chemotherapy significantly increased the specific risk of fluid retention and edema (P < 0.001) and hypokalemia (P < 0.001), but decreased the risk of all-grade hypertension (P < 0.001) attributable to abiraterone. There was no significant difference of cardiac disorders associated with abiraterone between the two settings (P = 0.58).
CONCLUSION: Prior chemotherapy may reduce the effectiveness of abiraterone in patients with metastatic CRPC.
Collapse
|
255
|
Zhang W, Meng Y, Liu N, Wen XF, Yang T. Insights into Chemoresistance of Prostate Cancer. Int J Biol Sci 2015; 11:1160-70. [PMID: 26327810 PMCID: PMC4551752 DOI: 10.7150/ijbs.11439] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 06/29/2015] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer (PCa) remains the most prevalent malignancy among males in the western world. Though hormonal therapies through chemical or surgical castration have been proposed many years ago, heretofore, such mainstay for the treatment on advanced PCa has not fundamentally changed. These therapeutic responses are temporary and most cases will eventually undergo PCa recurrence and metastasis, or even progress to castration-resistant prostate cancer (CRPC) due to persistent development of drug resistance. Prostate cancer stem cells (PCSCs) are a small population of cells, which possess unlimited self-renewal capacities, and can regenerate tumorigenic progenies, and play an essential role in PCa therapy resistance, metastasis and recurrence. Nowadays advanced progresses have been made in understanding of PCSC properties, roles of androgen receptor signaling and ATP-binding cassette sub-family G member 2 (ABCG2), as well as roles of genomic non-coding microRNAs and key signaling pathways, which have led to the development of novel therapies which are active against chemoresistant PCa and CRPC. Based on these progresses, this review is dedicated to address mechanisms underlying PCa chemoresistance, unveil crosstalks among pivotal signaling pathways, explore novel biotherapeutic agents, and elaborate functional properties and specific roles of chemoresistant PCSCs, which may act as a promising target for novel therapies against chemoresistant PCa.
Collapse
Affiliation(s)
- Wei Zhang
- 1. Department of Pharmacology, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Meng
- 2. Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Na Liu
- 3. Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Fei Wen
- 4. Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Tao Yang
- 2. Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
256
|
Accumulation of trans-1-amino-3-[(18)F]fluorocyclobutanecarboxylic acid in prostate cancer due to androgen-induced expression of amino acid transporters. Mol Imaging Biol 2015; 16:756-64. [PMID: 24943499 DOI: 10.1007/s11307-014-0756-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Androgens play a crucial role in prostate cancer progression, and trans-1-amino-3-[(18)F]fluorocyclobutanecarboxylic acid (anti-[(18) F]FACBC) are used for visualization of prostate cancer. We examined the effect of androgen on the expression of amino acid transporters related to anti-[(18)F]FACBC transport and uptake of trans-1-amino-3-fluoro-[1-(14)C]cyclobutanecarboxylic acid (anti-[(14)C]FACBC). PROCEDURES Expression of amino acid transporters and uptake of anti-[(14)C]FACBC in androgen receptor (AR)-positive LNCaP and AR-negative DU145 human prostate cancer cells cultured with/without 5α-dihydrotestosterone (DHT) and the effect of bicalutamide, an AR antagonist, on DHT-associated changes were investigated. RESULTS DHT stimulated the expression of amino acid transporters ASCT2, SNAT5, 4F2 heavy chain, and LAT3 in LNCaP but not in DU145 cells. Anti-[(14)C]FACBC uptake was enhanced, in a DHT-dependent manner, in LNCaP cells only. CONCLUSIONS DHT enhanced the expression of ASCT2, the transporter responsible for anti-[(18)F]FACBC uptake, thereby increasing anti-[(14)C]FACBC uptake in AR-positive LNCaP cells. Androgen-mediated induction may contribute to the distinct anti-[(18)F]FACBC accumulation pattern in prostate cancer.
Collapse
|
257
|
Valiante S, Liguori G, Tafuri S, Pavone LM, Campese R, Monaco R, Iachetta G, Assisi L, Mirabella N, Forte M, Costagliola A, Vittoria A. Expression and potential role of the peptide orexin-A in prostate cancer. Biochem Biophys Res Commun 2015. [PMID: 26220343 DOI: 10.1016/j.bbrc.2015.07.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The peptides orexin-A and orexin-B and their G protein-coupled OX1 and OX2 receptors are involved in multiple physiological processes in the central nervous system and peripheral organs. Altered expression or signaling dysregulation of orexins and their receptors have been associated with a wide range of human diseases including narcolepsy, obesity, drug addiction, and cancer. Although orexin-A, its precursor molecule prepro-orexin and OX1 receptor have been detected in the human normal and hyperplastic prostate tissues, their expression and function in the prostate cancer (PCa) remains to be addressed. Here, we demonstrate for the first time the immunohistochemical localization of orexin-A in human PCa specimens, and the expression of prepro-orexin and OX1 receptor at both protein and mRNA levels in these tissues. Orexin-A administration to the human androgen-dependent prostate carcinoma cells LNCaP up-regulates OX1 receptor expression resulting in a decrease of cell survival. Noteworthy, nanomolar concentrations of the peptide counteract the testosterone-induced nuclear translocation of the androgen receptor in the cells: the orexin-A action is prevented by the addition of the OX1 receptor antagonist SB-408124 to the test system. These findings indicate that orexin-A/OX1 receptor interaction interferes with the activity of the androgen receptor which regulates PCa onset and progression, thus suggesting that orexin-A and its receptor might represent novel therapeutic targets to challenge this aggressive cancer.
Collapse
Affiliation(s)
| | - Giovanna Liguori
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Italy
| | - Roberto Campese
- Department of Urology, "A. Cardarelli" Hospital, Naples, Italy
| | - Roberto Monaco
- Department of Pathology, "A. Cardarelli" Hospital, Naples, Italy
| | | | - Loredana Assisi
- Department of Biology, University of Naples Federico II, Italy
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - Maurizio Forte
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples, Italy
| | - Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - Alfredo Vittoria
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy.
| |
Collapse
|
258
|
Kanda T, Yokosuka O. The androgen receptor as an emerging target in hepatocellular carcinoma. J Hepatocell Carcinoma 2015; 2:91-9. [PMID: 27508198 PMCID: PMC4918288 DOI: 10.2147/jhc.s48956] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the male-dominant liver diseases with poor prognosis, although treatments for HCC have been progressing in the past decades. Androgen receptor (AR) is a member of the nuclear receptor superfamily. Previous studies reported that AR was expressed in human HCC and non-HCC tissues. AR is activated both ligand-dependently and ligand-independently. The latter is associated with a mitogen-activated protein kinase–, v-akt murine thymoma viral oncogene homolog 1–, or signal-transducer and activator of transcription–signaling pathway, which has been implicated in the development of HCC. It has been reported that more than 200 RNA expression levels are altered by androgen treatment. In the liver, androgen-responsive genes are cytochrome P450s, transforming growth factor β, vascular endothelial growth factor, and glucose-regulated protein 78 kDa, which are also associated with human hepatocarcinogenesis. Recent studies also revealed that AR plays a role in cell migration and metastasis. It is possible that cross-talk among AR-signaling, endoplasmic reticulum stress, and innate immune response is important for human hepatocarcinogenesis and HCC development. This review shows that AR could play a potential role in human HCC and represent one of the important target molecules for the treatment of HCC.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
259
|
Cyclodextrin mediated delivery of NF-κB and SRF siRNA reduces the invasion potential of prostate cancer cells in vitro. Gene Ther 2015; 22:802-10. [PMID: 26005860 DOI: 10.1038/gt.2015.50] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/08/2015] [Accepted: 05/12/2015] [Indexed: 02/01/2023]
Abstract
Prostate cancer is the most common cancer in men of the western world. To date, no effective treatment exists for metastatic prostate cancer and consequently, there is an urgent need to develop new and improved therapeutics. In recent years, the therapeutic potential of RNA interference (RNAi) has been extensively explored in a wide range of diseases including prostate cancer using numerous gene delivery vectors. The aims of this study were to investigate the ability of a non-viral modified cyclodextrin (CD) vector to deliver siRNA to the highly metastatic PC-3 prostate cancer cell line, to quantify the resulting knockdown of the two target genes (RelA and SRF) and to study the effects of the silencing on metastasis. Data from a Matrigel in vitro invasion assay indicated that the silencing of the target genes achieved by the CD vector resulted in significant reductions (P=0.0001) in the metastatic potential of these cells. As the silencing of these target genes was shown not to have a negative impact on cell viability, we hypothesise that the mechanism of invasion inhibition is due, in part, to the significant reduction observed (P⩽0.0001) in the level of pro-inflammatory cytokine, MMP9, which is known to be implicated in the metastasis of prostate cancer.
Collapse
|
260
|
Yun H, Xie J, Olumi AF, Ghosh R, Kumar AP. Activation of AKR1C1/ERβ induces apoptosis by downregulation of c-FLIP in prostate cancer cells: A prospective therapeutic opportunity. Oncotarget 2015; 6:11600-13. [PMID: 25816367 PMCID: PMC4484479 DOI: 10.18632/oncotarget.3417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/19/2015] [Indexed: 12/29/2022] Open
Abstract
We provide first-time evidence for ERβ-mediated transcriptional upregulation of c-FLIP as an underlying mechanism in the development of castrate-resistant cancer. While androgens inhibit apoptosis partly through transcriptional upregulation of the anti-apoptotic protein, c-FLIP in androgen-responsive cells, they downregulate c-FLIP in androgen-independent cells. We found that although Sp1 and p65 trans-activate c-FLIP, the combination of Sp1 and p65 has differential effects in a cellular context-dependent manner. We show that activation of the androgen metabolism enzyme, aldo-keto reductase, AKR1C1, relieves androgen independence through activation of 3β-Adiol-mediated upregulation of ERβ. ERβ competes with Sp1 and Sp3 to transcriptionally downregulate c-FLIP in the absence of consensus estrogen-response element in androgen-independent cells. Forced expression of AR in androgen-independent cells show that ERβ-mediated growth inhibition occurs under conditions of androgen independence. Reactivation of ERβ with the estrogenic metabolite, 2-methoxyestradiol, decreased enrichment ratio of Sp1/Sp3 at the c-FLIP promoter with concomitant effects on cell growth and death. Expression of Sp1 and c-FLIP are elevated while AKR1C1, ERβ and Sp3 are significantly low in human prostate tumor samples. ERβ is epigenetically silenced in prostate cancer patients, therefore our results suggest that combination of ERβ agonists with ADT would benefit men stratified on the basis of high estrogen levels.
Collapse
Affiliation(s)
- Huiyoung Yun
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Jianping Xie
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Urology, Shanxi Dayi Hospital, Shanxi Academy of Medical Science, Taiyuan, P.R., China
| | - Aria F. Olumi
- Department of Urology, Massachusetts General Hospital Harvard Medical School, Boston, MA, USA
| | - Rita Ghosh
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX, USA
- Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Addanki P. Kumar
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX, USA
- Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
261
|
Moreira Â, Pereira SS, Costa M, Morais T, Pinto A, Fernandes R, Monteiro MP. Adipocyte secreted factors enhance aggressiveness of prostate carcinoma cells. PLoS One 2015; 10:e0123217. [PMID: 25928422 PMCID: PMC4415768 DOI: 10.1371/journal.pone.0123217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/01/2015] [Indexed: 01/19/2023] Open
Abstract
Obesity has been associated with increased incidence and risk of mortality of prostate cancer. One of the proposed mechanisms underlying this risk association is the change in adipokines expression that could promote the development and progression of the prostate tumor cells. The main goal of this study was to evaluate the effect of preadipocyte and adipocyte secretome in the proliferation, migration and invasion of androgen independent prostate carcinoma cells (RM1) and to assess cell proliferation in the presence of the adiposity signals leptin and insulin. RM1 cells were co-cultured in with preadipocytes, adipocytes or cultured in their respective conditioned medium. Cell proliferation was assessed by flow cytometry and XTT viability test. Cell migration was evaluated using a wound healing injury assay of RM1 cells cultured with conditioned media. Cellular invasion of RM1 cells co-cultured with adipocytes and preadipocytes was assessed using matrigel membranes. Preadipocyte conditioned medium was associated with a small increase in RM1 proliferation, while adipocytes conditioned media significantly increased RM1 cell proliferation (p<0.01). Adipocytes also significantly increased the RM1 cells proliferation in co-culture (p <0.01). Cell migration was higher in RM1 cells cultured with preadipocyte and adipocyte conditioned medium. RM1 cell invasion was significantly increased after co-culture with preadipocytes and adipocytes (p <0.05). Insulin also increased significantly the cell proliferation in contrast to leptin, which showed no effect. In conclusion, prostate carcinoma cells seem to be influenced by factors secreted by adipocytes that are able to increase their ability to proliferate, migrate and invade.
Collapse
Affiliation(s)
- Ângela Moreira
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute for Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Sofia S. Pereira
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute for Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Madalena Costa
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute for Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Tiago Morais
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute for Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ana Pinto
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute for Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rúben Fernandes
- Ciências Químicas e das Biomoléculas (CQB), Escola Superior de Tecnologia da Saúde do Porto do Instituto Politécnico do Porto (ESTSP-IPP), Vila Nova de Gaia, Portugal
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Tecnologia da Saúde do Porto do Instituto Politécnico do Porto (ESTSP-IPP), Vila Nova de Gaia, Portugal
| | - Mariana P. Monteiro
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute for Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
262
|
Khurana N, Bhattacharyya S. Hsp90, the concertmaster: tuning transcription. Front Oncol 2015; 5:100. [PMID: 25973397 PMCID: PMC4412016 DOI: 10.3389/fonc.2015.00100] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/14/2015] [Indexed: 01/07/2023] Open
Abstract
In the last decade, Hsp90 has emerged as a major regulator of cancer cell growth and proliferation. In cancer cells, it assists in giving maturation to oncogenic proteins including several kinases and transcription factors (TF). Recent studies have shown that apart from its chaperone activity, it also imparts regulation of transcription machinery and thereby alters the cellular physiology. Hsp90 and its co-chaperones modulate transcription at least at three different levels. In the first place, they alter the steady-state levels of certain TFs in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression. In this review, we discuss the role of Hsp90 in all the three aforementioned mechanisms of transcriptional control, taking examples from various model organisms with a special emphasis on cancer progression.
Collapse
Affiliation(s)
- Nidhi Khurana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , India
| | - Sunanda Bhattacharyya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , India
| |
Collapse
|
263
|
Wu J, Yu E. Insulin-like growth factor receptor-1 (IGF-IR) as a target for prostate cancer therapy. Cancer Metastasis Rev 2015; 33:607-17. [PMID: 24414227 DOI: 10.1007/s10555-013-9482-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer in men and is the second leading cause of cancer-related deaths in men each year. Androgen deprivation therapy is and has been the gold standard of care for advanced or metastatic prostate cancer for decades. While this treatment strategy initially shows benefit, eventually tumors recur as castration-resistant prostate cancer for which there are limited treatment options with only modest survival benefit. Upregulation of the insulin-like growth factor receptor type I (IGF-IR) signaling axis has been shown to drive the survival of prostate cancer cells in many studies. As many IGF-IR blockades have been developed, few have been tested preclinically and even fewer have entered clinical trials for prostate cancer therapy. In this review, we will update the most recent preclinical and clinical studies of IGF-IR therapy for prostate cancer. We will also discuss the challenges for IGF-IR targeted therapies to achieve clinical benefit for prostate cancer.
Collapse
Affiliation(s)
- Jennifer Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
264
|
Hamid ARA, Verhaegh GW, Smit FP, van Rijt-van de Westerlo C, Armandari I, Brandt A, Sweep FC, Sedelaar JP, Schalken JA. Dutasteride and Enzalutamide Synergistically Suppress Prostate Tumor Cell Proliferation. J Urol 2015; 193:1023-9. [DOI: 10.1016/j.juro.2014.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Agus Rizal A.H. Hamid
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Department of Urology, Ciptomangunkusumo Hospital, Faculty of Medicine, University of Indonesia, Indonesia
| | - Gerald W. Verhaegh
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | - Cindy van Rijt-van de Westerlo
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Inna Armandari
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Andre Brandt
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fred C.G.J. Sweep
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John P.M. Sedelaar
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack A. Schalken
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
265
|
Boberg J, Johansson HKL, Hadrup N, Dreisig K, Berthelsen L, Almstrup K, Vinggaard AM, Hass U. Perinatal exposure to mixtures of anti-androgenic chemicals causes proliferative lesions in rat prostate. Prostate 2015; 75:126-40. [PMID: 25327291 DOI: 10.1002/pros.22897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/21/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND Elevated levels of endogenous or exogenous estrogens during fetal life can induce permanent disturbances in prostate growth and predispose to precancerous lesions. Recent studies have indicated that also early anti-androgen exposure may affect prostate cancer risk. METHODS We examined the influence of perinatal exposure to mixtures of anti-androgenic and estrogenic chemicals on prostate development. Wistar rats were exposed from gestation day 7 to postnatal day 22 to a mixture of 8 anti-androgenic compounds (AAMix), a mixture of four estrogenic compounds (EMix), or paracetamol or a mixture of all 13 compounds (TotalMix) in mixture ratios reflecting human exposure levels. RESULTS Ventral prostate weights were reduced by the TotalMix and AAMix in pre-pubertal rats. Histological changes in prostate appeared with increasing age and indicated a shift from the normal age-dependent epithelial atrophy towards hyperplasia. These lesions showed similarities to pre-cancerous lesions in humans. Increased proliferation was observed already in pre-puberty and it was hypothesized that this could be associated with reduced ERβ signaling, but no clear conclusions could be made from gene expression studies on ERβ-related pathways. The influences of the estrogenic chemicals and paracetamol on prostate morphology were minor, but in young adulthood the estrogen mixture reduced ventral prostate mRNA levels of Igf1 and paracetamol reduced the mRNA level ofPbpc3. CONCLUSIONS Mixtures of endocrine disrupters relevant for human exposure was found to elicit persistent effects on the rat prostate following perinatal exposure, suggesting that human perinatal exposure to environmental chemicals may increase the risk of prostate cancer later in life.
Collapse
Affiliation(s)
- Julie Boberg
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
266
|
Endostatin: A novel inhibitor of androgen receptor function in prostate cancer. Proc Natl Acad Sci U S A 2015; 112:1392-7. [PMID: 25605930 DOI: 10.1073/pnas.1417660112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acquired resistance to androgen receptor (AR)-targeted therapies compels the development of novel treatment strategies for castration-resistant prostate cancer (CRPC). Here, we report a profound effect of endostatin on prostate cancer cells by efficient intracellular trafficking, direct interaction with AR, reduction of nuclear AR level, and down-regulation of AR-target gene transcription. Structural modeling followed by functional analyses further revealed that phenylalanine-rich α1-helix in endostatin-which shares structural similarity with noncanonical nuclear receptor box in AR-antagonizes AR transcriptional activity by occupying the activation function (AF)-2 binding interface for coactivators and N-terminal AR AF-1. Together, our data suggest that endostatin can be recognized as an endogenous AR inhibitor that impairs receptor function through protein-protein interaction. These findings provide new insights into endostatin whose antitumor effect is not limited to inhibiting angiogenesis, but can be translated to suppressing AR-mediated disease progression in CRPC.
Collapse
|
267
|
Elancheran R, Maruthanila VL, Ramanathan M, Kabilan S, Devi R, Kunnumakara A, Kotoky J. Recent discoveries and developments of androgen receptor based therapy for prostate cancer. MEDCHEMCOMM 2015; 6:746-768. [DOI: 10.1039/c4md00416g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The main focus of this review is to discuss the discoveries and developments of various therapies for prostate cancer.
Collapse
Affiliation(s)
- R. Elancheran
- Drug Discovery Laboratory
- Life Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035
- India
| | - V. L. Maruthanila
- Department of Bioscience
- E. G. S. Pillai Arts and Science College
- India
| | - M. Ramanathan
- Department of Pharmacology
- PSG College of Pharmacy
- Coimbatore-641 004
- India
| | - S. Kabilan
- Department of Chemistry
- Annamalai University
- India
| | - R. Devi
- Drug Discovery Laboratory
- Life Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035
- India
| | - A. Kunnumakara
- Department of Biotechnology
- Indian Institute of Technology
- Guwahti
- India
| | - Jibon Kotoky
- Drug Discovery Laboratory
- Life Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035
- India
| |
Collapse
|
268
|
Fizazi K, Albiges L, Loriot Y, Massard C. ODM-201: a new-generation androgen receptor inhibitor in castration-resistant prostate cancer. Expert Rev Anticancer Ther 2015; 15:1007-17. [PMID: 26313416 PMCID: PMC4673554 DOI: 10.1586/14737140.2015.1081566] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Androgen deprivation therapy is the standard of care for patients with advanced hormone-sensitive prostate cancer. Despite an initial response, most patients progress to castration-resistant prostate cancer (CRPC). The realization that CRPC remains driven by androgen receptor (AR) signaling has formed the basis for a new generation of agents targeting the AR axis. Two of these agents, abiraterone acetate and enzalutamide, have been shown to prolong overall survival in patients with CRPC. Several other AR inhibitors are currently in development for the treatment of CRPC. The present article reviews ODM-201, a new-generation AR inhibitor with a unique molecular structure, in the treatment of CRPC. The design of an ongoing Phase III trial (ARAMIS) of ODM-201 in men with non-metastatic CRPC is also discussed, at a disease stage for which there is currently no approved treatment.
Collapse
Affiliation(s)
- Karim Fizazi
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Sud, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | - Laurence Albiges
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Sud, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | - Yohann Loriot
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Sud, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | - Christophe Massard
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Sud, 114 rue Edouard Vaillant, 94800 Villejuif, France
| |
Collapse
|
269
|
Kuo PC, Huang CW, Lee CI, Chang HW, Hsieh SW, Chung YP, Lee MS, Huang CS, Tsao LP, Tsao YP, Chen SL. BCAS2 promotes prostate cancer cells proliferation by enhancing AR mRNA transcription and protein stability. Br J Cancer 2014; 112:391-402. [PMID: 25461807 PMCID: PMC4453457 DOI: 10.1038/bjc.2014.603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We showed previously that breast carcinoma amplified sequence 2 (BCAS2) functions as a negative regulator of p53. We also found that BCAS2 is a potential AR-associated protein. AR is essential for the growth and survival of prostate carcinoma. Therefore we characterised the correlation between BCAS2 and AR. METHODS Protein interactions were examined by GST pull-down assay and co-immunoprecipitation. Clinical prostate cancer (PCa) specimens were evaluated by immunohistochemical assay. AR transcriptional activity and LNCaP cell growth were assessed by luciferase assay and MTT assay, respectively. RESULTS BCAS2 expression was significantly increased in PCa. BCAS2 stabilised AR protein through both hormone-dependent and -independent manners. There are at least two mechanisms for BCAS2-mediated AR protein upregulation: One is p53-dependent. The p53 is suppressed by BCAS2 that results in increasing AR mRNA and protein expression. The other is via p53-independent inhibition of proteasome degradation. As BCAS2 can form a complex with AR and HSP90, it may function with HSP90 to stabilise AR protein from being degraded by proteasome. CONCLUSIONS In this study, we show that BCAS2 is a novel AR-interacting protein and characterise the correlation between BCAS2 and PCa. Thus we propose that BCAS2 could be a diagnostic marker and therapeutic target for PCa.
Collapse
Affiliation(s)
- P-C Kuo
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - C-W Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - C-I Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - H-W Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - S-W Hsieh
- Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
| | - Y-P Chung
- Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
| | - M-S Lee
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - C-S Huang
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwani
| | - L-P Tsao
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Y-P Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - S-L Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
270
|
Karanika S, Karantanos T, Yin J, Li L, Thompson TC. WITHDRAWN: Novel anti-androgen receptor signaling agents: Understanding the mechanisms of resistance. Asian J Urol 2014. [DOI: 10.1016/j.ajur.2014.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
271
|
Chamouni A, Oury F. Reciprocal interaction between bone and gonads. Arch Biochem Biophys 2014; 561:147-53. [DOI: 10.1016/j.abb.2014.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/14/2014] [Accepted: 06/17/2014] [Indexed: 11/30/2022]
|
272
|
Novel anti-androgen receptor signaling agents: Understanding the mechanisms of resistance. Asian J Urol 2014; 1:30-39. [PMID: 29511635 PMCID: PMC5832885 DOI: 10.1016/j.ajur.2015.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 11/24/2022] Open
Abstract
Prostate cancer remains an intractable threat to the lives of men worldwide. Although deaths from prostate cancer (PCa) in the United States have declined in recent years, in other parts of the world Pca mortality is increasing. The introduction of 2nd generation anti-androgen receptor agents into the therapeutic armamentarium for metastatic castration-resistant prostate cancer (mCRPC) has resulted in modestly increased survival advantages as demonstrated by initial clinical trials. However, analysis of the molecular pathways affected by these agents may lead to new insight into mechanisms of resistance that drive mCRPC, including proliferation and survival signaling pathways that are derepressed by maximum repression of androgen signaling. Combination therapies that involve anti-AR signaling agents together with agents that target these pathways establish a paradigm for the development of more effective treatment of mCRPC. In this review, we briefly summarize the current clinical trial literature with regard to novel anti-AR signaling agents such as abiraterone acetate and enzalutamide. We discuss observational data that point to mechanisms of resistance that emerged from these studies. We further present and discuss recent experimental studies that address the mechanisms of resistance to these treatments. Finally, we discuss novel and rational therapeutic approaches, including combination therapy, for patients with mCRPC.
Collapse
|
273
|
Androgen receptor splice variants in the era of enzalutamide and abiraterone. Discov Oncol 2014; 5:265-73. [PMID: 25048254 DOI: 10.1007/s12672-014-0190-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/10/2014] [Indexed: 01/24/2023] Open
Abstract
The FDA approvals of enzalutamide and abiraterone have rapidly changed the clinical landscape of prostate cancer treatment. Both drugs were designed to further suppress androgen receptor (AR) signaling, which is restored following first-line androgen deprivation therapies. Resistance to enzalutamide and abiraterone, however, is again marked by a return of AR signaling, indicating a remarkable "addiction" of prostate cancer cells to the AR pathway. Several mechanisms of castration resistance have been uncovered in the past decades, featuring a wide spectrum of molecular alterations that may explain sustained AR signaling in castration-resistant prostate cancers (CRPC). Among these, the androgen receptor splice variants (AR-Vs), particularly variant 7 (AR-V7), have been implicated in resistance to enzalutamide and abiraterone in preclinical studies, and they cannot be targeted by currently available AR-directed drugs. Drug development for AR-V-associated CRPC may therefore be necessary to augment the preexisting treatment repertoire. In this mini-review, we will discuss general mechanisms of resistance to AR-directed therapies, with a focus on the role of androgen receptor splice variants in the new era of treating advanced prostate cancer with enzalutamide and abiraterone.
Collapse
|
274
|
Spatial interactions and cooperation can change the speed of evolution of complex phenotypes. Proc Natl Acad Sci U S A 2014; 111 Suppl 3:10789-95. [PMID: 25024187 DOI: 10.1073/pnas.1400828111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complex traits arise from the interactions among multiple gene products. In the case where the complex phenotype is separated from the wild type by a fitness valley or a fitness plateau, the generation of a complex phenotype may take a very long evolutionary time. Interestingly, the rate of evolution depends in nontrivial ways on various properties of the underlying stochastic process, such as the spatial organization of the population and social interactions among cells. Here we review some of our recent work that investigates these phenomena in asexual populations. The role of spatial constraints is quite complex: there are realistic cases where spatial constrains can accelerate or delay evolution, or even influence it in a nonmonotonic fashion, where evolution works fastest for intermediate-range constraints. Social interactions among cells can be studied in the context of the division-of-labor games. Under a range of circumstances, cooperation among cells can lead to a relatively fast creation of a complex phenotype as an emerging (distributed) property. If we further assume the presence of cheaters, we observe the emergence of a fully mutated population of cells possessing the complex phenotype. Applications of these ideas to cancer initiation and biofilm formation in bacteria are discussed.
Collapse
|
275
|
Ferrand FR, Pavic M. [Therapeutic targeted approaches on androgen receptors in prostate cancer]. Rev Med Interne 2014; 35:670-5. [PMID: 24934766 DOI: 10.1016/j.revmed.2014.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/08/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
The treatment of metastatic prostate cancer since the 1940s is based on the consideration of oncogenic addiction to its androgen receptor (AR). The significant improvement in survival outcomes over the past decade depends not only on the development of effective cytotoxic chemotherapy but also new molecules targeting the AR or decreasing testosterone levels, even in case of castration-resistant cancer. In this review, we summarize the structure and function of the RA, the mechanisms of androgen suppression, the concept of resistance to castration, historical targeted treatment on the AR and those recently marketed as abiraterone acetate and enzalutamide.
Collapse
Affiliation(s)
- F-R Ferrand
- Service d'oncologie, HIA Val-de-Grâce, boulevard Port-Royal, 75005 Paris, France.
| | - M Pavic
- Service de médecine interne et cancérologie, HIA Desgenettes, boulevard Pinel, 69000 Lyon, France
| |
Collapse
|
276
|
Kahn B, Collazo J, Kyprianou N. Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Int J Biol Sci 2014; 10:588-95. [PMID: 24948871 PMCID: PMC4062951 DOI: 10.7150/ijbs.8671] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/01/2014] [Indexed: 12/21/2022] Open
Abstract
The role of the androgen receptor (AR) signaling axis in the progression of prostate cancer is a cornerstone to our understanding of the molecular mechanisms causing castration-resistant prostate cancer (CRPC). Resistance of advanced prostate cancer to available treatment options makes it a clinical challenge that results in approximately 30,000 deaths of American men every year. Since the historic discovery by Dr. Huggins more than 70 years ago, androgen deprivation therapy (ADT) has been the principal treatment for advanced prostate cancer. Initially, ADT induces apoptosis of androgen-dependent prostate cancer epithelial cells and regression of androgen-dependent tumors. However, the majority of patients with advanced prostate cancer progress and become refractory to ADT due to emergence of androgen-independent prostate cancer cells driven by aberrant AR activation. Microtubule-targeting agents such as taxanes, docetaxel and paclitaxel, have enjoyed success in the treatment of metastatic prostate cancer; although new, recently designed mitosis-specific agents, such as the polo-kinase and kinesin-inhibitors, have yielded clinically disappointing results. Docetaxel, as a first-line chemotherapy, improves prostate cancer patient survival by months, but tumor resistance to these therapeutic agents inevitably develops. On a molecular level, progression to CRPC is characterized by aberrant AR expression, de novo intraprostatic androgen production, and cross talk with other oncogenic pathways. Emerging evidence suggests that reactivation of epithelial-mesenchymal-transition (EMT) processes may facilitate the development of not only prostate cancer but also prostate cancer metastases. EMT is characterized by gain of mesenchymal characteristics and invasiveness accompanied by loss of cell polarity, with an increasing number of studies focusing on the direct involvement of androgen-AR signaling axis in EMT, tumor progression, and therapeutic resistance. In this article, we discuss the current knowledge of mechanisms via which the AR signaling drives therapeutic resistance in prostate cancer metastatic progression and the novel therapeutic interventions targeting AR in CRPC.
Collapse
Affiliation(s)
| | | | - Natasha Kyprianou
- Departments of Urology and Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
277
|
Sprenger CCT, Plymate SR. The link between androgen receptor splice variants and castration-resistant prostate cancer. Discov Oncol 2014; 5:207-17. [PMID: 24798453 DOI: 10.1007/s12672-014-0177-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/03/2014] [Indexed: 01/19/2023] Open
Abstract
Resistance to the latest advanced prostate cancer therapies, including abiraterone and enzalutamide, is associated with increased expression of constitutively active androgen receptor splice variants (AR-Vs). The exact mechanism by which these therapies result in AR-Vs is unknown, but may include genomic rearrangement of the androgen receptor gene as well as alternative splicing of the AR pre-messenger RNA (mRNA). An additional complication that hinders further development of effective AR strategies is that the mechanisms by which the directed therapies are bypassed may vary. Finally, the question must be addressed as to whether the androgen receptor remains to be the driver of most castration resistant disease or whether truly AR-independent tumors arise after successful androgen ablation therapy. In this review, we will examine androgen receptor splice variants as an alternative mechanism by which prostate cancer becomes resistant to androgen receptor-directed therapy.
Collapse
|
278
|
Valcamonico F, Ferrari L, Consoli F, Amoroso V, Berruti A. Testosterone serum levels and prostate cancer prognosis: the double face of Janus. Future Oncol 2014; 10:1113-5. [DOI: 10.2217/fon.14.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Francesca Valcamonico
- Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, Medical Oncology, University of Brescia, Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Laura Ferrari
- Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, Medical Oncology, University of Brescia, Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Francesca Consoli
- Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, Medical Oncology, University of Brescia, Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Vito Amoroso
- Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, Medical Oncology, University of Brescia, Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Alfredo Berruti
- Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, Medical Oncology, University of Brescia, Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| |
Collapse
|
279
|
Kim JY, Banerjee T, Vinckevicius A, Luo Q, Parker JB, Baker MR, Radhakrishnan I, Wei JJ, Barish GD, Chakravarti D. A role for WDR5 in integrating threonine 11 phosphorylation to lysine 4 methylation on histone H3 during androgen signaling and in prostate cancer. Mol Cell 2014; 54:613-25. [PMID: 24793694 DOI: 10.1016/j.molcel.2014.03.043] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 12/04/2013] [Accepted: 03/04/2014] [Indexed: 11/16/2022]
Abstract
Upon androgen stimulation, PKN1-mediated histone H3 threonine 11 phosphorylation (H3T11P) promotes AR target gene activation. However, the underlying mechanism is not completely understood. Here, we show that WDR5, a subunit of the SET1/MLL complex, interacts with H3T11P, and this interaction facilitates the recruitment of the MLL1 complex and subsequent H3K4 tri-methylation (H3K4me3). Using ChIP-seq, we find that androgen stimulation results in a 6-fold increase in the number of H3T11P-marked regions and induces WDR5 colocalization to one third of H3T11P-enriched promoters, thus establishing a genome-wide relationship between H3T11P and recruitment of WDR5. Accordingly, PKN1 knockdown or chemical inhibition severely blocks WDR5 chromatin association and H3K4me3 on AR target genes. Finally, WDR5 is critical in prostate cancer cell proliferation and is hyperexpressed in human prostate cancers. Together, these results identify WDR5 as a critical epigenomic integrator of histone phosphorylation and methylation and as a major driver of androgen-dependent prostate cancer cell proliferation.
Collapse
Affiliation(s)
- Ji-Young Kim
- Division of Reproductive Science in Medicine, Department of OB/GYN, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Taraswi Banerjee
- Division of Reproductive Science in Medicine, Department of OB/GYN, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Aurimas Vinckevicius
- Division of Reproductive Science in Medicine, Department of OB/GYN, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qianyi Luo
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - J Brandon Parker
- Division of Reproductive Science in Medicine, Department of OB/GYN, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mairead R Baker
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Jian-Jun Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Grant D Barish
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Debabrata Chakravarti
- Division of Reproductive Science in Medicine, Department of OB/GYN, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
280
|
Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer 2014; 14:342-57. [PMID: 24705652 DOI: 10.1038/nrc3691] [Citation(s) in RCA: 899] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin D is not really a vitamin but the precursor to the potent steroid hormone calcitriol, which has widespread actions throughout the body. Calcitriol regulates numerous cellular pathways that could have a role in determining cancer risk and prognosis. Although epidemiological and early clinical trials are inconsistent, and randomized control trials in humans do not yet exist to conclusively support a beneficial role for vitamin D, accumulating results from preclinical and some clinical studies strongly suggest that vitamin D deficiency increases the risk of developing cancer and that avoiding deficiency and adding vitamin D supplements might be an economical and safe way to reduce cancer incidence and improve cancer prognosis and outcome.
Collapse
Affiliation(s)
- David Feldman
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Aruna V Krishnan
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Srilatha Swami
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Edward Giovannucci
- Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Brian J Feldman
- Department of Pediatrics, Division of Pediatric Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
281
|
Application of fluorine-containing non-steroidal anti-androgen compounds in treating prostate cancer. J Fluor Chem 2014. [DOI: 10.1016/j.jfluchem.2014.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
282
|
Hahm ER, Karlsson AI, Bonner MY, Arbiser JL, Singh SV. Honokiol inhibits androgen receptor activity in prostate cancer cells. Prostate 2014; 74:408-20. [PMID: 24338950 PMCID: PMC3946953 DOI: 10.1002/pros.22762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/20/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND We have shown previously that honokiol (HNK), a bioactive component of the medicinal plant Magnolia officinalis, inhibits growth of human prostate cancer cells in vitro and in vivo. However, the effect of HNK on androgen receptor (AR) signaling has not been studied. METHODS LNCaP, C4-2, and TRAMP-C1 cells were used for various assays. Trypan blue dye exclusion assay or clonogenic assay was performed for determination of cell viability. The effects of HNK and/or its analogs on protein levels of AR and its target gene product prostate specific antigen (PSA) were determined by western blotting. RNA interference of p53 was achieved by transient transfection. Reverse transcription-polymerase chain reaction was performed for mRNA expression of AR. Nuclear level of AR was visualized by microscopy. Apoptosis was quantified by DNA fragmentation assay or flow cytometry after Annexin V-propidium iodide staining. RESULTS HNK and its dichloroacetate analog (HDCA) were relatively more effective in suppressing cell viability and AR protein level than honokiol epoxide or biseugenol. Nuclear translocation of AR stimulated by a synthetic androgen (R1881) was markedly suppressed in the presence of HNK. Downregulation of AR protein resulting from HNK exposure was attributable to transcriptional repression as well as proteasomal degradation. HNK-mediated suppression of AR protein was maintained in LNCaP cells after knockdown of p53 protein. HNK-induced apoptosis was not affected by R1881 treatment. CONCLUSIONS The present study demonstrates, for the first time, that HNK inhibits activity of AR in prostate cancer cells regardless of the p53 status.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A. Isabella Karlsson
- Department of Dermatology and Atlanta Veterans Administration Medical Center, Emory University School of Medicine, Atlanta, GA
| | - Michael Y. Bonner
- Department of Dermatology and Atlanta Veterans Administration Medical Center, Emory University School of Medicine, Atlanta, GA
| | - Jack L. Arbiser
- Department of Dermatology and Atlanta Veterans Administration Medical Center, Emory University School of Medicine, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
| | - Shivendra V. Singh
- Department of Pharmacology & Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Correspondence to: Shivendra V. Singh, 2.32A Hillman Cancer Center Research Pavilion, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213. Phone: 412-623-3263; Fax: 412-623-7828;
| |
Collapse
|
283
|
Gacci M, Baldi E, Tamburrino L, Detti B, Livi L, De Nunzio C, Tubaro A, Gravas S, Carini M, Serni S. Quality of Life and Sexual Health in the Aging of PCa Survivors. Int J Endocrinol 2014; 2014:470592. [PMID: 24744780 PMCID: PMC3976934 DOI: 10.1155/2014/470592] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/02/2014] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in elderly men. The progressive ageing of the world male population will further increase the need for tailored assessment and treatment of PCa patients. The determinant role of androgens and sexual hormones for PCa growth and progression has been established. However, several trials on androgens and PCa are recently focused on urinary continence, quality of life, and sexual function, suggesting a new point of view on the whole endocrinological aspect of PCa. During aging, metabolic syndrome, including diabetes, hypertension, dyslipidemia, and central obesity, can be associated with a chronic, low-grade inflammation of the prostate and with changes in the sex steroid pathways. These factors may affect both the carcinogenesis processes and treatment outcomes of PCa. Any treatment for PCa can have a long-lasting negative impact on quality of life and sexual health, which should be assessed by validated self-reported questionnaires. In particular, sexual health, urinary continence, and bowel function can be worsened after prostatectomy, radiotherapy, or hormone treatment, mostly in the elderly population. In the present review we summarized the current knowledge on the role of hormones, metabolic features, and primary treatments for PCa on the quality of life and sexual health of elderly Pca survivors.
Collapse
Affiliation(s)
- Mauro Gacci
- Department of Urology, University of Florence, Careggi Hospital, Viale Gramsci 7, 50121 Florence, Italy
| | - Elisabetta Baldi
- Department of Experimental and Clinical Biomedical Sciences, Section of Clinical Pathophysiology, University of Florence, Italy
| | - Lara Tamburrino
- Department of Experimental and Clinical Biomedical Sciences, Section of Clinical Pathophysiology, University of Florence, Italy
| | - Beatrice Detti
- Radiotherapy, University Hospital Careggi, University of Florence, Italy
| | - Lorenzo Livi
- Radiotherapy, University Hospital Careggi, University of Florence, Italy
| | - Cosimo De Nunzio
- Department of Urology, Sant'Andrea Hospital, University “La Sapienza”, Rome, Italy
| | - Andrea Tubaro
- Department of Urology, Sant'Andrea Hospital, University “La Sapienza”, Rome, Italy
| | - Stavros Gravas
- Department of Urology, University Hospital of Larissa, Larissa, Greece
| | - Marco Carini
- Department of Urology, University of Florence, Careggi Hospital, Viale Gramsci 7, 50121 Florence, Italy
| | - Sergio Serni
- Department of Urology, University of Florence, Careggi Hospital, Viale Gramsci 7, 50121 Florence, Italy
| |
Collapse
|