251
|
Liang M, Zhong J, Liu HX, Lopatina O, Nakada R, Yamauchi AM, Higashida H. Pairmate-dependent pup retrieval as parental behavior in male mice. Front Neurosci 2014; 8:186. [PMID: 25071431 PMCID: PMC4092370 DOI: 10.3389/fnins.2014.00186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/11/2014] [Indexed: 01/20/2023] Open
Abstract
Appropriate parental care by fathers can greatly facilitate healthy human family life. However, much less is known about paternal behavior in animals compared to those regarding maternal behavior. Previously, we reported that male ICR strain laboratory mice, although not spontaneously parental, can be induced to display maternal-like parental care (pup retrieval) when separated from their pups by signals from the pairmate dam (Liu et al., 2013). This parental behavior by the ICR sires, which are not genetically biparental, is novel and has been designated as pairmate-dependent paternal behavior. However, the factors critical for this paternal behavior are unclear. Here, we report that the pairmate-dependent paternal retrieval behavior is observed especially in the ICR strain and not in C57BL/6 or BALB/c mice. An ICR sire displays retrieval behavior only toward his biological pups. A sire co-housed with an unrelated non-pairing dam in a new environment, under which 38-kHz ultrasonic vocalizations are not detected, does not show parenting behavior. It is important for sires to establish their own home territory (cage) by continuous housing and testing to display retrieval behavior. These results indicated that the ICR sires display distinct paternity, including father-child social interaction, and shed light on parental behavior, although further analyses of paternal care at the neuroendocrinological and neurocircuitry levels are required.
Collapse
Affiliation(s)
- Mingkun Liang
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan ; Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University Kanazawa, Japan
| | - Jing Zhong
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan ; Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University Kanazawa, Japan
| | - Hong-Xiang Liu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Olga Lopatina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Ryusuke Nakada
- Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University Kanazawa, Japan
| | - Agnes-Mikiko Yamauchi
- Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| |
Collapse
|
252
|
Hill KT, Warren M, Roth TL. The influence of infant-caregiver experiences on amygdala Bdnf, OXTr, and NPY expression in developing and adult male and female rats. Behav Brain Res 2014; 272:175-80. [PMID: 25011012 DOI: 10.1016/j.bbr.2014.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 01/09/2023]
Abstract
Previous work with various animal models has demonstrated that alterations in the caregiving environment produce long-term changes in anxiety-related and social behaviors, as well as amygdala gene expression. We previously introduced a rodent model in which the timing and duration of exposure to maltreatment or nurturing care outside the home cage can be controlled to assess neurobiological outcomes. Here we sought to determine whether our brief experimental conditions produce changes in gene expression within the developing and adult amygdala. Using a candidate gene approach, we examined fold mRNA changes for the Brain-derived neurotrophic factor (Bdnf), Oxytocin receptor (OXTr), and Neuropeptide Y (NPY) genes, which are all highly expressed in the amygdala and play important roles in anxiety-related and social behaviors. In adults, significant group differences were detected for only Bdnf, with higher levels of Bdnf mRNA for females that had been exposed to maltreatment and males exposed to nurturing care outside the home cage relative to littermate controls. For pups, significant group differences were detected for only OXTr, with lower levels of OXTr mRNA in females exposed to maltreatment. Finally, for adolescents, maltreated-females showed significant changes in Bdnf (decreased), OXTr (decreased), and NPY (increased) mRNA relative to controls. These data illustrate the ability of brief, but repeated exposure to different caregiving environments during the first postnatal week to have long-term effects on gene expression within the developing and adult amygdala, especially for females.
Collapse
Affiliation(s)
- Kathryn T Hill
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Megan Warren
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
253
|
Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat Commun 2014; 5:4082. [PMID: 24915299 PMCID: PMC4512838 DOI: 10.1038/ncomms5082] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/09/2014] [Indexed: 12/22/2022] Open
Abstract
The regenerative capacity of skeletal muscle declines with age. Previous studies suggest that this process can be reversed by exposure to young circulation, but systemic age-specific factors responsible for this phenomenon are largely unknown. Here we report that oxytocin- a hormone best known for its role in lactation, parturition, and social behaviors - is required for proper muscle tissue regeneration and homeostasis, and that plasma levels of oxytocin decline with age. Inhibition of oxytocin signaling in young animals reduces muscle regeneration, whereas systemic administration of oxytocin rapidly improves muscle regeneration by enhancing aged muscle stem cell activation/proliferation throughactivation of the MAPK/ERK signalling pathway. We further show that the genetic lack of oxytocin does not cause a developmental defect in muscle, but instead leads to premature sarcopenia. Considering that oxytocin is an FDA approved drug, this work reveals a potential novel and safe way to combat or prevent skeletal muscle aging.
Collapse
|
254
|
Pullakhandam R, Palika R, Vemula SR, Polasa K, Boindala S. Effect of oxytocin injection to milching buffaloes on its content & stability in milk. Indian J Med Res 2014; 139:933-9. [PMID: 25109729 PMCID: PMC4165007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND & OBJECTIVES Oxytocin (OT) injections to milch cattle for milk letdown have become a common practice amongst dairy farmers in India. Although there is no reported evidence, it is widely presumed that long term consumption of such milk leads to adverse health consequences. However, there is no information on the effect of exogenous OT injections on milk OT content and its stability during heating and gastrointestinal digestion. This study was carried out to determine the OT content in milk samples given by buffaloes with and without OT injections and to assess the stability of OT in the milk. METHODS Milk samples from milch buffaloes (Murrah buffalo) were collected from local farmers with (n=121) or without (n=120) exogenous OT injections during 3 to 5 months of lactation period. The OT content of milk samples was estimated by competitive enzyme immunoassay (EIA). The thermal and digestive stability of OT was assessed by in silico and in vitro digestion methods. RESULTS The OT content of the milk samples was similar regardless of OT injections used. Further, OT was found to be stable to heat treatment and gastric pepsin digestion while it was rapidly digested during the simulated intestinal digestion. Reduced OT was digested by pepsin, implying that internal disulphide bridge of OT rendered the peptide resistant to peptic digestion. On the other hand, phenylmethylsulphonyl fluoride (PMSF), a serine protease inhibitor, abrogated the pancreatin induced digestion of OT. INTERPRETATION & CONCLUSIONS These findings suggest that exogenous OT injections do not influence its content in milk. Further, OT present in milk is rapidly degraded during intestinal digestion, ruling out its intestinal absorption and associated adverse health consequences, if any.
Collapse
Affiliation(s)
- Raghu Pullakhandam
- National Institute of Nutrition (ICMR), Hyderabad, India,Reprint requests: Dr Raghu Pullakhandam, Scientist C, Micronutrient Research Group National Institute of Nutrition, Jamai Osmania, Hyderabad 500 007, India e-mail:
| | | | | | | | | |
Collapse
|
255
|
Ramsey ME, Vu W, Cummings ME. Testing synaptic plasticity in dynamic mate choice decisions: N-methyl D-aspartate receptor blockade disrupts female preference. Proc Biol Sci 2014; 281:20140047. [PMID: 24807251 DOI: 10.1098/rspb.2014.0047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Social behaviours such as mate choice require context-specific responses, often with evolutionary consequences. Increasing evidence indicates that the behavioural plasticity associated with mate choice involves learning. For example, poeciliids show age-dependent changes in female preference functions and express synaptic-plasticity-associated molecular markers during mate choice. Here, we test whether social cognition is necessary for female preference behaviour by blocking the central player in synaptic plasticity, NMDAR (N-methyl d-aspartate receptor), in a poeciliid fish, Xiphophorus nigrensis. After subchronic exposure to NMDAR antagonist MK-801, female preference behaviours towards males were dramatically reduced. Overall activity levels were unaffected, but there was a directional shift from 'social' behaviours towards neutral activity. Multivariate gene expression patterns significantly discriminated between females with normal versus disrupted plasticity processes and correlated with preference behaviours-not general activity. Furthermore, molecular patterns support a distinction between 'preference' (e.g. neuroserpin, neuroligin-3, NMDAR) and 'sociality' (isotocin and vasotocin) gene clusters, highlighting a possible conservation between NMDAR disruption and nonapeptides in modulating behaviour. Our results suggest that mate preference may involve greater social memory processing than overall sociality, and that poeciliid preference functions integrate synaptic-plasticity-oriented 'preference' pathways with overall sociality to invoke dynamic, context-specific responses towards favoured males and away from unfavoured males.
Collapse
Affiliation(s)
- Mary E Ramsey
- Section of Integrative Biology, University of Texas, , Austin, TX 78712, USA, Department of Biomedical Sciences, Baylor College of Dentistry, , Dallas, TX 75266, USA
| | | | | |
Collapse
|
256
|
Thompson SM, Hammen C, Starr LR, Najman JM. Oxytocin receptor gene polymorphism (rs53576) moderates the intergenerational transmission of depression. Psychoneuroendocrinology 2014; 43:11-9. [PMID: 24703166 PMCID: PMC3979470 DOI: 10.1016/j.psyneuen.2014.01.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 10/25/2022]
Abstract
Maternal depression serves as a potent source of stress among offspring, greatly enhancing the risk of numerous adverse outcomes including youth depression. Several factors moderate the transmission of depression from mothers to offspring. However, the role of genetic characteristics in this process merits further exploration. Consistent with an interpersonal perspective on depression, the present study focused on a genetic polymorphism that has been shown to be relevant to social functioning, the rs53576 polymorphism of the oxytocin receptor gene (OXTR). In a community sample of 441 youth, OXTR genotype moderated the association between maternal depression in early childhood and youth depressive symptoms in adolescence, such that youth possessing at least one A allele of OXTR who also had a history of maternal depression exhibited the highest levels of depressive symptoms at age 15. In order to explore possible interpersonal mediators of this effect, conditional process analyses examined the role of youth social functioning in adolescence. Results suggest that OXTR genotype may partially account for the transmission of maternal depression to youth and support the role of dysfunctional social processes as a mechanism through which OXTR influences the development of depressive symptoms.
Collapse
Affiliation(s)
- Sarah M. Thompson
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, United States,Correspondence concerning this article should be addressed to Sarah M. Thompson, UCLA Department of Psychology, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563. . Telephone and Fax: (310) 825-6085
| | - Constance Hammen
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, United States
| | - Lisa R. Starr
- Department of Clinical and Social Sciences in Psychology, University of Rochester, Rochester, New York, United States
| | - Jake M. Najman
- School of Social Science, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
257
|
Yaksh TL, Hobo S, Peters C, Osborn KG, Richter PJ, Rossi SS, Grafe MR, Eisenach JC. Preclinical toxicity screening of intrathecal oxytocin in rats and dogs. Anesthesiology 2014; 120:951-61. [PMID: 24492326 PMCID: PMC5392224 DOI: 10.1097/aln.0000000000000148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anatomic, physiologic, and behavioral studies in animals suggest that spinally released oxytocin should produce analgesia in humans and may also protect from chronic pain after injury. In this article, the authors report preclinical toxicity screening of oxytocin for intrathecal delivery. METHODS Intrathecal oxytocin, 11 μg (6 U) or vehicle, was injected intrathecally in 24 rats, followed by frequent behavioral assessment and histologic examination of spinal contents 2 or 14 days after injection. In three dogs, a range of intrathecal oxytocin doses (18 to 550 μg in 0.5 ml) was injected followed by physiologic, biochemical, and behavioral assessments. Ten dogs were then randomized to receive five daily injections of intrathecal oxytocin, 550 μg in 0.5 ml, or vehicle with similar assessments and, necropsy and histologic analysis were conducted 2 days later. RESULTS In rats, intrathecal oxytocin resulted in transient scratching and itching behaviors, without other differences from vehicle. There was no behavioral, gross anatomic, or histologic evidence of neurotoxicity. Dose ranging in dogs suggested mild effects on motor tone, blood pressure, and heart rate at the 550 μg dose. Repeated boluses in dogs did not produce behavioral, biochemical, neurological, gross anatomic, or histologic evidence of neurotoxicity. CONCLUSIONS Substances, including natural neurotransmitters, may be toxic when administered in pharmacologic doses in the spinal cord. This preclinical toxicity screen in two species suggests that bolus injections of oxytocin in concentrations up to 1,100 μg/ml are unlikely to cause neurotoxicity. The authors also support cautious clinical application of intrathecal oxytocin under regulatory supervision.
Collapse
Affiliation(s)
- Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego (UCSD), CA
| | - Shotaro Hobo
- Department of Anesthesiology, Wake Forest School of Medicine (WFSM), Winston-Salem, NC
| | - Christopher Peters
- Department of Anesthesiology, Wake Forest School of Medicine, WFSM, Winston-Salem, NC
| | - Kent G. Osborn
- Diagnostic Laboratory, Animal Care Program, University of California, San Diego,(UCSD), CA
| | - Philip J. Richter
- Animal Care Program, Department of Pathology, University of California, San Diego,(UCSD), CA
| | - Steven S. Rossi
- Project Scientist, Anesthesiology Research laboratory, (UCSD), CA
| | - Marjorie R. Grafe
- Department of Pathology Medical Director, Neuropathology Oregon Health Sciences University, Portland, OR
| | - James C. Eisenach
- Department of Anesthesiology, Wake Forest School of Medicine, WFSM, Winston-Salem, NC
| |
Collapse
|
258
|
Hovey D, Zettergren A, Jonsson L, Melke J, Anckarsäter H, Lichtenstein P, Westberg L. Associations between oxytocin-related genes and autistic-like traits. Soc Neurosci 2014; 9:378-86. [PMID: 24635660 DOI: 10.1080/17470919.2014.897995] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oxytocin has repeatedly been shown to influence human behavior in social contexts; also, a relationship between oxytocin and the pathophysiology of autism spectrum disorder (ASD) has been suggested. In the present study, we investigated single-nucleotide polymorphisms (SNPs) in the oxytocin gene (OXT) and the genes for single-minded 1 (SIM1), aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) and cluster of differentiation 38 (CD38) in a population of 1771 children from the Child and Adolescent Twin Study in Sweden (CATSS). Statistical analyses were performed to investigate any association between SNPs and autistic-like traits (ALTs), measured through ASD scores in the Autism-Tics, ADHD and other Co-morbidities inventory. Firstly, we found a statistically significant association between the SIM1 SNP rs3734354 (Pro352Thr) and scores for language impairment (p = .0004), but due to low statistical power this should be interpreted cautiously. Furthermore, nominal associations were found between ASD scores and SNPs in OXT, ARNT2 and CD38. In summary, the present study lends support to the hypothesis that oxytocin and oxytocin neuron development may have an influence on the development of ALTs and suggests a new candidate gene in the search for the pathophysiology of ASD.
Collapse
Affiliation(s)
- Daniel Hovey
- a Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| | | | | | | | | | | | | |
Collapse
|
259
|
Knobloch HS, Grinevich V. Evolution of oxytocin pathways in the brain of vertebrates. Front Behav Neurosci 2014; 8:31. [PMID: 24592219 PMCID: PMC3924577 DOI: 10.3389/fnbeh.2014.00031] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/21/2014] [Indexed: 01/08/2023] Open
Abstract
The central oxytocin system transformed tremendously during the evolution, thereby adapting to the expanding properties of species. In more basal vertebrates (paraphyletic taxon Anamnia, which includes agnathans, fish and amphibians), magnocellular neurosecretory neurons producing homologs of oxytocin reside in the wall of the third ventricle of the hypothalamus composing a single hypothalamic structure, the preoptic nucleus. This nucleus further diverged in advanced vertebrates (monophyletic taxon Amniota, which includes reptiles, birds, and mammals) into the paraventricular and supraoptic nuclei with accessory nuclei (AN) between them. The individual magnocellular neurons underwent a process of transformation from primitive uni- or bipolar neurons into highly differentiated neurons. Due to these microanatomical and cytological changes, the ancient release modes of oxytocin into the cerebrospinal fluid were largely replaced by vascular release. However, the most fascinating feature of the progressive transformations of the oxytocin system has been the expansion of oxytocin axonal projections to forebrain regions. In the present review we provide a background on these evolutionary advancements. Furthermore, we draw attention to the non-synaptic axonal release in small and defined brain regions with the aim to clearly distinguish this way of oxytocin action from the classical synaptic transmission on one side and from dendritic release followed by a global diffusion on the other side. Finally, we will summarize the effects of oxytocin and its homologs on pro-social reproductive behaviors in representatives of the phylogenetic tree and will propose anatomically plausible pathways of oxytocin release contributing to these behaviors in basal vertebrates and amniots.
Collapse
Affiliation(s)
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center (DKFZ), Max Planck Institute for Medical Research, University of HeidelbergHeidelberg, Germany
| |
Collapse
|
260
|
Enhanced upregulation of CRH mRNA expression in the nucleus accumbens of male rats after a second injection of methamphetamine given thirty days later. PLoS One 2014; 9:e84665. [PMID: 24475032 PMCID: PMC3903495 DOI: 10.1371/journal.pone.0084665] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 11/17/2013] [Indexed: 01/18/2023] Open
Abstract
Methamphetamine (METH) is a widely abused amphetamine analog. Few studies have investigated the molecular effects of METH exposure in adult animals. Herein, we determined the consequences of an injection of METH (10 mg/kg) on transcriptional effects of a second METH (2.5 mg/kg) injection given one month later. We thus measured gene expression by microarray analyses in the nucleus accumbens (NAc) of 4 groups of rats euthanized 2 hours after the second injection: saline-pretreated followed by saline-challenged (SS) or METH-challenged (SM); and METH-pretreated followed by saline-challenged (MS) or METH-challenged (MM). Microarray analyses revealed that METH (2.5 mg/kg) produced acute changes (1.8-fold; P<0.01) in the expression of 412 (352 upregulated, 60 down-regulated) transcripts including cocaine and amphetamine regulated transcript, corticotropin-releasing hormone (Crh), oxytocin (Oxt), and vasopressin (Avp) that were upregulated. Injection of METH (10 mg/kg) altered the expression of 503 (338 upregulated, 165 down-regulated) transcripts measured one month later (MS group). These genes also included Cart and Crh. The MM group showed altered expression of 766 (565 upregulated, 201 down-regulated) transcripts including Avp, Cart, and Crh. The METH-induced increased Crh expression was enhanced in the MM group in comparison to SM and MS groups. Quantitative PCR confirmed the METH-induced changes in mRNA levels. Therefore, a single injection of METH produced long-lasting changes in gene expression in the rodent NAc. The long-term increases in Crh, Cart, and Avp mRNA expression suggest that METH exposure produced prolonged activation of the endogenous stress system. The METH-induced changes in oxytocin expression also suggest the possibility that this neuropeptide might play a significant role in the neuroplastic and affiliative effects of this drug.
Collapse
|
261
|
Kis A, Bence M, Lakatos G, Pergel E, Turcsán B, Pluijmakers J, Vas J, Elek Z, Brúder I, Földi L, Sasvári-Székely M, Miklósi Á, Rónai Z, Kubinyi E. Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris). PLoS One 2014; 9:e83993. [PMID: 24454713 PMCID: PMC3893090 DOI: 10.1371/journal.pone.0083993] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 01/01/2023] Open
Abstract
The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (-212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5' and 3' UTR) of the oxytocin receptor gene in German Shepherd (N = 104) and Border Collie (N = 103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3' and 5' UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene-behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system.
Collapse
Affiliation(s)
- Anna Kis
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Melinda Bence
- Comparative Ethology Research Group, MTA-ELTE, Budapest, Hungary
| | | | - Enikő Pergel
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Borbála Turcsán
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Jolanda Pluijmakers
- Department of Ethology and Animal Welfare, Catholic University College Ghent, Brugge, Belgium
| | - Judit Vas
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Zsuzsanna Elek
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Ildikó Brúder
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Levente Földi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Mária Sasvári-Székely
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Ádám Miklósi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Comparative Ethology Research Group, MTA-ELTE, Budapest, Hungary
| | - Zsolt Rónai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Enikő Kubinyi
- Comparative Ethology Research Group, MTA-ELTE, Budapest, Hungary
| |
Collapse
|
262
|
Michalska KJ, Decety J, Liu C, Chen Q, Martz ME, Jacob S, Hipwell AE, Lee SS, Chronis-Tuscano A, Waldman ID, Lahey BB. Genetic imaging of the association of oxytocin receptor gene (OXTR) polymorphisms with positive maternal parenting. Front Behav Neurosci 2014; 8:21. [PMID: 24550797 PMCID: PMC3909919 DOI: 10.3389/fnbeh.2014.00021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/13/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Well-validated models of maternal behavior in small-brain mammals posit a central role of oxytocin in parenting, by reducing stress and enhancing the reward value of social interactions with offspring. In contrast, human studies are only beginning to gain insights into how oxytocin modulates maternal behavior and affiliation. METHODS To explore associations between oxytocin receptor genes and maternal parenting behavior in humans, we conducted a genetic imaging study of women selected to exhibit a wide range of observed parenting when their children were 4-6 years old. RESULTS In response to child stimuli during functional magnetic resonance imaging (fMRI), hemodynamic responses in brain regions that mediate affect, reward, and social behavior were significantly correlated with observed positive parenting. Furthermore, single nucleotide polymorphisms (SNPs) (rs53576 and rs1042778) in the gene encoding the oxytocin receptor were significantly associated with both positive parenting and hemodynamic responses to child stimuli in orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and hippocampus. CONCLUSIONS These findings contribute to the emerging literature on the role of oxytocin in human social behavior and support the feasibility of tracing biological pathways from genes to neural regions to positive maternal parenting behaviors in humans using genetic imaging methods.
Collapse
Affiliation(s)
- Kalina J. Michalska
- Department of Psychology, The University of ChicagoChicago, IL, USA
- Section on Development and Affective Neuroscience, National Institute of Mental Health, National Institutes of HealthBethesda, MD, USA
- Department of Human Development, University of MarylandCollege Park, MD, USA
| | - Jean Decety
- Department of Psychology, The University of ChicagoChicago, IL, USA
- Department of Psychiatry, The University of ChicagoChicago, IL, USA
| | - Chunyu Liu
- Department of Psychiatry, The University of ChicagoChicago, IL, USA
- Department of Behavioral Neuroscience, The University of ChicagoChicago, IL, USA
| | - Qi Chen
- Department of Psychiatry, The University of ChicagoChicago, IL, USA
- Department of Behavioral Neuroscience, The University of ChicagoChicago, IL, USA
| | - Meghan E. Martz
- Department of Psychology, University of MichiganAnn Arbor, MI, USA
| | - Suma Jacob
- Department of Psychiatry, University of MinnesotaMinneapolis, MN, USA
| | - Alison E. Hipwell
- Department of Psychiatry, University of PittsburghPittsburgh, PA, USA
| | - Steve S. Lee
- Department of Psychology, University of California Los AngelesLos Angeles, CA, USA
| | | | | | - Benjamin B. Lahey
- Department of Health Studies, The University of ChicagoChicago, IL, USA
| |
Collapse
|
263
|
Hostinar CE, Sullivan RM, Gunnar MR. Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: a review of animal models and human studies across development. Psychol Bull 2014; 140:256-282. [PMID: 23607429 PMCID: PMC3844011 DOI: 10.1037/a0032671 10.1037/a0032671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Discovering the stress-buffering effects of social relationships has been one of the major findings in psychobiology in the last century. However, an understanding of the underlying neurobiological and psychological mechanisms of this buffering is only beginning to emerge. An important avenue of this research concerns the neurocircuitry that can regulate the activity of the hypothalamic-pituitary-adrenocortical (HPA) axis. The present review is a translational effort aimed at integrating animal models and human studies of the social regulation of the HPA axis from infancy to adulthood, specifically focusing on the process that has been named social buffering. This process has been noted across species and consists of a dampened HPA axis stress response to threat or challenge that occurs with the presence or assistance of a conspecific. We describe aspects of the relevant underlying neurobiology when enough information exists and expose major gaps in our understanding across all domains of the literatures we aimed to integrate. We provide a working conceptual model focused on the role of oxytocinergic systems and prefrontal neural networks as 2 of the putative biological mediators of this process, and propose that the role of early experiences is critical in shaping later social buffering effects. This synthesis points to both general future directions and specific experiments that need to be conducted to build a more comprehensive model of the HPA social buffering effect across the life span that incorporates multiple levels of analysis: neuroendocrine, behavioral, and social.
Collapse
Affiliation(s)
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan S. Kline Institute, Department of Child and Adolescent Psychiatry, New York University Langone Medical Center
| | | |
Collapse
|
264
|
Chang SC, Glymour MM, Rewak M, Cornelis M, Walter S, Koenen KC, Kawachi I, Liang L, Tchetgen ET, Kubzansky LD. Are genetic variations in OXTR, AVPR1A, and CD38 genes important to social integration? Results from two large U.S. cohorts. Psychoneuroendocrinology 2014; 39:257-268. [PMID: 24209975 PMCID: PMC3864016 DOI: 10.1016/j.psyneuen.2013.09.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Some evidence suggests that genetic polymorphisms in oxytocin pathway genes influence various social behaviors, but findings thus far have been mixed. Many studies have been based in small samples and there is possibility of publication bias. Using data from 2 large U.S. prospective cohorts with over 11,000 individuals, we investigated 88 SNPs in OXTR, AVPR1A, and CD38, in relation to social integration (measured as social connectedness in both binary and continuous forms and being continuously married). After correction for multiple testing only one SNP in CD38 (rs12644506) was significantly associated with social integration and that SNP predicted when using a dichotomized indicator of social connectedness (adjusted p=0.02), but not a continuous measure of social connectedness or the continuously married outcome. A significant gender-heterogeneous effect was identified in one OXTR SNP on dichotomized social connectedness; specifically, rs4686302 T allele was nominally associated with social connectedness in men, whereas the association direction was opposite in women (adjusted gender heterogeneity p=0.02). Furthermore, the rs53576 A allele was significantly associated with social connectedness only in women, and the effect magnitude was stronger in a dominant genetic model (adjusted p=0.003). In summary, our findings suggested that common genetic variants of OXTR, CD38, and AVPR1A are not associated with social integration as measured in this study using the simplified Berkman-Syme Social Network Index, but these findings and other work hint that effects may be modified by gender or other social experiences. Further work considering genetic pathways in relation to social integration may be more fruitful if these additional factors can be more comprehensively evaluated.
Collapse
Affiliation(s)
- Shun-Chiao Chang
- Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, MA, United States.
| | - M Maria Glymour
- Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, MA
| | - Marissa Rewak
- Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, MA
| | - Marilyn Cornelis
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Stefan Walter
- Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, MA
| | - Karestan C Koenen
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Ichiro Kawachi
- Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, MA
| | - Liming Liang
- Department of Biostatistics, Harvard School of Public Health, Boston, MA
| | | | - Laura D. Kubzansky
- Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, MA
| |
Collapse
|
265
|
Humble MB, Uvnäs-Moberg K, Engström I, Bejerot S. Plasma oxytocin changes and anti-obsessive response during serotonin reuptake inhibitor treatment: a placebo controlled study. BMC Psychiatry 2013; 13:344. [PMID: 24359174 PMCID: PMC3877985 DOI: 10.1186/1471-244x-13-344] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 12/18/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The drug treatments of choice for obsessive-compulsive disorder (OCD) are serotonin reuptake inhibitors (SRIs). However, a correlation between the neuropeptide oxytocin in cerebrospinal fluid and the severity of OCD has previously been shown, and oxytocin and serotonin are interconnected within the brain. Few studies have investigated whether SRIs have any effect on oxytocin; thus, our aim was to explore the possibility that oxytocinergic mechanisms contribute to the anti-obsessive effect of SRIs. METHOD In a randomized, double-blind trial, comparing SRIs (clomipramine and paroxetine) with placebo in 36 adults with OCD (characterized for subtypes), plasma oxytocin was measured with radioimmunoassay after plasma extraction, at baseline, after 1 week, and after 4 weeks of treatment, and related to baseline severity and clinical response after 12 weeks, as measured by the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). RESULTS Baseline oxytocin levels correlated positively with baseline Y-BOCS ratings, but only among the future SRI responders. Patients with early onset of OCD had higher baseline oxytocin. During treatment, plasma oxytocin did not differ between SRI and placebo treatment. In SRI responders, plasma oxytocin first decreased and then increased; in non-responders (to SRI as well as to placebo), the reverse was the case. After 4 weeks, treatment responders had attained higher oxytocin levels compared to non-responders. The intra-individual range (i.e., the variability) of plasma oxytocin between measurements was the measure that best differentiated responders from non-responders. This range was higher in responders than non-responders, and lower in patients with autistic traits. CONCLUSIONS SRIs have highly variable effects on plasma oxytocin between individuals. The associations between baseline oxytocin and OCD severity and between oxytocin changes and treatment response support the notions that oxytocin is involved in OCD pathophysiology, and that the anti-obsessive effects of SRIs are partly exerted through oxytocinergic mechanisms.
Collapse
Affiliation(s)
- Mats B Humble
- Psychiatric Research Centre, Örebro County Council, School of Health and Medical Sciences, Örebro University, Örebro, Sweden.
| | - Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Ingemar Engström
- Psychiatric Research Centre, Örebro County Council, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Susanne Bejerot
- Department of clinical neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
266
|
Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013; 501:179-84. [PMID: 24025838 PMCID: PMC4091761 DOI: 10.1038/nature12518] [Citation(s) in RCA: 822] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 08/01/2013] [Indexed: 02/07/2023]
Abstract
Social behaviours in species as diverse as honey bees and humans promote group survival but often come at some cost to the individual. Although reinforcement of adaptive social interactions is ostensibly required for the evolutionary persistence of these behaviours, the neural mechanisms by which social reward is encoded by the brain are largely unknown. Here we demonstrate that in mice oxytocin acts as a social reinforcement signal within the nucleus accumbens core, where it elicits a presynaptically expressed long-term depression of excitatory synaptic transmission in medium spiny neurons. Although the nucleus accumbens receives oxytocin-receptor-containing inputs from several brain regions, genetic deletion of these receptors specifically from dorsal raphe nucleus, which provides serotonergic (5-hydroxytryptamine; 5-HT) innervation to the nucleus accumbens, abolishes the reinforcing properties of social interaction. Furthermore, oxytocin-induced synaptic plasticity requires activation of nucleus accumbens 5-HT1B receptors, the blockade of which prevents social reward. These results demonstrate that the rewarding properties of social interaction in mice require the coordinated activity of oxytocin and 5-HT in the nucleus accumbens, a mechanistic insight with implications for understanding the pathogenesis of social dysfunction in neuropsychiatric disorders such as autism.
Collapse
|
267
|
Gomes I, Fujita W, Chandrakala MV, Devi LA. Disease-specific heteromerization of G-protein-coupled receptors that target drugs of abuse. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:207-65. [PMID: 23663971 DOI: 10.1016/b978-0-12-386931-9.00009-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drugs of abuse such as morphine or marijuana exert their effects through the activation of G-protein-coupled receptors (GPCRs), the opioid and cannabinoid receptors, respectively. Moreover, interactions between either of these receptors have been shown to be involved in the rewarding effects of drugs of abuse. Recent advances in the field, using a variety of approaches, have demonstrated that many GPCRs, including opioid, cannabinoid, and dopamine receptors, can form associations between different receptor subtypes or with other GPCRs to form heteromeric complexes. The formation of these complexes, in turn, leads to the modulation of the properties of individual protomers. The development of tools that can selectively disrupt GPCR heteromers as well as monoclonal antibodies that can selectively block signaling by specific heteromer pairs has indicated that heteromers involving opioid, cannabinoid, or dopamine receptors may play a role in various disease states. In this review, we describe evidence for opioid, cannabinoid, and dopamine receptor heteromerization and the potential role of GPCR heteromers in pathophysiological conditions.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA
| | | | | | | |
Collapse
|
268
|
MDMA decreases the effects of simulated social rejection. Pharmacol Biochem Behav 2013; 117:1-6. [PMID: 24316346 DOI: 10.1016/j.pbb.2013.11.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/21/2013] [Accepted: 11/23/2013] [Indexed: 12/11/2022]
Abstract
3-4-Methylenedioxymethamphetamine (MDMA) increases self-reported positive social feelings and decreases the ability to detect social threat in faces, but its effects on experiences of social acceptance and rejection have not been determined. We examined how an acute dose of MDMA affects subjective and autonomic responses to simulated social acceptance and rejection. We predicted that MDMA would decrease subjective responses to rejection. On an exploratory basis, we also examined the effect of MDMA on respiratory sinus arrhythmia (RSA), a measure of parasympathetic cardiac control often thought to index social engagement and emotional regulation. Over three sessions, healthy adult volunteers with previous MDMA experience (N=36) received capsules containing placebo, 0.75 or 1.5 mg/kg of MDMA under counter-balanced double-blind conditions. During expected peak drug effect, participants played two rounds of a virtual social simulation task called "Cyberball" during which they experienced acceptance in one round and rejection in the other. During the task we also obtained electrocardiograms (ECGs), from which we calculated RSA. After each round, participants answered questionnaires about their mood and self-esteem. As predicted, MDMA decreased the effect of simulated social rejection on self-reported mood and self-esteem and decreased perceived intensity of rejection, measured as the percent of ball tosses participants reported receiving. Consistent with its sympathomimetic properties, MDMA decreased RSA as compared to placebo. Our finding that MDMA decreases perceptions of rejection in simulated social situations extends previous results indicating that MDMA reduces perception of social threat in faces. Together these findings suggest a cognitive mechanism by which MDMA might produce pro-social behavior and feelings and how the drug might function as an adjunct to psychotherapy. These phenomena merit further study in non-simulated social environments.
Collapse
|
269
|
Sociality and oxytocin and vasopressin in the brain of male and female dominant and subordinate mandarin voles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:149-59. [PMID: 24292210 DOI: 10.1007/s00359-013-0870-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 12/12/2022]
Abstract
The dominant-subordinate hierarchy in animals often needs to be established via agonistic encounters and consequently affects reproduction and survival. Differences in brain neuropeptides and sociality among dominant and subordinate males and females remain poorly understood. Here we explore neuropeptide levels and sociality during agonistic encounter tests in mandarin voles. We found that dominant mandarin voles engaged in higher levels of approaching, investigating, self-grooming and exploring behavior than subordinates. Dominant males habituated better to a stimulus vole than dominant females. Dominant males displayed significantly less oxytocin-immunoreactive neurons in the paraventricular nuclei and more vasopressin-immunoreactive neurons in the paraventricular nuclei, supraoptic nuclei, and the lateral and anterior hypothalamus than subordinates. Dominant females displayed significantly more vasopressin-immunoreactive neurons in the lateral hypothalamus and anterior hypothalamus than subordinates. Sex differences were found in the level of oxytocin and vasopressin. These results indicate that distinct parameters related to central nervous oxytocin and vasopressin are associated with behaviors during agonistic encounters in a sex-specific manner in mandarin voles.
Collapse
|
270
|
Makani V, Sultana R, Sie KS, Orjiako D, Tatangelo M, Dowling A, Cai J, Pierce W, Butterfield DA, Hill J, Park J. Annexin A1 complex mediates oxytocin vesicle transport. J Neuroendocrinol 2013; 25:1241-1254. [PMID: 24118254 PMCID: PMC3975805 DOI: 10.1111/jne.12112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 09/24/2013] [Accepted: 09/29/2013] [Indexed: 12/20/2022]
Abstract
Oxytocin is a major neuropeptide that modulates the brain functions involved in social behaviour and interaction. Despite of the importance of oxytocin for the neural control of social behaviour, little is known about the molecular mechanism(s) by which oxytocin secretion in the brain is regulated. Pro-oxytocin is synthesised in the cell bodies of hypothalamic neurones in the supraoptic and paraventricular nuclei and processed to a 9-amino-acid mature form during post-Golgi transport to the secretion sites at the axon terminals and somatodendritic regions. Oxytocin secreted from the somatodendritic regions diffuses throughout the hypothalamus and its neighbouring brain regions. Some oxytocin-positive axons innervate and secrete oxytocin to the brain regions distal to the hypothalamus. Brain oxytocin binds to its receptors in the brain regions involved in social behaviour. Oxytocin is also secreted from the axon terminal at the posterior pituitary gland into the blood circulation. We have discovered a new molecular complex consisting of annexin A1 (ANXA1), A-kinase anchor protein 150 (AKAP150) and microtubule motor that controls the distribution of oxytocin vesicles between the axon and the cell body in a protein kinase A (PKA)- and protein kinase C (PKC)-sensitive manner. ANXA1 showed significant co-localisation with oxytocin vesicles. Activation of PKA enhanced the association of kinesin-2 with ANXA1, thus increasing the axon-localisation of oxytocin vesicles. Conversely, activation of PKC decreased the binding of kinesin-2 to ANXA1, thus attenuating the axon-localisation of oxytocin vesicles. The result of the present study suggest that ANXA1 complex coordinates the actions of PKA and PKC to control the distribution of oxytocin vesicles between the axon and the cell body.
Collapse
Affiliation(s)
- Vishruti Makani
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506
| | - Khin Sander Sie
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Doris Orjiako
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Marco Tatangelo
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Abigail Dowling
- Department of Physiology and Pharmacology, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Jian Cai
- Department of Pharmacology, University of Louisville, Louisville, KY 40292
| | - William Pierce
- Department of Pharmacology, University of Louisville, Louisville, KY 40292
| | | | - Jennifer Hill
- Department of Physiology and Pharmacology, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Joshua Park
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
- To whom correspondence should be addressed. Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio 43614, , Phone: (419) 383-4085, Fax: (419) 383-3008
| |
Collapse
|
271
|
Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One 2013; 8:e78898. [PMID: 24205344 PMCID: PMC3813596 DOI: 10.1371/journal.pone.0078898] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/17/2013] [Indexed: 02/07/2023] Open
Abstract
Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobacillus reuteri enhances wound-healing properties through up-regulation of the neuropeptide hormone oxytocin, a factor integral in social bonding and reproduction, by a vagus nerve-mediated pathway. Bacteria-triggered oxytocin serves to activate host CD4+Foxp3+CD25+ immune T regulatory cells conveying transplantable wound healing capacity to naive Rag2-deficient animals. This study determined oxytocin to be a novel component of a multi-directional gut microbe-brain-immune axis, with wound-healing capability as a previously unrecognized output of this axis. We also provide experimental evidence to support long-standing medical traditions associating diet, social practices, and the immune system with efficient recovery after injury, sustained good health, and longevity.
Collapse
|
272
|
Acute prosocial effects of oxytocin and vasopressin when given alone or in combination with 3,4-methylenedioxymethamphetamine in rats: involvement of the V1A receptor. Neuropsychopharmacology 2013; 38:2249-59. [PMID: 23676791 PMCID: PMC3773675 DOI: 10.1038/npp.2013.125] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 11/08/2022]
Abstract
The neuropeptides oxytocin (OT) and vasopressin (AVP) are recognized for their modulation of social processes in humans when delivered peripherally. However, there is surprisingly little evidence for acute social effects of peripherally administered OT or AVP in animal models. On the other hand, the party drug 3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy') has powerful prosocial effects in rats that appear to occur through stimulation of central OT release. Here, we directly compared the social effects of peripherally administered OT and AVP with those of MDMA, and examined a possible role for the vasopressin 1A receptor (V1AR) in the observed prosocial effects. Adult male Long-Evans rats were tested in a social interaction paradigm after OT (0.1, 0.25, 0.5, and 1 mg/kg, intraperitoneal (IP)), AVP (0.001, 0.0025, 0.005, 0.01, and 0.1 mg/kg, IP), and MDMA (2.5, 5 mg/kg, IP), or combined low doses of OT and MDMA, or AVP and MDMA. The effects of pretreatment with the non-peptide OT receptor antagonist compound 25 (C25; 5 mg/kg, IP) and the V1AR antagonist SR49059 (1 mg/kg, IP) were also examined. OT (0.5 mg/kg), AVP (0.01 mg/kg), and MDMA (5 mg/kg) potently increased 'adjacent lying', where rats meeting for the first time lie passively next to each other. C25 did not inhibit adjacent lying induced by OT, whereas SR49059 inhibited adjacent lying induced by MDMA (5 mg/kg), OT (0.5 mg/kg), and AVP (0.01 mg/kg). Interestingly, when ineffective doses of OT and MDMA, or AVP and MDMA, were combined, a robust increase in adjacent lying was observed. These results show for the first time acute prosocial effects of peripherally injected OT and AVP in laboratory rats, and suggest a commonality of action of OT, AVP, and MDMA in stimulating social behavior that involves V1ARs.
Collapse
|
273
|
Calcagnoli F, de Boer SF, Althaus M, den Boer JA, Koolhaas JM. Antiaggressive activity of central oxytocin in male rats. Psychopharmacology (Berl) 2013; 229:639-51. [PMID: 23624810 DOI: 10.1007/s00213-013-3124-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 04/15/2013] [Indexed: 02/04/2023]
Abstract
RATIONALE A substantial body of research suggests that the neuropeptide oxytocin promotes social affiliative behaviors in a wide range of animals including humans. However, its antiaggressive action has not been unequivocally demonstrated in male laboratory rodents. OBJECTIVE Our primary goal was to examine the putative serenic effect of oxytocin in a feral strain (wild type Groningen, WTG) of rats that generally show a much broader variation and higher levels of intermale aggression than commonly used laboratory strains of rats. METHODS Resident animals were intracerebroventricularly (icv) administered with different doses of synthetic oxytocin and oxytocin receptor antagonist, alone and in combination, in order to manipulate brain oxytocin functioning and to assess their behavioral response to an intruder. RESULTS Our data clearly demonstrate that acute icv administered oxytocin produces dose-dependent and receptor-selective changes in social behavior, reducing aggression and potentiating social exploration. These antiaggressive effects are stronger in the more offensive rats. On the other hand, administration of an oxytocin receptor antagonist tends to increase (nonsignificantly) aggression only in low-medium aggressive animals. CONCLUSIONS These results suggest that transiently enhancing brain oxytocin function has potent antiaggressive effects, whereas its attenuation tends to enhance aggressiveness. In addition, a possible inverse relationship between trait aggression and endogenous oxytocinergic signaling is revealed. Overall, this study emphasizes the importance of brain oxytocinergic signaling for regulating intermale offensive aggression. This study supports the suggestion that oxytocin receptor agonists could clinically be useful for curbing heightened aggression seen in a range of neuropsychiatric disorders like antisocial personality disorder, autism, and addiction.
Collapse
Affiliation(s)
- Federica Calcagnoli
- Department of Behavioral Physiology, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands,
| | | | | | | | | |
Collapse
|
274
|
Fernandes AM, Beddows E, Filippi A, Driever W. Orthopedia transcription factor otpa and otpb paralogous genes function during dopaminergic and neuroendocrine cell specification in larval zebrafish. PLoS One 2013; 8:e75002. [PMID: 24073233 PMCID: PMC3779234 DOI: 10.1371/journal.pone.0075002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/08/2013] [Indexed: 11/29/2022] Open
Abstract
The homeodomain transcription factor Orthopedia (Otp) is an important regulator for specification of defined subsets of neuroendocrine cells and dopaminergic neurons in vertebrates. In zebrafish, two paralogous otp genes, otpa and otpb, are present in the genome. Neither complete loss of Otp activity nor differential contributions of Otpa and Otpb to specification of defined neuronal populations have been analyzed in detail. We characterized zebrafish embryos and early larvae mutant for null alleles of otpa, otpb, or both genes to determine their individual contributions to the specification of th expressing dopaminergic neuronal populations as well as of crh, oxt, avp, trh or sst1.1 expressing neuroendocrine cells. otpa mutant larvae show an almost complete reduction of ventral diencephalic dopaminergic neurons, as reported previously. A small reduction in the number of trh cells in the preoptic region is detectable in otpa mutants, but no significant loss of crh, oxt and avp preoptic neuroendocrine cells. otpb single mutant larvae do not display a reduction in dopaminergic neurons or neuroendocrine cells in the otp expressing regions. In contrast, in otpa and otpb double mutant larvae specific groups of dopaminergic neurons as well as of crh, oxt, avp, trh and sst1.1-expressing neuroendocrine cells are completely lost. These observations suggest that the requirement for otpa and otpb function during development of the larval diencephalon is partially redundant. During evolutionary diversification of the paralogous otp genes, otpa maintained the prominent role in ventral diencephalic dopaminergic and neuroendocrine cell specification and is capable of partially compensating otpb loss of function. In addition, we identified a role of Otp in the development of a domain of somatostatin1-expressing cells in the rostral hindbrain, a region with strong otp expression but so far uncharacterized Otp function. Otp may thus be crucial for defined neuronal cell types also in the hindbrain.
Collapse
Affiliation(s)
- António M. Fernandes
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Erin Beddows
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alida Filippi
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
275
|
Could intranasal oxytocin be used to enhance relationships? Research imperatives, clinical policy, and ethical considerations. Curr Opin Psychiatry 2013; 26:474-484. [PMID: 23880593 PMCID: PMC3935449 DOI: 10.1097/yco.0b013e3283642e10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Well-functioning romantic relationships are important for long-term health and well being, but they are often difficult to sustain. This difficulty arises (in part) because of an underlying tension between our psychobiological natures, culture/environment, and modern love and relationship goals. One possible solution to this predicament is to intervene at the level of psychobiology, enhancing partners' interpersonal connection through neurochemical modulation. This article focuses on a single, promising biobehavioral sub-system for such intervention: the attachment system, based largely upon the expression of the neuropeptide oxytocin. Could the exogenous administration of oxytocin - under the right conditions - be used to facilitate relational or marital well being? RECENT FINDINGS If so, it would require considerable forethought. Recent research complicates the popular image of oxytocin as a universal social enhancer or 'love hormone' and shows that it may exert a variety of different effects, at different dosages, on different people, under different circumstances. Accordingly, we discuss what is known about oxytocin, including its 'good' and 'bad' effects on human behavior and on higher-order functional processes. SUMMARY Building upon animal-model, human preclinical, and clinical findings, we outline a proposal for the use of oxytocin in the therapeutic neuroenhancement of contemporary romantic relationships. Highlighting key targets for future research along the way, we then conclude by discussing some of the clinical and ethical considerations that would pertain to the implementation of this knowledge in applied settings.
Collapse
|
276
|
Martinez LA, Levy MJ, Petrulis A. Endogenous oxytocin is necessary for preferential Fos expression to male odors in the bed nucleus of the stria terminalis in female Syrian hamsters. Horm Behav 2013; 64:653-64. [PMID: 24012945 PMCID: PMC3857696 DOI: 10.1016/j.yhbeh.2013.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
Successful reproduction in mammals depends on proceptive or solicitational behaviors that enhance the probability of encountering potential mates. In female Syrian hamsters, one such behavior is vaginal scent marking. Recent evidence suggests that the neuropeptide oxytocin (OT) may be critical for regulating this behavior. Blockade of OT receptors in the bed nucleus of the stria terminalis (BNST) or the medial preoptic area (MPOA) decreases vaginal marking responses to male odors; lesion data suggest that BNST, rather than MPOA, mediates this effect. However, how OT interacts with sexual odor processing to drive preferential solicitation is not known. To address this issue, intact female Syrian hamsters were exposed to male or female odors and their brains processed for immunohistochemistry for Fos, a marker of recent neuronal activation, and OT. Additional females were injected intracerebroventricularly (ICV) with an oxytocin receptor antagonist (OTA) or vehicle, and then tested for vaginal marking and Fos responses to sexual odors. Colocalization of OT and Fos in the paraventricular nucleus of the hypothalamus was unchanged following exposure to male odors, but decreased following exposure to female odors. Following injections of OTA, Fos expression to male odors was decreased in BNST, but not in MPOA or the medial amygdala (MA). Fos expression in BNST may be functionally relevant for vaginal marking, given that there was a positive correlation between Fos expression and vaginal marking for BNST, but not MPOA or MA. Together, these data suggest that OT facilitation of neuronal activity in BNST underlies the facilitative effects of OT on solicitational responses to male odors.
Collapse
Affiliation(s)
- Luis A Martinez
- Georgia State University, Neuroscience Institute, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | | | | |
Collapse
|
277
|
Dabrowska J, Hazra R, Guo JD, Dewitt S, Rainnie DG. Central CRF neurons are not created equal: phenotypic differences in CRF-containing neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria terminalis. Front Neurosci 2013; 7:156. [PMID: 24009552 PMCID: PMC3757458 DOI: 10.3389/fnins.2013.00156] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022] Open
Abstract
Corticotrophin-releasing factor (CRF) plays a key role in initiating many of the endocrine, autonomic, and behavioral responses to stress. CRF-containing neurons of the paraventricular nucleus of the hypothalamus (PVN) are classically involved in regulating endocrine function through activation of the stress axis. However, CRF is also thought to play a critical role in mediating anxiety-like responses to environmental stressors, and dysfunction of the CRF system in extra-hypothalamic brain regions, like the bed nucleus of stria terminalis (BNST), has been linked to the etiology of many psychiatric disorders including anxiety and depression. Thus, although CRF neurons of the PVN and BNST share a common neuropeptide phenotype, they may represent two functionally diverse neuronal populations. Here, we employed dual-immunofluorescence, single-cell RT-PCR, and electrophysiological techniques to further examine this question and report that CRF neurons of the PVN and BNST are fundamentally different such that PVN CRF neurons are glutamatergic, whereas BNST CRF neurons are GABAergic. Moreover, these two neuronal populations can be further distinguished based on their electrophysiological properties, their co-expression of peptide neurotransmitters such as oxytocin and arginine-vasopressin, and their cognate receptors. Our results suggest that CRF neurons in the PVN and the BNST would not only differ in their response to local neurotransmitter release, but also in their action on downstream target structures.
Collapse
Affiliation(s)
- Joanna Dabrowska
- Division of Behavioral Neuroscience and Psychiatric Disorders, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
278
|
Kis A, Kemerle K, Hernádi A, Topál J. Oxytocin and social pretreatment have similar effects on processing of negative emotional faces in healthy adult males. Front Psychol 2013; 4:532. [PMID: 23966970 PMCID: PMC3743076 DOI: 10.3389/fpsyg.2013.00532] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/29/2013] [Indexed: 12/13/2022] Open
Abstract
Oxytocin has been shown to affect several aspects of human social cognition, including facial emotion processing. There is also evidence that social stimuli (such as eye-contact) can effectively modulate endogenous oxytocin levels. In the present study we directly tested whether intranasal oxytocin administration and pre-treatment with social stimuli had similar effects on face processing at the behavioral level. Subjects (N = 52 healthy adult males) were presented with a set of faces with expressions of different valence (negative, neutral, positive) following different types of pretreatment (oxytocin—OT or placebo—PL and social interaction—Soc or no social interaction—NSoc, N = 13 in each) and were asked to rate all faces for perceived emotion and trustworthiness. On the next day subjects' recognition memory was tested on a set of neutral faces and additionally they had to again rate each face for trustworthiness and emotion. Subjects in both the OT and the Soc pretreatment group (as compared to the PL and to the NSoc groups) gave higher emotion and trustworthiness scores for faces with negative emotional expression. Moreover, 24 h later, subjects in the OT and Soc groups (unlike in control groups) gave lower trustworthiness scores for previously negative faces, than for faces previously seen as emotionally neutral or positive. In sum these results provide the first direct evidence of the similar effects of intranasal oxytocin administration and social stimulation on the perception of negative facial emotions as well as on the delayed recall of negative emotional information.
Collapse
Affiliation(s)
- Anna Kis
- Psychobiology Research Group, Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences Budapest, Hungary ; Department of Ethology, Eötvös University Budapest, Hungary
| | | | | | | |
Collapse
|
279
|
Won H, Mah W, Kim E. Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Mol Neurosci 2013; 6:19. [PMID: 23935565 PMCID: PMC3733014 DOI: 10.3389/fnmol.2013.00019] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/16/2013] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of developmental disabilities characterized by impairments in social interaction and communication and restricted and repetitive interests/behaviors. Advances in human genomics have identified a large number of genetic variations associated with ASD. These associations are being rapidly verified by a growing number of studies using a variety of approaches, including mouse genetics. These studies have also identified key mechanisms underlying the pathogenesis of ASD, many of which involve synaptic dysfunctions, and have investigated novel, mechanism-based therapeutic strategies. This review will try to integrate these three key aspects of ASD research: human genetics, animal models, and potential treatments. Continued efforts in this direction should ultimately reveal core mechanisms that account for a larger fraction of ASD cases and identify neural mechanisms associated with specific ASD symptoms, providing important clues to efficient ASD treatment.
Collapse
Affiliation(s)
- Hyejung Won
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
| | - Won Mah
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeon, South Korea
| |
Collapse
|
280
|
Analysis of transcription factor mRNAs in identified oxytocin and vasopressin magnocellular neurons isolated by laser capture microdissection. PLoS One 2013; 8:e69407. [PMID: 23894472 PMCID: PMC3722287 DOI: 10.1371/journal.pone.0069407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/09/2013] [Indexed: 01/02/2023] Open
Abstract
The oxytocin (Oxt) and vasopressin (Avp) magnocellular neurons (MCNs) in the hypothalamus are the only neuronal phenotypes that are present in the supraoptic nucleus (SON), and are characterized by their robust and selective expression of either the Oxt or Avp genes. In this paper, we take advantage of the differential expression of these neuropeptide genes to identify and isolate these two individual phenotypes from the rat SON by laser capture microdissection (LCM), and to analyze the differential expression of several of their transcription factor mRNAs by qRT-PCR. We identify these neuronal phenotypes by stereotaxically injecting recombinant Adeno-Associated Viral (rAAV) vectors which contain cell-type specific Oxt or Avp promoters that drive expression of EGFP selectively in either the Oxt or Avp MCNs into the SON. The fluorescent MCNs are then dissected by LCM using a novel Cap Road Map protocol described in this paper, and the purified MCNs are extracted for their RNAs. qRT-PCR of these RNAs show that some transcription factors (RORA and c-jun) are differentially expressed in the Oxt and Avp MCNs.
Collapse
|
281
|
Williams SK, Johns JM. Prenatal and gestational cocaine exposure: Effects on the oxytocin system and social behavior with implications for addiction. Pharmacol Biochem Behav 2013; 119:10-21. [PMID: 23880214 DOI: 10.1016/j.pbb.2013.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/01/2022]
Abstract
Drug abuse during pregnancy is a major public health concern, with negative consequences throughout development. Prenatal cocaine exposure (PCE) in rats produces social behavior deficits with corresponding changes in neuroendocrine and monoaminergic signaling. The relevance of parental care in social behavior maturity cannot be ignored, and gestational exposure to cocaine severely disrupts parental care, thus impacting the early environment of the offspring. Oxytocin (Oxt) is critical in regulating social behaviors and central levels are disrupted following acute and chronic cocaine (CC) treatment in postpartum rat dams, coincident with deficits in maternal care. We will discuss studies aimed to determine the relative contribution of PCE and CC-induced deficits in maternal care to social behaviors and Oxt signaling across development. PCE results in decreased social (including parental) behaviors in adolescence and adulthood. PCE is also associated with increased aggression in adults. Rearing by CC-exposed mothers synergistically increases the behavioral effects of PCE. Rearing by CC-exposed mothers, but not PCE, disrupts Oxt levels and mRNA in regions relevant to social behavior, but does not affect receptors in postpartum adult offspring. Preliminary work indicates that PCE/CC rearing has dynamic effects on Oxt levels and receptors in neonatal rat pups, suggesting very early regulation of Oxt signaling. This work highlights how the interactive role of Oxt signaling and behavioral context throughout development can be derailed by drug abuse during pregnancy. The relevance of disrupted Oxt to intergenerational transmission of addiction is briefly discussed.
Collapse
Affiliation(s)
- S K Williams
- Section on Neural Gene Expression, National Institute of Mental Health, Bethesda, MD, United States.
| | - J M Johns
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Curriculum of Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
282
|
Blandón-Gitlin I, Pezdek K, Saldivar S, Steelman E. Oxytocin eliminates the own-race bias in face recognition memory. Brain Res 2013; 1580:180-7. [PMID: 23872107 DOI: 10.1016/j.brainres.2013.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/06/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
The neuropeptide Oxytocin influences a number of social behaviors, including processing of faces. We examined whether Oxytocin facilitates the processing of out-group faces and reduce the own-race bias (ORB). The ORB is a robust phenomenon characterized by poor recognition memory of other-race faces compared to the same-race faces. In Experiment 1, participants received intranasal solutions of Oxytocin or placebo prior to viewing White and Black faces. On a subsequent recognition test, whereas in the placebo condition the same-race faces were better recognized than other-race faces, in the Oxytocin condition Black and White faces were equally well recognized, effectively eliminating the ORB. In Experiment 2, Oxytocin was administered after the study phase. The ORB resulted, but Oxytocin did not significantly reduce the effect. This study is the first to show that Oxytocin can enhance face memory of out-group members and underscore the importance of social encoding mechanisms underlying the own-race bias. This article is part of a Special Issue entitled Oxytocin and Social Behav.
Collapse
|
283
|
Oxytocin, motivation and the role of dopamine. Pharmacol Biochem Behav 2013; 119:49-60. [PMID: 23850525 DOI: 10.1016/j.pbb.2013.06.011] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/08/2013] [Accepted: 06/25/2013] [Indexed: 01/11/2023]
Abstract
The hypothalamic neuropeptide oxytocin has drawn the attention of scientists for more than a century. The understanding of the function of oxytocin has expanded dramatically over the years from a simple peptide adept at inducing uterine contractions and milk ejection to a complex neuromodulator with a capacity to shape human social behavior. Decades of research have outlined oxytocin's ability to enhance intricate social activities ranging from pair bonding, sexual activity, affiliative preferences, and parental behaviors. The precise neural mechanisms underlying oxytocin's influence on such behaviors have just begun to be understood. Research suggests that oxytocin interacts closely with the neural pathways responsible for processing motivationally relevant stimuli. In particular, oxytocin appears to impact dopaminergic activity within the mesocorticolimbic dopamine system, which is crucial not only for reward and motivated behavior but also for the expression of affiliative behaviors. Though most of the work performed in this area has been done using animal models, several neuroimaging studies suggest similar relationships may be observed in humans. In order to introduce this topic further, this paper will review the recent evidence that oxytocin may exert some of its social-behavioral effects through its impact on motivational networks.
Collapse
|
284
|
Liu HX, Lopatina O, Higashida C, Fujimoto H, Akther S, Inzhutova A, Liang M, Zhong J, Tsuji T, Yoshihara T, Sumi K, Ishiyama M, Ma WJ, Ozaki M, Yagitani S, Yokoyama S, Mukaida N, Sakurai T, Hori O, Yoshioka K, Hirao A, Kato Y, Ishihara K, Kato I, Okamoto H, Cherepanov SM, Salmina AB, Hirai H, Asano M, Brown DA, Nagano I, Higashida H. Displays of paternal mouse pup retrieval following communicative interaction with maternal mates. Nat Commun 2013; 4:1346. [PMID: 23299896 PMCID: PMC4089749 DOI: 10.1038/ncomms2336] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/27/2012] [Indexed: 01/29/2023] Open
Abstract
Compared with the knowledge of maternal care, much less is known about the factors required for paternal parental care. Here we report that new sires of laboratory mice, though not spontaneously parental, can be induced to show maternal-like parental care (pup retrieval) using signals from dams separated from their pups. During this interaction, the maternal mates emit 38-kHz ultrasonic vocalizations to their male partners, which are equivalent to vocalizations that occur following pheromone stimulation. Without these signals or in the absence of maternal mates, the sires do not retrieve their pups within 5 min. These results show that, in mice, the maternal parent communicates to the paternal parent to encourage pup care. This new paradigm may be useful in the analysis of the parental brain during paternal care induced by interactive communication. Parental responsibilities in mice are usually carried out by the mother of the pups. In this study, the authors show that when mothers are separated from their mouse pups, they emit ultrasonic vocalizations to their male partners, who respond by administering paternal care to the pups.
Collapse
Affiliation(s)
- Hong-Xiang Liu
- Kanazawa University 21st Century COE Program on Innovative Brain Science on Development, Learning and Memory, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Intrathecal oxytocin inhibits visceromotor reflex and spinal neuronal responses to noxious distention of the rat urinary bladder. Reg Anesth Pain Med 2013; 37:515-20. [PMID: 22878524 DOI: 10.1097/aap.0b013e318266352d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND OBJECTIVES Oxytocin (OXY) is a neuropeptide that has recently been recognized as an important component of descending analgesic systems. The present study sought to determine if OXY produces antinociception to noxious visceral stimulation. METHODS Urethane-anesthetized female rats had intrathecal catheters placed acutely, and the effect of intrathecal OXY on visceromotor reflexes (VMRs; abdominal muscular contractions quantified using electromyograms) to urinary bladder distension (UBD; 10-60 mm Hg, 20 seconds; transurethral intravesical catheter) was determined. The effect of OXY applied to the surface of exposed spinal cord was determined in lumbosacral dorsal horn neurons excited by UBD using extracellular recordings. RESULTS Oxytocin doses of 0.15 or 1.5 μg inhibited VMRs to UBD by 37% ± 8% and 68% ± 10%, respectively. Peak inhibition occurred within 30 minutes and was sustained for at least 60 minutes. The effect of OXY was both reversed and prevented by the intrathecal administration of an OXY-receptor antagonist. Application of 0.5 mM OXY to the dorsum of the spinal cord inhibited UBD-evoked action potentials by 76% ± 12%. Consistent with the VMR studies, peak inhibition occurred within 30 minutes and was sustained for greater than 60 minutes. CONCLUSIONS These results argue that intrathecal OXY produces an OXY receptor-specific antinociception to noxious UBD, with part of this effect due to inhibition of spinal dorsal horn neurons. To our knowledge, these studies provide the first evidence that intrathecal OXY may be an effective pharmacological treatment for visceral pain.
Collapse
|
286
|
Choi JW, Kang SM, Lee Y, Hong SH, Sanek NA, Young WS, Lee HJ. MicroRNA profiling in the mouse hypothalamus reveals oxytocin-regulating microRNA. J Neurochem 2013; 126:331-7. [PMID: 23682839 DOI: 10.1111/jnc.12308] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/17/2013] [Accepted: 05/15/2013] [Indexed: 02/02/2023]
Abstract
Oxytocin (Oxt), produced in the hypothalamic paraventricular and supraoptic nuclei for transport to and release from the posterior pituitary, was originally discovered through its role in lactation and parturition. Oxt also plays important roles in the central nervous system by influencing various behaviors. MicroRNAs (miRNAs), endogenous regulators of many genes, are a class of small non-coding RNAs that mediate post-transcriptional gene silencing. We performed miRNA expression profiling of the mouse hypothalamus by deep sequencing. Among the sequenced and cross-mapped small RNAs, expression of known miRNAs and unknown miRNAs candidates were analyzed. We investigated in detail one miRNA, miR-24, and found that it is a novel regulator of Oxt and controls both transcript and peptide levels of Oxt. These results provide insights into potential neurohypophysial hormone regulation mediated by miRNAs.
Collapse
Affiliation(s)
- Ji-Woong Choi
- Department of Oral Microbiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | |
Collapse
|
287
|
Goldman S. Opinion: Sex, Gender and the Diagnosis of Autism - A Biosocial View of the Male Preponderance. RESEARCH IN AUTISM SPECTRUM DISORDERS 2013; 7:675-679. [PMID: 23687516 PMCID: PMC3655776 DOI: 10.1016/j.rasd.2013.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Sylvie Goldman
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine,1300 Morris Park Avenue, Bronx, NY,10461
- Department of Pediatrics, Albert Einstein College of Medicine,1300 Morris Park Avenue, Bronx, NY,10461
- Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine,1300 Morris Park Avenue, Bronx, NY,10461
| |
Collapse
|
288
|
Nieh EH, Kim SY, Namburi P, Tye KM. Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors. Brain Res 2013; 1511:73-92. [PMID: 23142759 PMCID: PMC4099056 DOI: 10.1016/j.brainres.2012.11.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 12/26/2022]
Abstract
The neural circuits underlying emotional valence and motivated behaviors are several synapses away from both defined sensory inputs and quantifiable motor outputs. Electrophysiology has provided us with a suitable means for observing neural activity during behavior, but methods for controlling activity for the purpose of studying motivated behaviors have been inadequate: electrical stimulation lacks cellular specificity and pharmacological manipulation lacks temporal resolution. The recent emergence of optogenetic tools provides a new means for establishing causal relationships between neural activity and behavior. Optogenetics, the use of genetically-encodable light-activated proteins, permits the modulation of specific neural circuit elements with millisecond precision. The ability to control individual cell types, and even projections between distal regions, allows us to investigate functional connectivity in a causal manner. The greatest consequence of controlling neural activity with finer precision has been the characterization of individual neural circuits within anatomical brain regions as defined functional units. Within the mesolimbic dopamine system, optogenetics has helped separate subsets of dopamine neurons with distinct functions for reward, aversion and salience processing, elucidated GABA neuronal effects on behavior, and characterized connectivity with forebrain and cortical structures. Within the striatum, optogenetics has confirmed the opposing relationship between direct and indirect pathway medium spiny neurons (MSNs), in addition to characterizing the inhibition of MSNs by cholinergic interneurons. Within the hypothalamus, optogenetics has helped overcome the heterogeneity in neuronal cell-type and revealed distinct circuits mediating aggression and feeding. Within the amygdala, optogenetics has allowed the study of intra-amygdala microcircuitry as well as interconnections with distal regions involved in fear and anxiety. In this review, we will present the body of optogenetic studies that has significantly enhanced our understanding of emotional valence and motivated behaviors. This article is part of a Special Issue entitled Optogenetics (7th BRES).
Collapse
Affiliation(s)
- Edward H. Nieh
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sung-Yon Kim
- Department of Bioengineering, Neurosciences Program, Stanford University, Stanford, CA, USA
| | - Praneeth Namburi
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kay M. Tye
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
289
|
Yamashita M, Takayanagi Y, Yoshida M, Nishimori K, Kusama M, Onaka T. Involvement of prolactin-releasing peptide in the activation of oxytocin neurones in response to food intake. J Neuroendocrinol 2013; 25:455-65. [PMID: 23363338 PMCID: PMC3664423 DOI: 10.1111/jne.12019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/10/2012] [Accepted: 12/26/2012] [Indexed: 12/16/2022]
Abstract
Food intake activates neurones expressing prolactin-releasing peptide (PrRP) in the medulla oblongata and oxytocin neurones in the hypothalamus. Both PrRP and oxytocin have been shown to have an anorexic action. In the present study, we investigated whether the activation of oxytocin neurones following food intake is mediated by PrRP. We first examined the expression of PrRP receptors (also known as GPR10) in rats. Immunoreactivity of PrRP receptors was observed in oxytocin neurones and in vasopressin neurones in the paraventricular and supraoptic nuclei of the hypothalamus and in the bed nucleus of the stria terminalis. Application of PrRP to isolated supraoptic nuclei facilitated the release of oxytocin and vasopressin. In mice, re-feeding increased the expression of Fos protein in oxytocin neurones of the hypothalamus and bed nucleus of the stria terminalis. The increased expression of Fos protein in oxytocin neurones following re-feeding or i.p. administration of cholecystokinin octapeptide (CCK), a peripheral satiety factor, was impaired in PrRP-deficient mice. CCK-induced oxytocin increase in plasma was also impaired in PrRP-deficient mice. Furthermore, oxytocin receptor-deficient mice showed an increased meal size, as reported in PrRP-deficient mice and in CCKA receptor-deficient mice. These findings suggest that PrRP mediates, at least in part, the activation of oxytocin neurones in response to food intake, and that the CCK-PrRP-oxytocin pathway plays an important role in the control of the termination of each meal.
Collapse
Affiliation(s)
- M Yamashita
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Japan
| | | | | | | | | | | |
Collapse
|
290
|
Hostinar CE, Sullivan RM, Gunnar MR. Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: a review of animal models and human studies across development. Psychol Bull 2013; 140:256-82. [PMID: 23607429 DOI: 10.1037/a0032671] [Citation(s) in RCA: 472] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Discovering the stress-buffering effects of social relationships has been one of the major findings in psychobiology in the last century. However, an understanding of the underlying neurobiological and psychological mechanisms of this buffering is only beginning to emerge. An important avenue of this research concerns the neurocircuitry that can regulate the activity of the hypothalamic-pituitary-adrenocortical (HPA) axis. The present review is a translational effort aimed at integrating animal models and human studies of the social regulation of the HPA axis from infancy to adulthood, specifically focusing on the process that has been named social buffering. This process has been noted across species and consists of a dampened HPA axis stress response to threat or challenge that occurs with the presence or assistance of a conspecific. We describe aspects of the relevant underlying neurobiology when enough information exists and expose major gaps in our understanding across all domains of the literatures we aimed to integrate. We provide a working conceptual model focused on the role of oxytocinergic systems and prefrontal neural networks as 2 of the putative biological mediators of this process, and propose that the role of early experiences is critical in shaping later social buffering effects. This synthesis points to both general future directions and specific experiments that need to be conducted to build a more comprehensive model of the HPA social buffering effect across the life span that incorporates multiple levels of analysis: neuroendocrine, behavioral, and social.
Collapse
Affiliation(s)
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan S. Kline Institute, Department of Child and Adolescent Psychiatry, New York University Langone Medical Center
| | | |
Collapse
|
291
|
Branchi I, Curley JP, D’Andrea I, Cirulli F, Champagne FA, Alleva E. Early interactions with mother and peers independently build adult social skills and shape BDNF and oxytocin receptor brain levels. Psychoneuroendocrinology 2013; 38:522-32. [PMID: 22910688 PMCID: PMC3522751 DOI: 10.1016/j.psyneuen.2012.07.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 10/28/2022]
Abstract
The early social environment has a profound impact on developmental trajectories. Although an impoverished early environment can undermine the acquisition of appropriate social skills, the specific role played by the different components of an individual's early environment in building social competencies has not been fully elucidated. Here we setup an asynchronous communal nesting paradigm in mice to disentangle the influence of maternal care and early peer interactions on adult social behavior and neural systems reportedly involved in the regulation of social interactions. The asynchronous communal nesting consists of three mothers giving birth three days apart, generating three groups of pups - the Old, the Middle and the Young - all raised in a single nest from birth to weaning. We scored the amount of maternal and peer interactions received by these mice and by a fourth group reared under standard conditions. At adulthood, the four experimental groups have been investigated for social behavior in a social interaction test, i.e. facing an unfamiliar conspecific during five 20-min daily encounters, and for oxytocin receptor and brain derived neurotrophic factor (BDNF) levels. Results show that only individuals exposed to high levels of both maternal and peer interactions demonstrated elaborate adult agonistic competencies, i.e. the ability to promptly display a social status, and high BDNF levels in the hippocampus, frontal cortex and hypothalamus. By contrast, only individuals exposed to high levels of peer interactions showed enhanced adult affiliative behavior and enhanced oxytocin receptor levels in selected nuclei of the amygdala. Overall these findings indicate that early interactions with mother and peers independently shape specific facets of adult social behavior and neural systems involved in social interaction.
Collapse
Affiliation(s)
- Igor Branchi
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - James P. Curley
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, New York, NY 10027, USA
| | - Ivana D’Andrea
- Department of Neuro and Cardiovascular Pathology, Neuromed Insitute – Technology Park, 86077 Pozzilli (IS), Italy
| | - Francesca Cirulli
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299,00161 Rome, Italy
| | - Frances A. Champagne
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, New York, NY 10027, USA
| | - Enrico Alleva
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299,00161 Rome, Italy
| |
Collapse
|
292
|
Mamrut S, Harony H, Sood R, Shahar-Gold H, Gainer H, Shi YJ, Barki-Harrington L, Wagner S. DNA methylation of specific CpG sites in the promoter region regulates the transcription of the mouse oxytocin receptor. PLoS One 2013; 8:e56869. [PMID: 23441222 PMCID: PMC3575498 DOI: 10.1371/journal.pone.0056869] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/15/2013] [Indexed: 01/15/2023] Open
Abstract
Oxytocin is a peptide hormone, well known for its role in labor and suckling, and most recently for its involvement in mammalian social behavior. All central and peripheral actions of oxytocin are mediated through the oxytocin receptor, which is the product of a single gene. Transcription of the oxytocin receptor is subject to regulation by gonadal steroid hormones, and is profoundly elevated in the uterus and mammary glands during parturition. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression of the oxytocin receptor in individuals with autism. Here, we hypothesized that transcription of the mouse oxytocin receptor is regulated by DNA methylation of specific sites in its promoter, in a tissue-specific manner. Hypothalamus-derived GT1-7, and mammary-derived 4T1 murine cell lines displayed negative correlations between oxytocin receptor transcription and methylation of the gene promoter, and demethylation caused a significant enhancement of oxytocin receptor transcription in 4T1 cells. Using a reporter gene assay, we showed that methylation of specific sites in the gene promoter, including an estrogen response element, significantly inhibits transcription. Furthermore, methylation of the oxytocin receptor promoter was found to be differentially correlated with oxytocin receptor expression in mammary glands and the uterus of virgin and post-partum mice, suggesting that it plays a distinct role in oxytocin receptor transcription among tissues and under different physiological conditions. Together, these results support the hypothesis that the expression of the mouse oxytocin receptor gene is epigenetically regulated by DNA methylation of its promoter.
Collapse
Affiliation(s)
- Shimrat Mamrut
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Hala Harony
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Rapita Sood
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | - Harold Gainer
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yi-Jun Shi
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Shlomo Wagner
- Department of Neurobiology, University of Haifa, Haifa, Israel
- * E-mail:
| |
Collapse
|
293
|
Fooladi E, Davis SR. An update on the pharmacological management of female sexual dysfunction. Expert Opin Pharmacother 2013; 13:2131-42. [PMID: 22984935 DOI: 10.1517/14656566.2012.725046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Female sexual dysfunction (FSD) is a global health issue, with as many as 12% of women over 18 years old reporting sexual difficulties associated with distress. It is a multifaceted problem with psychological and biological causes. Affected women tend to have an impaired quality of life, a decreased level of well-being and relationship issues. Hence there is a need for management options for affected women. AREAS COVERED This paper focuses on current pharmacological options for the treatment of FSD, particularly estrogens and androgens, which have been extensively studied. Some investigational drugs are also described, including the centrally acting agents such as flibanserin and bupropion, and intravaginal DHEA and testosterone, which may be useful as an alternative for women with specific conditions, such as breast cancer survivors. EXPERT OPINION Although approval for the use of testosterone for treatment of FSD is limited to some European countries and restricted to surgically menopausal women, there is extensive off-label use for this purpose. No other product has yet achieved regulatory approval for treatment of FSD. Completion of studies of nonhormonal FSD therapies and safety studies of testosterone may result in regulatory approval of such products for the treatment of FSD in the near future.
Collapse
Affiliation(s)
- Ensieh Fooladi
- Women's Health Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia.
| | | |
Collapse
|
294
|
Coffey CM, Solleveld PA, Fang J, Roberts AK, Hong SK, Dawid IB, Laverriere CE, Glasgow E. Novel oxytocin gene expression in the hindbrain is induced by alcohol exposure: transgenic zebrafish enable visualization of sensitive neurons. PLoS One 2013; 8:e53991. [PMID: 23342055 PMCID: PMC3544674 DOI: 10.1371/journal.pone.0053991] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/07/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Fetal Alcohol Spectrum Disorders (FASD) are a collection of disorders resulting from fetal ethanol exposure, which causes a wide range of physical, neurological and behavioral deficits including heightened susceptibility for alcoholism and addictive disorders. While a number of mechanisms have been proposed for how ethanol exposure disrupts brain development, with selective groups of neurons undergoing reduced proliferation, dysfunction and death, the induction of a new neurotransmitter phenotype by ethanol exposure has not yet been reported. PRINCIPAL FINDINGS The effects of embryonic and larval ethanol exposure on brain development were visually monitored using transgenic zebrafish expressing cell-specific green fluorescent protein (GFP) marker genes. Specific subsets of GFP-expressing neurons were highly sensitive to ethanol exposure, but only during defined developmental windows. In the med12 mutant, which affects the Mediator co-activator complex component Med12, exposure to lower concentrations of ethanol was sufficient to reduce GFP expression in transgenic embryos. In transgenic embryos and larva containing GFP driven by an oxytocin-like (oxtl) promoter, ethanol exposure dramatically up-regulated GFP expression in a small group of hindbrain neurons, while having no effect on expression in the neuroendocrine preoptic area. CONCLUSIONS Alcohol exposure during limited embryonic periods impedes the development of specific, identifiable groups of neurons, and the med12 mutation sensitizes these neurons to the deleterious effects of ethanol. In contrast, ethanol exposure induces oxtl expression in the hindbrain, a finding with profound implications for understanding alcoholism and other addictive disorders.
Collapse
Affiliation(s)
- Caitrín M. Coffey
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Patricia A. Solleveld
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Joyce Fang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Antonia K. Roberts
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Sung-Kook Hong
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Molecular Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Igor B. Dawid
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Caroline E. Laverriere
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Eric Glasgow
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| |
Collapse
|
295
|
Oxytocin promotes long-term potentiation by enhancing epidermal growth factor receptor-mediated local translation of protein kinase Mζ. J Neurosci 2013; 32:15476-88. [PMID: 23115185 DOI: 10.1523/jneurosci.2429-12.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In addition to triggering the birthing process and milk release, the hypothalamic neuropeptide oxytocin (OXT) plays an important role in the regulation of complex social cognition and behavior. Previous work has shown that OXT can regulate hippocampal synaptic plasticity and improve hippocampus-dependent cognitive functions in the female mice, but the underlying mechanisms remain largely unclear. Here, we demonstrate that OXT promotes the maintenance of long-term potentiation (LTP) induced by one train of tetanic stimulation (TS) in the CA1 region of hippocampal slices from both nulliparous female and male rats through a previously unknown mechanism involving OXT receptor (OXTR)-dependent and epidermal growth factor receptor (EGFR)-mediated local translation of an atypical protein kinase C isoform, protein kinase Mζ (PKMζ), in dendrites. Using pharmacological and biochemical approaches, we show that both the conventional OXTR-associated signaling pathway (G(q/11)-coupled phospholipase C) and the transactivated EGFR downstream signaling pathways (phosphatidylinositol 3 kinase and extracellular signal-regulated kinase 1/2) are involved in the regulation of OXT. In addition, OXT stimulates local dendritic PKMζ mRNA translation via activation of a mammalian target of rapamycin-regulated mechanism. Furthermore, blockade of OXTR results in a modest decrease in the ability to maintain late-phase LTP induced by three trains of TS. These results reveal a novel OXTR-to-EGFR communication to regulate the new synthesis of PKMζ, which functions to promote the maintenance of LTP at hippocampal CA1 synapses.
Collapse
|
296
|
Modabbernia A, Rezaei F, Salehi B, Jafarinia M, Ashrafi M, Tabrizi M, Hosseini SMR, Tajdini M, Ghaleiha A, Akhondzadeh S. Intranasal oxytocin as an adjunct to risperidone in patients with schizophrenia : an 8-week, randomized, double-blind, placebo-controlled study. CNS Drugs 2013; 27:57-65. [PMID: 23233269 DOI: 10.1007/s40263-012-0022-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Impairment of oxytocinergic function and/or oxytocin receptor genetic abnormalities has been demonstrated in patients with schizophrenia. Oxytocin reverses emotional recognition deficit and might restore sense of trust in patients with schizophrenia. Some short-term studies have shown efficacy and tolerability of oxytocin in patients with schizophrenia. However, there is a lack of evidence on the efficacy and tolerability of oxytocin in patients with schizophrenia beyond 3 weeks. OBJECTIVE The objective of this study was to assess the efficacy and tolerability of oxytocin intranasal spray (given as an adjuvant to risperidone) in patients with schizophrenia. STUDY DESIGN This was an 8-week, randomized, double-blind, placebo-controlled study. STUDY SETTING Inpatients of two large referral psychiatric hospitals in Iran were recruited for the study. PATIENTS Forty patients (male and female gender) aged 18-50 years with a diagnosis of schizophrenia (DSM-IV-TR) who were on a stable dose of risperidone for a minimum of 1 month and who were chronically partially responsive to antipsychotic monotherapy were included in the study. INTERVENTIONS The patients were randomly assigned to oxytocin intranasal spray (Syntocinon(®); Novartis, Basel, Switzerland) or placebo intranasal spray containing normal saline (ACER, Tehran, Iran) for 8 weeks. Oxytocin spray was administered as 20 IU (five sprays) twice a day for the first week followed by 40 IU (ten sprays) twice a day for the following 7 weeks. Placebo spray was administered at the same dose as the oxytocin spray. In addition, participants were on a stable dose of risperidone (5 or 6 mg/day). OUTCOMES The patients were assessed using Positive and Negative Syndrome Scale (PANSS) at baseline and at weeks 0, 2, 4, 6 and 8. Primary outcomes were the differences in the PANSS scores between the two groups at the end of the trial. Adverse effects were recorded using a checklist and the Extrapyramidal Symptom Rating Scale (ESRS) at baseline and at weeks 1, 2, 4, 6 and 8. RESULTS All patients had at least one post-baseline measurement and 37 patients (19 in the oxytocin and 18 in the placebo group) completed the study. Repeated measure analysis of variance showed significant effect for time X treatment interaction on the PANSS total [F(2.291,87.065) = 22.124, p < 0.001], positive [F(1.285,48.825) = 11.655, p = 0.001], negative [F(2.754,104.649) = 11.818, p < 0.001] and general psychopathology [F(1.627,61.839) = 4.022, p = 0.03] subscale scores. By week 8, patients in the oxytocin group showed significantly greater improvement on the positive (Cohen's d = 1.2, 20 % vs. 4 % reduction in score, p < 0.001), negative (Cohen's d = 1.4, 7 % vs. 2 % reduction in score, p < 0.001) and general psychopathology (Cohen's d = 0.8, 8 % vs. 2 % reduction in score, p = 0.021) subscales and total (Cohen's d = 1.9, 11 % vs. 2 % reduction in score, p < 0.001) PANSS scores than the placebo group. Adverse effects including the sodium concentration change were similar between the two groups. CONCLUSION Oxytocin as an adjunct to risperidone tolerably and efficaciously improves positive symptoms of schizophrenia. In addition, effects on negative and total psychopathology scores were statistically significant, but likely to be clinically insignificant. The interesting findings from the present pilot study need further replication in a larger population of patients.
Collapse
Affiliation(s)
- Amirhossein Modabbernia
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran, 13337, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Abstract
The paper highlights the significance of Gandhian concepts in research in psychology and its related fields. To illustrate the application of Gandhian ideology, a test of non-violence is described here with its psychometric properties. Further, two unexplored research issues having a bearing on clinical psychology and psychiatry have been delineated. Firstly, a call for addressing the mental health problems of non-violent protesters numbering over one billion spread all over the world has been made. And secondly, there is a need for understanding the neurological basis of non-violent form of behavior, for example, the role of oxytocin, to increase the legitimacy of non-violence as adaptive behavior.
Collapse
Affiliation(s)
- Vinod K Kool
- Department of Social and Behavioral Sciences, SUNY Institute of Technology, NY, USA
| |
Collapse
|
298
|
U-shaped relation between plasma oxytocin levels and behavior in the trust game. PLoS One 2012; 7:e51095. [PMID: 23227239 PMCID: PMC3515439 DOI: 10.1371/journal.pone.0051095] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Trust underpins much of social and economic exchanges across human societies. In experimental economics, the Trust Game has served as the workhorse for the study of trust in a controlled incentivized setting. Recent evidence using intranasal drug administration, aka ‘sniffing’, suggests that oxytocin (OT) can function as a social hormone facilitating trust and other affiliative behaviors. Here we hypothesized that baseline plasma OT is a biomarker that partially predicts the degree of trust and trustworthiness observed in the trust game. Using a large sample of 1,158 participants, we observed a significant U-shaped relationship between plasma OT with the level of trust, and marginally with the level of trustworthiness, especially among males. Specifically, subjects with more extreme levels of plasma OT were more likely to be trusting as well as trustworthy than those with moderate levels of plasma OT. Our results contribute to a deeper understanding of the biological basis of human trust and underscore the usefulness of peripheral plasma OT measures in characterizing human social behavior.
Collapse
|
299
|
Pedersen CA, Smedley KL, Leserman J, Jarskog LF, Rau SW, Kampov-Polevoi A, Casey RL, Fender T, Garbutt JC. Intranasal oxytocin blocks alcohol withdrawal in human subjects. Alcohol Clin Exp Res 2012; 37:484-9. [PMID: 23025690 DOI: 10.1111/j.1530-0277.2012.01958.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 07/13/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND The neuropeptide, oxytocin (OT), has been reported to block tolerance formation to alcohol and decrease withdrawal symptoms in alcohol-dependent rodents. Numerous recent studies in human subjects indicate that OT administered by the intranasal route penetrates into and exerts effects within the brain. METHODS In a randomized, double-blind clinical trial, intranasal OT (24 IU/dose, N = 7) or placebo (N = 4) was given twice daily for 3 days in alcohol-dependent subjects admitted to a research unit for medical detoxification using Clinical Institute Withdrawal Assessment for Alcohol (CIWA) score-driven PRN administration of lorazepam. Subjects rated themselves on the Alcohol Withdrawal Symptom Checklist (AWSC) each time CIWA scores were obtained. Subjects also completed the Penn Alcohol Craving Scale, an Alcohol Craving Visual Analog Scale (ACVAS) and the Profile of Mood States (POMS) on inpatient days 2 and 3. RESULTS All subjects had drunk heavily each day for at least 2 weeks prior to study and had previously experienced withdrawal upon stopping/decreasing alcohol consumption. OT was superior to placebo in reducing alcohol withdrawal as evidenced by: less total lorazepam required to complete detoxification (3.4 mg [4.7, SD] vs. 16.5 [4.4], p = 0.0015), lower mean CIWA scores on admission day 1 (4.3 [2.3] vs. 11.8 [0.4], p < 0.0001) and day 2 (3.4 [2.2] vs. 11.1 [3.6], p < 0.002), lower AWSC scores on days 1 and 2 (p < 0.02; p = 0.07), and lower ACVAS ratings (p = 0.01) and lower POMS Tension/Anxiety subscale scores on day 2 (p < 0.01). CONCLUSIONS This is the first demonstration that OT treatment may block alcohol withdrawal in human subjects. Our results are consistent with previous findings in rodents that OT inhibits neuroadaptation to and withdrawal from alcohol. OT could have advantages over benzodiazepines in managing alcohol withdrawal because it may reverse rather than maintain sedative-hypnotic tolerance. It will be important to test whether OT treatment is effective in reducing drinking in alcohol-dependent outpatients.
Collapse
Affiliation(s)
- Cort A Pedersen
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7160, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Caruana DA, Alexander GM, Dudek SM. New insights into the regulation of synaptic plasticity from an unexpected place: hippocampal area CA2. Learn Mem 2012; 19:391-400. [PMID: 22904370 DOI: 10.1101/lm.025304.111] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The search for molecules that restrict synaptic plasticity in the brain has focused primarily on sensory systems during early postnatal development, as critical periods for inducing plasticity in sensory regions are easily defined. The recent discovery that Schaffer collateral inputs to hippocampal area CA2 do not readily support canonical activity-dependent long-term potentiation (LTP) serves as a reminder that the capacity for synaptic modification is also regulated anatomically across different brain regions. Hippocampal CA2 shares features with other similarly "LTP-resistant" brain areas in that many of the genes linked to synaptic function and the associated proteins known to restrict synaptic plasticity are expressed there. Add to this a rich complement of receptors and signaling molecules permissive for induction of atypical forms of synaptic potentiation, and area CA2 becomes an ideal model system for studying specific modulators of brain plasticity. Additionally, recent evidence suggests that hippocampal CA2 is instrumental for certain forms of learning, memory, and social behavior, but the links between CA2-enriched molecules and putative CA2-dependent behaviors are only just beginning to be made. In this review, we offer a detailed look at what is currently known about the synaptic plasticity in this important, yet largely overlooked component of the hippocampus and consider how the study of CA2 may provide clues to understanding the molecular signals critical to the modulation of synaptic function in different brain regions and across different stages of development.
Collapse
Affiliation(s)
- Douglas A Caruana
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|