251
|
Giachini FR, Galaviz-Hernandez C, Damiano AE, Viana M, Cadavid A, Asturizaga P, Teran E, Clapes S, Alcala M, Bueno J, Calderón-Domínguez M, Ramos MP, Lima VV, Sosa-Macias M, Martinez N, Roberts JM, Escudero C. Vascular Dysfunction in Mother and Offspring During Preeclampsia: Contributions from Latin-American Countries. Curr Hypertens Rep 2017; 19:83. [PMID: 28986756 DOI: 10.1007/s11906-017-0781-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pregnancy is a physiologically stressful condition that generates a series of functional adaptations by the cardiovascular system. The impact of pregnancy on this system persists from conception beyond birth. Recent evidence suggests that vascular changes associated with pregnancy complications, such as preeclampsia, affect the function of the maternal and offspring vascular systems, after delivery and into adult life. Since the vascular system contributes to systemic homeostasis, defective development or function of blood vessels predisposes both mother and infant to future risk for chronic disease. These alterations in later life range from fertility problems to alterations in the central nervous system or immune system, among others. It is important to note that rates of morbi-mortality due to pregnancy complications including preeclampsia, as well as cardiovascular diseases, have a higher incidence in Latin-American countries than in more developed countries. Nonetheless, there is a lack both in the amount and impact of research conducted in Latin America. An impact, although smaller, can be seen when research in vascular disorders related to problems during pregnancy is analyzed. Therefore, in this review, information about preeclampsia and endothelial dysfunction generated from research groups based in Latin-American countries will be highlighted. We relate the need, as present in many other countries in the world, for increased effective regional and international collaboration to generate new data specific to our region on this topic.
Collapse
Affiliation(s)
- Fernanda Regina Giachini
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidade Federal de Mato Grosso, Barra do Garcas, MT, Brazil
| | | | - Alicia E Damiano
- Laboratorio de Biología de la Reproducción, IFIBIO Houssay-UBA-CONICET, Buenos Aires, Argentina.,Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquimica, UBA, Buenos Aires, Argentina
| | - Marta Viana
- Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Angela Cadavid
- Grupo Reproducción, Departamento de Fisiologia, Facultad de Medicina Universidad de Antioquia, Medellin, Colombia
| | | | - Enrique Teran
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Sonia Clapes
- Universidad de Ciencias Médicas de La Habana, Havana, Cuba
| | - Martin Alcala
- Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Julio Bueno
- Grupo Reproducción, Departamento de Fisiologia, Facultad de Medicina Universidad de Antioquia, Medellin, Colombia
| | - María Calderón-Domínguez
- Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María P Ramos
- Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Victor Vitorino Lima
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidade Federal de Mato Grosso, Barra do Garcas, MT, Brazil
| | - Martha Sosa-Macias
- Pharmacogenomics Academia, Instituto Politécnico Nacional-CIIDIR Durango, Durango, Mexico
| | - Nora Martinez
- Laboratorio de Biología de la Reproducción, IFIBIO Houssay-UBA-CONICET, Buenos Aires, Argentina
| | - James M Roberts
- Magee-Womens Research Institute, Departments of Obstetrics, Gynecology and Reproductive Sciences, Epidemiology, and the Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carlos Escudero
- Vascular Physiology Laboratory Group of Investigation in Tumor Angiogenesis (GIANT) Group of Research and Innovation in Vascular Health (GRIVAS Health) Basic Sciences Department Faculty of Sciences, Universidad del Bio-Bio, Chillan, Chile.
| | | |
Collapse
|
252
|
Ma SL, Tian XY, Wang YQ, Zhang HF, Zhang L. Vitamin D Supplementation Prevents Placental Ischemia Induced Endothelial Dysfunction by Downregulating Placental Soluble FMS-Like Tyrosine Kinase-1. DNA Cell Biol 2017; 36:1134-1141. [PMID: 28981319 DOI: 10.1089/dna.2017.3817] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Maternal vitamin D deficiency in pregnancy has been associated with an increased risk of preeclampsia. Vascular endothelial dysfunction is a major phenotype of pregnancies with preeclampsia, contributing to increased maternal hypertension and proteinuria. We sought to determine whether vitamin D supplementation would alleviate preeclampsia associated endothelial dysfunction and explore the underlying mechanism using the reduced uterine perfusion pressure (RUPP) rat model. RUPP operated rats were supplemented with 1,25(OH)2D (RUPP+VD) on day 1, 7, and 14 of pregnancy by subcutaneous injection. On day 19 of pregnancy, after the measurement of blood pressure and urine collection, maternal blood serum and placenta samples were collected. 1,25(OH)2D treatment significantly improved endothelial dysfunction by reducing apoptosis and increasing nitric oxide (NO) production in blood vessels of RUPP operated rats compared to untreated RUPP rats. 1,25(OH)2D significantly down-regulated the expression of placental soluble FMS-like tyrosine kinase-1 (sFlt-1) in RUPP rats. Furthermore, the circulating sFlt-1 levels in maternal serum were positively correlated with the expression of placental sFlt-1 and were restored to a normal pregnant level by 1,25(OH)2D treatment in RUPP rats. Incubation of endothelial cell line with rat serum from RUPP+VD group significantly increased NO production and decreased caspase-3 activity compared with serum from untreated RUPP rats. Moreover, neutralization of sFlt-1 using the specific antibody mimicked the effect of 1,25(OH)2D, which abolished the deleterious effect of RUPP rat's serum on NO production and apoptosis. These results suggest that vitamin D supplementation is protective against RUPP induced endothelial dysfunction by downregulating placental sFlt-1, which can possibly alleviate preeclampsia associated symptoms.
Collapse
Affiliation(s)
- Su-Ling Ma
- 1 Department of Histology and Embryology, Hebei Medical University , Shijiazhuang, China .,2 Department of Pediatrics, The Second Hospital of Hebei Medical University , Shijiazhuang, China
| | - Xiao-Yu Tian
- 2 Department of Pediatrics, The Second Hospital of Hebei Medical University , Shijiazhuang, China
| | - Ya-Qi Wang
- 1 Department of Histology and Embryology, Hebei Medical University , Shijiazhuang, China
| | - Hui-Feng Zhang
- 2 Department of Pediatrics, The Second Hospital of Hebei Medical University , Shijiazhuang, China
| | - Lei Zhang
- 1 Department of Histology and Embryology, Hebei Medical University , Shijiazhuang, China
| |
Collapse
|
253
|
Mc Lean G, Reyes O, Velarde R. Effects of postpartum uterine curettage in the recovery from Preeclampsia/Eclampsia. A randomized, controlled trial. Pregnancy Hypertens 2017; 10:64-69. [DOI: 10.1016/j.preghy.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/10/2017] [Accepted: 06/04/2017] [Indexed: 10/19/2022]
|
254
|
Zadora J, Singh M, Herse F, Przybyl L, Haase N, Golic M, Yung HW, Huppertz B, Cartwright JE, Whitley G, Johnsen GM, Levi G, Isbruch A, Schulz H, Luft FC, Müller DN, Staff AC, Hurst LD, Dechend R, Izsvák Z. Disturbed Placental Imprinting in Preeclampsia Leads to Altered Expression of DLX5, a Human-Specific Early Trophoblast Marker. Circulation 2017; 136:1824-1839. [PMID: 28904069 PMCID: PMC5671803 DOI: 10.1161/circulationaha.117.028110] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Preeclampsia is a complex and common human-specific pregnancy syndrome associated with placental pathology. The human specificity provides both intellectual and methodological challenges, lacking a robust model system. Given the role of imprinted genes in human placentation and the vulnerability of imprinted genes to loss of imprinting changes, there has been extensive speculation, but no robust evidence, that imprinted genes are involved in preeclampsia. Our study aims to investigate whether disturbed imprinting contributes to preeclampsia. Methods: We first aimed to confirm that preeclampsia is a disease of the placenta by generating and analyzing genome-wide molecular data on well-characterized patient material. We performed high-throughput transcriptome analyses of multiple placenta samples from healthy controls and patients with preeclampsia. Next, we identified differentially expressed genes in preeclamptic placentas and intersected them with the list of human imprinted genes. We used bioinformatics/statistical analyses to confirm association between imprinting and preeclampsia and to predict biological processes affected in preeclampsia. Validation included epigenetic and cellular assays. In terms of human specificity, we established an in vitro invasion-differentiation trophoblast model. Our comparative phylogenetic analysis involved single-cell transcriptome data of human, macaque, and mouse preimplantation embryogenesis. Results: We found disturbed placental imprinting in preeclampsia and revealed potential candidates, including GATA3 and DLX5, with poorly explored imprinted status and no prior association with preeclampsia. As a result of loss of imprinting, DLX5 was upregulated in 69% of preeclamptic placentas. Levels of DLX5 correlated with classic preeclampsia markers. DLX5 is expressed in human but not in murine trophoblast. The DLX5high phenotype resulted in reduced proliferation, increased metabolism, and endoplasmic reticulum stress-response activation in trophoblasts in vitro. The transcriptional profile of such cells mimics the transcriptome of preeclamptic placentas. Pan-mammalian comparative analysis identified DLX5 as part of the human-specific regulatory network of trophoblast differentiation. Conclusions: Our analysis provides evidence of a true association among disturbed imprinting, gene expression, and preeclampsia. As a result of disturbed imprinting, the upregulated DLX5 affects trophoblast proliferation. Our in vitro model might fill a vital niche in preeclampsia research. Human-specific regulatory circuitry of DLX5 might help explain certain aspects of preeclampsia.
Collapse
Affiliation(s)
- Julianna Zadora
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Manvendra Singh
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Florian Herse
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Lukasz Przybyl
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Nadine Haase
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Michaela Golic
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Hong Wa Yung
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Berthold Huppertz
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Judith E Cartwright
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Guy Whitley
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Guro M Johnsen
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Giovanni Levi
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Annette Isbruch
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Herbert Schulz
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Friedrich C Luft
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Dominik N Müller
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Anne Cathrine Staff
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.)
| | - Laurence D Hurst
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.).
| | - Ralf Dechend
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.).
| | - Zsuzsanna Izsvák
- From Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.Z., M.S., F.H., N.H., D.N.M., Z.I.); Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Germany (J.Z., F.H., L.P., N.H., M.G., H.S., F.C.L., D.N.M., R.D.); Berlin Institute of Health, Germany (J.Z., F.H., L.P., N.H., M.G., F.C.L., D.N.M., R.D., Z.I.); Department of Obstetrics and Department of Gynecology, Charité-Universitätsmedizin Berlin, Germany (M.G.); German Centre for Cardiovascular Research, partner site Berlin, Germany (N.H., D.N.M.); Centre for Trophoblast Research, University of Cambridge, UK (H.W.Y.); Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria (B.H.); Molecular and Clinical Sciences Research Institute, St George's University of London, UK (J.E.C., G.W.); Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway (G.M.J., A.C.S.); University of Oslo, Norway (G.M.J., A.C.S.); Évolution des Régulations Endocriniennes, Muséum Nationale d'Histoire Naturelle, Paris, France (G.L.); HELIOS-Klinikum, Berlin, Germany (A.I., R.D.); Cologne Center for Genomics, University of Cologne, Germany (H.S.); and Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, UK (L.D.H.).
| |
Collapse
|
255
|
Park YG, Choi J, Jung HK, Song IK, Shin Y, Park SY, Seol JW. Fluid shear stress regulates vascular remodeling via VEGFR-3 activation, although independently of its ligand, VEGF-C, in the uterus during pregnancy. Int J Mol Med 2017; 40:1210-1216. [PMID: 28849193 PMCID: PMC5593466 DOI: 10.3892/ijmm.2017.3108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/22/2017] [Indexed: 11/06/2022] Open
Abstract
Early pregnancy is characterized by an increase in the blood volume of the uterus for embryonic development, thereby exerting fluid shear stress (FSS) on the vascular walls. The uterus experiences vascular remodeling to accommodate the increased blood flow. The blood flow-induced FSS elevates the expression of vascular endothelial growth factors (VEGFs) and their receptors, and regulates vascular remodeling through the activation of VEGF receptor-3 (VEGFR-3). However, the mechanisms responsible for FSS-induced VEGFR-3 expression in the uterus during pregnancy are unclear. In this study, we demonstrate that vascular remodeling in the uterus during pregnancy is regulated by FSS-induced VEGFR-3 expression. We examined the association between VEGFR-3 and FSS through in vivo and in vitro experiments. In vivo experiments revealed VEGFR-3 expression in the CD31-positive region of the uterus of pregnant mice; VEGF-C (ligand for VEGFR-3) was undetected in the uterus. These results confirmed that VEGFR-3 expression in the endometrium is independent of its ligand. In vitro studies experiments revealed that FSS induced morphological changes and increased VEGFR-3 expression in human uterine microvascular endothelial cells. Thus, VEGFR-3 activation by FSS is associated with vascular remodeling to allow increased blood flow in the uterus during pregnancy.
Collapse
Affiliation(s)
- Yang-Gyu Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - Jawun Choi
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - Hye-Kang Jung
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - In Kyu Song
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - Yongwhan Shin
- Auckland International College, Auckland 0600, New Zealand
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jwonbuk 54596, Republic of Korea
| |
Collapse
|
256
|
Cai M, Kolluru GK, Ahmed A. Small Molecule, Big Prospects: MicroRNA in Pregnancy and Its Complications. J Pregnancy 2017; 2017:6972732. [PMID: 28713594 PMCID: PMC5496128 DOI: 10.1155/2017/6972732] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/18/2017] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs are small, noncoding RNA molecules that regulate target gene expression in the posttranscriptional level. Unlike siRNA, microRNAs are "fine-tuners" rather than "switches" in the regulation of gene expression; thus they play key roles in maintaining tissue homeostasis. The aberrant microRNA expression is implicated in the disease process. To date, numerous studies have demonstrated the regulatory roles of microRNAs in various pathophysiological conditions. In contrast, the study of microRNA in pregnancy and its associated complications, such as preeclampsia (PE), fetal growth restriction (FGR), and preterm labor, is a young field. Over the last decade, the knowledge of pregnancy-related microRNAs has increased and the molecular mechanisms by which microRNAs regulate pregnancy or its associated complications are emerging. In this review, we focus on the recent advances in the research of pregnancy-related microRNAs, especially their function in pregnancy-associated complications and the potential clinical applications. Here microRNAs that associate with pregnancy are classified as placenta-specific, placenta-associated, placenta-derived circulating, and uterine microRNA according to their localization and origin. MicroRNAs offer a great potential for developing diagnostic and therapeutic targets in pregnancy-related disorders.
Collapse
Affiliation(s)
- Meng Cai
- Aston Medical Research Institute, Aston Medical School, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Gopi K. Kolluru
- Aston Medical Research Institute, Aston Medical School, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Asif Ahmed
- Aston Medical Research Institute, Aston Medical School, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
257
|
Manokhina I, Del Gobbo GF, Konwar C, Wilson SL, Robinson WP. Review: placental biomarkers for assessing fetal health. Hum Mol Genet 2017; 26:R237-R245. [DOI: 10.1093/hmg/ddx210] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022] Open
|
258
|
Zhang Z, Wang X, Zhang L, Shi Y, Wang J, Yan H. Wnt/β-catenin signaling pathway in trophoblasts and abnormal activation in preeclampsia (Review). Mol Med Rep 2017; 16:1007-1013. [PMID: 29067442 DOI: 10.3892/mmr.2017.6718] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/13/2017] [Indexed: 11/06/2022] Open
Abstract
Preeclampsia (PE) is one of the most common types of hypertensive disease and occurs in 3‑4% of pregnancies. There are a number of theories on the pathogenesis of PE. Abnormal differentiation of the placenta may lead to failure of trophoblast migration, shallow placenta implantation and placental ischemia/hypoxia, followed by the subsequent occurrence of PE. The Wnt/β-catenin pathway is a canonical Wnt‑signaling pathway that regulates several biological processes, including proliferation, migration, invasion and apoptosis. Abnormal activation of the Wnt/β‑catenin signaling pathway may serve an important role in the pathogenesis of various human diseases, particularly in human cancer. Recent studies have demonstrated that the dysregulation of the Wnt/β‑catenin signaling pathway may contribute to PE. The present review aims to summarize the articles on Wnt/β‑catenin signaling pathway in the trophoblast and abnormal activation in PE. Wnt/β-catenin signaling may serve a significant role in the pathogenesis of PE and may be a prospective therapeutic target for the prevention and treatment of PE.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaofang Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Linlin Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ying Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jinming Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huan Yan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
259
|
Chen J, Khalil RA. Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:87-165. [PMID: 28662830 PMCID: PMC5548443 DOI: 10.1016/bs.pmbts.2017.04.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Normal pregnancy is associated with marked hemodynamic and uterine changes that allow adequate uteroplacental blood flow and uterine expansion for the growing fetus. These pregnancy-associated changes involve significant uteroplacental and vascular remodeling. Matrix metalloproteinases (MMPs) are important regulators of vascular and uterine remodeling. Increases in MMP-2 and MMP-9 have been implicated in vasodilation, placentation, and uterine expansion during normal pregnancy. The increases in MMPs could be induced by the increased production of estrogen and progesterone during pregnancy. MMP expression/activity may be altered during complications of pregnancy. Decreased vascular MMP-2 and MMP-9 may lead to decreased vasodilation, increased vasoconstriction, hypertensive pregnancy, and preeclampsia. Abnormal expression of uteroplacental integrins, cytokines, and MMPs may lead to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate remodeling of spiral arteries, and reduced uterine perfusion pressure (RUPP). RUPP may cause imbalance between the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the proangiogenic vascular endothelial growth factor and placental growth factor, or stimulate the release of inflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could target MMPs in the extracellular matrix as well as endothelial and vascular smooth muscle cells, causing generalized vascular dysfunction, increased vasoconstriction and hypertension in pregnancy. MMP activity can also be altered by endogenous tissue inhibitors of metalloproteinases (TIMPs) and changes in the MMP/TIMP ratio. In addition to their vascular effects, decreases in expression/activity of MMP-2 and MMP-9 in the uterus could impede uterine growth and expansion and lead to premature labor. Understanding the role of MMPs in uteroplacental and vascular remodeling and function could help design new approaches for prediction and management of preeclampsia and premature labor.
Collapse
Affiliation(s)
- Juanjuan Chen
- Vascular Surgery Research Laboratories, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
260
|
DLX3 interacts with GCM1 and inhibits its transactivation-stimulating activity in a homeodomain-dependent manner in human trophoblast-derived cells. Sci Rep 2017; 7:2009. [PMID: 28515447 PMCID: PMC5435702 DOI: 10.1038/s41598-017-02120-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/06/2017] [Indexed: 11/25/2022] Open
Abstract
The placental transcription factors Distal-less 3 (DLX3) and Glial cell missing-1 (GCM1) have been shown to coordinate the specific regulation of PGF in human trophoblast cell lines. While both factors independently have a positive effect on PGF gene expression, when combined, DLX3 acts as an antagonist to GCM. Despite this understanding, potential mechanisms accounting for this regulatory interaction remain unexplored. We identify physical and functional interactions between specific domains of DLX3 and GCM1 in human trophoblast-derived cells by performing immunoprecipitation and mammalian one hybrid assays. Studies revealed that DLX3 binding reduced the transcriptional activity of GCM1, providing a mechanistic explanation of their functional antagonism in regulating PGF promoter activity. The DLX3 homeodomain (HD) was essential for DLX3-GCM1 interaction, and that the HD together with the DLX3 amino- or carboxyl-terminal domains was required for maximal inhibition of GCM1. Interestingly, a naturally occurring DLX3 mutant that disrupts the carboxyl-terminal domain leading to tricho-dento-osseous syndrome in humans displayed activities indistinguishable from wild type DLX3 in this system. Collectively, our studies demonstrate that DLX3 physically interacts with GCM1 and inhibits its transactivation activity, suggesting that DLX3 and GCM1 may form a complex to functionally regulate placental cell function through modulation of target gene expression.
Collapse
|
261
|
Salimi S, Mohammadpour-Gharehbagh A, Rezaei M, Sajadian M, Teimoori B, Yazdi A, Mokhtari M, Yaghmaei M. The MDM2 promoter T309G polymorphism was associated with preeclampsia susceptibility. J Assist Reprod Genet 2017; 34:951-956. [PMID: 28508227 DOI: 10.1007/s10815-017-0941-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/30/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Preeclampsia (PE) is a hypertensive disorder of pregnancy in which abnormal proliferation and apoptosis of placenta trophoblast has a pivotal role in its pathophysiology. The aim of the current study was to examine the association between Mouse Double Minute 2 (MDM2) T309G and 40 bp insertion/deletion (I/D) polymorphisms and PE risk. METHODS A case-control study was conducted on 208 PE women and 164 healthy pregnant women matching age, sex, and ethnicity. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and PCR methods were used for genotyping. RESULTS The MDM2 309GG genotype was associated with PE, and this genotype was found to be a risk factor for PE. There was no association between the MDM2 I/D polymorphism and PE. The haplotype-based association analysis revealed no association between MDM2 T309G and 40 bp I/D polymorphisms and PE. The frequency of TT-DD and GG-DD combined genotypes were significantly higher in PE women with marginal P values (P = 0.046). CONCLUSIONS The MDM2 309GG genotype was associated with higher risk of PE. The TT-DD and GG-DD combined genotypes were higher in PE women.
Collapse
Affiliation(s)
- Saeedeh Salimi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine and Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Abbas Mohammadpour-Gharehbagh
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran. .,Department of Clinical Biochemistry, School of Medicine and Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahnaz Rezaei
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine and Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mojtaba Sajadian
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine and Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Batool Teimoori
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Atefeh Yazdi
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mojgan Mokhtari
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Minoo Yaghmaei
- Department of Obstetrics and Gynecology, School of Medicine, Shahid Beheshty University of Medical Sciences, Tehran, Iran
| |
Collapse
|
262
|
Alam SMK, Jasti S, Kshirsagar SK, Tannetta DS, Dragovic RA, Redman CW, Sargent IL, Hodes HC, Nauser TL, Fortes T, Filler AM, Behan K, Martin DR, Fields TA, Petroff BK, Petroff MG. Trophoblast Glycoprotein (TPGB/5T4) in Human Placenta: Expression, Regulation, and Presence in Extracellular Microvesicles and Exosomes. Reprod Sci 2017; 25:185-197. [PMID: 28481180 DOI: 10.1177/1933719117707053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Many parallels exist between growth and development of the placenta and that of cancer. One parallel is shared expression of antigens that may have functional importance and may be recognized by the immune system. Here, we characterize expression and regulation of one such antigen, Trophoblast glycoprotein (TPGB; also called 5T4), in the placenta across gestation, in placentas of preeclamptic (PE) pregnancies, and in purified microvesicles and exosomes. METHODS Trophoblast glycoprotein expression was analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immunohistochemistry. Regulation of 5T4 in cytotrophoblast cells was examined under either differentiating conditions of epidermal growth factor or under varying oxygen conditions. Microvesicles and exosomes were purified from supernatant of cultured and perfused placentas. RESULTS Trophoblast glycoprotein expression was prominent at the microvillus surface of syncytiotrophoblast and on the extravillous trophoblast cells, with minimal expression in undifferentiated cytotrophoblasts and normal tissues. Trophoblast glycoprotein expression was elevated in malignant tumors. In cytotrophoblasts, 5T4 was induced by in vitro differentiation, and its messenger RNA (mRNA) was increased under conditions of low oxygen. PE placentas expressed higher 5T4 mRNA than matched control placentas. Trophoblast glycoprotein was prominent within shed placental microvesicles and exosomes. CONCLUSION Given the potential functional and known immunological importance of 5T4 in cancer, these studies reveal a class of proteins that may influence placental development and/or sensitize the maternal immune system. In extravillous trophoblasts, 5T4 may function in epithelial-to-mesenchymal transition during placentation. The role of syncytiotrophoblast 5T4 is unknown, but its abundance in shed syncytial vesicles may signify route of sensitization of the maternal immune system.
Collapse
Affiliation(s)
- S M K Alam
- 1 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,2 Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - S Jasti
- 1 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - S K Kshirsagar
- 3 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - D S Tannetta
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - R A Dragovic
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - C W Redman
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - I L Sargent
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - H C Hodes
- 5 Center for Women's Health, Overland Park, KS, USA
| | - T L Nauser
- 5 Center for Women's Health, Overland Park, KS, USA
| | - T Fortes
- 6 Sparrow Hospital, Lansing, MI, USA.,7 College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - A M Filler
- 6 Sparrow Hospital, Lansing, MI, USA.,7 College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - K Behan
- 7 College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | | | - T A Fields
- 8 Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - B K Petroff
- 3 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,9 Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
| | - M G Petroff
- 1 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,3 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,10 Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
263
|
Zhu L, Baczyk D, Lye SJ, Zhang Z. Preeclampsia is associated with low placental transthyretin levels. Taiwan J Obstet Gynecol 2017; 55:385-9. [PMID: 27343320 DOI: 10.1016/j.tjog.2016.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2014] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To investigate the relationship between placental transthyretin (TTR) level and preeclampsia. MATERIALS AND METHODS Placental tissues from uncomplicated and preeclamptic pregnancies were analyzed using immunohistochemistry and image analysis. We measured the mean optical density (OD) of immunohistochemical staining of TTR across multiple sections using Image Pro Plus 6.0. To avoid bias, we used placental tissue array, which contained preeclamptic placentas (n=8) and the control placentas (n=6) on the same slide. RESULTS The mean TTR OD of the syncytiotrophoblast layer of placentas (95% confidence interval) from the first trimester was higher than those from the second/third trimester, and term placentas [0.149 (0.014-0.285) for the 1(st) trimester, 0.037 (0.000-0.073) for the 2(nd)/3(rd) trimester, and 0.011 (0.035-0.056) for term; p<0.01]. Although the OD of the second/third trimester placentas appeared greater than that of term placentas, this was not statistically significant. The mean TTR OD of the syncytiotrophoblast layer of the severe preeclampsia group was lower than that of controls [0.010 (0.005-0.016) vs. 0.027 (0.013-0.041), p<0.05]. CONCLUSION The immunohistochemical expression of TTR in the syncytiotrophoblast layer of the placenta decreased significantly after 12 weeks of gestation, paralleling the changing demands of thyroid hormone uptake into the placenta. The reduced TTR expression in the syncytiotrophoblast layer of the preeclamptic placenta might impair thyroid hormone uptake and contribute to the pathophysiology of the disease.
Collapse
Affiliation(s)
- Lei Zhu
- Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing, China
| | - Dora Baczyk
- Research Centre for Women's and Infants' Health at the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health at the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| | - Zhenyu Zhang
- Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing, China.
| |
Collapse
|
264
|
Dove ES, Kelly SE, Lucivero F, Machirori M, Dheensa S, Prainsack B. Beyond individualism: Is there a place for relational autonomy in clinical practice and research? ACTA ACUST UNITED AC 2017; 12:150-165. [PMID: 28989327 PMCID: PMC5603969 DOI: 10.1177/1477750917704156] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dominant, individualistic understanding of autonomy that features in clinical practice and research is underpinned by the idea that people are, in their ideal form, independent, self-interested and rational gain-maximising decision-makers. In recent decades, this paradigm has been challenged from various disciplinary and intellectual directions. Proponents of ‘relational autonomy’ in particular have argued that people’s identities, needs, interests – and indeed autonomy – are always also shaped by their relations to others. Yet, despite the pronounced and nuanced critique directed at an individualistic understanding of autonomy, this critique has had very little effect on ethical and legal instruments in clinical practice and research so far. In this article, we use four case studies to explore to what extent, if at all, relational autonomy can provide solutions to ethical and practical problems in clinical practice and research. We conclude that certain forms of relational autonomy can have a tangible and positive impact on clinical practice and research. These solutions leave the ultimate decision to the person most affected, but encourage and facilitate the consideration of this person’s care and responsibility for connected others.
Collapse
Affiliation(s)
- Edward S Dove
- J. Kenyon Mason Institute for Medicine, Life Sciences and the Law, School of Law, University of Edinburgh, UK
| | - Susan E Kelly
- Department of Sociology, Philosophy and Anthropology, College of Social Sciences and International Studies, University of Exeter, UK
| | - Federica Lucivero
- Department of Global Health & Social Medicine, Faculty of Social Science & Public Policy, King's College London, UK
| | | | - Sandi Dheensa
- Clinical Ethics and Law, Faculty of Medicine, University of Southampton, UK
| | - Barbara Prainsack
- Department of Global Health & Social Medicine, Faculty of Social Science & Public Policy, King's College London, UK
| |
Collapse
|
265
|
Gunel T, Hosseini MK, Gumusoglu E, Kisakesen HI, Benian A, Aydinli K. Expression profiling of maternal plasma and placenta microRNAs in preeclamptic pregnancies by microarray technology. Placenta 2017; 52:77-85. [PMID: 28454701 DOI: 10.1016/j.placenta.2017.02.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
Preeclampsia (PE) is one of the leading causes of maternal and fetal morbidity and mortality, occurring usually in the second half of pregnancy and affecting approximately 5-8% of pregnancies in the world. miRNAs play critical role in the regulation of placental development processes. We aimed to determine specific novel miRNAs for early diagnosis of preeclampsia which is one of the most dangerous pregnancy diseases. In this study 72 samples, maternal age 22 ≤ and ≤36, have been analyzed; maternal plasma and placental miRNAs were isolated from 18 severe preeclampsia (sPE) patients and 18 controls, respectively. Profiling of human miRNAs (1368 probe) was performed in samples with Agilent v16 microarrays for detection of the differences in miRNA expression between two groups. The results were validated by using TaqMan RT-qPCR method. The analysis indicated that 406 of these miRNAs in all placentas and 42 of these miRNAs in all maternal plasma were expressed. The relative expression analysis has shown that 12 miRNAs (p < 0.05 and >2-fold) in maternal plasma were differentially expressed in PE and control group. However, five miRNAs were validated by qRT-PCR. Once validated miRNAs have been searched in databases for their target genes and function, it has been shown that there are some preeclampsia related pathways as a target such as angiogenesis, cardiovascular, hypertension, placental abruption and preeclampsia disorders. Differentially expressed and validated plasma miRNAs might be used as notable biomarkers for non-invasive early diagnosis of preeclampsia and treatment of disease.
Collapse
Affiliation(s)
- Tuba Gunel
- Istanbul University, Faculty of Science, Department of Molecular Biology and Genetics, Istanbul, Turkey.
| | - Mohammad Kazem Hosseini
- Istanbul University, Faculty of Science, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Ece Gumusoglu
- Istanbul University, Faculty of Science, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Halil Ibrahim Kisakesen
- Istanbul Technical University, Faculty of Science, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Ali Benian
- Istanbul University, Department of Obstetrics and Gynecology, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | | |
Collapse
|
266
|
Stanek J. Decidual arteriolopathy with or without associated hypertension modifies the underlying histomorphology in placentas from diabetic mothers. J Obstet Gynaecol Res 2017; 43:839-847. [PMID: 28127876 DOI: 10.1111/jog.13276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/29/2016] [Accepted: 12/03/2016] [Indexed: 12/13/2022]
Abstract
AIM The aim of this study was to retrospectively document the impact of hypertensive conditions in pregnancy and decidual arteriolopathy on the patterns of placental injury in maternal diabetes mellitus (MDM). METHODS Among all 5248 > 20 weeks' placentas, the frequencies of 19 selected clinical and 24 placental phenotypes were compared between 287 MDM placentas and 4961 remaining placentas (control group [CG]) before and after further exclusion of 85 and 611 patients with hypertensive conditions (gestational hypertension, pre-eclampsia, chronic hypertension). RESULTS Cesarean section rate, heavy placentas, decidual arteriolopathy, microscopic chorionic pseudocysts, and chorangiosis were more common in MDM than in the CG both before and after exclusion of hypertensive conditions. The frequencies of preuterine patterns of chronic hypoxic placental injury and plasma cell deciduitis became statistically significant only after exclusion of hypertensive conditions. CONCLUSION Hypertensive conditions of pregnancy may obscure the underlying preuterine placental hypoxic pattern in MDM placentas. Even in normotensive patients, decidual arteriolopathy, and shallow placental implantation significantly impact placental histomorphology in MDM.
Collapse
Affiliation(s)
- Jerzy Stanek
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
267
|
von Dadelszen P, Magee LA. Preventing deaths due to the hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol 2016; 36:83-102. [PMID: 27531686 PMCID: PMC5096310 DOI: 10.1016/j.bpobgyn.2016.05.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 02/08/2023]
Abstract
In this chapter, taking a life cycle and both civil society and medically oriented approach, we will discuss the contribution of the hypertensive disorders of pregnancy (HDPs) to maternal, perinatal and newborn mortality and morbidity. Here we review various interventions and approaches to preventing deaths due to HDPs and discuss effectiveness, resource needs and long-term sustainability of the different approaches. Societal approaches, addressing sustainable development goals (SDGs) 2.2 (malnutrition), 3.7 (access to sexual and reproductive care), 3.8 (universal health coverage) and 3c (health workforce strengthening), are required to achieve SDGs 3.1 (maternal survival), 3.2 (perinatal survival) and 3.4 (reduced impact of non-communicable diseases (NCDs)). Medical solutions require greater clarity around the classification of the HDPs, increased frequency of effective antenatal visits, mandatory responses to the HDPs when encountered, prompt provision of life-saving interventions and sustained surveillance for NCD risk for women with a history of the HDPs.
Collapse
Affiliation(s)
- Peter von Dadelszen
- Institute of Cardiovascular and Cell Sciences, St George's University of London, UK; Department of Obstetrics and Gynaecology, St George's University Hospitals NHS Foundation Trust, London, UK.
| | - Laura A Magee
- Institute of Cardiovascular and Cell Sciences, St George's University of London, UK; Department of Obstetrics and Gynaecology, St George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
268
|
Acurio J, Herlitz K, Troncoso F, Aguayo C, Bertoglia P, Escudero C. Adenosine A 2A receptor regulates expression of vascular endothelial growth factor in feto-placental endothelium from normal and late-onset pre-eclamptic pregnancies. Purinergic Signal 2016; 13:51-60. [PMID: 27696086 DOI: 10.1007/s11302-016-9538-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022] Open
Abstract
We aim to investigate whether A2A/nitric oxide-mediated regulation of vascular endothelial growth factor (VEGF) expression is impaired in feto-placental endothelial cells from late-onset pre-eclampsia. Cultures of human umbilical vein endothelial cells (HUVECs) and human placental microvascular endothelial cells (hPMECs) from normal and pre-eclamptic pregnancies were used. Assays by using small interference RNA (siRNA) for A2A were performed, and transfected cells were used for estimation of messenger RNA (mRNA) levels of VEGF, as well as for cell proliferation and angiogenesis in vitro. CGS-21680 (A2A agonist, 24 h) increases HUVEC and hPMEC proliferation in a dose response manner. Furthermore, similar to CGS-21680, the nitric oxide donor, S-nitroso-N-acetyl-penicillamine oxide (SNAP), increased cell proliferation in a dose response manner (logEC50 10-9.2 M). In hPMEC, CGS-21680 increased VEGF protein levels in both normal (∼1.5-fold) and pre-eclamptic pregnancies (∼1.2-fold), an effect blocked by the A2A antagonist, ZM-241385 (10-5 M) and the inhibitor of NO synthase, N ω-nitro-L-arginine methyl ester hydrochloride (L-NAME). Subsequently, SNAP partially recovered cell proliferation and in vitro angiogenesis capacity of cells from normal pregnancies exposed to siRNA for A2A. CGS-21680 also increased (∼1.5-fold) the level of VEGF mRNA in HUVEC from normal pregnancies, but not in pre-eclampsia. Additionally, transfection with siRNA for A2A decrease (∼30 %) the level of mRNA for VEGF in normal pregnancy compared to untransfected cells, an effect partially reversed by co-incubation with SNAP. The A2A-NO-VEGF pathway is present in endothelium from microcirculation and macrocirculation in both normal and pre-eclamptic pregnancies. However, NO signaling pathway seems to be impaired in HUVEC from pre-eclampsia.
Collapse
Affiliation(s)
- Jesenia Acurio
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Kurt Herlitz
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile
| | - Patricio Bertoglia
- Obstetric and Gynecology Department, Hospital Clinico Herminda Martin, Chillán, Chile, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
| |
Collapse
|
269
|
Brown SHJ, Eather SR, Freeman DJ, Meyer BJ, Mitchell TW. A Lipidomic Analysis of Placenta in Preeclampsia: Evidence for Lipid Storage. PLoS One 2016; 11:e0163972. [PMID: 27685997 PMCID: PMC5042456 DOI: 10.1371/journal.pone.0163972] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022] Open
Abstract
In preeclampsia, maternal insulin resistance leads to defective expansion of adipocytes, enhanced adipocyte lipolysis, up-regulation of very low density lipoprotein synthesis, maternal hypertriglyceridaemia and the potential for ectopic fat storage. Our aim was to quantitate and compare the total amount and type of lipid in placenta from pregnancies complicated with preeclampsia and healthy pregnancies. Quantitative lipid analysis of lipid extracts from full thickness placental biopsies was carried out by shotgun lipidomics. Placental lipid profiles from pregnancies complicated by preeclampsia (n = 23) were compared to healthy pregnancies (n = 68), and placenta from intrauterine growth restriction pregnancies (n = 10) were used to control for gross differences in placental pathology. Placentae from pregnancies complicated with preeclampsia had higher neutral lipid content than healthy placentae (40% higher triacyglycerol (P = 0.001) and 33% higher cholesteryl ester (P = 0.004)) that was specific to preeclampsia and independent of maternal gestation.
Collapse
Affiliation(s)
- Simon H. J. Brown
- School of Biology, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Samuel R. Eather
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Dilys J. Freeman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Barbara J. Meyer
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Todd W. Mitchell
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
- * E-mail:
| |
Collapse
|
270
|
Abstract
Preeclampsia is a hypertensive pregnancy disorder characterized by development of hypertension and proteinuria after 20 weeks of gestation that remains a leading cause of maternal and neonatal morbidity and mortality. While preeclampsia is believed to result from complex interactions between maternal and placental factors, the proximate pathophysiology of this syndrome remains elusive. Cell-to-cell communication is a critical signaling mechanism for feto-placental development in normal pregnancies. One mechanism of cellular communication relates to activated cell-derived sealed membrane vesicles called extracellular vesicles (EVs). The concentrations and contents of EVs in biological fluids depend upon their cells of origin and the stimuli which trigger their production. Research on EVs in preeclampsia has focused on EVs derived from the maternal vasculature (endothelium, vascular smooth muscle) and blood (erythrocytes, leukocytes, and platelets), as well as placental syncytiotrophoblasts. Changes in the concentrations and contents of these EVs may contribute to the pathophysiology of preeclampsia by accentuating the pro-inflammatory and pro-coagulatory states of pregnancy. This review focuses on possible interactions among placental- and maternal-derived EVs and their contents in the initiation and progression of the pathogenesis of preeclampsia. Understanding the contributions of EVs in the pathogenesis of preeclampsia may facilitate their use as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Sarwat I. Gilani
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905 USA
- Department of Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Tracey L. Weissgerber
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905 USA
| | - Vesna D. Garovic
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905 USA
| | - Muthuvel Jayachandran
- Department of Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
271
|
Intake of antioxidant nutrients and coefficients of variation in pregnant women with preeclampsia. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.repce.2016.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
272
|
Menezes de Oliveira AC, Albuquerque Santos A, Rodrigues Bezerra A, Machado Tavares MC, Rocha de Barros AM, Costa Ferreira R. Intake of antioxidant nutrients and coefficients of variation in pregnant women with preeclampsia. Rev Port Cardiol 2016; 35:469-76. [PMID: 27503592 DOI: 10.1016/j.repc.2016.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/27/2016] [Accepted: 03/22/2016] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Oxidative stress appears to play a critical role in the pathogenesis of preeclampsia. Evidence suggests that adequate intake of antioxidants can modulate this condition. The objective of this study was to assess the intake of antioxidant nutrients and coefficients of variation in pregnant women with preeclampsia. METHODS In a cross-sectional study in the public health network of the city of Maceió, Brazil, a dietary survey was performed consisting of 24-hour food recalls, with subsequent adjustment of nutrients using the estimated average requirement as the cutoff point, and a questionnaire on frequency of consumption of antioxidants. RESULTS We studied 90 pregnant women with preeclampsia (PWP) and 90 pregnant women without preeclampsia (PWoP) with mean ages of 25.8±6.7 years and 24.1±6.2 years (p=0.519), respectively. A low mean intake of antioxidants (vitamin A, selenium, zinc and copper) was observed in both PWP and PWoP, although intakes of vitamin A (p=0.045) and selenium (p=0.008) were higher in PWoP. In addition, we observed high coefficients of variation in nutrient intakes in both groups, which were higher for vitamin C (p<0.001), vitamin A (p=0.006) and copper (p=0.005) in PWP. CONCLUSIONS Consumption of antioxidant nutrients by pregnant women with preeclampsia is inadequate, with considerable daily variations in intake, which points to a need for nutrition education strategies aimed at improving intakes, because diet is without doubt a key factor in the modulation of oxidative stress caused by preeclampsia.
Collapse
Affiliation(s)
| | - Arianne Albuquerque Santos
- Hospital Universitário Professor Alberto Antunes, Universidade Federal de Alagoas (HUPPA/UFAL), Maceió, AL, Brasil
| | | | | | | | | |
Collapse
|
273
|
Possomato-Vieira JS, Khalil RA. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia. ADVANCES IN PHARMACOLOGY 2016; 77:361-431. [PMID: 27451103 DOI: 10.1016/bs.apha.2016.04.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral, and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin, and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension, and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic, and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines, and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the proangiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia.
Collapse
Affiliation(s)
- J S Possomato-Vieira
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
274
|
Rani A, Wadhwani N, Chavan-Gautam P, Joshi S. Altered development and function of the placental regions in preeclampsia and its association with long-chain polyunsaturated fatty acids. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:582-97. [DOI: 10.1002/wdev.238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Alka Rani
- Department of Nutritional Medicine; Interactive Research School for Health Affairs, Bharati Vidyapeeth University; Pune India
| | - Nisha Wadhwani
- Department of Nutritional Medicine; Interactive Research School for Health Affairs, Bharati Vidyapeeth University; Pune India
| | - Preeti Chavan-Gautam
- Department of Nutritional Medicine; Interactive Research School for Health Affairs, Bharati Vidyapeeth University; Pune India
| | - Sadhana Joshi
- Department of Nutritional Medicine; Interactive Research School for Health Affairs, Bharati Vidyapeeth University; Pune India
| |
Collapse
|
275
|
Macroscopic and histological characteristics of retained placenta: A prospectively collected case-control study. Placenta 2016; 41:39-44. [DOI: 10.1016/j.placenta.2016.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/08/2016] [Accepted: 02/21/2016] [Indexed: 11/19/2022]
|
276
|
Anderson UD, Gram M, Ranstam J, Thilaganathan B, Kerström B, Hansson SR. Fetal hemoglobin, α1-microglobulin and hemopexin are potential predictive first trimester biomarkers for preeclampsia. Pregnancy Hypertens 2016; 6:103-9. [PMID: 27155336 DOI: 10.1016/j.preghy.2016.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/26/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Overproduction of cell-free fetal hemoglobin (HbF) in the preeclamptic placenta has been recently implicated as a new etiological factor of preeclampsia. In this study, maternal serum levels of HbF and the endogenous hemoglobin/heme scavenging systems were evaluated as predictive biomarkers for preeclampsia in combination with uterine artery Doppler ultrasound. STUDY DESIGN Case-control study including 433 women in early pregnancy (mean 13.7weeks of gestation) of which 86 subsequently developed preeclampsia. The serum concentrations of HbF, total cell-free hemoglobin, hemopexin, haptoglobin and α1-microglobulin were measured in maternal serum. All patients were examined with uterine artery Doppler ultrasound. Logistic regression models were developed, which included the biomarkers, ultrasound indices, and maternal risk factors. RESULTS There were significantly higher serum concentrations of HbF and α1-microglobulin and significantly lower serum concentrations of hemopexin in patients who later developed preeclampsia. The uterine artery Doppler ultrasound results showed significantly higher pulsatility index values in the preeclampsia group. The optimal prediction model was obtained by combining HbF, α1-microglobulin and hemopexin in combination with the maternal characteristics parity, diabetes and pre-pregnancy hypertension. The optimal sensitivity for all preeclampsia was 60% at 95% specificity. CONCLUSIONS Overproduction of placentally derived HbF and depletion of hemoglobin/heme scavenging mechanisms are involved in the pathogenesis of preeclampsia. The combination of HbF and α1-microglobulin and/or hemopexin may serve as a prediction model for preeclampsia in combination with maternal risk factors and/or uterine artery Doppler ultrasound.
Collapse
Affiliation(s)
- Ulrik Dolberg Anderson
- Section of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Sweden; Skåne University Hospital, Malmö/Lund, Sweden.
| | - Magnus Gram
- Department of Clinical Sciences, Lund, Infection Medicine, Lund University, Sweden
| | - Jonas Ranstam
- Department of Clinical Sciences, RC Syd, Lund University, Sweden
| | - Basky Thilaganathan
- Fetal Medicine Unit, St. George's University Hospital, London, United Kingdom
| | - Bo Kerström
- Department of Clinical Sciences, Lund, Infection Medicine, Lund University, Sweden
| | - Stefan R Hansson
- Section of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Sweden; Skåne University Hospital, Malmö/Lund, Sweden
| |
Collapse
|
277
|
LaMarca B, Amaral LM, Harmon AC, Cornelius DC, Faulkner JL, Cunningham MW. Placental Ischemia and Resultant Phenotype in Animal Models of Preeclampsia. Curr Hypertens Rep 2016; 18:38. [PMID: 27076345 PMCID: PMC5127437 DOI: 10.1007/s11906-016-0633-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Preeclampsia is new onset (or worsening of preexisting) hypertension that occurs during pregnancy. It is accompanied by chronic inflammation, intrauterine growth restriction, elevated anti-angiogenic factors, and can occur with or without proteinuria. Although the exact etiology is unknown, it is thought that preeclampsia begins early in gestation with reduced uterine spiral artery remodeling leading to decreased vasculogenesis of the placenta as the pregnancy progresses. Soluble factors, stimulated by the ischemic placenta, shower the maternal vascular endothelium and are thought to cause endothelial dysfunction and to contribute to the development of hypertension during pregnancy. Due to the difficulty in studying such soluble factors in pregnant women, various animal models have been designed. Studies from these models have contributed to a better understanding of how factors released in response to placental ischemia may lead to increased blood pressure and reduced fetal weight during pregnancy. This review will highlight various animal models and the major findings indicating the importance of placental ischemia to lead to the pathophysiology observed in preeclamptic patients.
Collapse
Affiliation(s)
- Babbette LaMarca
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| | - Lorena M Amaral
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Ashlyn C Harmon
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Denise C Cornelius
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Jessica L Faulkner
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Mark W Cunningham
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
278
|
Maduray K, Moodley J, Naicker T. Morphometrical analysis of placental functional efficiency in normotensive versus preeclamptic South African black women. Hypertens Pregnancy 2016; 35:361-70. [DOI: 10.3109/10641955.2016.1150488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- K. Maduray
- Optics and Imaging Centre, University of KwaZulu-Natal, Durban, South Africa
| | - J. Moodley
- Optics and Imaging Centre, University of KwaZulu-Natal, Durban, South Africa
- Womens’ Health and HIV Research Group, University of KwaZulu-Natal, Durban, South Africa
| | - T. Naicker
- Optics and Imaging Centre, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
279
|
Escudero CA, Herlitz K, Troncoso F, Acurio J, Aguayo C, Roberts JM, Truong G, Duncombe G, Rice G, Salomon C. Role of Extracellular Vesicles and microRNAs on Dysfunctional Angiogenesis during Preeclamptic Pregnancies. Front Physiol 2016; 7:98. [PMID: 27047385 PMCID: PMC4796029 DOI: 10.3389/fphys.2016.00098] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/01/2016] [Indexed: 01/08/2023] Open
Abstract
Preeclampsia is a syndrome characterized by hypertension during pregnancy, which is a leading cause of morbidity and mortality in both mother and newborn in developing countries. Some advances have increased the understanding of pathophysiology of this disease. For example, reduced utero-placental blood flow associated with impaired trophoblast invasion may lead to a hypoxic placenta that releases harmful materials into the maternal and feto-placental circulation and impairs endothelial function. Identification of these harmful materials is one of the hot topics in the literature, since these provide potential biomarkers. Certainty, such knowledge will help us to understand the miscommunication between mother and fetus. In this review we highlight how placental extracellular vesicles and their cargo, such as small RNAs (i.e., microRNAs), might be involved in endothelial dysfunction, and then in the angiogenesis process, during preeclampsia. Currently only a few reports have addressed the potential role of endothelial regulatory miRNA in the impaired angiogenesis in preeclampsia. One of the main limitations in this area is the variability of the analyses performed in the current literature. This includes variability in the size of the particles analyzed, and broad variation in the exosomes considered. The quantity of microRNA targets genes suggest that practically all endothelial cell metabolic functions might be impaired. More studies are required to investigate mechanisms underlying miRNA released from placenta upon endothelial function involved in the angiogenenic process.
Collapse
Affiliation(s)
- Carlos A Escudero
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Universidad del Bío-BíoChillán, Chile; Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Universidad del Bío-BíoChillán, Chile
| | - Kurt Herlitz
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Universidad del Bío-Bío Chillán, Chile
| | - Felipe Troncoso
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Universidad del Bío-Bío Chillán, Chile
| | - Jesenia Acurio
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Universidad del Bío-Bío Chillán, Chile
| | - Claudio Aguayo
- Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Universidad del Bío-BíoChillán, Chile; Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of ConcepciónConcepción, Chile
| | - James M Roberts
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Epidemiology, and the Clinical and Translational Science Institute, Magee-Womens Research Institute, University of Pittsburgh Pittsburgh, PA, USA
| | - Grace Truong
- Exosome Biology Laboratory, Faculty of Medicine and Biomedical Sciences, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, The University of Queensland Brisbane, QLD, Australia
| | - Gregory Duncombe
- Exosome Biology Laboratory, Faculty of Medicine and Biomedical Sciences, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, The University of Queensland Brisbane, QLD, Australia
| | - Gregory Rice
- Exosome Biology Laboratory, Faculty of Medicine and Biomedical Sciences, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, The University of QueenslandBrisbane, QLD, Australia; Ochsner Clinic Foundation, Maternal-Fetal Medicine, Department of Obstetrics and GynecologyNew Orleans, LA, USA
| | - Carlos Salomon
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of ConcepciónConcepción, Chile; Exosome Biology Laboratory, Faculty of Medicine and Biomedical Sciences, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, The University of QueenslandBrisbane, QLD, Australia; Ochsner Clinic Foundation, Maternal-Fetal Medicine, Department of Obstetrics and GynecologyNew Orleans, LA, USA
| |
Collapse
|
280
|
Harmon AC, Cornelius DC, Amaral LM, Faulkner JL, Cunningham MW, Wallace K, LaMarca B. The role of inflammation in the pathology of preeclampsia. Clin Sci (Lond) 2016; 130:409-19. [PMID: 26846579 PMCID: PMC5484393 DOI: 10.1042/cs20150702] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Preeclampsia (PE) affects 5-7% of all pregnancies in the United States and is the leading cause of maternal and prenatal morbidity. PE is associated with hypertension after week 20 of gestation, decreased renal function and small-for-gestational-age babies. Women with PE exhibit chronic inflammation and production of autoantibodies. It is hypothesized that during PE, placental ischaemia occurs as a result of shallow trophoblast invasion which is associated with an immune imbalance where pro-inflammatory CD4(+) T-cells are increased and T regulatory cells (Tregs) are decreased. This imbalance leads to chronic inflammation characterized by oxidative stress, pro-inflammatory cytokines and autoantibodies. Studies conducted in our laboratory have demonstrated the importance of this immune imbalance in causing hypertension in response to placental ischaemia in pregnant rats. These studies confirm that increased CD4(+) T-cells and decreased Tregs during pregnancy leads to elevated inflammatory cytokines, endothelin (ET-1), reactive oxygen species (ROS) and agonistic autoantibodies to the angiotensin II (Ang II), type 1 receptor (AT1-AA). All of these factors taken together play an important role in increasing the blood pressure during pregnancy. Specifically, this review focuses on the decrease in Tregs, and their associated regulatory cytokine interleukin (IL)-10, which is seen in response to placental ischaemia during pregnancy. This study will also examine the effect of regulatory immune cell repopulation on the pathophysiology of PE. These studies show that restoring the balance of the immune system through increasing Tregs, either by adoptive transfer or by infusing IL-10, reduces the blood pressure and pathophysiology associated with placental ischaemia in pregnant rats.
Collapse
Affiliation(s)
- Ashlyn C Harmon
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Denise C Cornelius
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Lorena M Amaral
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Jessica L Faulkner
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Mark W Cunningham
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Kedra Wallace
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Babbette LaMarca
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A.
| |
Collapse
|
281
|
Liang M, Niu J, Zhang L, Deng H, Ma J, Zhou W, Duan D, Zhou Y, Xu H, Chen L. Gene expression profiling reveals different molecular patterns in G-protein coupled receptor signaling pathways between early- and late-onset preeclampsia. Placenta 2016; 40:52-9. [PMID: 27016783 DOI: 10.1016/j.placenta.2016.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/29/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED Early-onset preeclampsia and late-onset preeclampsia have been regarded as two different phenotypes with heterogeneous manifestations; To gain insights into the pathogenesis of the two traits, we analyzed the gene expression profiles in preeclamptic placentas. A whole genome-wide microarray was used to determine the gene expression profiles in placental tissues from patients with early-onset (n = 7; <34 weeks), and late-onset (n = 8; >36 weeks) preeclampsia and their controls who delivered preterm (n = 5; <34 weeks) or at term (n = 5; >36 weeks). Genes were termed differentially expressed if they showed a fold-change ≥ 2 and q-value < 0.05. Quantitative real-time reverse transcriptase PCR was used to verify the results. Western blotting was performed to verify the expressions of secreted genes at the protein level. RESULTS Six hundred twenty-seven genes were differentially expressed in early-compared with late-onset preeclampsia (177 genes were up-regulated and 450 were down-regulated). Gene ontology analysis identified significant alterations in several biological processes; the top two were immune response and cell surface receptor linked signal transduction. Among the cell surface receptor linked signal transduction-related, differentially expressed genes, those involved in the G-protein coupled receptor protein signaling pathway were significantly enriched. G-protein coupled receptor signaling pathway related genes, such as GPR124 and MRGPRF, were both found to be down-regulated in early-onset preeclampsia. The results were consistent with those of western blotting that the abundance of GPR124 was lower in early-onset compared with late-onset preeclampsia. The different gene expression profiles reflect the different levels of transcription regulation between the two conditions and supported the hypothesis that they are separate disease entities. Moreover, the G-protein coupled receptor signaling pathway related genes may contribute to the mechanism underlying early- and late-onset preeclampsia.
Collapse
Affiliation(s)
- Mengmeng Liang
- Department of Obstetrics, Guangdong Women and Children's Hospital, Guangzhou, 511400, China
| | - Jianmin Niu
- Department of Obstetrics, Guangdong Women and Children's Hospital, Guangzhou, 511400, China.
| | - Liang Zhang
- Translational Medicine Center, Guangdong Women and Children's Hospital, Guangzhou, 511400, China.
| | - Hua Deng
- Translational Medicine Center, Guangdong Women and Children's Hospital, Guangzhou, 511400, China
| | - Jian Ma
- Translational Medicine Center, Guangdong Women and Children's Hospital, Guangzhou, 511400, China
| | - Weiping Zhou
- Translational Medicine Center, Guangdong Women and Children's Hospital, Guangzhou, 511400, China
| | - Dongmei Duan
- Department of Obstetrics, Guangdong Women and Children's Hospital, Guangzhou, 511400, China
| | - Yuheng Zhou
- Department of Obstetrics, Guangdong Women and Children's Hospital, Guangzhou, 511400, China
| | - Huikun Xu
- Department of Obstetrics, Guangdong Women and Children's Hospital, Guangzhou, 511400, China
| | - Longding Chen
- Department of Obstetrics, Guangdong Women and Children's Hospital, Guangzhou, 511400, China
| |
Collapse
|
282
|
Kemse NG, Kale AA, Joshi SR. Supplementation of maternal omega-3 fatty acids to pregnancy induced hypertension Wistar rats improves IL10 and VEGF levels. Prostaglandins Leukot Essent Fatty Acids 2016; 104:25-32. [PMID: 26802939 DOI: 10.1016/j.plefa.2015.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/09/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Our recent study demonstrates the beneficial effect of a combined supplementation of vitamin B12, folic acid, and docosahexaenoic acid in reducing the severity of pregnancy induced hypertension (PIH). It is also known to be associated with angiogenic imbalance and inflammation. The current study examines whether the individual/combined supplementation of folic acid, vitamin B12 and omega-3 fatty acid during pregnancy can ameliorate the inflammatory markers and restore the angiogenic balance in a rat model of PIH. MATERIALS AND METHODS There were total of six groups, control and five treatment groups: PIH Induced; PIH+vitamin B12; PIH+folic acid; PIH+Omega-3 fatty acids and PIH+combined micronutrient supplementation (vitamin B12+folic acid+omega-3 fatty acids). Hypertension during pregnancy was induced using L- Nitroarginine methylester (L-NAME; 50mg/kg body weight/day). Dams were dissected at d20 of gestation and placental tissues were collected for further analysis. RESULTS Animals from the PIH induced group demonstrated lower (p<0.01 for both) IL-10 and VEGF levels as compared to control. However, PIH induction did not alter the protein levels of eNOS, IL-6, Flt and mRNA levels of VEGF and VEGFR-1/ Flt-1. Individual micronutrient supplementation of vitamin B12 and folate did not offer benefit. In contrast individual omega-3 fatty acid as well as combined micronutrient supplementation showed IL-10 and VEGF levels comparable to that of control. CONCLUSION Omega 3 fatty acid supplementation plays a key role in reducing inflammation in pregnancy induced hypertension.
Collapse
Affiliation(s)
- Nisha G Kemse
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati, Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Anvita A Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati, Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Sadhana R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati, Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India.
| |
Collapse
|
283
|
Abstract
Preeclampsia (PE) is a serious pregnancy-related condition that causes severe maternal and fetal morbidity and mortality. Within the recent years, there has been an increasing focus in predicting PE at the end of the first trimester of pregnancy. In this review, literature published between 2011 and 2015 was evaluated. In a total of six biomarker algorithms, for first and early second trimester, the prediction of preeclampsia is discussed. In addition, one randomized clinical trial was included. Several algorithms were based on placental biomarkers such as pregnancy-associated plasma protein A (PAPP-A), placental growth factor (PLGF), and soluble FMS-like tyrosine kinase 1 (s-FLT-1). The algorithms containing these biomarkers showed a high prediction rate (PR) for early onset PE, ranging from 44 to 92 % at 5 % false positive rate (FPR). New biomarkers suggest an alternative model based on free HbF and the heme scavenger alpha-1-microglobulin (A1M) with a prediction rate of 69 % at an FPR of 5 %. Interestingly, this model performs well without uterine artery Doppler pulsatility index (UtAD-PI), which is an advantage particularly if the screening method were to be implemented in developing countries. The randomized clinical trial showed a clear reduction in early onset PE as well as reducing preterm PE if identified high-risk pregnancies were treated with low-dose aspirin. In conclusion, PE prediction is now possible through several prediction algorithms and prophylaxis is beneficial in high-risk cases.
Collapse
Affiliation(s)
- Ulrik Dolberg Anderson
- Departments of Clinical Sciences Lund and Obstetrics and Gynecology, Lund University and Skåne University Hospital Malmö/Lund, Lund, Sweden,
| | | | | | | |
Collapse
|
284
|
Austdal M, Thomsen LCV, Tangerås LH, Skei B, Mathew S, Bjørge L, Austgulen R, Bathen TF, Iversen AC. Metabolic profiles of placenta in preeclampsia using HR-MAS MRS metabolomics. Placenta 2015; 36:1455-62. [PMID: 26582504 DOI: 10.1016/j.placenta.2015.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Preeclampsia is a heterogeneous gestational disease characterized by maternal hypertension and proteinuria, affecting 2-7% of pregnancies. The disorder is initiated by insufficient placental development, but studies characterizing the placental disease components are lacking. METHODS Our aim was to phenotype the preeclamptic placenta using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS MRS). Placental samples collected after delivery from women with preeclampsia (n = 19) and normotensive pregnancies (n = 15) were analyzed for metabolic biomarkers including amino acids, osmolytes, and components of the energy and phospholipid metabolism. The metabolic biomarkers were correlated to clinical characteristics and inflammatory biomarkers in the maternal sera. RESULTS Principal component analysis showed inherent differences in placental metabolic profiles between preeclamptic and normotensive pregnancies. Significant differences in metabolic profiles were found between placentas from severe and non-severe preeclampsia, but not between preeclamptic pregnancies with fetal growth restricted versus normal weight neonates. The placental metabolites correlated with the placental stress marker sFlt-1 and triglycerides in maternal serum, suggesting variation in placental stress signaling between different placental phenotypes. DISCUSSION HR-MAS MRS is a sensitive method for defining the placental disease component of preeclampsia, identifying several altered metabolic pathways. Placental HR-MAS MRS analysis may improve insight into processes affected in the preeclamptic placenta, and represents a novel long-required tool for a sensitive placental phenotyping of this heterogeneous disease.
Collapse
Affiliation(s)
- Marie Austdal
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway; Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, NTNU, 7491 Trondheim, Norway.
| | - Liv Cecilie Vestrheim Thomsen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, NTNU, 7491 Trondheim, Norway.
| | - Line Haugstad Tangerås
- St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway; Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, NTNU, 7491 Trondheim, Norway.
| | - Bente Skei
- Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, NTNU, 7491 Trondheim, Norway.
| | - Seema Mathew
- Department of Gynecology and Obstetrics, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Line Bjørge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
| | - Rigmor Austgulen
- Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, NTNU, 7491 Trondheim, Norway.
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| | - Ann-Charlotte Iversen
- Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, NTNU, 7491 Trondheim, Norway.
| |
Collapse
|
285
|
Ichikawa M, Nagamatsu T, Schust DJ, Kawai-Iwasawa Y, Kawana K, Yamashita T, Osuga Y, Aoki J, Yatomi Y, Fujii T. Placental autotaxin expression is diminished in women with pre-eclampsia. J Obstet Gynaecol Res 2015; 41:1406-11. [PMID: 26111716 DOI: 10.1111/jog.12742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/30/2015] [Indexed: 11/29/2022]
Abstract
AIM Lysophosphatidic acid (LPA) is a member of a new class of lipid mediators and exerts varied physiological and pathological functions. The secreted protein, autotaxin (ATX), is a key enzymatic determinant of local LPA production. The primary aim of this study was to investigate the potential involvement of the placental ATX-LPA system in pre-eclampsia (PE). MATERIAL AND METHODS We compared human placental ATX mRNA expression in pregnancies complicated by severe PE with that in healthy placentas using real-time polymerase chain reaction. We further assessed whether these expression levels were associated with disease-onset patterns. RESULTS Placental transcription of ATX increased progressively during normal pregnancy. In the analysis for pre-eclamptic placentas, the placental ATX expression in the early-onset group, but not in late-onset group, was significantly lower compared to normal controls. Multiple regression analysis revealed that occurrence of early-onset PE, but not late-onset PE, was a variable that was significantly associated with the placental ATX expression level. CONCLUSION These findings support our previous work showing reduced ATX antigen levels in the peripheral blood of pre-eclamptic women. A disturbance in placental ATX production may be linked to poor placental development and systemic maternal symptoms in early-onset PE.
Collapse
Affiliation(s)
- Mayuko Ichikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Yuki Kawai-Iwasawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Takahiro Yamashita
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, University of Tokyo Hospital, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
286
|
Rani A, Chavan-Gautam P, Mehendale S, Wagh G, Joshi S. Differential regional fatty acid distribution in normotensive and preeclampsia placenta. BBA CLINICAL 2015; 4:21-6. [PMID: 26674001 PMCID: PMC4661600 DOI: 10.1016/j.bbacli.2015.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/11/2015] [Accepted: 06/16/2015] [Indexed: 01/23/2023]
Abstract
Background Long chain polyunsaturated fatty acids (LCPUFAs) are biologically active fatty acids which regulate placental angiogenesis, inflammation, and oxidative stress. Abnormalities in these aspects have been associated with preeclampsia (PE). Further, placenta has a heterogeneous structure with differential vascularization across different regions. We therefore hypothesize that the distribution of fatty acids in various regions of the placenta is altered in PE leading to poor fetal outcome. Methods In this cross-sectional study we recruited 69 normotensive control (NC) and 44 women with PE. PE women were further classified as those delivered preterm (PTPE, n = 24) and at term (TPE, n = 20). Fatty acid levels were analyzed from placental samples from four different regions (CF—central fetal, PF—peripheral fetal, CM—central maternal and PM—peripheral maternal). Results In the NC placenta, AA levels were lower (p < 0.05) in CM as compared with CF region. However, such differences were not seen in the TPE and PTPE. In contrast, the DHA levels varied between regions only in the PTPE placenta. Between groups, DHA levels were lower (p < 0.05 for both) in the CM and CF regions of the PTPE as compared with NC. The levels of DHA in TPE placenta were similar to NC. AA levels were lower (p < 0.05 for both) in CF region of TPE and PF region of PTPE placenta than NC. Conclusions There is differential pattern of LCPUFA distribution across various regions of the NC, TPE and PTPE placenta. This may have implications for placental growth and development as well as transfer of LCPUFA to the fetus. There are regional differences in fatty acid levels in normal placenta. Regional fatty acid distribution is further affected in preeclampsia. Preterm preeclampsia placenta is more affected than term preeclampsia and control. DHA of peripheral fetal region positively associated with baby weight in preeclampsia.
Collapse
Affiliation(s)
- Alka Rani
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| | - Preeti Chavan-Gautam
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| | - Savita Mehendale
- Department of Obstetrics and Gynaecology, Bharati Medical College and Hospital, Pune, India
| | - Girija Wagh
- Department of Obstetrics and Gynaecology, Bharati Medical College and Hospital, Pune, India
| | - Sadhana Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| |
Collapse
|
287
|
Kalinderis M, Papanikolaou A, Kalinderi K, Vyzantiadis TA, Ioakimidou A, Tarlatzis BC. Serum levels of leptin and IP-10 in preeclampsia compared to controls. Arch Gynecol Obstet 2015; 292:343-7. [DOI: 10.1007/s00404-015-3659-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/09/2015] [Indexed: 12/20/2022]
|
288
|
Hansson SR, Nääv Å, Erlandsson L. Oxidative stress in preeclampsia and the role of free fetal hemoglobin. Front Physiol 2015; 5:516. [PMID: 25628568 PMCID: PMC4292435 DOI: 10.3389/fphys.2014.00516] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/16/2014] [Indexed: 02/04/2023] Open
Abstract
Preeclampsia is a leading cause of pregnancy complications and affects 3-7% of pregnant women. This review summarizes the current knowledge of a new potential etiology of the disease, with a special focus on hemoglobin-induced oxidative stress. Furthermore, we also suggest hemoglobin as a potential target for therapy. Gene and protein profiling studies have shown increased expression and accumulation of free fetal hemoglobin in the preeclamptic placenta. Predominantly due to oxidative damage to the placental barrier, fetal hemoglobin leaks over to the maternal circulation. Free hemoglobin and its metabolites are toxic in several ways; (a) ferrous hemoglobin (Fe(2+)) binds strongly to the vasodilator nitric oxide (NO) and reduces the availability of free NO, which results in vasoconstriction, (b) hemoglobin (Fe(2+)) with bound oxygen spontaneously generates free oxygen radicals, and (c) the heme groups create an inflammatory response by inducing activation of neutrophils and cytokine production. The endogenous protein α1-microglobulin, with radical and heme binding properties, has shown both ex vivo and in vivo to have the ability to counteract free hemoglobin-induced placental and kidney damage. Oxidative stress in general, and more specifically fetal hemoglobin-induced oxidative stress, could play a key role in the pathology of preeclampsia seen both in the placenta and ultimately in the maternal endothelium.
Collapse
Affiliation(s)
- Stefan R. Hansson
- Department of Obstetrics and Gynecology, Institute for Clinical Sciences, Lund UniversityLund, Sweden
| | | | | |
Collapse
|
289
|
Konečná B, Vlková B, Celec P. Role of fetal DNA in preeclampsia (review). Int J Mol Med 2014; 35:299-304. [PMID: 25515918 DOI: 10.3892/ijmm.2014.2039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/02/2014] [Indexed: 11/06/2022] Open
Abstract
Preeclampsia is an autoimmune disorder characterized by hypertension. It begins with abnormal cytotrophoblast apoptosis, which leads to inflammation and an increase in the levels of anti-angiogenic factors followed by the disruption of the angiogenic status. Increased levels of fetal DNA and RNA coming from the placenta, one of the most commonly affected organs in pregnancies complicated by preeclampsia, have been found in pregnant women with the condition. However, it remains unknown as to whether this is a cause or a consequence of preeclampsia. Few studies have been carried out on preeclampsia in which an animal model of preeclampsia was induced by an injection of different types of DNA that are mimic fetal DNA and provoke inflammation through Toll-like receptor 9 (TLR9) or cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). The specific mechanisms involved in the development of preeclampsia are not yet fully understood. It is hypothesized that the presence of different fragments of fetal DNA in maternal plasma may cause for the development of preeclampsia. The function of DNase during preeclampsia also remains unresolved. Studies have suggested that its activity is decreased or the DNA is protected against its effects. Further research is required to uncover the pathogenesis of preeclampsia and focus more on the condition of patients with the condition.
Collapse
Affiliation(s)
- Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Barbora Vlková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
290
|
Kemse NG, Kale AA, Joshi SR. A combined supplementation of omega-3 fatty acids and micronutrients (folic acid, vitamin B12) reduces oxidative stress markers in a rat model of pregnancy induced hypertension. PLoS One 2014; 9:e111902. [PMID: 25405347 PMCID: PMC4236044 DOI: 10.1371/journal.pone.0111902] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 10/08/2014] [Indexed: 12/17/2022] Open
Abstract
Objectives Our earlier studies have highlighted that an altered one carbon metabolism (vitamin B12, folic acid, and docosahexaenoic acid) is associated with preeclampsia. Preeclampsia is also known to be associated with oxidative stress and inflammation. The current study examines whether maternal folic acid, vitamin B12 and omega-3 fatty acid supplementation given either individually or in combination can ameliorate the oxidative stress markers in a rat model of pregnancy induced hypertension (PIH). Materials and Methods Pregnant Wistar rats were assigned to control and five treatment groups: PIH; PIH + vitamin B12; PIH + folic acid; PIH + Omega-3 fatty acids and PIH + combined micronutrient supplementation (vitamin B12 + folic acid + omega-3 fatty acids). L-Nitroarginine methylester (L-NAME; 50 mg/kg body weight/day) was used to induce hypertension during pregnancy. Blood Pressure (BP) was recorded during pregnancy and dams were dissected at d20 of gestation. Results Animals from the PIH group demonstrated higher (p<0.01 for both) systolic and diastolic BP; lower (p<0.01) pup weight; higher dam plasma homocysteine (p<0.05) and dam and offspring malondialdehyde (MDA) (p<0.01), lower (p<0.05) placental and offspring liver DHA and higher (p<0.01) tumor necrosis factor–alpha (TNF–ά) levels as compared to control. Individual micronutrient supplementation did not offer much benefit. In contrast, combined supplementation lowered systolic BP, homocysteine, MDA and placental TNF-ά levels in dams and liver MDA and protein carbonyl in the offspring as compared to PIH group. Conclusion Key constituents of one carbon cycle (folic acid, vitamin B12 and DHA) may play a role in reducing oxidative stress and inflammation in preeclampsia.
Collapse
Affiliation(s)
- Nisha G. Kemse
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune, India
| | - Anvita A. Kale
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune, India
| | - Sadhana R. Joshi
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune, India
- * E-mail:
| |
Collapse
|
291
|
Åkerström B, Gram M. A1M, an extravascular tissue cleaning and housekeeping protein. Free Radic Biol Med 2014; 74:274-82. [PMID: 25035076 DOI: 10.1016/j.freeradbiomed.2014.06.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 02/02/2023]
Abstract
Alpha-1-microglobulin (A1M) is a small protein found intra- and extracellularly in all tissues of vertebrates. The protein was discovered 40 years ago and its physiological role remained unknown for a long time. A series of recent publications have demonstrated that A1M is a vital part of tissue housekeeping. A strongly electronegative free thiol group forms the structural basis of heme-binding, reductase, and radical-trapping properties. A rapid flow of liver-produced A1M through blood and extravascular compartments ensures clearing of biological fluids from heme and free radicals and repair of oxidative lesions. After binding, both the radicals and the A1M are electroneutral and therefore do not present any further oxidative stress to tissues. The biological cleaning cycle is completed by glomerular filtration, renal degradation, and urinary excretion of A1M heavily modified by covalently linked radicals and heme groups. Based on its role as a tissue housekeeping cleaning factor, A1M constitutes a potential therapeutic drug candidate in treatment or prophylaxis of diseases or conditions that are associated with pathological oxidative stress elements.
Collapse
Affiliation(s)
- Bo Åkerström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Magnus Gram
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
292
|
Liu Q, Qiao FY, Shi XW, Liu HY, Gong X, Wu YY. Promoter hypomethylation and increased maspin expression in preeclamptic placentas in a Chinese population. Placenta 2014; 35:876-82. [PMID: 25151033 DOI: 10.1016/j.placenta.2014.08.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/15/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Preeclampsia is thought to begin with shallow trophoblast invasion and inadequate spiral artery remodeling. Maspin, a tumor-suppressor gene, plays a regulatory role in trophoblast invasion and motility. The tissue-specific methylation of the maspin promoter can regulate maspin gene expression in various cancers. We sought to detect maspin gene expression and assess the degrees of methylation of maspin promoter regions in preeclamptic placentas in the Han Chinese population and to investigate the potential role of maspin in the pathophysiology of preeclampsia. METHODS We conducted RT-PCR, immunohistochemistry and western blotting to characterize maspin gene expression and protein levels in the placentas from normal and preeclamptic pregnancies. Finally, using methylation-specific PCR and bisulfite sequencing PCR, we detected the degrees of methylation of the promoter regions of maspin in each of the two studied groups. RESULTS Maspin expression was increased at the mRNA and protein levels in the preeclamptic placentas compared to the control group. Maspin immunohistochemical staining revealed positive staining in the syncytio-cytotrophoblast layers and more diffuse staining in the preeclamptic group. The mean methylation level of the analyzed promoter region was significantly hypomethylated in the preeclamptic placentas compared to the control placentas, pointing to a negative relationship between maspin promoter methylation and gene expression. DISCUSSION Hypomethylation of the maspin promoter results in increased expression of maspin in preeclamptic placentas, which suggests a negative relationship between maspin methylation and maspin expression in this Han Chinese population. Thus, maspin is likely involved in the etiology of preeclampsia.
Collapse
Affiliation(s)
- Q Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - F Y Qiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - X W Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - H Y Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - X Gong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Y Y Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
293
|
Fetal hemoglobin in preeclampsia: a new causative factor, a tool for prediction/diagnosis and a potential target for therapy. Curr Opin Obstet Gynecol 2014; 25:448-55. [PMID: 24185004 DOI: 10.1097/gco.0000000000000022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Preeclampsia, one of the leading causes of pregnancy complications, affects 3-7% of pregnant women. This review summarizes the present knowledge of a new potential cause of the disease and suggests a method for its prediction/diagnosis and a possible treatment, both based on the recent findings on the involvement of fetal hemoglobin (HbF) and the heme and radical scavenging protein A1M (alpha-1-microglobulin). RECENT FINDINGS Gene and protein profiling studies have independently shown that increased amount of free HbF is accumulated in the preeclampsia placenta. As a result of a predominantly oxidative damage to the blood-placenta barrier, HbF leaks over to the maternal blood circulation. Elevated levels can be measured already in the first trimester, and later in pregnancy, the levels correlate with the blood pressure in women with preeclampsia. Ex-vivo data show that the human protein A1M, an endogeneous antioxidation protection protein, can prevent Hb-induced damage to the placenta, restore the blood-placental barrier and prevent maternal tissue damage. SUMMARY Free HbF may provide both a predictive and a diagnostic clinical biomarker from the first trimester. A1M has the potential as a future pharmacological treatment for preeclampsia.
Collapse
|
294
|
Baltajian K, Hecht JL, Wenger JB, Salahuddin S, Verlohren S, Perschel FH, Zsengeller ZK, Thadhani R, Karumanchi SA, Rana S. Placental lesions of vascular insufficiency are associated with anti-angiogenic state in women with preeclampsia. Hypertens Pregnancy 2014; 33:427-39. [DOI: 10.3109/10641955.2014.926914] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
295
|
Kaufman MR, Albers RE, Keoni C, Kulkarni-Datar K, Natale DR, Brown TL. Important aspects of placental-specific gene transfer. Theriogenology 2014; 82:1043-8. [PMID: 25110063 DOI: 10.1016/j.theriogenology.2014.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/30/2014] [Accepted: 07/05/2014] [Indexed: 12/13/2022]
Abstract
The placenta is a unique and highly complex organ that develops only during pregnancy and is essential for growth and survival of the developing fetus. The placenta provides the vital exchange of gases and wastes, the necessary nutrients for fetal development, acts as immune barrier that protects against maternal rejection, and produces numerous hormones and growth factors that promote fetal maturity to regulate pregnancy until parturition. Abnormal placental development is a major underlying cause of pregnancy-associated disorders that often result in preterm birth. Defects in placental stem cell propagation, growth, and differentiation are the major factors that affect embryonic and fetal well-being and dramatically increase the risk of pregnancy complications. Understanding the processes that regulate placentation is important in determining the underlying factors behind abnormal placental development. The ability to manipulate genes in a placenta-specific manner provides a unique tool to analyze development and eliminates potentially confounding results that can occur with traditional gene knockouts. Trophoblast stem cells and mouse embryos are not overly amenable to traditional gene transfer techniques. Most viral vectors, however, have a low infection rate and often lead to mosaic transgenesis. Although the traditional method of embryo transfer is intrauterine surgical implantation, the methodology reported here, combining lentiviral blastocyst infection and nonsurgical embryo transfer, leads to highly efficient and placental-specific gene transfer. Numerous advantages of our optimized procedures include increased investigator safety, a reduction in animal stress, rapid and noninvasive embryo transfer, and higher a rate of pregnancy and live birth.
Collapse
Affiliation(s)
- Melissa R Kaufman
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Renee E Albers
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Chanel Keoni
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Kashmira Kulkarni-Datar
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - David R Natale
- Department of Reproductive Medicine, University of California-San Diego, San Diego, California, USA
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA.
| |
Collapse
|
296
|
Zuniga FA, Ormazabal V, Gutierrez N, Aguilera V, Radojkovic C, Veas C, Escudero C, Lamperti L, Aguayo C. Role of lectin-like oxidized low density lipoprotein-1 in fetoplacental vascular dysfunction in preeclampsia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:353616. [PMID: 25110674 PMCID: PMC4109675 DOI: 10.1155/2014/353616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/24/2014] [Indexed: 11/30/2022]
Abstract
The bioavailability of nitric oxide (NO) represents a key marker in vascular health. A decrease in NO induces a pathological condition denominated endothelial dysfunction, syndrome observed in different pathologies, such as obesity, diabetes, kidney disease, cardiovascular disease, and preeclampsia (PE). PE is one of the major risks for maternal death and fetal loss. Recent studies suggest that the placenta of pregnant women with PE express high levels of lectin-like oxidized LDL receptor-1 (LOX-1), which induces endothelial dysfunction by increasing reactive oxygen species (ROS) and decreasing intracellular NO. Besides LOX-1 activation induces changes in migration and apoptosis of syncytiotrophoblast cells. However, the role of this receptor in placental tissue is still unknown. In this review we will describes the physiological roles of LOX-1 in normal placenta development and the potential involvement of this receptor in the pathophysiology of PE.
Collapse
Affiliation(s)
- Felipe A. Zuniga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Valeska Ormazabal
- Department of Basic Science, Faculty of Medicine, Universidad Católica de la Santísima Concepción, 4090541 Concepcion, Chile
| | - Nicolas Gutierrez
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Valeria Aguilera
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Claudia Radojkovic
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Carlos Veas
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Group of Research and Innovation in Vascular Health (GRIVAS Health), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, 4081112 Chillán, Chile
| | - Liliana Lamperti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, 4070386 Concepcion, Chile
| |
Collapse
|
297
|
Kovo M, Schreiber L, Elyashiv O, Ben-Haroush A, Abraham G, Bar J. Pregnancy Outcome and Placental Findings in Pregnancies Complicated by Fetal Growth Restriction With and Without Preeclampsia. Reprod Sci 2014; 22:316-21. [DOI: 10.1177/1933719114542024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Michal Kovo
- Department of Obstetrics & Gynecology, Edith Wolfson Medical Center, Holon, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Letizia Schreiber
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Edith Wolfson Medical Center, Holon, Israel
| | - Osnat Elyashiv
- Department of Obstetrics & Gynecology, Edith Wolfson Medical Center, Holon, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi Ben-Haroush
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Obstetrics & Gynecology, Rabin Medical Center, Petah-Tikva
| | - Golan Abraham
- Department of Obstetrics & Gynecology, Edith Wolfson Medical Center, Holon, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Bar
- Department of Obstetrics & Gynecology, Edith Wolfson Medical Center, Holon, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
298
|
Escudero C, Roberts JM, Myatt L, Feoktistov I. Impaired adenosine-mediated angiogenesis in preeclampsia: potential implications for fetal programming. Front Pharmacol 2014; 5:134. [PMID: 24926270 PMCID: PMC4046493 DOI: 10.3389/fphar.2014.00134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/16/2014] [Indexed: 01/24/2023] Open
Abstract
Preeclampsia is a pregnancy-specific syndrome, defined by such clinical hallmarks as the onset of maternal hypertension and proteinuria after 20 weeks of gestation. The syndrome is also characterized by impaired blood flow through the utero-placental circulation and relative placental ischemia, which in turn, may generate feto-placental endothelial dysfunction. Endothelial dysfunction in offspring born from preeclamptic pregnancies has been associated with an increased risk of cardiovascular disease, including hypertension, later in life. Interestingly, diminished endothelial function, manifested by low angiogenic capacity, leads to hypertension in animal studies. Recently, we have shown that the adenosine receptor A2A/nitric oxide/vascular endothelial growth factor axis is reduced in human umbilical vein endothelial cells derived from preeclamptic pregnancies, an effect correlated with gestational age at onset of preeclampsia. We and others suggested that impaired vascular function might be associated with high cardiovascular risk in offspring exposed to pregnancy diseases. However, we are not aware of any studies that examine impaired adenosine-mediated angiogenesis as a possible link to hypertension in offspring born from preeclamptic pregnancies. In this review, we present evidence supporting the hypothesis that reduced adenosine-mediated angiogenesis during preeclamptic pregnancies might be associated with development of hypertension in the offspring.
Collapse
Affiliation(s)
- Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis, Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío Chillán, Chile
| | - James M Roberts
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, Department of Epidemiology and Clinical and Translational Science Institute, University of Pittsburgh Pittsburgh, PA, USA
| | - Leslie Myatt
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center San Antonio, TX, USA
| | - Igor Feoktistov
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Nashville, TN, USA ; Department of Pharmacology, School of Medicine, Vanderbilt University Nashville, TN, USA
| |
Collapse
|
299
|
Perez-Sepulveda A, Torres MJ, Khoury M, Illanes SE. Innate immune system and preeclampsia. Front Immunol 2014; 5:244. [PMID: 24904591 PMCID: PMC4033071 DOI: 10.3389/fimmu.2014.00244] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/09/2014] [Indexed: 12/28/2022] Open
Abstract
Normal pregnancy is considered as a Th2 type immunological state that favors an immune-tolerance environment in order to prevent fetal rejection. Preeclampsia (PE) has been classically described as a Th1/Th2 imbalance; however, the Th1/Th2 paradigm has proven insufficient to fully explain the functional and molecular changes observed during normal/pathological pregnancies. Recent studies have expanded the Th1/Th2 into a Th1/Th2/Th17 and regulatory T-cells paradigm and where dendritic cells could have a crucial role. Recently, some evidence has emerged supporting the idea that mesenchymal stem cells might be part of the feto-maternal tolerance environment. This review will discuss the involvement of the innate immune system in the establishment of a physiological environment that favors pregnancy and possible alterations related to the development of PE.
Collapse
Affiliation(s)
- Alejandra Perez-Sepulveda
- Centro de Investigaciones Biomédicas, Faculty of Medicine, Universidad de los Andes , Santiago , Chile
| | - Maria Jose Torres
- Centro de Investigaciones Biomédicas, Faculty of Medicine, Universidad de los Andes , Santiago , Chile
| | - Maroun Khoury
- Centro de Investigaciones Biomédicas, Faculty of Medicine, Universidad de los Andes , Santiago , Chile ; Cells for Cells , Santiago , Chile
| | - Sebastian E Illanes
- Centro de Investigaciones Biomédicas, Faculty of Medicine, Universidad de los Andes , Santiago , Chile
| |
Collapse
|
300
|
Chedraui P, Salazar-Pousada D, Villao A, Escobar GS, Ramirez C, Hidalgo L, Pérez-López FR, Genazzani A, Simoncini T. Polymorphisms of the methylenetetrahydrofolate reductase gene (C677T and A1298C) in nulliparous women complicated with preeclampsia. Gynecol Endocrinol 2014; 30:392-6. [PMID: 24611473 DOI: 10.3109/09513590.2014.895807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To determine the prevalence of C677T and A1298C Single-nucleotide polymorphisms (SNPs) of the MTHFR gene in nulliparous women complicated with preeclampsia (PE). METHODS One hundred fifty gestations complicated with PE and their corresponding controls without the disease were recruited for the genotyping of C677T and A1298C polymorphisms of the MTHFR gene using restriction fragment length polymorphism polymerase chain reaction. Secondarily, homocysteine (HCy) plasma levels were measured in preeclamptic women displaying the CC genotype of the A1298C polymorphism (homozygous) and compared to HCy levels determined among controls with the normal AA genotype for the A1298C variant. RESULTS Only the mutant CC genotype of the A1298C polymorphism was associated to higher risk of presenting PE, as frequency of this genotype was significantly higher among cases than controls (15.3% versus 0.7%, p < 0.05). All PE women with a neck circumference ≥32 cm presented the mutant CC A1298C polymorphism as compared to none among preeclamptics with a lower neck circumference (p = 0.0001). Women with the mutant CC A1298C SNP displayed higher plasma HCy levels as compared to controls with normal AA A1298C genotype (8.4 ± 2.6 versus 7.5 ± 2.7 mmoL/L p = 0.04). CONCLUSION Prevalence of the CC mutant genotype of the A1298C polymorphism was higher among PE women. This mutation among PE women was related to increased neck circumference and higher HCy levels. Future research should aim at linking these gestational findings with obesity and cardiovascular risk.
Collapse
Affiliation(s)
- Peter Chedraui
- Enrique C. Sotomayor Obstetrics and Gynecology Hospital , Guayaquil , Ecuador
| | | | | | | | | | | | | | | | | |
Collapse
|