251
|
Jung-Klawitter S, Opladen T. Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotransmission in inborn errors of metabolism. J Inherit Metab Dis 2018; 41:1103-1116. [PMID: 29980968 DOI: 10.1007/s10545-018-0225-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/08/2018] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Abstract
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs) has revolutionized the way of modeling human disease. Especially for the modeling of rare human monogenetic diseases with limited numbers of patients available worldwide and limited access to the mostly affected tissues, iPSCs have become an invaluable tool. To study rare diseases affecting neurotransmitter biosynthesis and neurotransmission, stem cell models carrying patient-specific mutations have become highly important as most of the cell types present in the human brain and the central nervous system (CNS), including motoneurons, neurons, oligodendrocytes, astrocytes, and microglia, can be differentiated from iPSCs following distinct developmental programs. Differentiation can be performed using classical 2D differentiation protocols, thereby generating specific subtypes of neurons or glial cells in a dish. On the other side, 3D differentiation into "organoids" opened new ways to study misregulated developmental processes associated with rare neurological and neurometabolic diseases. For the analysis of defects in neurotransmission associated with rare neurometabolic diseases, different types of brain organoids have been made available during the last years including forebrain, midbrain and cerebral organoids. In this review, we illustrate reprogramming of somatic cells to iPSCs, differentiation in 2D and 3D, as well as already available disease-specific iPSC models, and discuss current and future applications of these techniques.
Collapse
Affiliation(s)
- Sabine Jung-Klawitter
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
| | - Thomas Opladen
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| |
Collapse
|
252
|
Li X, Tao Y, Bradley R, Du Z, Tao Y, Kong L, Dong Y, Jones J, Yan Y, Harder CRK, Friedman LM, Bilal M, Hoffmann B, Zhang SC. Fast Generation of Functional Subtype Astrocytes from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 11:998-1008. [PMID: 30269954 PMCID: PMC6178885 DOI: 10.1016/j.stemcr.2018.08.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 01/05/2023] Open
Abstract
Differentiation of astrocytes from human pluripotent stem cells (hPSCs) is a tedious and variable process. This hampers the study of hPSC-generated astrocytes in disease processes and drug development. By using CRISPR/Cas9-mediated inducible expression of NFIA or NFIA plus SOX9 in hPSCs, we developed a method to efficiently generate astrocytes in 4-7 weeks. The astrocytic identity of the induced cells was verified by their characteristic molecular and functional properties as well as after transplantation. Furthermore, we developed a strategy to generate region-specific astrocyte subtypes by combining differentiation of regional progenitors and transgenic induction of astrocytes. This simple and efficient method offers a new opportunity to study the fundamental biology of human astrocytes and their roles in disease processes.
Collapse
Affiliation(s)
- Xiang Li
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Yezheng Tao
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Robert Bradley
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | | | - Yunlong Tao
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Linghai Kong
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Yi Dong
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Jeffrey Jones
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Yuanwei Yan
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Cole R K Harder
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | | | - Magd Bilal
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | | | - Su-Chun Zhang
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; BrainXell, Inc., Madison, WI 53711, USA.
| |
Collapse
|
253
|
Prytkova I, Goate A, Hart RP, Slesinger PA. Genetics of Alcohol Use Disorder: A Role for Induced Pluripotent Stem Cells? Alcohol Clin Exp Res 2018; 42:1572-1590. [PMID: 29897633 PMCID: PMC6120805 DOI: 10.1111/acer.13811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) affects millions of people and costs nearly 250 billion dollars annually. Few effective FDA-approved treatments exist, and more are needed. AUDs have a strong heritability, but only a few genes have been identified with a large effect size on disease phenotype. Genomewide association studies (GWASs) have identified common variants with low effect sizes, most of which are in noncoding regions of the genome. Animal models frequently fail to recapitulate key molecular features of neuropsychiatric disease due to the polygenic nature of the disease, partial conservation of coding regions, and significant disparity in noncoding regions. By contrast, human induced pluripotent stem cells (hiPSCs) derived from patients provide a powerful platform for evaluating genes identified by GWAS and modeling complex interactions in the human genome. hiPSCs can be differentiated into a wide variety of human cells, including neurons, glia, and hepatic cells, which are compatible with numerous functional assays and genome editing techniques. In this review, we focus on current applications and future directions of patient hiPSC-derived central nervous system cells for modeling AUDs in addition to highlighting successful applications of hiPSCs in polygenic neuropsychiatric diseases.
Collapse
Affiliation(s)
- Iya Prytkova
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Alison Goate
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway NJ 08854, USA
| | - Paul A. Slesinger
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
254
|
Nadadhur AG, Leferink PS, Holmes D, Hinz L, Cornelissen-Steijger P, Gasparotto L, Heine VM. Patterning factors during neural progenitor induction determine regional identity and differentiation potential in vitro. Stem Cell Res 2018; 32:25-34. [PMID: 30172094 DOI: 10.1016/j.scr.2018.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/13/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022] Open
Abstract
The neural tube consists of neural progenitors (NPs) that acquire different characteristics during gestation due to patterning factors. However, the influence of such patterning factors on human pluripotent stem cells (hPSCs) during in vitro neural differentiation is often unclear. This study compared neural induction protocols involving in vitro patterning with single SMAD inhibition (SSI), retinoic acid (RA) administration and dual SMAD inhibition (DSI). While the derived NP cells expressed known NP markers, they differed in their NP expression profile and differentiation potential. Cortical neuronal cells generated from 1) SSI NPs exhibited less mature neuronal phenotypes, 2) RA NPs exhibited an increased GABAergic phenotype, and 3) DSI NPs exhibited greater expression of glutamatergic lineage markers. Further, although all NPs generated astrocytes, astrocytes derived from the RA-induced NPs had the highest GFAP expression. Differences between NP populations included differential expression of regional identity markers HOXB4, LBX1, OTX1 and GSX2, which persisted into mature neural cell stages. This study suggests that patterning factors regulate how potential NPs may differentiate into specific neuronal and glial cell types in vitro. This challenges the utility of generic neural induction procedures, while highlighting the importance of carefully selecting specific NP protocols.
Collapse
Affiliation(s)
- Aishwarya G Nadadhur
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Prisca S Leferink
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Dwayne Holmes
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Lisa Hinz
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Paulien Cornelissen-Steijger
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Lisa Gasparotto
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Vivi M Heine
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands.
| |
Collapse
|
255
|
Barnes J, Salas F, Mokhtari R, Dolstra H, Pedrosa E, Lachman HM. Modeling the neuropsychiatric manifestations of Lowe syndrome using induced pluripotent stem cells: defective F-actin polymerization and WAVE-1 expression in neuronal cells. Mol Autism 2018; 9:44. [PMID: 30147856 PMCID: PMC6094927 DOI: 10.1186/s13229-018-0227-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/29/2018] [Indexed: 12/12/2022] Open
Abstract
Background Lowe syndrome (LS) is a rare genetic disorder caused by loss of function mutations in the X-linked gene, OCRL, which codes for inositol polyphosphate 5-phosphatase. LS is characterized by the triad of congenital cataracts, neurodevelopmental impairment (primarily intellectual and developmental disabilities [IDD]), and renal proximal tubular dysfunction. Studies carried out over the years have shown that hypomorphic mutations in OCRL adversely affect endosome recycling and actin polymerization in kidney cells and patient-derived fibroblasts. The renal problem has been traced to an impaired recycling of megalin, a multi-ligand receptor that plays a key role in the reuptake of lipoproteins, amino acids, vitamin-binding proteins, and hormones. However, the neurodevelopmental aspects of the disorder have been difficult to study because the mouse knockout (KO) model does not display LS-related phenotypes. Fortunately, the discovery of induced pluripotent stem (iPS) cells has provided an opportunity to grow patient-specific neurons, which can be used to model neurodevelopmental disorders in vitro, as demonstrated in the many studies that have been published in the past few years in autism spectrum disorders (ASD), schizophrenia (SZ), bipolar disorder (BD), and IDD. Methods We now report the first findings in neurons and neural progenitor cells (NPCs) generated from iPS cells derived from patients with LS and their typically developing male siblings, as well as an isogenic line in which the OCRL gene has been incapacitated by a null mutation generated using CRISPR-Cas9 gene editing. Results We show that neuronal cells derived from patient-specific iPS cells containing hypomorphic variants are deficient in their capacity to produce F-filamentous actin (F-actin) fibers. Abnormalities were also found in the expression of WAVE-1, a component of the WAVE regulatory complex (WRC) that regulates actin polymerization. Curiously, neuronal cells carrying the engineered OCRL null mutation, in which OCRL protein is not expressed, did not show similar defects in F-actin and WAVE-1 expression. This is similar to the apparent lack of a phenotype in the mouse Ocrl KO model, and suggests that in the complete absence of OCRL protein, as opposed to producing a dysfunctional protein, as seen with the hypomorphic variants, there is partial compensation for the F-actin/WAVE-1 regulating function of OCRL. Conclusions Alterations in F-actin polymerization and WRC have been found in a number of genetic subgroups of IDD and ASD. Thus, LS, a very rare genetic condition, is linked to a more expansive family of genes responsible for neurodevelopmental disorders that have shared pathogenic features. Electronic supplementary material The online version of this article (10.1186/s13229-018-0227-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jesse Barnes
- 1Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Franklin Salas
- 2Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ryan Mokhtari
- 3Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Hedwig Dolstra
- 4Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Erika Pedrosa
- 2Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Herbert M Lachman
- 1Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,2Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA.,5Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA.,6Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
256
|
Karch CM, Hernández D, Wang JC, Marsh J, Hewitt AW, Hsu S, Norton J, Levitch D, Donahue T, Sigurdson W, Ghetti B, Farlow M, Chhatwal J, Berman S, Cruchaga C, Morris JC, Bateman RJ, the Dominantly Inherited Alzheimer Network (DIAN), Pébay A, Goate AM. Human fibroblast and stem cell resource from the Dominantly Inherited Alzheimer Network. Alzheimers Res Ther 2018; 10:69. [PMID: 30045758 PMCID: PMC6060509 DOI: 10.1186/s13195-018-0400-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) cause autosomal dominant forms of Alzheimer disease (ADAD). More than 280 pathogenic mutations have been reported in APP, PSEN1, and PSEN2. However, understanding of the basic biological mechanisms that drive the disease are limited. The Dominantly Inherited Alzheimer Network (DIAN) is an international observational study of APP, PSEN1, and PSEN2 mutation carriers with the goal of determining the sequence of changes in presymptomatic mutation carriers who are destined to develop Alzheimer disease. RESULTS We generated a library of 98 dermal fibroblast lines from 42 ADAD families enrolled in DIAN. We have reprogrammed a subset of the DIAN fibroblast lines into patient-specific induced pluripotent stem cell (iPSC) lines. These cells were thoroughly characterized for pluripotency markers. CONCLUSIONS This library represents a comprehensive resource that can be used for disease modeling and the development of novel therapeutics.
Collapse
Affiliation(s)
- Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Damián Hernández
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC Australia
| | - Jen-Chyong Wang
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| | - Jacob Marsh
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Alex W. Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC Australia
- School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Simon Hsu
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Joanne Norton
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Denise Levitch
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Tamara Donahue
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Wendy Sigurdson
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, 635 Barnhill Drive, MS A 142, Indianapolis, IN 46202 USA
| | - Martin Farlow
- Department of Neurology, Indiana University, 635 Barnhill Drive, MS A 142, Indianapolis, IN 46202 USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, 149 13th Street, Charlestown, MA 02129 USA
| | - Sarah Berman
- Alzheimer Disease Research Center, University of Pittsburgh School of Medicine, 4-West Montefiore University Hospital, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - the Dominantly Inherited Alzheimer Network (DIAN)
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110 USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC Australia
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
- School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
- Department of Pathology and Laboratory Medicine, Indiana University, 635 Barnhill Drive, MS A 142, Indianapolis, IN 46202 USA
- Department of Neurology, Indiana University, 635 Barnhill Drive, MS A 142, Indianapolis, IN 46202 USA
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, 149 13th Street, Charlestown, MA 02129 USA
- Alzheimer Disease Research Center, University of Pittsburgh School of Medicine, 4-West Montefiore University Hospital, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC Australia
| | - Alison M. Goate
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| |
Collapse
|
257
|
Abstract
In the current review, we discuss the process of modeling pediatric epileptic encephalopathies with a focus on in vitro iPSC-based technologies. We highlight the potential benefits as well as the challenges of these approaches and propose appropriate standards for the field.
Collapse
|
258
|
Mohamet L, Jones VC, Dayanithi G, Verkhratsky A. Pathological human astroglia in Alzheimer's disease: opening new horizons with stem cell technology. FUTURE NEUROLOGY 2018. [DOI: 10.2217/fnl-2017-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pathological remodeling, degeneration and reactivity of astrocytes are fundamental astrogliopathies contributing to all neurological diseases. In neurodegenerative disorders (including Alzheimer's disease [AD]) astroglia undergo complex changes that range from atrophy with loss of function to accumulation of reactive cells around disease-specific lesions (senile plaques in the case of AD). The cellular pathology of astroglia in the context of human AD remains enigmatic; mainly because of the severe limitations of animal models, which, although reproducing some pathological features of the disease, do not mimic its progression in full. Human-induced pluripotent stem cells technology creates a novel and potentially revolutionizing platform for studying fundamental mechanisms of the disease and for screening to identify new therapeutic compounds.
Collapse
Affiliation(s)
- Lisa Mohamet
- StrataStem Ltd, Suite 112, 4a Rylands Street, Warrington, WA1 1EN, UK
| | - Vicky C Jones
- School of Pharmacy & Biomedical Sciences, The University of Central Lancashire, Preston PR1 2HE, UK
| | - Govindan Dayanithi
- Centre Nationale de la Recherche Scientifique Institut des Sciences Biologiques (INSB)3, rue Michel-Ange 75794 Paris cedex 16, France
- INSERM U1198, École Pratique des Hautes Études-Sorbonne, Université Montpellier34095 Montpellier, France
- Deptartment of Pharmacology & Toxicology, Faculty of Pharmacy, Charles University in Plzen, alej Svobody 76, 323 00 Plzeň-Czech Republic
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain & Department of Neurosciences, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| |
Collapse
|
259
|
Phillips JK, Sherman SA, Oungoulian SR, Finan JD. Method for High Speed Stretch Injury of Human Induced Pluripotent Stem Cell-derived Neurons in a 96-well Format. J Vis Exp 2018. [PMID: 29733307 PMCID: PMC6100707 DOI: 10.3791/57305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major clinical challenge with high morbidity and mortality. Despite decades of pre-clinical research, no proven therapies for TBI have been developed. This paper presents a novel method for pre-clinical neurotrauma research intended to complement existing pre-clinical models. It introduces human pathophysiology through the use of human induced pluripotent stem cell-derived neurons (hiPSCNs). It achieves loading pulse duration similar to the loading durations of clinical closed head impact injury. It employs a 96-well format that facilitates high throughput experiments and makes efficient use of expensive cells and culture reagents. Silicone membranes are first treated to remove neurotoxic uncured polymer and then bonded to commercial 96-well plate bodies to create stretchable 96-well plates. A custom-built device is used to indent some or all of the well bottoms from beneath, inducing equibiaxial mechanical strain that mechanically injures cells in culture in the wells. The relationship between indentation depth and mechanical strain is determined empirically using high speed videography of well bottoms during indentation. Cells, including hiPSCNs, can be cultured on these silicone membranes using modified versions of conventional cell culture protocols. Fluorescent microscopic images of cell cultures are acquired and analyzed after injury in a semi-automated fashion to quantify the level of injury in each well. The model presented is optimized for hiPSCNs but could in theory be applied to other cell types.
Collapse
Affiliation(s)
- Jack K Phillips
- Department of Neurosurgery, NorthShore University HealthSystem
| | - Sydney A Sherman
- Department of Neurosurgery, NorthShore University HealthSystem; Midwestern University/Chicago College of Osteopathic Medicine
| | | | - John D Finan
- Department of Neurosurgery, NorthShore University HealthSystem;
| |
Collapse
|
260
|
Human iPS-Derived Astroglia from a Stable Neural Precursor State Show Improved Functionality Compared with Conventional Astrocytic Models. Stem Cell Reports 2018; 10:1030-1045. [PMID: 29456185 PMCID: PMC5918339 DOI: 10.1016/j.stemcr.2018.01.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 12/15/2022] Open
Abstract
In vivo studies of human brain cellular function face challenging ethical and practical difficulties. Animal models are typically used but display distinct cellular differences. One specific example is astrocytes, recently recognized for contribution to neurological diseases and a link to the genetic risk factor apolipoprotein E (APOE). Current astrocytic in vitro models are questioned for lack of biological characterization. Here, we report human induced pluripotent stem cell (hiPSC)-derived astroglia (NES-Astro) developed under defined conditions through long-term neuroepithelial-like stem (ltNES) cells. We characterized NES-Astro and astrocytic models from primary sources, astrocytoma (CCF-STTG1), and hiPSCs through transcriptomics, proteomics, glutamate uptake, inflammatory competence, calcium signaling response, and APOE secretion. Finally, we assess modulation of astrocyte biology using APOE-annotated compounds, confirming hits of the cholesterol biosynthesis pathway in adult and hiPSC-derived astrocytes. Our data show large diversity among astrocytic models and emphasize a cellular context when studying astrocyte biology. Expression and functional profiling display variation between astrocyte models Development of NES-Astro showing functional astrocyte-associated glutamate receptor NES-Astro is immune competent, displaying ATP and glutamate-driven calcium signaling APOE HTS assay shows that compound hit finding depends on astrocytic model biology
Collapse
|
261
|
Chailangkarn T, Noree C, Muotri AR. The contribution of GTF2I haploinsufficiency to Williams syndrome. Mol Cell Probes 2018; 40:45-51. [PMID: 29305905 DOI: 10.1016/j.mcp.2017.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 01/14/2023]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder involving hemideletion of as many as 26-28 genes, resulting in a constellation of unique physical, cognitive and behavior phenotypes. The haploinsufficiency effect of each gene has been studied and correlated with phenotype(s) using several models including WS subjects, animal models, and peripheral cell lines. However, links for most of the genes to WS phenotypes remains unclear. Among those genes, general transcription factor 2I (GTF2I) is of particular interest as its haploinsufficiency is possibly associated with hypersociability in WS. Here, we describe studies of atypical WS cases as well as mouse models focusing on GTF2I that support a role for this protein in the neurocognitive and behavioral profiles of WS individuals. We also review collective studies on diverse molecular functions of GTF2I that may provide mechanistic explanation for phenotypes recently reported in our relevant cellular model, namely WS induced pluripotent stem cell (iPSC)-derived neurons. Finally, in light of the progress in gene-manipulating approaches, we suggest their uses in revealing the neural functions of GTF2I in the context of WS.
Collapse
Affiliation(s)
- Thanathom Chailangkarn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Virology and Cell Technology Laboratory, Pathum Thani, 12120, Thailand.
| | - Chalongrat Noree
- Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, UCSD Stem Cell Program, Department of Pediatrics/Rady Children's Hospital San Diego, La Jolla, CA 92037, USA; University of California San Diego, School of Medicine, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA; Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA 92093, USA
| |
Collapse
|
262
|
Astrocytes in primary cultures express serine racemase, synthesize d-serine and acquire A1 reactive astrocyte features. Biochem Pharmacol 2018; 151:245-251. [PMID: 29305854 DOI: 10.1016/j.bcp.2017.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/28/2017] [Indexed: 02/08/2023]
Abstract
d-Serine is a co-agonist at forebrain N-methyl-d-aspartate receptors (NMDAR) and is synthesized by serine racemase (SR). Although d-serine and SR were originally reported to be localized to glia, recent studies have provided compelling evidence that under healthy physiologic conditions both are localized primarily in neurons. However, in pathologic conditions, reactive astrocytes can also express SR and synthesize d-serine. Since cultured astrocytes exhibit features of reactive astrocytes, we have characterized d-serine synthesis and the expression of enzymes involved in its disposition in primary glial cultures. The levels of SR were quite low early in culture and increased markedly in all astrocytes with the duration in vitro. The concentration of d-serine in the culture medium increased in parallel with SR expression in the astrocytes. Microglia, identified by robust expression of Iba1, did not express SR. While the levels of glial fibrillary acidic protein (GFAP), glycine decarboxylase (GLDC) and phosphoglycerate dehydrogenase (PHGDH), the initial enzyme in the pathway converting glycine to l-serine, remained constant in culture, the expression of lipocalin-2, a marker for pan-reactive astrocytes, increased several-fold. The cultured astrocytes also expressed Complement-3a, a marker for a subpopulation of reactive astrocytes (A1). Astrocytes grown from mice with a copy number variant associated with psychosis, which have four copies of the GLDC gene, showed a more rapid production of d-serine and a reduction in glycine in the culture medium. These results substantiate the conclusion that A1 reactive astrocytes express SR and release d-serine under pathologic conditions, which may contribute to their neurotoxic effects by activating extra-synaptic NMDARs.
Collapse
|
263
|
Brennand KJ. Personalized medicine in a dish: the growing possibility of neuropsychiatric disease drug discovery tailored to patient genetic variants using stem cells. Stem Cell Investig 2017; 4:91. [PMID: 29270417 DOI: 10.21037/sci.2017.10.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/27/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Kristen J Brennand
- Departments of Genetics and Genomics, Neuroscience, and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
264
|
Flaherty E, Deranieh RM, Artimovich E, Lee IS, Siegel AJ, Levy DL, Nestor MW, Brennand KJ. Patient-derived hiPSC neurons with heterozygous CNTNAP2 deletions display altered neuronal gene expression and network activity. NPJ SCHIZOPHRENIA 2017; 3:35. [PMID: 28970473 PMCID: PMC5624885 DOI: 10.1038/s41537-017-0033-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022]
Abstract
Variants in CNTNAP2, a member of the neurexin family of genes that function as cell adhesion molecules, have been associated with multiple neuropsychiatric conditions such as schizophrenia, autism spectrum disorder and intellectual disability; animal studies indicate a role for CNTNAP2 in axon guidance, dendritic arborization and synaptogenesis. We previously reprogrammed fibroblasts from a family trio consisting of two carriers of heterozygous intragenic CNTNAP2 deletions into human induced pluripotent stem cells (hiPSCs) and described decreased migration in the neural progenitor cells (NPCs) differentiated from the affected CNTNAP2 carrier in this trio. Here, we report the effect of this heterozygous intragenic deletion in CNTNAP2 on global gene expression and neuronal activity in the same cohort. Our findings suggest that heterozygous CNTNAP2 deletions affect genes involved in neuronal development and neuronal activity; however, these data reflect only one family trio and therefore more deletion carriers, with a variety of genetic backgrounds, will be needed to understand the molecular mechanisms underlying CNTNAP2 deletions.
Collapse
Affiliation(s)
- Erin Flaherty
- Departments of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rania M Deranieh
- Hussman Institute for Autism, 801W. Baltimore St., Baltimore, MD, 21201, USA
| | - Elena Artimovich
- Hussman Institute for Autism, 801W. Baltimore St., Baltimore, MD, 21201, USA
| | - Inkyu S Lee
- Departments of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arthur J Siegel
- Internal Medicine Department, McLean Hospital, Belmont, MA, 02478, USA
| | - Deborah L Levy
- Psychology Research Laboratory, McLean Hospital, Belmont, MA, 02478, USA
| | - Michael W Nestor
- Hussman Institute for Autism, 801W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Kristen J Brennand
- Departments of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
265
|
Ho SM, Hartley BJ, Flaherty E, Rajarajan P, Abdelaal R, Obiorah I, Barretto N, Muhammad H, Phatnani HP, Akbarian S, Brennand KJ. Evaluating Synthetic Activation and Repression of Neuropsychiatric-Related Genes in hiPSC-Derived NPCs, Neurons, and Astrocytes. Stem Cell Reports 2017; 9:615-628. [PMID: 28757163 PMCID: PMC5550013 DOI: 10.1016/j.stemcr.2017.06.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/11/2022] Open
Abstract
Modulation of transcription, either synthetic activation or repression, via dCas9-fusion proteins is a relatively new methodology with the potential to facilitate high-throughput up- or downregulation studies of gene function. Genetic studies of neurodevelopmental disorders have identified a growing list of risk variants, including both common single-nucleotide variants and rare copy-number variations, many of which are associated with genes having limited functional annotations. By applying a CRISPR-mediated gene-activation/repression platform to populations of human-induced pluripotent stem cell-derived neural progenitor cells, neurons, and astrocytes, we demonstrate that it is possible to manipulate endogenous expression levels of candidate neuropsychiatric risk genes across these three cell types. Although proof-of-concept studies using catalytically inactive Cas9-fusion proteins to modulate transcription have been reported, here we present a detailed survey of the reproducibility of gRNA positional effects across a variety of neurodevelopmental disorder-relevant risk genes, donors, neural cell types, and dCas9 effectors. The efficacy of CRISPR-mediated transcript modulation varies between genes gRNAs should be re-validated for each individual, cell type, and dCas9-effector
Collapse
Affiliation(s)
- Seok-Man Ho
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brigham J Hartley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin Flaherty
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prashanth Rajarajan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rawan Abdelaal
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Ifeanyi Obiorah
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Natalie Barretto
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hamza Muhammad
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hemali P Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristen J Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|