251
|
Epis S, Mandrioli M, Genchi M, Montagna M, Sacchi L, Pistone D, Sassera D. Localization of the bacterial symbiont Candidatus Midichloria mitochondrii within the hard tick Ixodes ricinus by whole-mount FISH staining. Ticks Tick Borne Dis 2012; 4:39-45. [PMID: 23238245 DOI: 10.1016/j.ttbdis.2012.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/24/2012] [Accepted: 06/05/2012] [Indexed: 11/30/2022]
Abstract
Here, we present an investigation on the spatial distribution of the bacterial symbiont Candidatus Midichloria mitochondrii within Ixodes ricinus, by whole mount fluorescence in situ hybridization (FISH). M. mitochondrii is a peculiar, recently discovered bacterium that resides in the mitochondria of female ticks. We applied a rapid and specific FISH protocol with oligonucleotide probes targeted on the 16S rRNA of M. mitochondrii, 12S rRNA of tick mitochondria, and a probe revealing active mitochondria. In this report that represents the first application of whole mount FISH on ticks, we observed strong, specific fluorescence signals in all the examined life stages, as the optimized protocol allowed us to overcome the autofluorescence interference of the cuticle. Cellular localization and quantification of the symbionts were also assessed with electron microscopy and specific real-time PCR, respectively.
Collapse
Affiliation(s)
- Sara Epis
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Sezione di Parassitologia, Università degli Studi di Milano, Via Celoria 10, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
252
|
Neves S, Guedes R. Hibridização in situ fluorescente: princípios básicos e perspectivas para o diagnóstico de doenças infecciosas em medicina veterinária. ARQUIVOS DO INSTITUTO BIOLÓGICO 2012. [DOI: 10.1590/s1808-16572012000400023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Nesse manuscrito são discutidos aspectos relevantes sobre desenvolvimento da técnica de hibridização fluorescente in situ, seus princípios básicos, aplicações e perspectivas em medicina veterinária. Além disso, compara as vantagens e desvantagens em relação às outras técnicas de diagnóstico in situ. A FISH demonstra ser uma técnica com grande potencialidade de uso rotineiro, pois associa agilidade de execução, alta sensibilidade e especificidade e visualização do agente infeccioso viável no tecido.
Collapse
|
253
|
Yano T, Kubota H, Hanai J, Hitomi J, Tokuda H. Stress tolerance of Methylobacterium biofilms in bathrooms. Microbes Environ 2012. [PMID: 23207727 PMCID: PMC4070686 DOI: 10.1264/jsme2.me12146] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A comprehensive survey of microbial flora within pink biofilms in bathrooms was performed. Pink biofilms develop relatively rapidly in bathrooms, can be difficult to remove, and are quick to recur. Bacterium-sized cells were found to be predominant in 42 pink biofilms in Japan using a scanning electron microscope. Methylobacterium strains were detected from all samples in bathrooms by an isolation method. To explain this predominance, 14 biofilm samples were analyzed by fluorescence in situ hybridization. Methylobacterium was indicated to be the major genus in all biofilms. The isolated Methylobacterium survived after contact with 1.0% cleaning agents, including benzalkonium chloride for 24 h. Their tolerance did not differ under biofilm-like conditions on fiber reinforced plastics (FRP), a general material of bath tubs, floors, and walls. Also, the strains exhibited higher tolerance to desiccation than other isolated species on FRP. Some Methylobacterium survived and exhibited potential to grow after four weeks of desiccation without any nutrients. These specific characteristics could be a cause of their predominance in bathrooms, an environment with rapid flowing water, drying, low nutrients, and occasional exposure to cleaning agents.
Collapse
Affiliation(s)
- Takehisa Yano
- R&D-Safety Science Research, Kao Corporation, Tochigi, Japan
| | | | | | | | | |
Collapse
|
254
|
Weerasekera MM, Sissons CH, Wong L, Anderson S, Holmes AR, Cannon RD. Use of denaturing gradient gel electrophoresis for the identification of mixed oral yeasts in human saliva. J Med Microbiol 2012; 62:319-330. [PMID: 23065546 DOI: 10.1099/jmm.0.050237-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A PCR-denaturing gradient gel electrophoresis (DGGE) method was established for the simultaneous presumptive identification of multiple yeast species commonly present in the oral cavity. Published primer sets targeting different regions of the Saccharomyces cerevisiae 26-28S rRNA gene (denoted primer sets N and U) and the 18S rRNA gene (primer set E) were evaluated with ten Candida and four non-Candida yeast species, and twenty Candida albicans isolates. Optimized PCR-DGGE conditions using primer set N were applied to presumptively identify, by band matching, yeasts in the saliva of 25 individuals. Identities were confirmed by DNA sequencing and compared with those using CHROMagar Candida culture. All primer sets yielded detectable DGGE bands for all species tested. Primer set N yielded mainly single bands and could distinguish all species examined, including differentiating Candida dubliniensis from C. albicans. Primer set U was less discriminatory among species but yielded multiple bands that distinguished subspecies groups within C. albicans. Primer set E gave poor yeast discrimination. DGGE analysis identified yeasts in 17 of the 25 saliva samples. Six saliva samples contained two yeast species: three contained C. albicans and three C. dubliniensis. C. dubliniensis was present alone in one saliva sample (total prevalence 16 %). CHROMagar culture detected yeasts in 16 of the yeast-containing saliva samples and did not enable identification of 7 yeast species identified by DGGE. In conclusion, DGGE identification of oral yeast species with primer set N is a relatively fast and reliable method for the simultaneous presumptive identification of mixed yeasts in oral saliva samples.
Collapse
Affiliation(s)
- Manjula M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka.,Dental Research Group, School of Medicine and Health Sciences, University of Otago, Wellington 6242, New Zealand
| | - Chris H Sissons
- Dental Research Group, School of Medicine and Health Sciences, University of Otago, Wellington 6242, New Zealand
| | - Lisa Wong
- Dental Research Group, School of Medicine and Health Sciences, University of Otago, Wellington 6242, New Zealand
| | - Sally Anderson
- Dental Research Group, School of Medicine and Health Sciences, University of Otago, Wellington 6242, New Zealand
| | - Ann R Holmes
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Richard D Cannon
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
255
|
Bouvier T, Del Giorgio PA. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): A quantitative review of published reports. FEMS Microbiol Ecol 2012; 44:3-15. [PMID: 19719646 DOI: 10.1016/s0168-6496(02)00461-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Abstract Fluorescence in situ hybridization (FISH) is widely used to describe bacterial community composition and, to a lesser extent, to describe the physiological state of cells. One of the limitations of the technique is that the effectiveness of the detection of target cells appears to vary widely. Here, we present a quantitative review of published reports on the percentage of cells detected using the common EUB338 probe (%Eub) in aquatic ecosystems. The %Eub varies from 1 to 100% in the different published reports, with an average of 56%. There is a methodological component in this variation, with a significant effect of the fluorochrome type and the stringency conditions of the reaction. But there is also a strong environmental component, and the type of ecosystem and dominant phylogenetic group significantly influence %Eub. We argue that the optimization of the FISH protocol to describe the phylogenetic composition of bacterial assemblages will probably lead to techniques that are not effective to describe the physiological state of cells.
Collapse
Affiliation(s)
- Thierry Bouvier
- Dépt. des Sciences Biologiques, Université du Québec à Montréal, CP 8888, Succ. Centre Ville, Montréal, QC, Canada H3C 3P8
| | | |
Collapse
|
256
|
Sampling and detection of skin Propionibacterium acnes: Current status. Anaerobe 2012; 18:479-83. [DOI: 10.1016/j.anaerobe.2012.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/16/2012] [Accepted: 07/24/2012] [Indexed: 01/28/2023]
|
257
|
Machado FC, Cesar DE, Assis AVDA, Diniz CG, Ribeiro RA. Detection and enumeration of periodontopathogenic bacteria in subgingival biofilm of pregnant women. Braz Oral Res 2012; 26:443-9. [DOI: 10.1590/s1806-83242012000500011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/05/2012] [Indexed: 11/22/2022] Open
|
258
|
García-Hernández J, Moreno Y, Chuan C, Hernández M. In vivo study of the survival of Lactobacillus delbruecki subsp. bulgaricus CECT 4005T and Streptococcus thermophilus CECT 801 by DVC-FISH after consumption of fermented milk. J Food Sci 2012; 77:M593-M597. [PMID: 22950663 DOI: 10.1111/j.1750-3841.2012.02918.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct Viable Count (DVC) method has been recently combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of Lactobacillus delbrueckii subsp. bulgaricus CECT 4005T and Streptococcus thermophilus CECT 801. This method has been used to determine their in vitro viability to gastrointestinal juices, being the resistance of L. delbrueckii subsp. bulgaricus and S. thermophilus 26.2% and 9.2%, respectively. On the other hand, an in vivo study has been carried out with the application of this technique for their detection in human feces, after consuming fermented milk. Cells of L. delbrueckii subsp. bulgaricus CECT 4005T were not detected, whereas viable cells of S. thermophilus CECT 801 were detected in a number higher than 10(3) cells per gram in a 30% of the samples after 4 wk of consumption. DVC-FISH is a quick and culture-independent useful method, which has been applied for the 1st time in an in vivo survival study of LAB.
Collapse
Affiliation(s)
- J García-Hernández
- Departamento de Biotecnología, Universitat Politècnica de València, Valencia, Spain.
| | | | | | | |
Collapse
|
259
|
Interaction of operational and physicochemical factors leading to Gordonia amarae-like foaming in an incompletely nitrifying activated sludge plant. Appl Environ Microbiol 2012; 78:8165-75. [PMID: 22983974 DOI: 10.1128/aem.00404-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The overgrowth of Gordonia amarae-like bacteria in the mixed liquor of an incompletely nitrifying water reclamation plant was inversely correlated with temperature (r = -0.78; P < 0.005) and positively correlated with the solids retention time (SRT) obtained a week prior to sampling (r = 0.67; P < 0.005). Drops followed by spikes in the food-to-mass ratio (0.18 to 0.52) and biochemical oxygen demand concentrations in primary effluent (94 to 298 mg liter(-1)) occurred at the initiation of G. amarae-like bacterial growth. The total bacterial concentration did not increase as concentrations of G. amarae-like cells increased, but total bacterial cell concentrations fluctuated in a manner similar to that of G. amarae-like bacteria in the pseudo-steady state. The ammonium ion removal rate (percent) was inversely related to G. amarae-like cell concentrations during accelerated growth and washout phases. The dissolved oxygen concentration decreased as the G. amarae-like cell concentration decreased. The concentrations of G. amarae-like cells peaked (2.47 × 10(9) cells liter(-1)) approximately 1.5 months prior to foaming. Foaming occurred during the late pseudo-steady-state phase, when temperature declines reversed. These findings suggested that temperature changes triggered operational and physicochemical changes favorable to the growth of G. amarae-like bacteria. Fine-scale quantitative PCR (qPCR) monitoring at weekly intervals allowed a better understanding of the factors affecting this organism and indicated that frequent sampling was required to obtain statistical significance with factors changing as the concentrations of this organism increased. Furthermore, the early identification of G. amarae-like cells when they are confined to mixed liquor (10(7) cells liter(-1)) allows management strategies to prevent foaming.
Collapse
|
260
|
Wang W, Xie L, Luo G, Zhou Q, Lu Q. Optimization of biohydrogen and methane recovery within a cassava ethanol wastewater/waste integrated management system. BIORESOURCE TECHNOLOGY 2012; 120:165-172. [PMID: 22789828 DOI: 10.1016/j.biortech.2012.06.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
Thermophilic co-fermentation of cassava stillage (CS) and cassava excess sludge (CES) were investigated for hydrogen and methane production. The highest hydrogen yield (37.1 ml/g-total-VS added) was obtained at VS(CS)/VS(CES) of 7:1, 17% higher than that with CS digestion alone. The CES recycle enhanced the substrate utilization and improved the buffer capacity. Further increase the CES fraction led to changed VFA distribution and more hydrogen consumption. FISH analysis revealed that both hydrogen producing bacteria and hydrogen consuming bacteria were enriched after CES recycled, and the acetobacteria percentage increased to 12.4% at VS(CS)/VS(CES) of 6:2. Relatively high efficient and stable hydrogen production was observed at VS(CS)/VS(CES) of 5:3 without pH adjusted and any pretreatment. The highest total energy yield, the highest COD and VS degradation were obtained at VS(CS)/VS(CES) of 7:1. GFC analysis indicated that the hydrolysis behavior was significantly improved by CES recycle at both hydrogen and methane production phase.
Collapse
Affiliation(s)
- Wen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | | | | | | | | |
Collapse
|
261
|
Korzeniewska E, Harnisz M. Culture-Dependent and Culture-Independent Methods in Evaluation of Emission of Enterobacteriaceae from Sewage to the Air and Surface Water. WATER, AIR, AND SOIL POLLUTION 2012; 223:4039-4046. [PMID: 22865940 PMCID: PMC3409368 DOI: 10.1007/s11270-012-1171-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/03/2012] [Indexed: 05/26/2023]
Abstract
The number of Enterobacteriaceae, with particular attention given to the presence of Escherichia coli and Klebsiella pneumoniae, was determined in hospital effluents and municipal wastewater after various stages of purification. The emission of these microorganisms to the ambient air near wastewater treatment plant (WWTP) facilities and to the river water, which is a receiver of the WWTP effluent, was also studied using fluorescence in situ hybridization (FISH) and cultivation methods. The number of Enterobacteriaceae determined by cultivation and fluorescence methods in different kinds of sewage sample ranged from 0.5 × 10(3) to 2.9 × 10(6) CFU/ml and from 2.2 × 10(5) to 1.3 × 10(8) cells/ml, respectively. Their removal rates during treatment processes were close to 99 %, but the number of these bacteria in the WWTP outflow was quite high and ranged from 5.9 × 10(3) to 3.5 × 10(4) CFU/ml and from 1.1 × 10(5) to 6.1 × 10(5) cells/ml, respectively. In the river water and the air samples, the number of Enterobacteriaceae was also high and ranged from 4.1 × 10(3) to 7.9 × 10(3) CFU/ml and from 3 to 458 CFU/m(3), respectively. The numbers of these microorganisms obtained from fluorescence and cultivation methods were statistically and significantly correlated; however, the analysis of the studied samples indicated that the FISH method gave values up to 10(3)-fold times greater than those obtained by the cultivation method. From a sanitary point of view, this means that the number of viable fecal bacteria is systematically underestimated by traditional culture-based methods. Thus, the FISH proves to be a method that could be used to estimate bacterial load, particularly in air samples and less contaminated river water.
Collapse
Affiliation(s)
- Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland
| | - Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland
| |
Collapse
|
262
|
Kyrylkova K, Kyryachenko S, Kioussi C, Leid M. Determination of gene expression patterns by in situ hybridization in sections. Methods Mol Biol 2012; 887:23-31. [PMID: 22566043 DOI: 10.1007/978-1-61779-860-3_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In recent years, in situ RNA hybridization technique has found a widespread application in developmental biology. This method has frequently been used to determine gene expression patterns, which is a first step toward understanding of a gene function. Here, we provide a reliable and sensitive method for in situ RNA hybridization on frozen sections of mouse embryo using digoxigenin-labeled RNA probes. This technique can be used to study gene expression patterns at all stages of odontogenesis.
Collapse
Affiliation(s)
- Kateryna Kyrylkova
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | | | | | | |
Collapse
|
263
|
Rapid and sensitive quantification of Vibrio cholerae and Vibrio mimicus cells in water samples by use of catalyzed reporter deposition fluorescence in situ hybridization combined with solid-phase cytometry. Appl Environ Microbiol 2012; 78:7369-75. [PMID: 22885749 DOI: 10.1128/aem.02190-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new protocol for rapid, specific, and sensitive cell-based quantification of Vibrio cholerae/Vibrio mimicus in water samples was developed. The protocol is based on catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) in combination with solid-phase cytometry. For pure cultures, we were able to quantify down to 6 V. cholerae cells on one membrane with a relative precision of 39% and down to 12 cells with a relative precision of 17% after hybridization with the horseradish peroxidase (HRP)-labeled probe Vchomim1276 (specific for V. cholerae and V. mimicus) and signal amplification. The corresponding position of the probe on the 16S rRNA is highly accessible even when labeled with HRP. For the first time, we were also able to successfully quantify V. cholerae/V. mimicus via solid-phase cytometry in extremely turbid environmental water samples collected in Austria. Cell numbers ranged from 4.5 × 10(1) cells ml(-1) in the large saline lake Neusiedler See to 5.6 × 10(4) cells ml(-1) in an extremely turbid shallow soda lake situated nearby. We therefore suggest CARD-FISH in combination with solid-phase cytometry as a powerful tool to quantify V. cholerae/V. mimicus in ecological studies as well as for risk assessment and monitoring programs.
Collapse
|
264
|
Frickmann H, Alnamar Y, Essig A, Clos J, Racz P, Barth TF, Hagen RM, Fischer M, Poppert S. Rapid identification ofLeishmaniaspp. in formalin-fixed, paraffin-embedded tissue samples by fluorescencein situhybridization. Trop Med Int Health 2012; 17:1117-26. [DOI: 10.1111/j.1365-3156.2012.03024.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
265
|
Branco P, Monteiro M, Moura P, Albergaria H. Survival rate of wine-related yeasts during alcoholic fermentation assessed by direct live/dead staining combined with fluorescence in situ hybridization. Int J Food Microbiol 2012; 158:49-57. [PMID: 22819715 DOI: 10.1016/j.ijfoodmicro.2012.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/21/2012] [Accepted: 06/30/2012] [Indexed: 10/28/2022]
Abstract
Real-time detection of microorganisms involved in complex microbial process, such as wine fermentations, and evaluation of their physiological state is crucial to predict whether or not those microbial species will be able to impact the final product. In the present work we used a direct live/dead staining (LDS) procedure combined with fluorescence in situ hybridization (FISH) to simultaneously assess the identity and viability of Saccharomyces cerevisiae (Sc) and Hanseniaspora guilliermondii (Hg) during fermentations performed with single and mixed cultures. The population evolution of both yeasts was determined by plating and by LDS combined with species-specific FISH-probes labeled with Fluorescein. Since the FISH method involves the permeabilization of the cell membrane prior to hybridization and that it may influence the free diffusion of PI in and out of the cells, we optimized the concentration of this dye (0.5 μg of PI per 10(6) cells) for minimal diffusion (less than 2%). Fluorescent cells were enumerated by hemocytometry and flow cytometry. Results showed that the survival rate of Sc during mixed cultures was high throughout the entire process (60% of viable cells at the 9th day), while Hg began to die off at the 2nd day, exhibited 98% of dead cells at the 3rd day (45 g/l of ethanol) and became completely unculturable at the 4th day. However, under single culture fermentation the survival rate and culturability of Hg decreased at a much slower pace, exhibiting at the 7th day (67 g/l of ethanol) 8.7×10(4) CFU/ml and 85% of dead cells. Thus, our work demonstrated that the LDS-FISH method is able to simultaneously assess the viability and identity of these wine-related yeast species during alcoholic fermentation in a fast and reliable way. In order to validate PI-staining as a viability marker during alcoholic fermentation, we evaluated the effect of ethanol on the membrane permeability of Sc and Hg cells, as well as their capacity to recover membrane integrity after being exposed to different levels of ethanol (1%, 6%, 10%, 12% v/v). Results showed that while Sc cells were able to recover membrane integrity after ethanol exposure, Hg cells were not. However, under alcoholic fermentation Sc cells didn't recover membrane integrity after the mid-term (4-5 days) of alcoholic fermentation.
Collapse
Affiliation(s)
- Patrícia Branco
- Unidade Bioenergia, LNEG, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
| | | | | | | |
Collapse
|
266
|
Frickmann H, Lakner A, Essig A, Poppert S. Rapid identification of yeast by fluorescencein situhybridisation from broth and blood cultures. Mycoses 2012; 55:521-31. [DOI: 10.1111/j.1439-0507.2012.02214.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
267
|
Mohapatra BR, La Duc MT. Evaluation of fluorescence in situ hybridization to detect encapsulated Bacillus pumilus SAFR-032 spores released from poly(methylmethacrylate). Microbiol Immunol 2012; 56:40-7. [PMID: 22145981 DOI: 10.1111/j.1348-0421.2011.00404.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacillus pumilus SAFR-032 spores originally isolated from the Jet Propulsion Laboratory spacecraft assembly facility clean room are extremely resistant to UV radiation, H(2)O(2), desiccation, chemical disinfection and starvation compared to spores of other Bacillus species. The resistance of B. pumilus SAFR-032 spores to standard industrial clean room sterilization practices is not only a major concern for medical, pharmaceutical and food industries, but also a threat to the extraterrestrial environment during search for life via spacecraft. The objective of the present study was to investigate the potential of Alexa-FISH (fluorescence in situ hybridization with Alexa Fluor® 488 labeled oligonucleotide) method as a molecular diagnostic tool for enumeration of multiple sterilant-resistant B. pumilus SAFR-032 spores artificially encapsulated in, and released via organic solvent from, a model polymeric material: poly(methylmethacrylate) (Lucite, Plexiglas). Plexiglas is used extensively in various aerospace applications and in medical, pharmaceutical and food industries. Alexa-FISH signals were not detected from spores via standard methods for vegetative bacterial cells. Optimization of a spore permeabilization protocol capitalizing on the synergistic action of proteinase-K, lysozyme, mutanolysin and Triton X-100 facilitated efficient spore detection by Alexa-FISH microscopy. Neither of the Alexa-probes tested gave rise to considerable levels of Lucite- or solvent-associated background autofluorescence, demonstrating the immense potential of Alexa-FISH for rapid quantification of encapsulated B. pumilus SAFR-032 spores released from poly(methylmethacrylate).
Collapse
Affiliation(s)
- Bidyut R Mohapatra
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
| | | |
Collapse
|
268
|
Werckenthin C, Gey A, Straubinger RK, Poppert S. Rapid identification of the animal pathogens Streptococcus uberis and Arcanobacterium pyogenes by fluorescence in situ hybridization (FISH). Vet Microbiol 2012; 156:330-5. [DOI: 10.1016/j.vetmic.2011.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 11/29/2022]
|
269
|
Fluorescence In-situ Hybridization for the Identification of Bacterial Species in Archival Heart Valve Sections of Canine Bacterial Endocarditis. J Comp Pathol 2012; 146:298-307. [DOI: 10.1016/j.jcpa.2011.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 07/01/2011] [Accepted: 07/19/2011] [Indexed: 01/08/2023]
|
270
|
The microbiology of metalworking fluids. Appl Microbiol Biotechnol 2012; 94:1119-30. [DOI: 10.1007/s00253-012-4055-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 03/20/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
271
|
Andersen SB, Boye M, Nash DR, Boomsma JJ. Dynamic Wolbachia prevalence in Acromyrmex leaf-cutting ants: potential for a nutritional symbiosis. J Evol Biol 2012; 25:1340-50. [PMID: 22530696 DOI: 10.1111/j.1420-9101.2012.02521.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wolbachia are renowned as reproductive parasites, but their phenotypic effects in eusocial insects are not well understood. We used a combination of qrt-PCR, fluorescence in situ hybridization and laser scanning confocal microscopy to evaluate the dynamics of Wolbachia infections in the leaf-cutting ant Acromyrmex octospinosus across developmental stages of sterile workers. We confirm that workers are infected with one or two widespread wsp genotypes of Wolbachia, show that colony prevalence is always 100% and characterize two rare recombinant genotypes. One dominant genotype is always present and most abundant, whereas another only proliferates in adult workers of some colonies and is barely detectable in larvae and pupae. An explanation may be that Wolbachia genotypes compete for host resources in immature stages while adult tissues provide substantially more niche space. Tissue-specific prevalence of the two genotypes differs, with the rarer genotype being over-represented in the adult foregut and thorax muscles. Both genotypes occur extracellularly in the foregut, suggesting an unknown mutualistic function in worker ant nutrition. Both genotypes are also abundant in the faecal fluid of the ants, suggesting that they may have extended functional phenotypes in the fungus garden that the ants manure with their own faeces.
Collapse
Affiliation(s)
- S B Andersen
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
272
|
Fraher MH, O'Toole PW, Quigley EMM. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol 2012; 9:312-22. [PMID: 22450307 DOI: 10.1038/nrgastro.2012.44] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gut microbiota is a complex ecosystem that has a symbiotic relationship with its host. An association between the gut microbiota and disease was first postulated in the early 20(th) century. However, until the 1990s, knowledge of the gut microbiota was limited because bacteriological culture was the only technique available to characterize its composition. Only a fraction (estimated at <30%) of the gut microbiota has been cultured to date. Since the 1990s, advances in culture-independent techniques have spearheaded our knowledge of the complexity of this ecosystem. These techniques have elucidated the microbial diversity of the gut microbiota and have shown that alterations in the gut microbiota composition and function are associated with certain disease states, such as IBD and obesity. These new techniques are fast, facilitate high throughput, identify organisms that are uncultured to date and enable enumeration of organisms present in the gut microbiota. This Review discusses the techniques that can used to characterize the gut microbiota, when they can be applied to human studies and their relative advantages and limitations.
Collapse
Affiliation(s)
- Marianne H Fraher
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
273
|
Mbuthia PG, Njagi LW, Nyaga PN, Bebora LC, Minga U, Christensen JP, Olsen JE. Time-course investigation of infection with a low virulent Pasteurella multocida strain in normal and immune-suppressed 12-week-old free-range chickens. Avian Pathol 2012; 40:629-37. [PMID: 22107097 DOI: 10.1080/03079457.2011.623298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Twelve-week-old indigenous chickens, either immune-suppressed using dexamethasone (IS) or non-immune-suppressed (NIS), were challenged with a low virulent strain, Pasteurella multocida strain NCTC 10322(T), and developed clinical signs and pathological lesions typical of chronic fowl cholera. NIS birds demonstrated much more severe signs of fowl cholera than IS birds. With few exceptions, signs recorded in IS and NIS birds were of the same types, but significantly milder in the IS birds, indicating that immune suppression does not change the course of infection but rather the severity of signs in fowl cholera. P. multocida signals by fluorescent in situ hybridization (FISH) were observed between 1 h and 14 days in the lungs, trachea, air sacs, liver, spleen, bursa of Fabricius and caecal tonsils, while signals from other organs mostly were observed after 24 h. More organs had FISH signals in NIS birds than in IS birds and at higher frequency per organ. Many organs were positive by FISH even 14 days post infection, and it is suggested that these organs may be likely places for long-term carriage of P. multocida following infection. The present study has demonstrated the spread of P. multocida in different tissues in chickens and distribution of lesions associated with chronic fowl cholera, and pointed to a decrease of pathology in IS birds. Since dexamethasone mostly affects heterophils, the study suggests that these cells play a role in the development of lesions associated with chronic fowl cholera in chickens.
Collapse
Affiliation(s)
- P G Mbuthia
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, Kenya
| | | | | | | | | | | | | |
Collapse
|
274
|
Occurrence of Salmonella spp. in samples from pigs slaughtered for consumption: A comparison between ISO 6579:2002 and 23S rRNA Fluorescent In Situ Hybridization method. Food Res Int 2012. [DOI: 10.1016/j.foodres.2010.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
275
|
Mediannikov O, Audoly G, Diatta G, Trape JF, Raoult D. New Rickettsia sp. in tsetse flies from Senegal. Comp Immunol Microbiol Infect Dis 2012; 35:145-50. [DOI: 10.1016/j.cimid.2011.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 12/06/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
|
276
|
García-Hernández J, Moreno Y, Amorocho CM, Hernández M. A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp.bulgaricus and Streptococcus thermophilus. Lett Appl Microbiol 2012; 54:247-254. [PMID: 22188589 DOI: 10.1111/j.1472-765x.2011.03201.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS We have developed a direct viable count (DVC)-FISH procedure for quickly and easily discriminating between viable and nonviable cells of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains, the traditional yogurt bacteria. METHODS AND RESULTS direct viable count method has been modified and adapted for Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus analysis by testing different times of incubation and concentrations of DNA-gyrase inhibitors. DVC procedure has been combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of both bacteria with specific rRNA oligonucleotide probes (DVC-FISH). Of the four antibiotics tested (novobiocin, nalidixic acid, pipemidic acid and ciprofloxacin), novobiocin was the most effective for DVC method and the optimum incubation time was 7 h for both bacteria. The number of viable cells was obtained by the enumeration of specific hybridized cells that were elongated at least twice their original length for Lactobacillus and twice their original size for Streptococcus. CONCLUSIONS This technique was successfully applied to detect viable cells in inoculated faeces. SIGNIFICANCE AND IMPACT OF THE STUDY Results showed that this DVC-FISH procedure is a quick and culture-independent useful method to specifically detect viable Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus in different samples, being applied for the first time to lactic acid bacteria.
Collapse
Affiliation(s)
- J García-Hernández
- Departamento de Biotecnología, Universitat Politècnica de València, Valencia, Spain.
| | | | | | | |
Collapse
|
277
|
Spatial distribution and viability of nitrifying, denitrifying and ANAMMOX bacteria in biofilms of sponge media retrieved from a full-scale biological nutrient removal plant. Bioprocess Biosyst Eng 2012; 35:1157-65. [PMID: 22367527 DOI: 10.1007/s00449-012-0701-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/03/2012] [Indexed: 10/28/2022]
Abstract
The spatial distribution and activities of nitrifying and denitrifying bacteria in sponge media were investigated using diverse tools, because understanding of in situ microbial condition of sponge phase is critical for the successful design and operation of sponge media process. The bacterial consortia within the media was composed of diverse groups including a 14.5% Nitrosomonas spp.-like ammonia oxidizing bacteria (AOB), 12.5% Nitrobacter spp.-like nitrite oxidizing bacteria (NOB), 2.0% anaerobic ammonium-oxidizing (ANAMMOX) bacteria and 71.0% other bacteria. The biofilm appeared to be most dense in the relatively outer region of the media and gradually decreased with depth, but bacterial viabilities showed space-independent feature. The fluorescent in situ hybridization results revealed that AOB and NOB co-existed in similar quantities on the side fragments of the media, which was reasonably supported by the microelectrode measurements showing the concomitant oxidation of NH(4) (+) and production of NO(3) (-) in this zone. However, a significantly higher fraction of AOB was observed in the center than side fragment. As with the overall biofilm density profile, the denitrifying bacteria were also more abundant on the side than in the center fragments. ANAMMOX bacteria detected throughout the entire depth offer another advantage for the removal of nitrogen by simultaneously converting NH(4) (+) and NO(2) (-) to nitrogen gas.
Collapse
|
278
|
Morin-Adeline V, Foster C, Šlapeta J. Identification of Chromera velia by fluorescence in situ hybridization. FEMS Microbiol Lett 2012; 328:144-9. [DOI: 10.1111/j.1574-6968.2011.02489.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - Christie Foster
- Faculty of Veterinary Science; University of Sydney; Sydney; NSW; Australia
| | - Jan Šlapeta
- Faculty of Veterinary Science; University of Sydney; Sydney; NSW; Australia
| |
Collapse
|
279
|
García-Hernández J, Moreno Y, Amorocho C, Hernández M. A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Lett Appl Microbiol 2012. [DOI: 10.1111/j.1472-765x.2012.03201.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
280
|
Pérez M, Álvarez-Hornos F, San-Valero P, Gabaldón C, Martínez-Soria V. Evolution of Bacterial Community in a Full-scale Biotrickling Filter by Fluorescence in Situ Hybridization (FISH). ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proeng.2012.07.459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
281
|
Phelan VV, Liu WT, Pogliano K, Dorrestein PC. Microbial metabolic exchange--the chemotype-to-phenotype link. Nat Chem Biol 2011; 8:26-35. [PMID: 22173357 DOI: 10.1038/nchembio.739] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The function of microbial interactions is to enable microorganisms to survive by establishing a homeostasis between microbial neighbors and local environments. A microorganism can respond to environmental stimuli using metabolic exchange-the transfer of molecular factors, including small molecules and proteins. Microbial interactions not only influence the survival of the microbes but also have roles in morphological and developmental processes of the organisms themselves and their neighbors. This, in turn, shapes the entire habitat of these organisms. Here we highlight our current understanding of metabolic exchange as well as the emergence of new technologies that are allowing us to eavesdrop on microbial conversations comprising dozens to hundreds of secreted metabolites that control the behavior, survival and differentiation of members of the community. The goal of the rapidly advancing field studying multifactorial metabolic exchange is to devise a microbial 'Rosetta stone' in order to understand the language by which microbial interactions are negotiated and, ultimately, to control the outcome of these conversations.
Collapse
Affiliation(s)
- Vanessa V Phelan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | | | | | | |
Collapse
|
282
|
Hirst MB, Kita KN, Dawson SC. Uncultivated microbial eukaryotic diversity: a method to link ssu rRNA gene sequences with morphology. PLoS One 2011; 6:e28158. [PMID: 22174774 PMCID: PMC3234254 DOI: 10.1371/journal.pone.0028158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/02/2011] [Indexed: 11/30/2022] Open
Abstract
Protists have traditionally been identified by cultivation and classified taxonomically based on their cellular morphologies and behavior. In the past decade, however, many novel protist taxa have been identified using cultivation independent ssu rRNA sequence surveys. New rRNA "phylotypes" from uncultivated eukaryotes have no connection to the wealth of prior morphological descriptions of protists. To link phylogenetically informative sequences with taxonomically informative morphological descriptions, we demonstrate several methods for combining whole cell rRNA-targeted fluorescent in situ hybridization (FISH) with cytoskeletal or organellar immunostaining. Either eukaryote or ciliate-specific ssu rRNA probes were combined with an anti-α-tubulin antibody or phalloidin, a common actin stain, to define cytoskeletal features of uncultivated protists in several environmental samples. The eukaryote ssu rRNA probe was also combined with Mitotracker® or a hydrogenosomal-specific anti-Hsp70 antibody to localize mitochondria and hydrogenosomes, respectively, in uncultivated protists from different environments. Using rRNA probes in combination with immunostaining, we linked ssu rRNA phylotypes with microtubule structure to describe flagellate and ciliate morphology in three diverse environments, and linked Naegleria spp. to their amoeboid morphology using actin staining in hay infusion samples. We also linked uncultivated ciliates to morphologically similar Colpoda-like ciliates using tubulin immunostaining with a ciliate-specific rRNA probe. Combining rRNA-targeted FISH with cytoskeletal immunostaining or stains targeting specific organelles provides a fast, efficient, high throughput method for linking genetic sequences with morphological features in uncultivated protists. When linked to phylotype, morphological descriptions of protists can both complement and vet the increasing number of sequences from uncultivated protists, including those of novel lineages, identified in diverse environments.
Collapse
Affiliation(s)
- Marissa B. Hirst
- Department of Microbiology, University of California Davis, Davis, California, United States of America
| | - Kelley N. Kita
- Department of Microbiology, University of California Davis, Davis, California, United States of America
| | - Scott C. Dawson
- Department of Microbiology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
283
|
de-Bashan LE, Schmid M, Rothballer M, Hartmann A, Bashan Y. CELL-CELL INTERACTION IN THE EUKARYOTE-PROKARYOTE MODEL OF THE MICROALGAE CHLORELLA VULGARIS AND THE BACTERIUM AZOSPIRILLUM BRASILENSE IMMOBILIZED IN POLYMER BEADS(1). JOURNAL OF PHYCOLOGY 2011; 47:1350-9. [PMID: 27020359 DOI: 10.1111/j.1529-8817.2011.01062.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cell-cell interaction in the eukaryote-prokaryote model of the unicellular, freshwater microalga Chlorella vulgaris Beij. and the plant growth-promoting bacterium Azospirillum brasilense, when jointly immobilized in small polymer alginate beads, was evaluated by quantitative fluorescence in situ hybridization (FISH) combined with SEM. This step revealed significant changes, with an increase in the populations of both partners, cluster (mixed colonies) mode of colonization of the bead by the two microorganisms, increase in the size of microalgae-bacterial clusters, movement of the motile bacteria cells toward the immotile microalgae cells within solid matrix, and formation of firm structures among the bacteria, microalgae cells, and the inert matrix that creates a biofilm. This biofilm was sufficiently strong to keep the two species attached to each other, even after eliminating the alginate support. This study showed that the common structural phenotypic interaction of Azospirillum with roots of higher plants, via fibrils and sheath material, is also formed and maintained during the interaction of this bacterium with the surface of rootless single-cell microalgae.
Collapse
Affiliation(s)
- Luz E de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| | - Michael Schmid
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| | - Michael Rothballer
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| | - Anton Hartmann
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| | - Yoav Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| |
Collapse
|
284
|
Lakner A, Essig A, Frickmann H, Poppert S. Evaluation of fluorescence in situ hybridisation (FISH) for the identification of Candida albicans in comparison with three phenotypic methods. Mycoses 2011; 55:e114-23. [PMID: 22126597 DOI: 10.1111/j.1439-0507.2011.02154.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Severe Candida infections are increasing and are associated with considerable morbidity and mortality. Rapid and accurate differentiation of Candida albicans from non-C. albicans species is essential for therapeutic decisions. We therefore developed a fluorescence in situ hybridisation (FISH) assay comprising previously described probes and a newly designed specific C. albicans probe/competitor probe combination. The FISH probes were first evaluated using 99 selected fungal strains covering 31 species, and a specificity between 96% and 100% and a sensitivity of 100%. The FISH assay was then applied to 110 clinical isolates in parallel with API32C, the chromogenic Candida ID agar, and determination of filamentous colony morphology. All tests produced highly reliable results. However, the Candida ID agar misidentified Candida dubliniensis as C. albicans. Determination of filamentous colony morphology allowed 100% reliable identification of C. albicans, but took 48 h. FISH allowed identification of clinical C. albicans isolates within 3 h with a sensitivity and specificity of 100%. FISH was additionally applied to 48 blood cultures showing yeasts in the Gram stain and correctly identified all 33 cases of C. albicans.
Collapse
Affiliation(s)
- Anna Lakner
- Institute of Medical Microbiology and Hygiene, University of Ulm, Germany
| | | | | | | |
Collapse
|
285
|
Wagner M, Haider S. New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Curr Opin Biotechnol 2011; 23:96-102. [PMID: 22079351 DOI: 10.1016/j.copbio.2011.10.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/22/2011] [Indexed: 11/16/2022]
Abstract
Fluorescence in situ hybridization (FISH) has become an indispensable tool for rapid and direct single-cell identification of microbes by detecting signature regions in their rRNA molecules. Recent advances in this field include new web-based tools for assisting probe design and optimization of experimental conditions, easy-to-implement signal amplification strategies, innovative multiplexing approaches, and the combination of FISH with transmission electron microscopy or extracellular staining techniques. Further emerging developments focus on sorting FISH-identified cells for subsequent single-cell genomics and on the direct detection of specific genes within single microbial cells by advanced FISH techniques employing various strategies for massive signal amplification.
Collapse
Affiliation(s)
- Michael Wagner
- Department of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | | |
Collapse
|
286
|
Covarrubias SA, de-Bashan LE, Moreno M, Bashan Y. Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol 2011; 93:2669-80. [DOI: 10.1007/s00253-011-3585-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/19/2011] [Accepted: 09/15/2011] [Indexed: 11/28/2022]
|
287
|
Abstract
Coral disease has emerged over recent decades as a significant threat to coral reef ecosystems, with declines in coral cover and diversity of Caribbean reefs providing an example of the potential impacts of disease at regional scales. If similar trends are to be mitigated or avoided on reefs worldwide, a deeper understanding of the factors underlying the origin and spread of coral diseases and the steps that can be taken to prevent, control, or reduce their impacts is required. In recent years, an increased focus on coral microbiology and the application of classic culture techniques and emerging molecular technologies has revealed several coral pathogens that could serve as targets for novel coral disease diagnostic tools. The ability to detect and quantify microbial agents identified as indicators of coral disease will aid in the elucidation of disease causation and facilitate coral disease detection and diagnosis, pathogen monitoring in individuals and ecosystems, and identification of pathogen sources, vectors, and reservoirs. This information will advance the field of coral disease research and contribute knowledge necessary for effective coral reef management. This paper establishes the need for sensitive and specific molecular-based coral pathogen detection, outlines the emerging technologies that could serve as the basis of a new generation of coral disease diagnostic assays, and addresses the unique challenges inherent to the application of these techniques to environmentally derived coral samples.
Collapse
|
288
|
Buijssen KJDA, van der Laan BFAM, van der Mei HC, Atema-Smit J, van den Huijssen P, Busscher HJ, Harmsen HJM. Composition and architecture of biofilms on used voice prostheses. Head Neck 2011; 34:863-71. [DOI: 10.1002/hed.21833] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 03/09/2011] [Accepted: 04/28/2011] [Indexed: 11/06/2022] Open
|
289
|
Manganese Doped Zinc Sulfide Quantum Dots for Detection of Escherichia coli. J Fluoresc 2011; 22:403-8. [DOI: 10.1007/s10895-011-0973-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 09/13/2011] [Indexed: 11/26/2022]
|
290
|
Angelidis AS, Tirodimos I, Bobos M, Kalamaki MS, Papageorgiou DK, Arvanitidou M. Detection of Helicobacter pylori in raw bovine milk by fluorescence in situ hybridization (FISH). Int J Food Microbiol 2011; 151:252-6. [PMID: 21974980 DOI: 10.1016/j.ijfoodmicro.2011.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/09/2011] [Accepted: 09/11/2011] [Indexed: 01/03/2023]
Abstract
The transmission pathways of Helicobacter pylori in humans have not been fully elucidated. Research in the last decade has proposed that foodborne transmission, among others, may be a plausible route of human infection. Owing to the organism's fastidious growth characteristics and its ability to convert to viable, yet unculturable states upon exposure to stress conditions, the detection of H. pylori in foods via culture-dependent methods has been proven to be laborious, difficult and in most cases unsuccessful. Hence, nucleic acid-based methods have been proposed as alternative methods but, to date, only PCR-based methods have been reported in the literature. In the current study, fluorescence in situ hybridization (FISH) was used for the detection of H. pylori in raw, bulk-tank bovine milk. After repeated milk centrifugation and washing steps, the bacterial flora of raw milk was subjected to fixation and permeabilization and H. pylori detection was conducted by FISH after hybridization with an H. pylori-specific 16S rRNA-directed fluorescent oligonucleotide probe. Using this protocol, H. pylori was detected in four out of the twenty (20%) raw milk samples examined. The data presented in this manuscript indicate that FISH can serve as an alternative molecular method for screening raw bovine milk for the presence of H. pylori.
Collapse
Affiliation(s)
- Apostolos S Angelidis
- Laboratory of Milk Hygiene and Technology, Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | | | | | | | | |
Collapse
|
291
|
Franzini RM, Kool ET. Improved templated fluorogenic probes enhance the analysis of closely related pathogenic bacteria by microscopy and flow cytometry. Bioconjug Chem 2011; 22:1869-77. [PMID: 21870777 DOI: 10.1021/bc2003567] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Templated fluorescence activation has recently emerged as a promising molecular approach to detect and differentiate nucleic acid sequences in vitro and in cells. Here, we describe the application of a reductive quencher release strategy to the taxonomic analysis of Gram-negative bacteria by targeting a single nucleotide difference in their 16S rRNA in a two-color assay. For this purpose, it was necessary to develop a release linker containing a quencher suitable for red and near-infrared fluorophores, and to improve methods for the delivery of probes into cells. A cyanine-dye labeled oligonucleotide probe containing the new quencher-release linker showed unprecedentedly low background signal and high fluorescence turn-on ratios. The combination of a fluorescein-containing and a near-IR emitting probe discriminated E. coli from S. enterica despite nearly identical ribosomal target sequences. Two-color analysis by microscopy and the first successful discrimination of bacteria by two-color flow cytometry with templated reactive probes are described.
Collapse
Affiliation(s)
- Raphael M Franzini
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, United States
| | | |
Collapse
|
292
|
Abstract
Infections play a crucial role in organ transplantations as possible complications. Viruses, bacteria, fungi and parasites are potential agents. The relevance of individual diseases depends on the organ transplanted. Morphology of the inflammatory reaction is given by the agent involved, but often several reactions can be caused by the same agent and different agents can also lead to the same reaction. Histology therefore provides concrete identification of the causal agent only in some cases, such that additional microbiological diagnostics are necessary. Results from these investigations should be transferred to the pathologist to distinguish between infection-associated changes and transplant rejection.
Collapse
Affiliation(s)
- D Theegarten
- Institut für Pathologie und Neuropathologie, Universitätsklinikum Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| | | | | |
Collapse
|
293
|
Liang X, Fujioka K, Asanuma H. Nick sealing by T4 DNA ligase on a modified DNA template: tethering a functional molecule on D-threoninol. Chemistry 2011; 17:10388-96. [PMID: 21815224 DOI: 10.1002/chem.201100215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Indexed: 01/15/2023]
Abstract
Efficient DNA nick sealing catalyzed by T4 DNA ligase was carried out on a modified DNA template in which an intercalator such as azobenzene had been introduced. The intercalator was attached to a D-threoninol linker inserted into the DNA backbone. Although the structure of the template at the point of ligation was completely different from that of native DNA, two ODNs could be connected with yields higher than 90% in most cases. A systematic study of sequence dependence demonstrated that the ligation efficiency varied greatly with the base pairs adjacent to the azobenzene moiety. Interestingly, when the introduced azobenzene was photoisomerized to the cis form on subjection to UV light (320-380 nm), the rates of ligation were greatly accelerated for all sequences investigated. These unexpected ligations might provide a new approach for the introduction of functional molecules into long DNA strands in cases in which direct PCR cannot be used because of blockage of DNA synthesis by the introduced functional molecule. The biological significance of this unexpected enzymatic action is also discussed on the basis of kinetic analysis.
Collapse
Affiliation(s)
- Xingguo Liang
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | | | | |
Collapse
|
294
|
Lawson TS, Connally RE, Iredell JR, Vemulpad S, Piper JA. Detection of Staphylococcus aureus with a fluorescence in situ hybridization that does not require lysostaphin. J Clin Lab Anal 2011; 25:142-7. [PMID: 21438009 DOI: 10.1002/jcla.20448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To detect with whole-cell fluorescence in situ hybridization (FISH), Staphylococcus aureus is typically permeabilized with lysozyme and lysostaphin. We tested whether it was feasible to detect S. aureus and differentiate it from Staphylococcus epidermidis with lysozyme-only permeabilization. We compared lysozyme permeabilization to S. aureus permeabilized with lysozyme in combination with lysostaphin. It was determined that S. aureus treated with agarose, methanol, and lysozyme could be detected with FISH. The 1 hr protocol is a useful alternative to conventional FISH.
Collapse
|
295
|
Abstract
Infective endocarditis (IE) is a life-threatening disease associated with high mortality. Conventional microbiologic diagnosis is based mainly on culture-dependent methods that often fail because of previous antibiotic therapy or the involvement of fastidious or slowly growing microorganisms. In recent years, molecular techniques entered the field of routine diagnostics. Amplification-based methods proved useful for detection of microorganisms in heart valve tissue. More recently, they were applied to blood samples from patients with IE. Direct detection of microorganisms in valve specimens by fluorescence in situ hybridization allowed identification of the causative agent and simultaneous visualization of complex microbial communities. These techniques will gain more importance in the near future, provided that procedures are standardized and results are interpreted with caution. With this review, we intend to give an overview of the impact and limitations of molecular techniques for the diagnosis of IE, including a focus on recent developments.
Collapse
|
296
|
Hagen RM, Frickmann H, Elschner M, Melzer F, Neubauer H, Gauthier YP, Racz P, Poppert S. Rapid identification of Burkholderia pseudomallei and Burkholderia mallei by fluorescence in situ hybridization (FISH) from culture and paraffin-embedded tissue samples. Int J Med Microbiol 2011; 301:585-90. [PMID: 21658996 DOI: 10.1016/j.ijmm.2011.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/12/2011] [Accepted: 04/20/2011] [Indexed: 11/18/2022] Open
Abstract
We evaluated newly developed probes for rapid identification of Burkholderia (B.) pseudomallei and B. mallei and differentiation from B. thailandensis by fluorescence in situ hybridization (FISH). FISH correctly identified 100% of the tested B. pseudomallei (11), B. mallei (11), and B. thailandensis (1) strains, excluded 100% of all tested negative controls (61), and allowed demonstration of B. pseudomallei infection in a paraffin-embedded spleen tissue sample of an experimentally infected mouse.
Collapse
Affiliation(s)
- Ralf M Hagen
- Department for Tropical Medicine at the Bernhard Nocht Institute, Bundeswehr Hospital Hamburg, Bernhard-Nocht-Strasse, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
297
|
Applications of Fluorescence In Situ Hybridization in Diagnostic Microbiology. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
298
|
Pors SE, Hansen MS, Bisgaard M, Jensen HE. Occurrence and associated lesions of Pasteurella multocida in porcine bronchopneumonia. Vet Microbiol 2011; 150:160-6. [DOI: 10.1016/j.vetmic.2011.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 01/04/2011] [Accepted: 01/10/2011] [Indexed: 11/26/2022]
|
299
|
Boesten R, Schuren F, Ben Amor K, Haarman M, Knol J, de Vos WM. Bifidobacterium population analysis in the infant gut by direct mapping of genomic hybridization patterns: potential for monitoring temporal development and effects of dietary regimens. Microb Biotechnol 2011; 4:417-27. [PMID: 21375714 PMCID: PMC3818999 DOI: 10.1111/j.1751-7915.2010.00216.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/13/2010] [Indexed: 01/15/2023] Open
Abstract
A bifidobacterial mixed-species microarray platform was used in a proof-of-principle study to address the composition and development of bifidobacteria in DNA extracted from faecal samples. These were collected in a time-course of 2 years since birth and derived from human infants that were breastfed, standard formula-fed or received a prebiotic formula during their weaning period. A set of over 50 samples was analysed, testifying for the throughput of the designed platform for multiple genome hybridizations. The generated data revealed that faecal samples of breastfed infants contained a high abundance of genomic DNA homologous to Bifidobacterium breve. In contrast, faecal samples from standard formula-fed infants lacked detectable amounts of this B. breve DNA but contained genes with high similarity to B. longum. Remarkably, infants that received breastmilk and later a prebiotic formula consisting of a standard formula milk containing a mixture of specific galacto- and fructo-oligosaccharides, continued to harbour a B. breve-dominant faecal population. One infant that received standard formula in combination with the additional B. lactis Bb12 culture, contained significant amounts of faecal DNA belonging to Bb12 but only during the period of ingestion. The microarray platform showed sufficient sensitivity to analyse the B. breve group at the strain level. Overall, the B. breve populations observed in the faecal samples of the studied infants showed a stable composition over time and were unique per infant. In conclusion, our results show the applicability of comparative genome hybridization to study bifidobacterial populations in infant faecal samples without the use of any amplification step.
Collapse
Affiliation(s)
- Rolf Boesten
- Microbiology Department, TNO Quality of Life, Zeist, The Netherlands.
| | | | | | | | | | | |
Collapse
|
300
|
Alt V, Lips KS, Henkenbehrens C, Muhrer D, Oliveira Cavalcanti MC, Sommer U, Thormann U, Szalay G, Heiss C, Pavlidis T, Domann E, Schnettler R. A new animal model for implant-related infected non-unions after intramedullary fixation of the tibia in rats with fluorescent in situ hybridization of bacteria in bone infection. Bone 2011; 48:1146-53. [PMID: 21281750 DOI: 10.1016/j.bone.2011.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/28/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
There is no adequate animal model to mimic the difficult clinical situation of infected non-union of the tibia after intramedullary stabilization. The purpose was to establish an animal model of implant-related infected non-unions of the tibia in rats. Furthermore, it was evaluated if detection of bacteria by fluorescent in situ hybridisation (FISH) technique is possible in bone infection. 17 rats were used in which osteotomy of the midshaft tibia was performed and stabilized with an intramedullary device. Two groups were tested: group 1: contamination of the osteotomy site with 10(4) colony forming units (CFUs) of Staphylococcus aureus (11 animals), group 2: no bacterial contamination (6 animals). The animals were sacrificed after 42 days and bone healing and infection were assessed clinically, by X-ray, micro-CT, and microbiological methods including FISH technique using EUB and STAPHY probes. Histology and scanning electron microscopy (SEM) for biofilm formation were performed. All animals of the control group showed uneventful bone healing after 6 weeks without any signs of local infections. 10 of 11 (90.9%) animals of group 1 with bacterial contamination exhibited infected non-union formation with positive clinical, radiological and microbiological infection signs of the tibia but without any systemic infection signs. FISH technique was able to identify bacteria in the infected bone. All intramedullary implants from the infected animals showed positive biofilm formation in SEM. This work presents the first animal model for the induction of intramedullary device-related infected non-union in the tibia and detection of bacteria by FISH technique in infected bone.
Collapse
MESH Headings
- Animals
- Biofilms
- Bone Diseases, Infectious/complications
- Bone Diseases, Infectious/diagnostic imaging
- Bone Diseases, Infectious/microbiology
- Bone Diseases, Infectious/pathology
- Disease Models, Animal
- Fracture Fixation, Intramedullary/adverse effects
- Fractures, Ununited/complications
- Fractures, Ununited/diagnostic imaging
- Fractures, Ununited/microbiology
- Fractures, Ununited/pathology
- In Situ Hybridization, Fluorescence
- Prosthesis-Related Infections/complications
- Prosthesis-Related Infections/diagnostic imaging
- Prosthesis-Related Infections/microbiology
- Prosthesis-Related Infections/pathology
- Rats
- Rats, Sprague-Dawley
- Staphylococcus aureus/cytology
- Staphylococcus aureus/physiology
- Staphylococcus aureus/ultrastructure
- Tibial Fractures/complications
- Tibial Fractures/diagnostic imaging
- Tibial Fractures/microbiology
- Tibial Fractures/pathology
- X-Ray Microtomography
- X-Rays
Collapse
Affiliation(s)
- Volker Alt
- Department of Trauma Surgery Giessen, University Hospital of Giessen-Marburg, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|