251
|
Loria T, de Grosbois J, Haire C, Vuong V, Schaffert N, Tremblay L, Thaut MH. Music-based intervention drives paretic limb acceleration into intentional movement frequencies in chronic stroke rehabilitation. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:989810. [PMID: 36262914 PMCID: PMC9574387 DOI: 10.3389/fresc.2022.989810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
This study presented a novel kinematic assessment of paretic limb function "online" during the actual therapeutic exercisers rooted within the acceleration domain. Twenty-eight patients at chronic stroke stages participated in an auditory-motor intervention mapping reaching movements of the paretic arm unto surfaces of large digital musical instruments and sound tablets that provided rhythmic entrainment cues and augmented auditory feedback. Patients also wore a tri-axial accelerometer on the paretic limb during the nine-session intervention. The resulting acceleration profiles were extracted and quantified within the frequency domain. Measures of peak power and peak width were leveraged to estimate volitional control and temporal consistency of paretic limb movements, respectively. Clinical assessments included the Wolf Motor Function Test and Fugl-Meyer - Upper Extremity subtest. The results showed that peak power increased significantly from Session 1 to Session 9 within oscillatory frequency ranges associated with intentional movement execution (i.e., 4.5 Hz). Decreases in peak width over time provided additional evidence for improved paretic arm control from a temporal perspective. In addition, Peak width values obtained in Session 1 was significantly correlated with pre-test Fugl-Meyer - Upper Extremity scores. These results highlighted improvements in paretic limb acceleration as an underlying mechanism in stroke motor recovery and shed further light on the utility of accelerometry-based measures of paretic limb control in stroke rehabilitation. The data reported here was obtained from a larger clinical trial: https://clinicaltrials.gov/ct2/show/NCT03246217 ClinicalTrials.gov Identifier: NCT03246217.
Collapse
Affiliation(s)
- Tristan Loria
- Music and Health Research Collaboratory (MaHRC), Faculty of Music, University of Toronto, Toronto, ON, Canada,Correspondence: Tristan Loria
| | - John de Grosbois
- BaycrestHealth Sciences, Rotman Research Institute, Toronto, ON, Canada
| | - Catherine Haire
- Music and Health Research Collaboratory (MaHRC), Faculty of Music, University of Toronto, Toronto, ON, Canada
| | - Veronica Vuong
- BaycrestHealth Sciences, Rotman Research Institute, Toronto, ON, Canada
| | - Nina Schaffert
- Department of Movement and Training Science, Institute for Human Movement Science, University of Hamburg, Hamburg, Germany,BeSB GmbH Berlin Sound Engineering, Berlin, Germany
| | - Luc Tremblay
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Michael H. Thaut
- Music and Health Research Collaboratory (MaHRC), Faculty of Music, University of Toronto, Toronto, ON, Canada,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
252
|
Wang L, Chen JL, Wong AM, Liang KC, Tseng KC. Game-Based Virtual Reality System for Upper Limb Rehabilitation After Stroke in a Clinical Environment: Systematic Review and Meta-Analysis. Games Health J 2022; 11:277-297. [DOI: 10.1089/g4h.2022.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Le Wang
- Department of Design, National Taiwan Normal University, Taipei, Taiwan
- Product Design and Development Laboratory, Taoyuan, Taiwan
| | - Jean-Lon Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, Taiwan
| | - Alice M.K. Wong
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, Taiwan
| | - Kuei-Chia Liang
- Department of Design, National Taiwan Normal University, Taipei, Taiwan
| | - Kevin C. Tseng
- Product Design and Development Laboratory, Taoyuan, Taiwan
- Department of Industrial Design, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
253
|
Ventura S, Lullini G, Riva G. Cognitive Rehabilitation in the Metaverse: Insights from the Tele-Neurorehab Project. CYBERPSYCHOLOGY, BEHAVIOR AND SOCIAL NETWORKING 2022; 25:686-687. [PMID: 36264212 DOI: 10.1089/cyber.2022.29257.ceu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sara Ventura
- Department of Psychology, University of Bologna, Bologna, Italy
- Instituto Polibienestar, University of Valencia, Valencia, Spain
| | | | - Giuseppe Riva
- Humane Technology Lab, Catholic University of Milan, Italy
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
254
|
Pohl J, Ryser A, Veerbeek JM, Verheyden G, Vogt JE, Luft AR, Awai Easthope C. Classification of functional and non-functional arm use by inertial measurement units in individuals with upper limb impairment after stroke. Front Physiol 2022; 13:952757. [PMID: 36246133 PMCID: PMC9554104 DOI: 10.3389/fphys.2022.952757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Arm use metrics derived from wrist-mounted movement sensors are widely used to quantify the upper limb performance in real-life conditions of individuals with stroke throughout motor recovery. The calculation of real-world use metrics, such as arm use duration and laterality preferences, relies on accurately identifying functional movements. Hence, classifying upper limb activity into functional and non-functional classes is paramount. Acceleration thresholds are conventionally used to distinguish these classes. However, these methods are challenged by the high inter and intra-individual variability of movement patterns. In this study, we developed and validated a machine learning classifier for this task and compared it to methods using conventional and optimal thresholds. Methods: Individuals after stroke were video-recorded in their home environment performing semi-naturalistic daily tasks while wearing wrist-mounted inertial measurement units. Data were labeled frame-by-frame following the Taxonomy of Functional Upper Limb Motion definitions, excluding whole-body movements, and sequenced into 1-s epochs. Actigraph counts were computed, and an optimal threshold for functional movement was determined by receiver operating characteristic curve analyses on group and individual levels. A logistic regression classifier was trained on the same labels using time and frequency domain features. Performance measures were compared between all classification methods. Results: Video data (6.5 h) of 14 individuals with mild-to-severe upper limb impairment were labeled. Optimal activity count thresholds were ≥20.1 for the affected side and ≥38.6 for the unaffected side and showed high predictive power with an area under the curve (95% CI) of 0.88 (0.87,0.89) and 0.86 (0.85, 0.87), respectively. A classification accuracy of around 80% was equivalent to the optimal threshold and machine learning methods and outperformed the conventional threshold by ∼10%. Optimal thresholds and machine learning methods showed superior specificity (75-82%) to conventional thresholds (58-66%) across unilateral and bilateral activities. Conclusion: This work compares the validity of methods classifying stroke survivors' real-life arm activities measured by wrist-worn sensors excluding whole-body movements. The determined optimal thresholds and machine learning classifiers achieved an equivalent accuracy and higher specificity than conventional thresholds. Our open-sourced classifier or optimal thresholds should be used to specify the intensity and duration of arm use.
Collapse
Affiliation(s)
- Johannes Pohl
- Department of Neurology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Department of Rehabilitation Sciences, KU Leuven—University of Leuven, Leuven, Belgium
| | - Alain Ryser
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | | | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven—University of Leuven, Leuven, Belgium
| | | | - Andreas Rüdiger Luft
- Department of Neurology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Cereneo, Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - Chris Awai Easthope
- Cereneo Foundation, Center for Interdisciplinary Research (CEFIR), Vitznau, Switzerland
| |
Collapse
|
255
|
Kamo T, Wada Y, Okamura M, Sakai K, Momosaki R, Taito S. Repetitive peripheral magnetic stimulation for impairment and disability in people after stroke. Cochrane Database Syst Rev 2022; 9:CD011968. [PMID: 36169558 PMCID: PMC9518012 DOI: 10.1002/14651858.cd011968.pub4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Repetitive peripheral magnetic stimulation (rPMS) is a non-invasive treatment method that can penetrate to deeper structures with painless stimulation to improve motor function in people with physical impairment due to brain or nerve disorders. rPMS for people after stroke has proved to be a feasible approach to improving activities of daily living and functional ability. However, the effectiveness and safety of this intervention for people after stroke remain uncertain. This is an update of the review published in 2019. OBJECTIVES To assess the effects of rPMS for improving activities of daily living and functional ability in people after stroke. SEARCH METHODS We searched the Cochrane Stroke Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL), in the Cochrane Library; MEDLINE; Embase; the Cumulative Index to Nursing and Allied Health Literature (CINAHL); PsycINFO; the Allied and Complementary Medicine Database (AMED); OTseeker: Occupational Therapy Systematic Evaluation of Evidence; the Physiotherapy Evidence Database (PEDro); Ichushi-Web; and six ongoing trial registries on 5 October 2021. We screened reference lists and contacted experts in the field. We placed no restrictions on the language or date of publication when searching the electronic databases. SELECTION CRITERIA We included randomised controlled trials (RCTs) conducted to assess the therapeutic effect of rPMS for people after stroke. The following comparisons were eligible for inclusion: 1) active rPMS only compared with 'sham' rPMS (a very weak form of stimulation or a sound only); 2) active rPMS only compared with no intervention; 3) active rPMS plus rehabilitation compared with sham rPMS plus rehabilitation; and 4) active rPMS plus rehabilitation compared with rehabilitation only. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion in the review. The same review authors assessed methods and risk of bias, undertook data extraction, and evaluated the certainty of the evidence using the GRADE approach. We contacted trial authors to request unpublished information if necessary. Any disagreements were resolved through discussion. MAIN RESULTS We included four trials (three parallel-group RCTs and one cross-over trial) involving a total of 139 participants. This result was unchanged from the review published in 2019. Blinding of participants and physicians was well reported in three trials, with no information on whether personnel were blinded in one trial. We judged the overall risk of bias across trials as low. Only two trials (with 63 and 18 participants, respectively) provided sufficient information to be included in the meta-analysis. We found no clear effect of rPMS on activities of daily living at the end of treatment (mean difference (MD) -3.00, 95% confidence interval (CI) -16.35 to 10.35; P = 0.66; 1 trial; 63 participants; low-certainty evidence) and at the end of follow-up (MD -2.00, 95% CI -14.86 to 10.86; P = 0.76; 1 trial; 63 participants; low-certainty evidence) when comparing rPMS plus rehabilitation versus sham rPMS plus rehabilitation. We found no statistical difference in improvement of upper limb function at the end of treatment (MD 2.00, 95% CI -4.91 to 8.91; P = 0.57; 1 trial; 63 participants; low-certainty evidence) and at the end of follow-up (MD 4.00, 95% CI -2.92 to 10.92; P = 0.26; 1 trial; 63 participants; low-certainty evidence) when comparing rPMS plus rehabilitation versus sham rPMS plus rehabilitation. We observed a decrease in spasticity of the elbow at the end of follow-up (MD -0.41, 95% CI -0.89 to 0.07; 1 trial; 63 participants; low-certainty evidence) when comparing rPMS plus rehabilitation versus sham rPMS plus rehabilitation. In terms of muscle strength, rPMS treatment was not associated with improved muscle strength of the ankle dorsiflexors at the end of treatment (MD 3.00, 95% CI -2.44 to 8.44; P = 0.28; 1 trial; 18 participants; low-certainty evidence) when compared with sham rPMS. No studies provided information on lower limb function or adverse events, including death. Based on the GRADE approach, we judged the certainty of evidence related to the primary outcome as low, owing to the small sample size of the studies. AUTHORS' CONCLUSIONS There is insufficient evidence to permit the drawing of any conclusions about routine use of rPMS for people after stroke. Additional trials with large sample sizes are needed to provide robust evidence for rPMS after stroke.
Collapse
Affiliation(s)
- Tomohiko Kamo
- Scientific Research WorkS Peer Support Group (SRWS-PSG), Osaka, Japan
- Department of Physical Therapy, Faculty of Rehabilitation, Gunma Paz University, Gunma, Japan
| | - Yoshitaka Wada
- Scientific Research WorkS Peer Support Group (SRWS-PSG), Osaka, Japan
- Department of Rehabilitation Medicine I, Fujita Health University, Aichi, Japan
| | - Masatsugu Okamura
- Scientific Research WorkS Peer Support Group (SRWS-PSG), Osaka, Japan
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kotomi Sakai
- Scientific Research WorkS Peer Support Group (SRWS-PSG), Osaka, Japan
- Comprehensive Unit for Health Economic Evidence Review and Decision Support (CHEERS), Research Organization of Science and Technology, Ritsumeikan University, Kyoto city, Japan
| | - Ryo Momosaki
- Scientific Research WorkS Peer Support Group (SRWS-PSG), Osaka, Japan
- Department of Rehabilitation Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | - Shunsuke Taito
- Scientific Research WorkS Peer Support Group (SRWS-PSG), Osaka, Japan
- Department of Clinical Practice and Support, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
256
|
Ulanov M, Shtyrov Y. Oscillatory beta/alpha band modulations: A potential biomarker of functional language and motor recovery in chronic stroke? Front Hum Neurosci 2022; 16:940845. [PMID: 36226263 PMCID: PMC9549964 DOI: 10.3389/fnhum.2022.940845] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains one of the leading causes of various disabilities, including debilitating motor and language impairments. Though various treatments exist, post-stroke impairments frequently become chronic, dramatically reducing daily life quality, and requiring specific rehabilitation. A critical goal of chronic stroke rehabilitation is to induce, usually through behavioral training, experience-dependent plasticity processes in order to promote functional recovery. However, the efficiency of such interventions is typically modest, and very little is known regarding the neural dynamics underpinning recovery processes and possible biomarkers of their efficiency. Some studies have emphasized specific alterations of excitatory–inhibitory balance within distributed neural networks as an important recovery correlate. Neural processes sensitive to these alterations, such as task-dependent oscillatory activity in beta as well as alpha bands, may be candidate biomarkers of chronic stroke functional recovery. In this review, we discuss the results of studies on motor and language recovery with a focus on oscillatory processes centered around the beta band and their modulations during functional recovery in chronic stroke. The discussion is based on a framework where task-dependent modulations of beta and alpha oscillatory activity, generated by the deep cortical excitatory–inhibitory microcircuits, serve as a neural mechanism of domain-general top-down control processes. We discuss the findings, their limitations, and possible directions for future research.
Collapse
Affiliation(s)
- Maxim Ulanov
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
- *Correspondence: Maxim Ulanov,
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
257
|
Fleury L, Koch PJ, Wessel MJ, Bonvin C, San Millan D, Constantin C, Vuadens P, Adolphsen J, Cadic Melchior A, Brügger J, Beanato E, Ceroni M, Menoud P, De Leon Rodriguez D, Zufferey V, Meyer NH, Egger P, Harquel S, Popa T, Raffin E, Girard G, Thiran JP, Vaney C, Alvarez V, Turlan JL, Mühl A, Léger B, Morishita T, Micera S, Blanke O, Van De Ville D, Hummel FC. Toward individualized medicine in stroke—The TiMeS project: Protocol of longitudinal, multi-modal, multi-domain study in stroke. Front Neurol 2022; 13:939640. [PMID: 36226086 PMCID: PMC9549862 DOI: 10.3389/fneur.2022.939640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Despite recent improvements, complete motor recovery occurs in <15% of stroke patients. To improve the therapeutic outcomes, there is a strong need to tailor treatments to each individual patient. However, there is a lack of knowledge concerning the precise neuronal mechanisms underlying the degree and course of motor recovery and its individual differences, especially in the view of brain network properties despite the fact that it became more and more clear that stroke is a network disorder. The TiMeS project is a longitudinal exploratory study aiming at characterizing stroke phenotypes of a large, representative stroke cohort through an extensive, multi-modal and multi-domain evaluation. The ultimate goal of the study is to identify prognostic biomarkers allowing to predict the individual degree and course of motor recovery and its underlying neuronal mechanisms paving the way for novel interventions and treatment stratification for the individual patients. A total of up to 100 patients will be assessed at 4 timepoints over the first year after the stroke: during the first (T1) and third (T2) week, then three (T3) and twelve (T4) months after stroke onset. To assess underlying mechanisms of recovery with a focus on network analyses and brain connectivity, we will apply synergistic state-of-the-art systems neuroscience methods including functional, diffusion, and structural magnetic resonance imaging (MRI), and electrophysiological evaluation based on transcranial magnetic stimulation (TMS) coupled with electroencephalography (EEG) and electromyography (EMG). In addition, an extensive, multi-domain neuropsychological evaluation will be performed at each timepoint, covering all sensorimotor and cognitive domains. This project will significantly add to the understanding of underlying mechanisms of motor recovery with a strong focus on the interactions between the motor and other cognitive domains and multimodal network analyses. The population-based, multi-dimensional dataset will serve as a basis to develop biomarkers to predict outcome and promote personalized stratification toward individually tailored treatment concepts using neuro-technologies, thus paving the way toward personalized precision medicine approaches in stroke rehabilitation.
Collapse
Affiliation(s)
- Lisa Fleury
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Philipp J. Koch
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Maximilian J. Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Neurology, University Hospital and Julius-Maximilians-University, Wuerzburg, Germany
| | | | | | | | | | | | - Andéol Cadic Melchior
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Julia Brügger
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Martino Ceroni
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Pauline Menoud
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Diego De Leon Rodriguez
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Valérie Zufferey
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Nathalie H. Meyer
- Laboratory of Cognitive Neuroscience, INX and BMI, EPFL, Campus Biotech, Geneva, Switzerland
| | - Philip Egger
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Sylvain Harquel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Estelle Raffin
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Gabriel Girard
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), EPFL, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), EPFL, Lausanne, Switzerland
| | | | | | | | - Andreas Mühl
- Clinique Romande de Réadaptation, Sion, Switzerland
| | | | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Silvestro Micera
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, INX and BMI, EPFL, Campus Biotech, Geneva, Switzerland
- Department of Clinical Neurosciences, University of Geneva (UNIGE), Geneva, Switzerland
| | - Dimitri Van De Ville
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Medical Image Processing Lab, Center for Neuroprosthetics, Institute of Bioengineering, EPFL, Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Friedhelm C. Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), EPFL, Campus Biotech, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX and BMI, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, Geneva University Hospital, Geneva, Switzerland
- *Correspondence: Friedhelm C. Hummel
| |
Collapse
|
258
|
Sivertsen M, Arntzen EC, Alstadhaug KB, Normann B. Effect of innovative vs. usual care physical therapy in subacute rehabilitation after stroke. A multicenter randomized controlled trial. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:987601. [PMID: 36407967 PMCID: PMC9673903 DOI: 10.3389/fresc.2022.987601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022]
Abstract
Background Research on stroke rehabilitation often addresses common difficulties such as gait, balance or physical activity separately, a fragmentation contrasting the complexity in clinical practice. Interventions aiming for recovery are needed. The purpose of this study was to investigate effects of a comprehensive low-cost physical therapy intervention, I-CoreDIST, vs. usual care on postural control, balance, physical activity, gait and health related quality of life during the first 12 weeks post-stroke. Methods This prospective, assessor-masked randomized controlled trial included 60 participants from two stroke units in Norway. Participants, who were randomized to I-CoreDIST (n = 29) or usual care physical therapy (n = 31), received 5 sessions/week when in-patients or 3 sessions/week as out-patients. Primary outcomes were the Trunk Impairment Scale-modified Norwegian version (TISmodNV) and activity monitoring (ActiGraphsWgt3X-BT). Secondary outcomes were the Postural Assessment Scale for Stroke, MiniBesTEST, 10-meter walk test, 2-minute walk test, force-platform measurements and EQ5D-3L. Stroke specific quality of life scale was administered at 12 weeks. Linear regression and non-parametric tests were used for statistical analysis. Results Five participants were excluded and seven lost to follow-up, leaving 48 participants in the intention-to-treat analysis. There were no significant between-group effects for primary outcomes: TIS-modNV (p = 0,857); daily average minutes of sedative (p = 0.662), light (p = 0.544) or moderate activity (p = 0.239) and steps (p = 0.288), or secondary outcomes at 12 weeks except for significant improvements on EQ5D-3L in the usual care group. Within-group changes were significant for all outcomes in both groups except for activity levels that were low, EQ5D-3L favoring the usual care group, and force-platform data favoring the intervention group. Conclusions Physical therapy treatment with I-CoreDIST improved postural control, balance, physical activity and gait during the first 12 weeks after a stroke but is not superior to usual care.
Collapse
Affiliation(s)
- Marianne Sivertsen
- Department of Health and Care Sciences, UiT The Arctic University of Norway, Tromsoe, Norway
- Department of Medicine, Nordland Hospital Trust, Bodoe, Norway
- Correspondence: Marianne Sivertsen
| | - Ellen Christin Arntzen
- Department of Medicine, Nordland Hospital Trust, Bodoe, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodoe, Norway
| | - Karl Bjørnar Alstadhaug
- Department of Medicine, Nordland Hospital Trust, Bodoe, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsoe, Norway
| | - Britt Normann
- Department of Medicine, Nordland Hospital Trust, Bodoe, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodoe, Norway
| |
Collapse
|
259
|
Alashram AR, Padua E, Annino G. Effects of Brain-Computer Interface Controlled Functional Electrical Stimulation on Motor Recovery in Stroke Survivors: a Systematic Review. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2022. [DOI: 10.1007/s40141-022-00369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
260
|
Yamagami M, Mack K, Mankoff J, Steele KM. “I’m Just Overwhelmed”: Investigating Physical Therapy Accessibility and Technology Interventions for People with Disabilities and/or Chronic Conditions. ACM TRANSACTIONS ON ACCESSIBLE COMPUTING 2022. [DOI: 10.1145/3563396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Many individuals with disabilities and/or chronic conditions (da/cc) experience symptoms that may require intermittent or on-going medical care. However, healthcare is an often-overlooked domain for accessibility work, where access needs associated with temporary and long-term disability must be addressed to increase the utility of physical and digital interactions with healthcare workers and spaces. Our work focuses on a specific domain of healthcare often used by individuals with da/cc: physical therapy (PT). Through a twelve-person interview study, we examined how people’s access to PT for their da/cc is hampered by social (e.g., physically visiting a PT clinic) and physiological (e.g., chronic pain) barriers, and how technology could improve PT access. In-person PT is often inaccessible to our participants due to lack of transportation and insufficient insurance coverage. As such, many of our participants relied on at-home PT to manage their da/cc symptoms and work towards PT goals. Participants felt that PT barriers, such as having particularly bad symptoms or feeling short on time, could be addressed with well-designed technology that flexibly adapts to the person’s dynamically changing needs while supporting their PT goals. We introduce core design principles (adaptability, movement tracking, community building) and tensions (insurance) to consider when developing technology to support PT access. Rethinking da/cc access to PT from a lens that includes social and physiological barriers presents opportunities to integrate accessibility and adaptability into PT technology.
Collapse
Affiliation(s)
- Momona Yamagami
- Department of Electrical & Computer Engineering, University of Washington, Seattle, USA
| | - Kelly Mack
- Department of Computer Science & Engineering, University of Washington, Seattle, USA
| | - Jennifer Mankoff
- Department of Computer Science & Engineering, University of Washington, Seattle, USA
| | - Katherine M. Steele
- Department of Mechanical Engineering, University of Washington, Seattle, USA
| |
Collapse
|
261
|
Lim CY, Ko MJ, Lee JW, Bok SK, Paik NJ, Nam YG, Kwon BS. Efficacy and safety of EXOWALK® on electromechanical-assisted gait training: study protocol for randomized controlled trial. Trials 2022; 23:729. [PMID: 36056399 PMCID: PMC9438256 DOI: 10.1186/s13063-022-06660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND High-intensity repetitive task-specific practice might be the most effective strategy to promote motor recovery after stroke, and electromechanical-assisted gait training represents one of the treatment options. However, there is still difficulty in clarifying the difference between conventional gait training and electromechanically assisted gait training. METHODS The study is a multicenter, randomized, parallel-group clinical trial for stroke patients. Three clinical research centers in Korea (Dongguk University Ilsan Hospital, Chungnam National University Hospital, and Seoul National University Bundang Hospital) will participate in the clinical trial and 144 stroke patients will be registered. Enrolled patients are assigned to two groups, an experimental group and a control group, according to a randomization table. In addition, patients are treated for half an hour (one session) five times a week for 4 weeks. Both groups carry out basic rehabilitation (central nervous system development therapy and strength exercise) and the experimental group executes robotic walking rehabilitation treatment, and the control group executes conventional gait rehabilitation treatment. The primary endpoint variable is the Functional Ambulation Category (FAC) that determines the degree of independent walking and is measured before, after, and after 4 weeks of treatment. Secondary endpoint variables are 11 variables that take into account motor function and range, measured at the same time as the primary endpoint variable. DISCUSSION There are still insufficient data on the effectiveness of electromechanical-assisted gait training for stroke patients and large-scale research is lacking. Thus, the research described here is a large-scale study of stroke patients that can supplement the limitations mentioned in other previous studies. In addition, the clinical studies described here include physical epidemiological analysis parameters that can determine walking ability. The results of this study can lead to prove the generalizable effectiveness and safety of electromechanical-assisted gait training with EXOWALK®. TRIAL REGISTRATION Clinical Research Information Service (CRIS), Republic of Korea KCT0003411, Registered on 30 October 2018.
Collapse
Affiliation(s)
- Chi-Yeon Lim
- Department of Biostatistics, School of Medicine, Dongguk University, Goyang, South Korea
| | | | | | - Soo Kyung Bok
- Department of Rehabilitation Medicine, Chungnam National University College of Medicine, Chungnam, South Korea
| | - Nam-Jong Paik
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Yeon Gyo Nam
- Dongguk University Posture Science Institute, Dongguk University College of Medicine, Goyang, South Korea
| | - Bum Sun Kwon
- Dongguk University Posture Science Institute, Dongguk University College of Medicine, Goyang, South Korea.
- Department of Rehabilitation Medicine, Dongguk University College of Medicine, Goyang, South Korea.
| |
Collapse
|
262
|
Torrisi M, Bonanno L, Corallo F, Formica C, Giorgianni R, Marra A, Bramanti P, Arcadi FA. The effect of intravenous thrombolytic therapy on post stroke depression and cognitive dysfunction: A 3-months follow up study. APPLIED NEUROPSYCHOLOGY. ADULT 2022; 29:967-970. [PMID: 33021841 DOI: 10.1080/23279095.2020.1829625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Several studies have demonstrated the efficacy of intravenous thrombolytic therapy with recombinant plasminogen activator (rt-PA) on functional recovery at 3-18 months following the treatment. The objectives of this study were to investigate differences between thrombolytic or no thrombolytic treatment and if could be a relationship between patients who have underwent the thrombolytic treatment in terms of depressive symptoms and cognitive impairment. In this retrospective study, we evaluated 92 patients affected by ischemic stroke recruited from our rehabilitation center, coming from a Stroke Unit. All the eligible subjects were assessed at admission (T0) and two months later, at discharge, upon concluded the rehabilitation program (T1). The patients were divided into two groups: Thrombolysis Group (n.40 subjects) and no Thrombolysis Group (n.52 subjects). Cognitive functions were evaluated with the Montreal Overall Cognitive Assessment. Functional status were evaluated with the Barthel Index and the Functional Independent Misure. We administered Beck Depression Inventory-II to verify the presence of a depressive state. We found that at three months after stroke, the prevalence of depressive symptoms and cognitive improvement, among patient who had undergone thrombolytic treatment, and who had not, was not different. Conversely, we found an improvement of depressive symptoms in each group.
Collapse
Affiliation(s)
- Michele Torrisi
- IRCCS Centro Neurolesi "Bonino Pulejo" - S.S, Messina, Italy
| | - Lilla Bonanno
- IRCCS Centro Neurolesi "Bonino Pulejo" - S.S, Messina, Italy
| | | | | | | | - Angela Marra
- IRCCS Centro Neurolesi "Bonino Pulejo" - S.S, Messina, Italy
| | | | | |
Collapse
|
263
|
Balinski M, Madhavan S. "Magic" Number of Treadmill Sessions Needed to Achieve Meaningful Change in Gait Speed After Stroke: A Systematic Review. Am J Phys Med Rehabil 2022; 101:826-835. [PMID: 34799509 PMCID: PMC9108112 DOI: 10.1097/phm.0000000000001920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT The purpose of this systematic review was to determine the number of treadmill training sessions needed to make a meaningful change in gait speed for chronic stroke survivors. Relevant databases were searched up through February 2020. Articles were included if they fit the following criteria: stroke onset more than 5 mos, intention to treat with traditional treadmill training, and gait speed included as an outcome. Change in gait speed after intervention was used to classify treadmill groups as responders (at least 0.1 m/sec change) or nonresponders (less than 0.1 m/sec change). Seventeen articles met our criteria, resulting in a total of 19 intervention groups. Ten groups were classified as responders and completed a mean of 30.5 sessions within 6 wks, whereas nonresponders completed 20.4 sessions within 10 wks, indicating that at least 30 treadmill sessions (preferably in a period of 10 wks and at least 40 mins per session) is necessary to reach a meaningful change in gait speed. Although these trends were noted between the responder and nonresponder groups, no firm conclusions can be drawn regarding the "magic" number of sessions chronic stroke survivors should perform given the low correlation between number of sessions and change in gait speed.
Collapse
Affiliation(s)
- Mariah Balinski
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Graduate Program in Rehabilitation Science, College of Applied Health Sciences, University of Illinois, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
264
|
Shin S, Lee Y, Chang WH, Sohn MK, Lee J, Kim DY, Shin YI, Oh GJ, Lee YS, Joo MC, Lee SY, Song MK, Han J, Ahn J, Kim YH. Multifaceted Assessment of Functional Outcomes in Survivors of First-time Stroke. JAMA Netw Open 2022; 5:e2233094. [PMID: 36149652 PMCID: PMC9508656 DOI: 10.1001/jamanetworkopen.2022.33094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IMPORTANCE Because stroke causes diverse functional deficits, understanding the long-term recovery pattern of each functional domain may inform prognosis and therapeutic strategies. OBJECTIVE To observe long-term changes in functional status and residual disability in survivors of first-time stroke. DESIGN, SETTING, AND PARTICIPANTS This cohort study was an interim analysis of the Korean Stroke Cohort for Functioning and Rehabilitation. Between August 2012 and May 2015, 7858 of 10 636 screened patients with first-time strokes from 9 district hospitals in Korea provided informed consent to participate. Data were analyzed from September 2021 through February 2022. EXPOSURE First-time stroke. MAIN OUTCOMES AND MEASURES Study data include multifaceted face-to-face functional assessments obtained at 8 to 9 points until 60 months after stroke onset. The Korean Mini-Mental State Examination (K-MMSE), Fugl-Meyer Assessment, Functional Ambulatory Category, American Speech-Language-Hearing Association National Outcome Measurement System Swallowing Scale, and Short Korean version of the Frenchay Aphasia Screening Test were performed from 7 days to 60 months after stroke. The Korean Modified Barthel Index was measured from 3 months to 60 months after stroke. RESULTS A total of 4443 patients (2649 men [59.62%]; mean [SD] age 62.13 [12.43] years) who underwent repeated functional assessments for 60 months after stroke (3508 patients with ischemic and 935 patients with hemorrhagic stroke) were included. Overall, functions plateaued between 12 and 18 months after stroke and declined after 30 months; for example, mean (SD) K-MMSE improved from 7 days (22.89 [7.89]) to 12 months (26.03 [5.48]) (P < .001), plateaued until 36 months (26.03 [5.84]), and decreased to 48 months (26.02 [5.82]) (P < .001). Interaction associations were found between time after stroke and age, stroke severity, and stroke type in functional assessment outcomes. For example, mean (SE) FMA for ages 65 years or younger vs older than 65 years was 81.64 (0.63) vs 80.69 (0.68) at 7 days and 91.28 (0.47) vs 88.46 (0.58) at 6 months (P for interaction < .001), and for IS vs HS, it was 84.46 (0.47) vs 69.02 (1.24) at 7 days and 91.20 (0.38) vs 85.51 (0.98) at 6 months (P for interaction < .001). Mean (SE) FMA was 94.39 (0.21) at 7 days and 97.57 (0.14) at 6 months for mild stroke, 44.69 (1.18) at 7 days and 70.43 (1.21) at 6 months for moderate stroke, and 13.22 (0.99) at 7 days and 48.07 (2.62) at 6 months for severe stroke (P for interaction < .001). Factors associated with activities of daily living independence at 60 months included older age (β per 1-year increase = -0.35; standard error [SE], 0.03; P < .001), male sex (β = 2.12; SE, 0.73; P = .004), and hemorrhagic stroke type (β vs ischemic stroke = 2.35; SE, 0.81; P = .004). CONCLUSIONS AND RELEVANCE This study found that long-term recovery patterns in multifaceted functional domains differed from one another and varied by patient age, stroke severity, and stroke type. Understanding the diversity of long-term functional recovery patterns and factors associated with these outcomes in survivors of stroke may help clinicians develop strategies for effective stroke care and rehabilitation.
Collapse
Affiliation(s)
- Seyoung Shin
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yaesuel Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Min Kyun Sohn
- Department of Rehabilitation Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jongmin Lee
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Deog Young Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Gyung-Jae Oh
- Department of Preventive Medicine, Wonkwang University, School of Medicine, Iksan, Republic of Korea
| | - Yang-Soo Lee
- Department of Rehabilitation Medicine, Kyungpook National University School of Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Min Cheol Joo
- Department of Rehabilitation Medicine, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - So Young Lee
- Department of Rehabilitation Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju City, Republic of Korea
| | - Min-Keun Song
- Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Junhee Han
- Department of Statistics, Hallym University, Chuncheon, Republic of Korea
| | - Jeonghoon Ahn
- Department of Health Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Science and Technology, Department of Medical Devices Management and Research, Department of Digital Healthcare, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
265
|
Li L, Fu Q, Tyson S, Preston N, Weightman A. A scoping review of design requirements for a home-based upper limb rehabilitation robot for stroke. Top Stroke Rehabil 2022; 29:449-463. [PMID: 34281494 DOI: 10.1080/10749357.2021.1943797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Home-based robotic therapy is a trend of post-stroke upper limb rehabilitation. Although home-based upper limb rehabilitation robots have been developed over several decades, no design specification has been published. OBJECTIVES To identify and synthesize design requirements considering user and technology needs for a home-based upper limb rehabilitation robot through a scoping review. METHOD Studies published between 1 January 2000 and 10 June 2020 in Scopus, Web of Science and PubMed database regarding design requirements for upper limb rehabilitation robots from of stroke survivors or therapists were identified and analyzed. We use 'requirement' as something that is needed or wanted. Two physiotherapists ranked the requirements identified from literature review. RESULTS Nine studies were selected for review. They identified 42 requirements regarding functionality (n = 11, 26.2% of total requirements), usability (n = 16, 38.0% of total requirements), software (n = 14, 33.3% of total requirements) and safety (n = 1, 2.4% of total requirements). The main implementation barriers with respect to adherence and monitoring were space, operation, and cost. CONCLUSION This is the first research to summarize the design requirements for home-based upper limb rehabilitation robots for stroke survivors. The need for a safe, comfortable, easy to use device which can be individualized and promote specific movements and tasks emerged. The result of this paper captures the design requirements that can be used in future for the development of a design specification. It provides designers and researchers guidance about the real-world needs for home-based upper limb rehabilitation robots for stroke.
Collapse
Affiliation(s)
- Lutong Li
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Manchester, UK
| | - Qiang Fu
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Manchester, UK
| | - Sarah Tyson
- Division of Nursing, Midwifery & Social Work, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nick Preston
- Academic Department of Rehabilitation Medicine, The University of Leeds, Leeds, UK
| | - Andrew Weightman
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, University of Manchester, Manchester, UK
| |
Collapse
|
266
|
Buvarp D, Rafsten L, Abzhandadze T, Sunnerhagen KS. A cohort study on longitudinal changes in postural balance during the first year after stroke. BMC Neurol 2022; 22:324. [PMID: 36042404 PMCID: PMC9425943 DOI: 10.1186/s12883-022-02851-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Many patients with strokes report increased incidence of fall that can be due to impaired postural balance. The recovery of balance in patients with varying degrees of impairments and activity limitations is less studied, and whether individuals with mild paresis can recover their balance faster is unclear. Better knowledge about factors influencing the recovery of postural balance can be used to guide clinical management after stroke to provide the right rehabilitation to the right person at the right time, and thus to avoid potential fall incidences. OBJECTIVE This study aims to examine longitudinal changes in postural balance during the first year after stroke. METHODS Postural balance was assessed using the Berg Balance Scale (BBS) within 5 days, 1, 2, and 3 months and 1-year post-stroke. Stroke severity was stratified using a cluster analysis by including multidimensional baseline measures. A longitudinal mixed-effect model was constructed to analyze changes in proportional balance impairment by stroke severity over time. Individuals with a cut-off of BBS below 45 scores were identified through a classification algorithm using baseline predictors. RESULTS A total of 135 patients were stratified to mild stroke (77 [57%] patients) or moderate stroke (58 [43%] patients). Ninety-three patients were included in the longitudinal analysis. Significant recovery was found at 1-year for moderate stroke (48% recovery from the initial impaired postural balance, adjusted P < 0.001), but not for mild stroke, after adjusting for age and cognition. Both stroke severities had a maximal recovery in postural balance at 3 months post-stroke, but the moderate stroke group deteriorated after that. Patients with higher age and worse cognition had more severe balance impairments. The classification model achieved a sensitivity of 0.95 (95% confidence interval [CI]: 0.91-0.98) and a specificity of 0.99 (95% CI: 0.98-1.0) for classifying individuals with BBS below 45 points. CONCLUSIONS This study indicates that continuous improvements in postural balance ends at 3 months regardless for mild or moderate stroke groups, and patients with moderate stroke significantly deteriorate in postural balance after 3 months.
Collapse
Affiliation(s)
- Dongni Buvarp
- Rehabilitation Medicine Research Group, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Per Dubbsgatan 14, 40530, Gothenburg, Sweden. .,Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Lena Rafsten
- Rehabilitation Medicine Research Group, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Per Dubbsgatan 14, 40530, Gothenburg, Sweden.,Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tamar Abzhandadze
- Rehabilitation Medicine Research Group, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Per Dubbsgatan 14, 40530, Gothenburg, Sweden.,Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Katharina S Sunnerhagen
- Rehabilitation Medicine Research Group, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Per Dubbsgatan 14, 40530, Gothenburg, Sweden.,Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
267
|
Object-centered sensorimotor bias of torque control in the chronic stage following stroke. Sci Rep 2022; 12:14539. [PMID: 36008561 PMCID: PMC9411611 DOI: 10.1038/s41598-022-18754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022] Open
Abstract
When lifting objects whose center of mass (CoM) are not centered below the handle one must compensate for arising external torques already at lift-off to avoid object tilt. Previous studies showed that finger force scaling during object lifting may be impaired at both hands following stroke. However, torque control in object manipulation has not yet been studied in patients with stroke. In this pilot study, thirteen patients with chronic stage left hemispheric stroke (SL), nine patients with right hemispheric stroke (SR) and hand-matched controls had to grasp and lift an object with the fingertips of their ipsilesional hand at a handle while preventing object tilt. Object CoM and therewith the external torque was varied by either relocating a covert weight or the handle. The compensatory torque at lift-off (Tcom) is the sum of the torque resulting from (1) grip force being produced at different vertical finger positions (∆CoP × GF) and (2) different vertical load forces on both sides of the handle (∆Fy × w/2). When having to rely on sensorimotor memories, ∆CoP × GF was elevated when the object CoM was on the ipsilesional-, but decreased when CoM was on the contralesional side in SL, whereas ∆Fy × w/2 was biased in the opposite direction, resulting in normal Tcom. SR patients applied a smaller ∆CoP × GF when the CoM was on the contralesional side. Torques were not altered when geometric cues were available. Our findings provide evidence for an object-centered spatial bias of manual sensorimotor torque control with the ipsilesional hand following stroke reminiscent of premotor neglect. Both intact finger force-to-position coordination and visuomotor control may compensate for the spatial sensorimotor bias in most stroke patients. Future studies will have to confirm the found bias and evaluate the association with premotor neglect.
Collapse
|
268
|
Franceschini M, Ottaviani M, Romano P, Goffredo M, Pournajaf S, Lofrumento M, Proietti S, Sterpi I, Tricomi E, Tropea P, Corbo M, Fadiga L, Infarinato F. The Reaching Phase of Feeding and Self-Care Actions Optimizes Action Observation Effects in Chronic Stroke Subjects. Neurorehabil Neural Repair 2022; 36:574-586. [PMID: 36000699 DOI: 10.1177/15459683221110884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The Action Observation Therapy (AOT) is a well-established post-stroke rehabilitation treatment based on the theoretical framework of the Mirror Neuron System (MNS) activation. However, AOT protocols are still heterogeneous in terms of video contents of observed actions. OBJECTIVE The aim of this study was to analyze electroencephalographic (EEG) recordings in stroke patients during the observation of different videos of task-specific upper limb movements, and to define which category of actions can elicit a stronger cortical activation in the observer's brain. METHODS Signals were analyzed from 19 chronic stroke subjects observing customized videos that represented 3 different categories of upper limb actions: Finalized Actions, Non-Finalized Actions, and Control Videos. The Event-Related Desynchronization in the µ and β bands was chosen to identify the involvement of the cerebral cortex: the area of the normalized power spectral density was calculated for each category and, deepening, for the reaching and completion sub-phases of Finalized Actions. For descriptive purposes, the time course of averaged signal power was described. The Kruskal-Wallis test (P < .05) was applied. RESULTS The analysis showed a greater desynchronization when subjects observed Finalized Actions with respect to Non-Finalized in all recorded areas; Control videos provoked a synchronization in the same areas and frequency bands. The reaching phase of feeding and self-care actions evoked a greater suppression both in µ and β bands. CONCLUSIONS The observation of finalized arm movements seems to elicit the strongest activation of the MNS in chronic stroke patients. This finding may help the clinicians to design future AOT-based stroke rehabilitation protocols. CLINICAL TRIAL REGISTRATION Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT04047134.
Collapse
Affiliation(s)
- Marco Franceschini
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy.,San Raffaele University, Rome, Italy
| | - Marco Ottaviani
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Paola Romano
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Michela Goffredo
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Sanaz Pournajaf
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Margherita Lofrumento
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico di Milano, Milano, Italy
| | | | - Irma Sterpi
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico di Milano, Milano, Italy
| | - Enrica Tricomi
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico di Milano, Milano, Italy
| | - Peppino Tropea
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico di Milano, Milano, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico di Milano, Milano, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy.,Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesco Infarinato
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| |
Collapse
|
269
|
Yao M, Fang J, Li J, Ng ACK, Liu J, Leung GKK, Song F, Zhang J, Chang C. Modulation of the proteoglycan receptor PTPσ promotes white matter integrity and functional recovery after intracerebral hemorrhage stroke in mice. J Neuroinflammation 2022; 19:207. [PMID: 35982473 PMCID: PMC9387079 DOI: 10.1186/s12974-022-02561-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) is associated with high morbidity and mortality rates. However, extant investigations have mainly focused on gray matter injury within the primary injury site after ICH rather than on white matter (WM) injury in the brain and spinal cord. This focus partly accounts for the diminished therapeutic discovery. Recent evidence suggests that chondroitin sulphate proteoglycans (CSPG), which can bind to the neural transmembrane protein tyrosine phosphatase-sigma (PTPσ), may facilitate axonal regrowth and remyelination by ameliorating neuroinflammation. Methods A clinically relevant ICH model was established using adult C57BL/6 mice. The mice were then treated systemically with intracellular sigma peptide (ISP), which specifically targets PTPσ. Sensorimotor function was assessed by various behavioral tests and electrophysiological assessment. Western blot was used to verify the expression levels of Iba-1 and different inflammatory cytokines. The morphology of white matter tracts of brain and spinal cord was evaluated by immunofluorescence staining and transmission electron microscopy (TEM). Adeno-associated virus (AAV) 2/9 injection was used to assess the ipsilateral axonal compensation after injury. Parallel in vitro studies on the effects of CSPG interference on oligodendrocyte–DRG neuron co-culture explored the molecular mechanism through which ISP treatment promoted myelination capability. Results ISP, by targeting PTPσ, improved WM integrity and sensorimotor recovery via immunomodulation. In addition, ISP administration significantly decreased WM injury in the peri-hematomal region as well as cervical spinal cord, enhanced axonal myelination and facilitated neurological restoration, including electrophysiologically assessed sensorimotor functions. Parallel in vitro studies showed that inhibition of PTPσ by ISP fosters myelination by modulating the Erk/CREB signaling pathway. Conclusions Our findings revealed for the first time that manipulation of PTPσ signaling by ISP can promote prolonged neurological recovery by restoration of the integrity of neural circuits in the CNS through modulation of Erk/CREB signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02561-4.
Collapse
Affiliation(s)
- Min Yao
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, 518060, China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.,Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jie Fang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jiewei Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Anson Cho Kiu Ng
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiaxin Liu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Gilberto Ka Kit Leung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fanglai Song
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, 518060, China.
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
270
|
Liang J, Song Y, Belkacem AN, Li F, Liu S, Chen X, Wang X, Wang Y, Wan C. Prediction of balance function for stroke based on EEG and fNIRS features during ankle dorsiflexion. Front Neurosci 2022; 16:968928. [PMID: 36061607 PMCID: PMC9433808 DOI: 10.3389/fnins.2022.968928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Balance rehabilitation is exceedingly crucial during stroke rehabilitation and is highly related to the stroke patients’ secondary injuries (caused by falling). Stroke patients focus on walking ability rehabilitation during the early stage. Ankle dorsiflexion can activate the brain areas of stroke patients, similar to walking. The combination of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) was a new method, providing more beneficial information. We extracted the event-related desynchronization (ERD), oxygenated hemoglobin (HBO), and Phase Synchronization Index (PSI) features during ankle dorsiflexion from EEG and fNIRS. Moreover, we established a linear regression model to predict Berg Balance Scale (BBS) values and used an eightfold cross validation to test the model. The results showed that ERD, HBO, PSI, and age were critical biomarkers in predicting BBS. ERD and HBO during ankle dorsiflexion and age were promising biomarkers for stroke motor recovery.
Collapse
Affiliation(s)
- Jun Liang
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | | | - Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Abdelkader Nasreddine Belkacem,
| | - Fengmin Li
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Shizhong Liu
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaona Chen
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinrui Wang
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Yueyun Wang
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunxiao Wan
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
- Chunxiao Wan,
| |
Collapse
|
271
|
Agami S, Riemer R, Berman S. Enhancing motion tracking accuracy of a low-cost 3D video sensor using a biomechanical model, sensor fusion, and deep learning. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:956381. [PMID: 36188943 PMCID: PMC9397931 DOI: 10.3389/fresc.2022.956381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022]
Abstract
Low-cost 3D video sensors equipped with routines for extracting skeleton data facilitate the widespread use of virtual reality (VR) for rehabilitation. However, the accuracy of the extracted skeleton data is often limited. Accuracy can be improved using a motion tracker, e.g., using a recurrent neural network (RNN). Yet, training an RNN requires a considerable amount of relevant and accurate training data. Training databases can be obtained using gold-standard motion tracking sensors. This limits the use of the RNN trackers in environments and tasks that lack accessibility to gold-standard sensors. Digital goniometers are typically cheaper, more portable, and simpler to use than gold-standard motion tracking sensors. The current work suggests a method for generating accurate skeleton data suitable for training an RNN motion tracker based on the offline fusion of a Kinect 3D video sensor and an electronic goniometer. The fusion applies nonlinear constraint optimization, where the constraints are based on an advanced shoulder-centered kinematic model of the arm. The model builds on the representation of the arm as a triangle (the arm triangle). The shoulder-centered representation of the arm triangle motion simplifies constraint representation and consequently the optimization problem. To test the performance of the offline fusion and the RNN trained using the optimized data, arm motion of eight participants was recorded using a Kinect sensor, an electronic goniometer, and, for comparison, a passive-marker-based motion tracker. The data generated by fusing the Kinect and goniometer recordings were used for training two long short-term memory (LSTM) RNNs. The input to one RNN included both the Kinect and the goniometer data, and the input to the second RNN included only Kinect data. The performance of the networks was compared to the performance of a tracker based on a Kalman filter and to the raw Kinect measurements. The accuracy of the fused data was high, and it considerably improved data accuracy. The accuracy for both trackers was high, and both were more accurate than the Kalman filter tracker and the raw Kinect measurements. The developed methods are suitable for integration with immersive VR rehabilitation systems in the clinic and the home environments.
Collapse
Affiliation(s)
| | | | - Sigal Berman
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
272
|
Xia Y, Tanaka K, Yang M, Izumi S. Body representation underlies response of proprioceptive acuity to repetitive peripheral magnetic stimulation. Front Hum Neurosci 2022; 16:924123. [PMID: 36016664 PMCID: PMC9395609 DOI: 10.3389/fnhum.2022.924123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Proprioceptive acuity is of great significance in basic research exploring a possible neural mechanism of fine motor control and in neurorehabilitation practice promoting motor function recovery of limb-disabled people. Moreover, body representation relies on the integration of multiple somatic sensations, including proprioception that is mainly generated in muscles and tendons of human joints. This study aimed to examine two hypotheses: First, different extension positions of wrist joint have different proprioceptive acuities, which might indicate different body representations of wrist joint in the brain. Second, repetitive peripheral magnetic stimulation (rPMS) applied peripherally to the forearm radial nerve and extensors could change proprioceptive acuity at the wrist joint. Thirty-five healthy participants were recruited then randomly divided into the real stimulation group (n = 15) and the sham stimulation group (n = 20). The participants’ non-dominant side wrist joint position sense was tested at six extension positions within the physiological joint motion range (i.e., 10°, 20°, 30°, 40°, 50°, 60°) both before stimulation and after stimulation. Results showed that proprioceptive bias (arithmetic difference of target position and replicated position) among six extension positions could be divided into lower-extension position (i.e., 10°, 20°, 30°) and higher-extension position (i.e., 40°, 50°, 60°). One session rPMS could influence proprioceptive bias in lower-extension position but not in higher-extension position. However, proprioceptive precision (standard deviation within lower-extension position and higher-extension position) was not influenced. To conclude, proprioceptive bias may vary between different wrist extension positions due to different hand postures being related to changes in body representation, and different functions relating to proprioceptive bias and proprioceptive precision may underlie two aspects of body representation.
Collapse
Affiliation(s)
- Yunxiang Xia
- Department of Physical Medicine and Rehabilitation, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kento Tanaka
- Department of Physical Medicine and Rehabilitation, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Man Yang
- Graduate School of Dalian Medical University, Dalian, China
| | - Shinichi Izumi
- Department of Physical Medicine and Rehabilitation, Graduate School of Medicine, Tohoku University, Sendai, Japan
- *Correspondence: Shinichi Izumi,
| |
Collapse
|
273
|
Fruchter D, Feingold Polak R, Berman S, Levy-Tzedek S. Automating provision of feedback to stroke patients with and without information on compensatory movements: A pilot study. Front Hum Neurosci 2022; 16:918804. [PMID: 36003313 PMCID: PMC9393297 DOI: 10.3389/fnhum.2022.918804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Providing effective feedback to patients in a rehabilitation training program is essential. As technologies are being developed to support patient training, they need to be able to provide the users with feedback on their performance. As there are various aspects on which feedback can be given (e.g., task success and presence of compensatory movements), it is important to ensure that users are not overwhelmed by too much information given too frequently by the assistive technology. We created a rule-based set of guidelines for the desired hierarchy, timing, and content of feedback to be used when stroke patients train with an upper-limb exercise platform which we developed. The feedback applies to both success on task completion and to the execution of compensatory movements, and is based on input collected from clinicians in a previous study. We recruited 11 stroke patients 1–72 months from injury onset. Ten participants completed the training; each trained with the rehabilitation platform in two configurations: with motor feedback (MF) and with no motor feedback (control condition) (CT). The two conditions were identical, except for the feedback content provided: in both conditions they received feedback on task success; in the MF condition they also received feedback on making undesired compensatory movements during the task. Participants preferred the configuration that provided feedback on both task success and quality of movement (MF). This pilot experiment demonstrates the feasibility of a system providing both task-success and movement-quality feedback to patients based on a decision tree which we developed.
Collapse
Affiliation(s)
- Daphne Fruchter
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronit Feingold Polak
- Recanati School for Community Health Professions, Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Herzog Medical Center, Jerusalem, Israel
| | - Sigal Berman
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
| | - Shelly Levy-Tzedek
- Recanati School for Community Health Professions, Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
- *Correspondence: Shelly Levy-Tzedek,
| |
Collapse
|
274
|
Xu P, Yu H, Wang X, Song R. Characterizing stroke-induced changes in the variability of lower limb kinematics using multifractal detrended fluctuation analysis. Front Neurol 2022; 13:893999. [PMID: 35989906 PMCID: PMC9388820 DOI: 10.3389/fneur.2022.893999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Movement variability reflects the adaptation of the neuromuscular control system to internal or external perturbations, but its relationship to stroke-induced injury is still unclear. In this study, the multifractal detrended fluctuation analysis was used to explore the stroke-induced changes in movement variability by analyzing the joint angles in a treadmill-walking task. Eight healthy subjects and ten patients after stroke participated in the experiment, performing a treadmill-walking task at a comfortable speed. The kinematics data of the lower limbs were collected by the motion-capture system, and two indicators, the degree of multifractality (α) and degree of correlation [h(2)], were used to investigate the mechanisms underlying neuromuscular control. The results showed that the knee and ankle joint angles were multifractal and persistent at various scales, and there was a significant difference in the degree of multifractality and the degree of correlation at the knee and ankle joint angles among the three groups, with the values being ranked in the following order: healthy subjects < non-paretic limb < paretic limb. These observations highlighted increased movement variability and multifractal strength in patients after stroke due to neuromotor defects. This study provided evidence that multifractal detrended analysis of the angles of the knee and ankle joints is useful to investigate the changes in movement variability and multifractal after stroke. Further research is needed to verify and promote the clinical applications.
Collapse
Affiliation(s)
- Pan Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Hairong Yu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
- Hairong Yu
| | - Xiaoyun Wang
- Guangdong Work Injury Rehabilitation Center, Guangzhou, China
| | - Rong Song
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Rong Song
| |
Collapse
|
275
|
Seo G, Lee SW, Beer RF, Alamri A, Wu YN, Raghavan P, Rymer WZ, Roh J. Alterations in motor modules and their contribution to limitations in force control in the upper extremity after stroke. Front Hum Neurosci 2022; 16:937391. [PMID: 35967001 PMCID: PMC9365968 DOI: 10.3389/fnhum.2022.937391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The generation of isometric force at the hand can be mediated by activating a few motor modules. Stroke induces alterations in motor modules underlying steady-state isometric force generation in the human upper extremity (UE). However, how the altered motor modules impact task performance (force production) remains unclear as stroke survivors develop and converge to the three-dimensional (3D) target force. Thus, we tested whether stroke-specific motor modules would be activated from the onset of force generation and also examined how alterations in motor modules would induce changes in force representation. During 3D isometric force development, electromyographic (EMG) signals were recorded from eight major elbow and shoulder muscles in the paretic arm of 10 chronic hemispheric stroke survivors and both arms of six age-matched control participants. A non-negative matrix factorization algorithm identified motor modules in four different time windows: three “exploratory” force ramping phases (Ramps 1–3; 0–33%, 33–67%, and 67–100% of target force magnitude, respectively) and the stable force match phase (Hold). Motor module similarity and between-force coupling were examined by calculating the scalar product and Pearson correlation across the phases. To investigate the association between the end-point force representation and the activation of the motor modules, principal component analysis (PCA) and multivariate multiple linear regression analyses were applied. In addition, the force components regressed on the activation profiles of motor modules were utilized to model the feasible force direction. Both stroke and control groups developed exploratory isometric forces with a non-linear relationship between EMG and force. During the force matching, only the stroke group showed abnormal between-force coupling in medial-lateral and backward-forward and medial-lateral and downward-upward directions. In each group, the same motor modules, including the abnormal deltoid module in stroke survivors, were expressed from the beginning of force development instead of emerging during the force exploration. The PCA and the multivariate multiple linear regression analyses showed that alterations in motor modules were associated with abnormal between-force coupling and limited feasible force direction after stroke. Overall, these results suggest that alterations in intermuscular coordination contribute to the abnormal end-point force control under isometric conditions in the UE after stroke.
Collapse
Affiliation(s)
- Gang Seo
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Sang Wook Lee
- Department of Biomedical Engineering, Catholic University of America, Washington, DC, United States
- Center for Applied Biomechanics and Rehabilitation Research, MedStar National Rehabilitation Hospital, Washington, DC, United States
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Randall F. Beer
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - Amani Alamri
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Yi-Ning Wu
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States
| | - Preeti Raghavan
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, United States
| | - William Z. Rymer
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
- Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Jinsook Roh
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- *Correspondence: Jinsook Roh,
| |
Collapse
|
276
|
Scheffler B, Schimböck F, Schöler A, Rösner K, Spallek J, Kopkow C. Tailored GuideLine Implementation in STrokE Rehabilitation (GLISTER) in Germany. Protocol of a Mixed Methods Study Using the Behavior Change Wheel and the Theoretical Domains Framework. Front Neurol 2022; 13:828521. [PMID: 35968277 PMCID: PMC9363877 DOI: 10.3389/fneur.2022.828521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Evidence-based guidelines are important for informing clinical decision-making and improving patient outcomes. There is inconsistent usage of guidelines among physical therapists involved in stroke rehabilitation, suggesting the existence of a gap between theory and practice. Addressing the German guideline "evidence-based rehabilitation of mobility after stroke (ReMoS)," the aims of this project are (1) to describe the current physical therapy practice within the context of stroke rehabilitation in Germany, (2) to evaluate barriers and facilitators of guideline usage, (3) to develop, and (4) to pilot test a theory-based, tailored implementation intervention for the benefit of guideline recommendations. Materials and Methods This study uses a stepwise mixed methods approach for implementing a local guideline. A self-reported online questionnaire will be used to survey the current physical therapy practice in stroke rehabilitation. The same survey and systematic-mixed methods review will be used to evaluate the barriers and facilitators of guideline usage quantitatively. Semi-structured interviews will add a qualitative perspective on factors that influence ReMoS guideline implementation. The Behavior Change Wheel and Theoretical Domains Framework will be used to support the development of a tailored implementation intervention which will be pilot tested in a controlled study. Patient and physical therapy-related outcomes, as well as the appropriateness, such as acceptance and feasibility of the tailored implementation intervention, will be analyzed. Conclusion This will be the first endeavor to implement a guideline in German stroke rehabilitation with a focus on changing care provider behavior based on the knowledge of current practice and determining factors using a tailored and theory-based intervention.
Collapse
Affiliation(s)
- Bettina Scheffler
- Department of Therapy Sciences I, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| | - Florian Schimböck
- Department of Nursing Sciences and Clinical Nursing, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| | - Almut Schöler
- Department of Therapy Sciences I, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| | - Katrin Rösner
- Department of Health Sciences, University of Lübeck, Lübeck, Germany
| | - Jacob Spallek
- Department of Public Health, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| | - Christian Kopkow
- Department of Therapy Sciences I, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| |
Collapse
|
277
|
Ma D, Li X, Xu Q, Yang F, Feng Y, Wang W, Huang JJ, Pei YC, Pan Y. Robot-Assisted Bimanual Training Improves Hand Function in Patients With Subacute Stroke: A Randomized Controlled Pilot Study. Front Neurol 2022; 13:884261. [PMID: 35873779 PMCID: PMC9298653 DOI: 10.3389/fneur.2022.884261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Study Design A randomized controlled pilot study. Background Bimanual therapy (BMT) is an effective neurorehabilitation therapy for the upper limb, but its application to the distal upper limb is limited due to methodological difficulties. Therefore, we applied an exoskeleton hand to perform robot-assisted task-oriented bimanual training (RBMT) in patients with stroke. Objective To characterize the effectiveness of RBMT in patients with hemiplegic stroke with upper limb motor impairment. Interventions A total of 19 patients with subacute stroke (1–6 months from onset) were randomized and allocated to RBMT and conventional therapy (CT) groups. The RBMT and CT groups received 90 min of training/day (RBMT: 60 min RBMT + 30 min CT; CT: 60 min CT for hand functional training + 30 min regular CT), 5 days/week, for 4 weeks (20 sessions during the experimental period). Assessments Clinical assessments, including the Fugl–Meyer assessment of the upper extremity (FMA-UE), action research arm test (ARAT), and wolf motor arm function test (WMFT), were conducted before and after the intervention. Results Within-group analysis showed a significant improvement in the FMA-UE and WMFT in both the CT and RBMT groups. A significant improvement in the Fugl–Meyer assessment (FMA) of the wrist and hand for the distal part in the RBMT group occurred earlier than that in the CT group. A significant improvement in WMFT time was found in both groups, but the WMFT functional ability assessment was only found in the RBMT group. No significant improvements in ARAT assessment were observed in either the CT or RBMT groups. Compared with CT, significant improvements were found in terms of the proportion of minimally clinically important differences after RBMT in FMA-UE (χ2 = 4.34, p = 0.037). No adverse events were reported by any of the participants across all sessions. Conclusions This study is the first to apply RBMT to the distal part of the upper limb. Both RBMT and CT are effective in improving the upper limb function in patients with subacute stroke. RBMT shows superior potential efficacy in facilitating recovery of the distal part of upper extremity (UE) motor function in the early stage. Future randomized control studies with a large sample size and follow-up assessments are needed to validate the present conclusions.
Collapse
Affiliation(s)
- Di Ma
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xin Li
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Quan Xu
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Fei Yang
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yutong Feng
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Wenxu Wang
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jian-Jia Huang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate School of Science Design Program in Innovation for Smart Medicine, Chang Gung University, Taoyuan, Taiwan.,Center of Vascularized Tissue Allograft, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Cheng Pei
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate School of Science Design Program in Innovation for Smart Medicine, Chang Gung University, Taoyuan, Taiwan.,Center of Vascularized Tissue Allograft, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu Pan
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
278
|
Ultrasound-Guided Median Nerve Electrical Stimulation to Promote Upper Limb Function Recovery after Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3590057. [PMID: 35873627 PMCID: PMC9303480 DOI: 10.1155/2022/3590057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Peripheral electrical nerve stimulation enhances hand function during stroke rehabilitation. Here, we proposed a percutaneous direct median nerve stimulation guided by ultrasound (ultrasound‐guided median nerve electrical stimulation, UG-MNES) and evaluated its feasibility and effectiveness in the treatment of stroke patients with upper limb extremity impairments. Sixty-three stroke patients (2-3 months of onset) were randomly divided into control and UG-MNES groups. Both groups received routine rehabilitation and the UG-MNES group received an additional ultrasound-guided electrical stimulation of the median nerve at 2 Hz, 0.2 ms pulse-width for 20 minutes with gradual intensity enhancement. The Fugl-Meyer Assessment for upper extremity motor function (FMA-UE) was used as the primary outcome. The secondary outcomes were the Functional Test for the Hemiplegic Upper Extremity (FTHUE-HK), Hand Function Rating Scale, Brunnstrom Stages, and Barthel Index scores for motor and daily functions. All the participants completed the trial without any side effects or adverse events during the intervention. After 4 weeks of intervention, the functions of the upper limbs on the hemiplegic side in both groups achieved significant recovery. Compared to the control group, all evaluation indices used in this trial were improved significantly in the UG-MNES group after 2 and 4 weeks of intervention; particularly, the first intervention of UG-MNES immediately improved all the assessment items significantly. In conclusion, the UG-MNES is a safe and feasible treatment for stroke patients with upper limb extremity impairments and could significantly improve the motor function of the affected upper limb, especially in the first intervention. The UG-MNES could be an effective alternative intervention for stroke with upper limb extremity impairments.
Collapse
|
279
|
Georgakis MK, Fang R, Düring M, Wollenweber FA, Bode FJ, Stösser S, Kindlein C, Hermann P, Liman TG, Nolte CH, Kerti L, Ikenberg B, Bernkopf K, Poppert H, Glanz W, Perosa V, Janowitz D, Wagner M, Neumann K, Speck O, Dobisch L, Düzel E, Gesierich B, Dewenter A, Spottke A, Waegemann K, Görtler M, Wunderlich S, Endres M, Zerr I, Petzold G, Dichgans M. Cerebral small vessel disease burden and cognitive and functional outcomes after stroke: A multicenter prospective cohort study. Alzheimers Dement 2022; 19:1152-1163. [PMID: 35876563 DOI: 10.1002/alz.12744] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION It remains unknown whether the global small vessel disease (SVD) burden predicts post-stroke outcomes. METHODS In a prospective multicenter study of 666 ischemic and hemorrhagic stroke patients, we quantified magnetic resonance imaging (MRI)-based SVD markers (lacunes, white matter hyperintensities, microbleeds, perivascular spaces) and explored associations with 6- and 12-month cognitive (battery of 15 neuropsychological tests) and functional (modified Rankin scale) outcomes. RESULTS A global SVD score (range 0-4) was associated with cognitive impairment; worse performance in executive function, attention, language, and visuospatial ability; and worse functional outcome across a 12-month follow-up. Although the global SVD score did not improve prediction, individual SVD markers, assessed across their severity range, improved the calibration, discrimination, and reclassification of predictive models including demographic, clinical, and other imaging factors. DISCUSSION SVD presence and severity are associated with worse cognitive and functional outcomes 12 months after stroke. Assessing SVD severity may aid prognostication for stroke patients. HIGHLIGHTS In a multi-center cohort, we explored associations of small vessel disease (SVD) burden with stroke outcomes. SVD burden associates with post-stroke cognitive and functional outcomes. A currently used score of SVD burden does not improve the prediction of poor outcomes. Assessing the severity of SVD lesions adds predictive value beyond known predictors. To add predictive value in assessing SVD in stroke patients, SVD burden scores should integrate lesion severity.
Collapse
Affiliation(s)
- Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Rong Fang
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Marco Düring
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,Medical Image Analysis Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Frank A Wollenweber
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Felix J Bode
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Sebastian Stösser
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Christine Kindlein
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Peter Hermann
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas G Liman
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Christian H Nolte
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Lucia Kerti
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Benno Ikenberg
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kathleen Bernkopf
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Holger Poppert
- Department of Neurology, Helios Klinikum München West, Munich, Germany
| | - Wenzel Glanz
- Department of Neurology, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Valentina Perosa
- Department of Neurology, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katja Neumann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Karin Waegemann
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Michael Görtler
- Department of Neurology, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Silke Wunderlich
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Gabor Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | |
Collapse
|
280
|
Zheng Y, Tian B, Zhuang Z, Zhang Y, Wang D. fNIRS-based adaptive visuomotor task improves sensorimotor cortical activation. J Neural Eng 2022; 19. [PMID: 35853431 DOI: 10.1088/1741-2552/ac823f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Investigating how to promote the functional activation of the central sensorimotor system is an important goal in the neurorehabilitation research domain. We aim to validate the effectiveness of facilitating cortical excitability using a closed-loop visuomotor task, in which the task difficulty is adaptively adjusted based on an individual's sensorimotor cortical activation. APPROACH We developed a novel visuomotor task, in which subjects moved a handle of a haptic device along a specific path while exerting a constant force against a virtual surface under visual feedback. The difficulty levels of the task were adapted with the aim of increasing the activation of sensorimotor areas, measured non-invasively by functional near-infrared spectroscopy. The changes in brain activation of the bilateral prefrontal cortex, sensorimotor cortex, and the occipital cortex obtained during the adaptive visuomotor task (adaptive group), were compared to the brain activation pattern elicited by the same duration of task with random difficulties in a control group. MAIN RESULTS During one intervention session, the adaptive group showed significantly increased activation in the bilateral sensorimotor cortex, also enhanced effective connectivity between the prefrontal and sensorimotor areas compared to the control group. SIGNIFICANCE Our findings demonstrated that the fNIRS-based adaptive visuomotor task with high ecological validity can facilitate the neural activity in sensorimotor areas and thus has the potential to improve hand motor functions.
Collapse
Affiliation(s)
- Yilei Zheng
- Beihang University, State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Bohao Tian
- State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Zhiqi Zhuang
- Beihang University, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Yuru Zhang
- State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Dangxiao Wang
- State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| |
Collapse
|
281
|
Uwhangchungsimwon Inhibits Oxygen Glucose Deprivation/Re-Oxygenation-Induced Cell Death through Neuronal VEGF and IGF-1 Receptor Signaling and Synaptic Remodeling in Cortical Neurons. Antioxidants (Basel) 2022; 11:antiox11071388. [PMID: 35883879 PMCID: PMC9311511 DOI: 10.3390/antiox11071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Uwhangchungsimwon (UCW), a multi-component herbal product, has long been used to treat vascular diseases such as headache, dizziness, high blood pressure, and stroke. Though the prophylactic actions of UCW are well known, insufficient experimental evidence exists on its effectiveness against stroke. Here, we investigated the mechanism underlying the efficacy of UCW in oxygen glucose deprivation/re-oxygenation (OGD/R)-injury to the primary cortical neurons using an in vitro ischemia model. Neurons secrete vascular endothelial growth factor (VEGF), which acts as a neurotrophic factor in response to an ischemic injury. VEGF modulates neuroprotection and axonal outgrowth by activating the VEGF receptors and plays a critical role in vascular diseases. In this study, cortical neurons were pretreated with UCW (2, 10, and 50 µg/mL) for 48 h, incubated in oxygen-glucose-deprived conditions for 2 h, and further reoxygenated for 24 h. UCW effectively protected neurons from OGD/R-induced degeneration and cell death. Moreover, the role of UCW in sustaining protection against OGD/R injury is associated with activation of VEGF-VEGFR and insulin-like growth factor 1 receptor expression. Therefore, UCW is a potential herbal supplement for the prevention of hypoxic-ischemic neuronal injury as it may occur after stroke.
Collapse
|
282
|
Jang SH, Choi KH. Effects of atrial fibrillation on motor outcome in patients with cerebral infarction. Medicine (Baltimore) 2022; 101:e29549. [PMID: 35839007 PMCID: PMC11132401 DOI: 10.1097/md.0000000000029549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Atrial fibrillation (AF) has been a leading cause of cerebral infarction, but the association with motor outcome after cerebral infarction remains unreported. In this study, we attempted to identify whether AF affects motor outcomes after cerebral infarction. METHODS Seventy-six patients with a first-incidence cerebral infarction and who completed 6 months of rehabilitation were recruited to this retrospective study. The patients were divided into two groups based on the presence of AF (AF and non-AF groups). The upper extremity motricity index, lower extremity motricity index (LMI), modified Brunnstrom classification, and functional ambulation category (FAC) were evaluated, and those results were obtained within the first day and after 6 months of onset. Clinical factors that could affect motor outcome after cerebral infarction were also obtained. RESULTS Compared with the non-AF group, the AF group had an upper extremity motricity index (47.15 ± 20.30 vs 58.66 ± 19.19; P = .032), LMI (53.42 ± 12.27 vs 65.58 ± 13.86; P = .001), and FAC scores (2.39 ± 0.93 vs 3.35 ± 0.93; P < .001) at 6 months after onset. Moreover, the AF group showed a lower FAC score gain than the non-AF group at 6 months after onset (2.33 ± 0.95 vs 3.28 ± 0.94; P < .001). Multivariate linear regression analyses showed that presence of AF had negative correlation with LMI gain (β = -0.197; P = .010) and FAC gain (β = -0.254; P = .011). CONCLUSION We observed that AF had a negative effect on the motor outcome of the affected leg and the recovery of gait function in patients with cerebral infarction.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Kyu Hwan Choi
- Department of Physical Medicine and Rehabilitation, Yeungnam University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
283
|
Chen P, Liu TW, Tse MMY, Lai CKY, Tsoh J, Ng SSM. The Predictive Role of Hand Section of Fugl–Meyer Assessment and Motor Activity Log in Action Research Arm Test in People With Stroke. Front Neurol 2022; 13:926130. [PMID: 35873769 PMCID: PMC9301333 DOI: 10.3389/fneur.2022.926130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Recent findings of clinical studies have demonstrated a significant positive relationship between Fugl–Meyer Assessment of upper extremity score and the action research arm test (ARAT) score in people with stroke. Although the motor activity log (MAL) can assess the self-perception of motor performance, which can affect the performance of the upper limb, the relationship between MAL score and ARAT score still remains unclear. The objective of this study is to quantify the independent contribution of MAL score and FMA-hand score on the ARAT score in people with stroke. Methods This is a cross-sectional study. There were a total of 87 subjects (50 males, 37 females; mean age = 61.12 ± 6.88 years, post-stroke duration=6.31 ± 2.84 years) included in this study. Self-perceived performance in using the paretic limb was measured by MAL, including subscale of the amount of usage (MAL-AOU) and quality of movement (MAL-QOM). Functional performance of the upper limb was measured by action research arm test (ARAT). Upper limb motor control of the hand was measured by hand section of Fugl–Meyer assessment (FMA-hand). Results The result showed that MAL-QOM (r = 0.648, p < 0.001), MAL-AOU (r = 0.606, p < 0.001), FMA-hand scores (r = 0.663, p < 0.001), and the use of a walking aid (r = −0.422, p < 0.001) were significantly correlated with the ARAT scores. A total 66.9% of the variance in the ARAT scores was predicted by the final regression model including MAL-QOM, MAL-AOU, FMA-hand scores, and walking aid. The FMA-hand score was the best predictor of ARAT scores, which can predict a 36.4% variance of ARAT scores in people with stroke, which controlled the effect of using a walking aid. After controlling for use of a walking aid and FMA-hand scores, the multiple linear regression modeling showed that MAL-QOM and MAL-AOU scores could also independently predict an additional 10.4% of the variance in ARAT scores. Conclusion In addition to the FMA-hand score, the MAL score was significantly correlated with the ARAT score. Improving self-perceived performance should be one goal of rehabilitation in people with stroke. Further work developing and testing techniques to do so is clearly warranted.
Collapse
Affiliation(s)
- Peiming Chen
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Tai-Wa Liu
- School of Nursing & Health Studies, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong SAR, China
| | - Mimi M. Y. Tse
- School of Nursing & Health Studies, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong SAR, China
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Claudia K. Y. Lai
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- School of Health Sciences, Yamaguchi University, Yamaguchi, Japan
| | - Joshua Tsoh
- Department of Psychiatry, Prince of Wales Hospital & Shatin Hospital, Shatin, Hong Kong SAR, China
| | - Shamay S. M. Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Shamay S. M. Ng
| |
Collapse
|
284
|
Bassolino M, Franza M, Guanziroli E, Sorrentino G, Canzoneri E, Colombo M, Crema A, Bertoni T, Mastria G, Vissani M, Sokolov AA, Micera S, Molteni F, Blanke O, Serino A. Body and peripersonal space representations in chronic stroke patients with upper limb motor deficits. Brain Commun 2022; 4:fcac179. [PMID: 35950092 PMCID: PMC9356734 DOI: 10.1093/braincomms/fcac179] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/27/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The continuous stream of multisensory information between the brain and the body during body–environment interactions is crucial to maintain the updated representation of the perceived dimensions of body parts (metric body representation) and the space around the body (the peripersonal space). Such flow of multisensory signals is often limited by upper limb sensorimotor deficits after stroke. This would suggest the presence of systematic distortions of metric body representation and peripersonal space in chronic patients with persistent sensorimotor deficits. We assessed metric body representation and peripersonal space representation in 60 chronic stroke patients with unilateral upper limb motor deficits, in comparison with age-matched healthy controls. We also administered a questionnaire capturing explicit feelings towards the affected limb. These novel measures were analysed with respect to patients’ clinical profiles and brain lesions to investigate the neural and functional origin of putative deficits. Stroke patients showed distortions in metric body representation of the affected limb, characterized by an underestimation of the arm length and an alteration of the arm global shape. A descriptive lesion analysis (subtraction analysis) suggests that these distortions may be more frequently associated with lesions involving the superior corona radiata and the superior frontal gyrus. Peripersonal space representation was also altered, with reduced multisensory facilitation for stimuli presented around the affected limb. These deficits were more common in patients reporting pain during motion. Explorative lesion analyses (subtraction analysis, disconnection maps) suggest that the peripersonal space distortions would be more frequently associated with lesions involving the parietal operculum and white matter frontoparietal connections. Moreover, patients reported altered feelings towards the affected limb, which were associated with right brain damage, proprioceptive deficits and a lower cognitive profile. These results reveal implicit and explicit distortions involving metric body representation, peripersonal space representation and the perception of the affected limb in chronic stroke patients. These findings might have important clinical implications for the longitudinal monitoring and the treatments of often-neglected deficits in body perception and representation.
Collapse
Affiliation(s)
- Michela Bassolino
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), MySpace Lab , Lausanne 1011 , Switzerland
- Institute of Health, School of Health Sciences, HES-SO Valais-Wallis , Sion 1950 , Switzerland
| | - Matteo Franza
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital Como , Costa Masnaga 23845 , Italy
| | - Giuliana Sorrentino
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
| | - Elisa Canzoneri
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
| | - Maria Colombo
- Villa Beretta Rehabilitation Center, Valduce Hospital Como , Costa Masnaga 23845 , Italy
| | - Andrea Crema
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- AGO Neurotechnologies, Sàrl , Geneva 1201 , Switzerland
| | - Tommaso Bertoni
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), MySpace Lab , Lausanne 1011 , Switzerland
| | - Giulio Mastria
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), MySpace Lab , Lausanne 1011 , Switzerland
| | - Matteo Vissani
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna , Pontedera, Pisa 56025 , Italy
| | - Arseny A Sokolov
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London , London WC1N 3BG , UK
- Service de Neurologie, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV) , Lausanne 1011 , Switzerland
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna , Pontedera, Pisa 56025 , Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital Como , Costa Masnaga 23845 , Italy
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School , Geneva 1211 , Switzerland
| | - Andrea Serino
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), MySpace Lab , Lausanne 1011 , Switzerland
| |
Collapse
|
285
|
Zuccon G, Lenzo B, Bottin M, Rosati G. Rehabilitation robotics after stroke: a bibliometric literature review. Expert Rev Med Devices 2022; 19:405-421. [PMID: 35786139 DOI: 10.1080/17434440.2022.2096438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Stroke is the leading cause of long-term disability in developed countries. Due to population aging, the number of people requiring rehabilitation after stroke is going to rise in the coming decades. Robot-mediated neurorehabilitation has the potential to improve clinical outcomes of rehabilitation treatments. A statistical analysis of the literature aims to focus on the main trend of this topic. AREAS COVERED A bibliometric survey on post-stroke robotic rehabilitation was performed through a database collection of scientific publications in the field of rehabilitation robotics. By covering the last 20 years, 17429 sources were collected. Relevant patterns and statistics concerning the main research areas were analyzed. Leading journals and conferences which publish and disseminate knowledge in the field were identified. A detailed nomenclature study was carried out. The time trends of the research field were captured. Opinions and predictions of future trends that are expected to shape the near future of the field were discussed. EXPERT OPINION Data analysis reveals the continuous expansion of the research field over the last two decades, which is expected to rise considerably in near future. More attention will be paid to the lower limbs rehabilitation and disease/design specific applications in early-stage patients.
Collapse
Affiliation(s)
- Giacomo Zuccon
- Department of Industrial Engineering, University of Padua, Padua, Italy
| | - Basilio Lenzo
- Department of Industrial Engineering, University of Padua, Padua, Italy
| | - Matteo Bottin
- Department of Industrial Engineering, University of Padua, Padua, Italy
| | - Giulio Rosati
- Department of Industrial Engineering, University of Padua, Padua, Italy
| |
Collapse
|
286
|
Cindy J H R, Prange-Lasonder GB, Prinsen EC, Buurke JH, Rietman JS. Detection thresholds for electrostimulation combined with robotic leg support in sub-acute stroke patients. IEEE Int Conf Rehabil Robot 2022; 2022:1-5. [PMID: 36176097 DOI: 10.1109/icorr55369.2022.9896576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stroke is one of the leading causes of disability in adults in the European Union. It often leads to motor impairments, such as a hemiparetic lower extremity. Research indicates that early task-specific and intensive training promotes neuroplasticity and leads to recovery and/or compensation. One way to provide intensive training early after a stroke is via robot-supported training. A rehabilitation robot was designed by Life Science Robotics (Aalborg, Denmark) that can provide continuous repetitive movements of the hip, knee, and/or ankle in e.g., a lying position. In order to emphasize active contribution by the patient, actively triggered electrical stimulation (via muscle activation) can be combined with robotic assistance. The current study aims to compare different threshold estimation methods for detection of movement intention from muscle activity for actively triggered electrical stimulation during robot-supported leg movement in stroke patients. Three sub-acute stroke patients were included for a single measurement session. They performed knee extension and/or ankle dorsal flexion with four different threshold estimation methods to assess the intention detection threshold to initiate electrostimulation. The thresholds were based on the resting level of muscle activity (of m. rectus femoris or m. tibialis anterior) plus two or three times the standard deviation of the average resting value, or the resting level plus 5% or 10% of the peak muscle activity during a maximal voluntary contraction. The results showed that the method based on the resting muscle activity plus two times the standard deviation was the most stable across the three included stroke patients. This method had a detection success rate of 86.7% and was experienced as moderately comfortable. In conclusion, performing knee extension and/or ankle dorsal flexion with electromyography triggered electrostimulation is feasible in sub-acute stroke patients. Muscle activity-triggered electrostimulation combined with robotic support based on a threshold of resting levels plus two times the standard deviation seems to detect movement initiation most consistently in this small sample of sub-acute stroke patients.
Collapse
|
287
|
Iwamoto Y, Imura T, Tanaka R, Mitsutake T, Jung H, Suzukawa T, Taki S, Imada N, Inagawa T, Araki H, Araki O. Clinical Prediction Rule for Identifying the Stroke Patients who will Obtain Clinically Important Improvement of Upper Limb Motor Function by Robot-Assisted Upper Limb. J Stroke Cerebrovasc Dis 2022; 31:106517. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022] Open
|
288
|
Greve C, Tam H, Grabherr M, Ramesh A, Scheerder B, Hijmans JM. Flexible Machine Learning Algorithms for Clinical Gait Assessment Tools. SENSORS (BASEL, SWITZERLAND) 2022; 22:4957. [PMID: 35808456 PMCID: PMC9269679 DOI: 10.3390/s22134957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The current gold standard of gait diagnostics is dependent on large, expensive motion-capture laboratories and highly trained clinical and technical staff. Wearable sensor systems combined with machine learning may help to improve the accessibility of objective gait assessments in a broad clinical context. However, current algorithms lack flexibility and require large training datasets with tedious manual labelling of data. The current study tests the validity of a novel machine learning algorithm for automated gait partitioning of laboratory-based and sensor-based gait data. The developed artificial intelligence tool was used in patients with a central neurological lesion and severe gait impairments. To build the novel algorithm, 2% and 3% of the entire dataset (567 and 368 steps in total, respectively) were required for assessments with laboratory equipment and inertial measurement units. The mean errors of machine learning-based gait partitions were 0.021 s for the laboratory-based datasets and 0.034 s for the sensor-based datasets. Combining reinforcement learning with a deep neural network allows significant reduction in the size of the training datasets to <5%. The low number of required training data provides end-users with a high degree of flexibility. Non-experts can easily adjust the developed algorithm and modify the training library depending on the measurement system and clinical population.
Collapse
Affiliation(s)
- Christian Greve
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Hobey Tam
- Oro Muscles B.V., 9715 CJ Groningen, The Netherlands; (H.T.); (M.G.)
| | - Manfred Grabherr
- Oro Muscles B.V., 9715 CJ Groningen, The Netherlands; (H.T.); (M.G.)
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Aditya Ramesh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Bart Scheerder
- Center for Development and Innovation (CDI), University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Data Science Center in Health (DASH), University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Juha M. Hijmans
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
289
|
Blum C, Baur D, Achauer LC, Berens P, Biergans S, Erb M, Hömberg V, Huang Z, Kohlbacher O, Liepert J, Lindig T, Lohmann G, Macke JH, Römhild J, Rösinger-Hein C, Zrenner B, Ziemann U. Personalized neurorehabilitative precision medicine: from data to therapies (MWKNeuroReha) - a multi-centre prospective observational clinical trial to predict long-term outcome of patients with acute motor stroke. BMC Neurol 2022; 22:238. [PMID: 35773640 PMCID: PMC9245298 DOI: 10.1186/s12883-022-02759-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stroke is one of the most frequent diseases, and half of the stroke survivors are left with permanent impairment. Prediction of individual outcome is still difficult. Many but not all patients with stroke improve by approximately 1.7 times the initial impairment, that has been termed proportional recovery rule. The present study aims at identifying factors predicting motor outcome after stroke more accurately than before, and observe associations of rehabilitation treatment with outcome. METHODS The study is designed as a multi-centre prospective clinical observational trial. An extensive primary data set of clinical, neuroimaging, electrophysiological, and laboratory data will be collected within 96 h of stroke onset from patients with relevant upper extremity deficit, as indexed by a Fugl-Meyer-Upper Extremity (FM-UE) score ≤ 50. At least 200 patients will be recruited. Clinical scores will include the FM-UE score (range 0-66, unimpaired function is indicated by a score of 66), Action Research Arm Test, modified Rankin Scale, Barthel Index and Stroke-Specific Quality of Life Scale. Follow-up clinical scores and applied types and amount of rehabilitation treatment will be documented in the rehabilitation hospitals. Final follow-up clinical scoring will be performed 90 days after the stroke event. The primary endpoint is the change in FM-UE defined as 90 days FM-UE minus initial FM-UE, divided by initial FM-UE impairment. Changes in the other clinical scores serve as secondary endpoints. Machine learning methods will be employed to analyze the data and predict primary and secondary endpoints based on the primary data set and the different rehabilitation treatments. DISCUSSION If successful, outcome and relation to rehabilitation treatment in patients with acute motor stroke will be predictable more reliably than currently possible, leading to personalized neurorehabilitation. An important regulatory aspect of this trial is the first-time implementation of systematic patient data transfer between emergency and rehabilitation hospitals, which are divided institutions in Germany. TRIAL REGISTRATION This study was registered at ClinicalTrials.gov ( NCT04688970 ) on 30 December 2020.
Collapse
Affiliation(s)
- Corinna Blum
- Department for Neurology & Stroke, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Ottfried-Müller-Straße 25, 72076, Tübingen, Germany
| | - David Baur
- Department for Neurology & Stroke, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Ottfried-Müller-Straße 25, 72076, Tübingen, Germany
| | - Lars-Christian Achauer
- medical Data Integration Centre (meDIC), University Hospital of Tübingen, Schaffhausenstr. 77, 72072, Tübingen, Germany
| | - Philipp Berens
- University Hospital of Tübingen, Institute for Ophthalmic Research, Elfriede-Aulhorn-Str. 7, 72076, Tübingen, Germany.,Cluster of Excellence Machine Learning, University of Tübingen, Maria-von-Linden-Str. 6, 72076, Tübingen, Germany
| | - Stephanie Biergans
- medical Data Integration Centre (meDIC), University Hospital of Tübingen, Schaffhausenstr. 77, 72072, Tübingen, Germany
| | - Michael Erb
- Department for Biomedical Magnetic Resonance, University Hospital of Tübingen, Ottfried-Müller-Str. 51, 72076, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 8-14, 72076, Tübingen, Germany
| | - Volker Hömberg
- SRH Gesundheitszentrum Bad Wimpfen GmbH, Bei der alten Saline 2, 74206, Bad Wimpfen, Germany
| | - Ziwei Huang
- University Hospital of Tübingen, Institute for Ophthalmic Research, Elfriede-Aulhorn-Str. 7, 72076, Tübingen, Germany
| | - Oliver Kohlbacher
- medical Data Integration Centre (meDIC), University Hospital of Tübingen, Schaffhausenstr. 77, 72072, Tübingen, Germany.,University hospital of Tübingen, Institute for translational Bioinformation (TBI), Schaffhausenstr. 77, 72072, Tübingen, Germany.,University of Tübingen, Interfaculty Institute for Biomedical Informatics (IBMI), Sand 14, 72076, Tübingen, Germany.,Department of Computer Science, Applied Bioinformatics (ABI), University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Joachim Liepert
- Schmieder Clinic Allensbach, Zum Tafelholz 8, 78476, Allensbach, Germany
| | - Tobias Lindig
- Department for Diagnostic and Interventional Neuroradiology, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Gabriele Lohmann
- Department for High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Jakob H Macke
- Cluster of Excellence Machine Learning, University of Tübingen, Maria-von-Linden-Str. 6, 72076, Tübingen, Germany
| | - Jörg Römhild
- medical Data Integration Centre (meDIC), University Hospital of Tübingen, Schaffhausenstr. 77, 72072, Tübingen, Germany
| | - Christine Rösinger-Hein
- Hertie Institute for Clinical Brain Research, Ottfried-Müller-Straße 25, 72076, Tübingen, Germany
| | - Brigitte Zrenner
- Department for Neurology & Stroke, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Ottfried-Müller-Straße 25, 72076, Tübingen, Germany
| | - Ulf Ziemann
- Department for Neurology & Stroke, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany. .,Hertie Institute for Clinical Brain Research, Ottfried-Müller-Straße 25, 72076, Tübingen, Germany.
| |
Collapse
|
290
|
Kabir R, Sunny MSH, Ahmed HU, Rahman MH. Hand Rehabilitation Devices: A Comprehensive Systematic Review. MICROMACHINES 2022; 13:1033. [PMID: 35888850 PMCID: PMC9325203 DOI: 10.3390/mi13071033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/20/2022]
Abstract
A cerebrovascular accident, or a stroke, can cause significant neurological damage, inflicting the patient with loss of motor function in their hands. Standard rehabilitation therapy for the hand increases demands on clinics, creating an avenue for powered hand rehabilitation devices. Hand rehabilitation devices (HRDs) are devices designed to provide the hand with passive, active, and active-assisted rehabilitation therapy; however, HRDs do not have any standards in terms of development or design. Although the categorization of an injury's severity can guide a patient into seeking proper assistance, rehabilitation devices do not have a set standard to provide a solution from the beginning to the end stages of recovery. In this paper, HRDs are defined and compared by their mechanical designs, actuation mechanisms, control systems, and therapeutic strategies. Furthermore, devices with conducted clinical trials are used to determine the future development of HRDs. After evaluating the abilities of 35 devices, it is inferred that standard characteristics for HRDs should include an exoskeleton design, the incorporation of challenge-based and coaching therapeutic strategies, and the implementation of surface electromyogram signals (sEMG) based control.
Collapse
Affiliation(s)
- Ryan Kabir
- Department of Mechanical Engineering, BioRobotics Lab, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA; (H.U.A.); (M.H.R.)
| | - Md Samiul Haque Sunny
- Department of Computer Science, BioRobotics Lab, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
| | - Helal Uddin Ahmed
- Department of Mechanical Engineering, BioRobotics Lab, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA; (H.U.A.); (M.H.R.)
| | - Mohammad Habibur Rahman
- Department of Mechanical Engineering, BioRobotics Lab, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA; (H.U.A.); (M.H.R.)
- Department of Computer Science, BioRobotics Lab, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
| |
Collapse
|
291
|
Jung H. Cardiovascular risk factors and quality of life among stroke survivors in Korea from 2013 to 2018: a cross-sectional cohort study. Health Qual Life Outcomes 2022; 20:101. [PMID: 35761338 PMCID: PMC9235080 DOI: 10.1186/s12955-022-02008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Although the cardiovascular health and quality of life (QoL) of stroke survivors have been previously studied, no study has investigated the correlation between cardiovascular health and QoL. This study aimed to investigate whether there would be a difference in the quality of life (QoL) in this population depending on the degree of cardiovascular health. Methods Overall, 577 people aged > 40 years who participated in the Korea National Health and Nutrition Examination Survey from 2013 to 2018 were included and were divided into three groups according to the survey period (2013–2014, n = 145; 2015–2016, n = 198; and 2017–2018, n = 234). Participants were further divided into the following groups based on their cardiovascular health score, as defined by the American Heart Association: poor, intermediate, and ideal groups. We examined how the health-related QoL score was expressed through the five-dimensional European Quality of Life Questionnaire (EQ-5D-3L). Results The ideal (cardiovascular health scores 11–14) and intermediate (cardiovascular health scores 8–10) groups had the lowest (7.72–8.14%) and highest (46.39–57.70%) number of participants, respectively. The total EQ-5D index score was highest in the ideal group, followed by the intermediate and poor groups across all three periods (2013–2014, p = 0.0015; 2015–2016, p = 0.0040; 2017–2018, p < 0.0001). The dimension-specific analysis revealed that, Findings showed that stroke survivors' mobility significantly varied by cardiovascular health scores (p = 0.0371 in 2015–2016, p =0.0486 in 2017–2018), whereas usual activities (p = 0.0322) and pain/discomfort (p = 0.0420) were significantly different among the three groups in 2015–2016. Conclusion QoL in post-stroke survivors, when related to cardiovascular health degree, could be correlated with stroke sequelae.
Collapse
Affiliation(s)
- Hyejin Jung
- Department of Meridian & Acupoint, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.
| |
Collapse
|
292
|
Virtual Feedback for Arm Motor Function Rehabilitation after Stroke: A Randomized Controlled Trial. Healthcare (Basel) 2022; 10:healthcare10071175. [PMID: 35885701 PMCID: PMC9320564 DOI: 10.3390/healthcare10071175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
A single-blind randomized controlled trial was conducted to compare whether the continuous visualization of a virtual teacher, during virtual reality rehabilitation, is more effective than the same treatment provided without a virtual teacher visualization, for the recovery of arm motor function after stroke. Teacher and no-teacher groups received the same amount of virtual reality therapy (i.e., 1 h/d, 5 dd/w, 4 ww) and an additional hour of conventional therapy. In the teacher group, specific feedback (“virtual-teacher”) showing the correct kinematic to be emulated by the patient was always displayed online during exercises. In the no-teacher group patients performed the same exercises, without the virtual-teacher assistance. The primary outcome measure was Fugl-Meyer Upper Extremity after treatment. 124 patients were enrolled and randomized, 62 per group. No differences were observed between the groups, but the same number of patients (χ2 = 0.29, p = 0.59) responded to experimental and control interventions in each group. The results confirm that the manipulation of a single instant feedback does not provide clinical advantages over multimodal feedback for arm rehabilitation after stroke, but combining 40 h conventional therapy and virtual reality provides large effect of intervention (i.e., Cohen’s d 1.14 and 0.92 for the two groups, respectively).
Collapse
|
293
|
Niu J, Jiang N. Pseudo-online detection and classification for upper-limb movements. J Neural Eng 2022; 19. [PMID: 35688127 DOI: 10.1088/1741-2552/ac77be] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/10/2022] [Indexed: 02/08/2023]
Abstract
Objective. This study analyzed detection (movement vs. non-movement) and classification (different types of movements) to decode upper-limb movement volitions in a pseudo-online fashion.Approach. Nine healthy subjects executed four self-initiated movements: left wrist extension, right wrist extension, left index finger extension, and right index finger extension. For detection, we investigated the performance of three individual classifiers (support vector machine (SVM), EEGNET, and Riemannian geometry featured SVM) on three frequency bands (0.05-5 Hz, 5-40 Hz, 0.05-40 Hz). The best frequency band and the best classifier combinations were constructed to realize an ensemble processing pipeline using majority voting. For classification, we used adaptive boosted Riemannian geometry model to differentiate contra-lateral and ipsilateral movements.Main results. The ensemble model achieved 79.6 ± 8.8% true positive rate and 3.1 ± 1.2 false positives per minute with 75.3 ± 112.6 ms latency on a pseudo-online detection task. The following classification gave around 67% accuracy to differentiate contralateral movements.Significance. The newly proposed ensemble method and pseudo-online testing procedure could provide a robust brain-computer interface design for movement decoding.
Collapse
Affiliation(s)
- Jiansheng Niu
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Ning Jiang
- National Clinical Research Center for Geriatric, West China Hospital Sichuan University, Chengdu, Sichuan, People's Republic of China.,Med-X Center for Manufacturing, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
294
|
Sheng W, Li S, Zhao J, Wang Y, Luo Z, Lo WLA, Ding M, Wang C, Li L. Upper Limbs Muscle Co-contraction Changes Correlated With the Impairment of the Corticospinal Tract in Stroke Survivors: Preliminary Evidence From Electromyography and Motor-Evoked Potential. Front Neurosci 2022; 16:886909. [PMID: 35720692 PMCID: PMC9198335 DOI: 10.3389/fnins.2022.886909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Increased muscle co-contraction of the agonist and antagonist muscles during voluntary movement is commonly observed in the upper limbs of stroke survivors. Much remain to be understood about the underlying mechanism. The aim of the study is to investigate the correlation between increased muscle co-contraction and the function of the corticospinal tract (CST). Methods Nine stroke survivors and nine age-matched healthy individuals were recruited. All the participants were instructed to perform isometric maximal voluntary contraction (MVC) and horizontal task which consist of sponge grasp, horizontal transportation, and sponge release. We recorded electromyography (EMG) activities from four muscle groups during the MVC test and horizontal task in the upper limbs of stroke survivors. The muscle groups consist of extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI), and biceps brachii (BIC). The root mean square (RMS) of EMG was applied to assess the muscle activation during horizontal task. We adopted a co-contraction index (CI) to evaluate the degree of muscle co-contraction. CST function was evaluated by the motor-evoked potential (MEP) parameters, including resting motor threshold, amplitude, latency, and central motor conduction time. We employed correlation analysis to probe the association between CI and MEP parameters. Results The RMS, CI, and MEP parameters on the affected side showed significant difference compared with the unaffected side of stroke survivors and the healthy group. The result of correlation analysis showed that CI was significantly correlated with MEP parameters in stroke survivors. Conclusion There existed increased muscle co-contraction and impairment in CST functionality on the affected side of stroke survivors. The increased muscle co-contraction was correlated with the impairment of the CST. Intervention that could improve the excitability of the CST may contribute to the recovery of muscle discoordination in the upper limbs of stroke survivors.
Collapse
Affiliation(s)
- Wenfei Sheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shijue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiangli Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yujia Wang
- Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, China
| | - Zichong Luo
- Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghui Ding
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
295
|
Chen J, Or CK, Chen T. Effectiveness of Using Virtual Reality-Supported Exercise Therapy for Upper Extremity Motor Rehabilitation in Patients With Stroke: Systematic Review and Meta-analysis of Randomized Controlled Trials. J Med Internet Res 2022; 24:e24111. [PMID: 35723907 PMCID: PMC9253973 DOI: 10.2196/24111] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2021] [Accepted: 04/18/2022] [Indexed: 01/19/2023] Open
Abstract
Background In recent years, efforts have been made to implement virtual reality (VR) to support the delivery of poststroke upper extremity motor rehabilitation exercises. Therefore, it is important to review and analyze the existing research evidence of its effectiveness. Objective Through a systematic review and meta-analysis of randomized controlled trials, this study examined the effectiveness of using VR-supported exercise therapy for upper extremity motor rehabilitation in patients with stroke. Methods This study followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The CINAHL Plus, MEDLINE, Web of Science, Embase, and Cochrane Library databases were searched on December 31, 2021. Changes in outcomes related to impairments in upper extremity functions and structures, activity limitations, and participation restrictions in life situations from baseline to after intervention, after intervention to follow-up assessment, and baseline to follow-up assessment were examined. Standardized mean differences (SMDs) were calculated using a random-effects model. Subgroup analyses were performed to determine whether the differences in treatment outcomes depended on age, stroke recovery stage, VR program type, therapy delivery format, similarities in intervention duration between study groups, intervention duration in VR groups, and trial length. Results A total of 42 publications representing 43 trials (aggregated sample size=1893) were analyzed. Compared with the control groups that used either conventional therapy or no therapy, the intervention groups that used VR to support exercise therapy showed significant improvements in upper extremity motor function (Fugl-Meyer Assessment-Upper Extremity; SMD 0.45, 95% CI 0.21-0.68; P<.001), range of motion (goniometer; SMD 1.01, 95% CI 0.50-1.52; P<.001), muscle strength (Manual Muscle Testing; SMD 0.79, 95% CI 0.28-1.30; P=.002), and independence in day-to-day activities (Functional Independence Measure; SMD 0.23, 95% CI 0.06-0.40; P=.01, and modified Rankin Scale; SMD 0.57, 95% CI 0.01-1.12; P=.046). Significant subgroup differences were observed in hand dexterity (Box and Block Test), spasticity (Ashworth Scale or modified Ashworth Scale), arm and hand motor ability (Wolf Motor Function Test and Manual Function Test), hand motor ability (Jebsen Hand Function Test), and quality of life (Stroke Impact Scale). There was no evidence that the benefits of VR-supported exercise therapy were maintained after the intervention ended. Conclusions VR-supported upper extremity exercise therapy can be effective in improving motor rehabilitation results. Our review showed that of the 12 rehabilitation outcomes examined during the course of VR-based therapy, significant improvements were detected in 2 (upper extremity motor function and range of motion), and both significant and nonsignificant improvements were observed in another 2 (muscle strength and independence in day-to-day activities), depending on the measurement tools or methods used. Trial Registration PROSPERO CRD42021256826; https://tinyurl.com/2uarftbh
Collapse
Affiliation(s)
- Jiayin Chen
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, China (Hong Kong)
| | - Calvin Kalun Or
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, China (Hong Kong)
| | - Tianrong Chen
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, China (Hong Kong)
| |
Collapse
|
296
|
Dong Y, Weng L, Hu Y, Mao Y, Zhang Y, Lu Z, Shi T, Du R, Wang W, Wang J, Wang X. Exercise for Stroke Rehabilitation: A Bibliometric Analysis of Global Research From 2001 to 2021. Front Aging Neurosci 2022; 14:876954. [PMID: 35783146 PMCID: PMC9247282 DOI: 10.3389/fnagi.2022.876954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo make a bibliometric analysis of global trends in research into exercise interventions for stroke between 2001 and 2021.MethodThis study did the systematic literature from 2001 to 2021 in Web of Science Core Collection. CiteSpace software was used to analyze the relationship of publications with countries, journals, authors, references, and keywords.ResultsA total of 3,484 publications were obtained in the bibliometric analysis. The number of publications increased gradually over the period. The United States have the most number of publications. The journal stroke had the most citations per paper (106.95) and the highest impact factor (IF 2020, 7.194). The most high frequency keywords are “stroke,” “rehabilitation,” and “recovery,” the top of burst key words are “health,” “speed,” and “aerobic exercise”.ConclusionThese findings provide the trends of exercise for stroke s and provided the potential research frontiers in the past 20 years. It will be a useful basis for further research into focus issues, cooperators, development trends.
Collapse
Affiliation(s)
- Yulin Dong
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Linman Weng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yinhu Hu
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Yuxing Mao
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Yajuan Zhang
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Zefeng Lu
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Tingting Shi
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Renren Du
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Wu Wang
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Jinyan Wang
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
- *Correspondence: Jinyan Wang,
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Jinyan Wang,
| |
Collapse
|
297
|
Qin Y, Li M, Li Y, Lu Y, Shi X, Cui G, Zhao H, Yang K. Brain-computer interface training for motor recovery after stroke. Hippokratia 2022. [DOI: 10.1002/14651858.cd015065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Qin
- Evidence-Based Medicine Center, School of Basic Medical Sciences; Lanzhou University; Lanzhou China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province; Lanzhou University; Lanzhou China
| | - Meixuan Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences; Lanzhou University; Lanzhou China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province; Lanzhou University; Lanzhou China
| | - Yanfei Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences; Lanzhou University; Lanzhou China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province; Lanzhou University; Lanzhou China
| | - Yaqin Lu
- Department of Rehabilitation Medicine; Gansu Province Central Hospital; Lanzhou China
| | - Xiue Shi
- Shaanxi Kangfu Hospital; Xi'an China
| | - Gecheng Cui
- Evidence Based Social Science Research Center, School of Public Health; Lanzhou University; Lanzhou China
| | - Haitong Zhao
- Evidence Based Social Science Research Center, School of Public Health; Lanzhou University; Lanzhou China
| | - KeHu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences; Lanzhou University; Lanzhou China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province; Lanzhou University; Lanzhou China
- Evidence Based Social Science Research Center, School of Public Health; Lanzhou University; Lanzhou China
| |
Collapse
|
298
|
Kilbride C, Warland A, Stewart V, Aweid B, Samiyappan A, Ryan J, Butcher T, Athanasiou DA, Baker K, Singla-Buxarrais G, Anokye N, Pound C, Gowing F, Norris M. Rehabilitation using virtual gaming for Hospital and hOMe-Based training for the Upper limb post Stroke (RHOMBUS II): protocol of a feasibility randomised controlled trial. BMJ Open 2022; 12:e058905. [PMID: 35672074 PMCID: PMC9174817 DOI: 10.1136/bmjopen-2021-058905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Upper limb (UL) rehabilitation is most effective early after stroke, with higher doses leading to improved outcomes. For the stroke survivor, the repetition may be monotonous. For clinicians, providing a clinically meaningful level of input can be challenging. As such, time spent engaged in UL activity among subacute stroke survivors remains inadequate. Opportunities for the stroke survivor to engage with UL rehabilitation in a safe, accessible and engaging way are essential to improving UL outcomes following stroke. The NeuroBall is a non-immersive virtual reality (VR) digital system designed for stroke rehabilitation, specifically for the arm and hand. The aim of the Rehabilitation using virtual gaming for Hospital and hOMe-Based training for the Upper limb post Stroke study is to determine the safety, feasibility and acceptability of the NeuroBall as a rehabilitation intervention for the UL in subacute stroke. METHODS AND ANALYSIS A feasibility randomised controlled trial (RCT) will compare the NeuroBall plus usual care with usual care only, in supporting UL rehabilitation over 7 weeks. Twenty-four participants in the subacute poststroke phase will be recruited while on the inpatient or early supported discharge (ESD) stroke pathway. Sixteen participants will be randomised to the intervention group and eight to the control group. Outcomes assessed at baseline and 7 weeks include gross level of disability, arm function, spasticity, pain, fatigue and quality of life (QoL). Safety will be assessed by recording adverse events and using pain, spasticity and fatigue scores. A parallel process evaluation will assess feasibility and acceptability of the intervention. Feasibility will also be determined by assessing fidelity to the intervention. Postintervention, semistructured interviews will be used to explore acceptability with 12 participants from the intervention group, four from the usual care group and with up to nine staff involved in delivering the intervention. ETHICS AND DISSEMINATION This trial has ethical approval from Brunel University London's Research Ethics Committee 25257-NHS-Oct/2020-28121-2 and the Wales Research Ethics Committee 5 Bangor (Health and Care Research Wales) REC ref: 20/WA/0347. The study is sponsored by Brunel University London. CONTACT Dr Derek Healy, Chair, University Research Ethics committee (Derek.healy@brunel.ac.uk). Trial results will be submitted for publication in peer-reviewed journals, presented at national and international conferences and distributed to people with stroke. TRIAL REGISTRATION NUMBER ISRCTN11440079; Pre-results.
Collapse
Affiliation(s)
- Cherry Kilbride
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Alyson Warland
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | | | - Basaam Aweid
- Stroke Unit, Hillingdon Hospitals NHS Foundation Trust, Uxbridge, Middlesex, UK
- Early Supported Discharge (Stroke), Central and North West London NHS Foundation Trust, London, UK
| | - Arul Samiyappan
- Adult Services, Central and North West London NHS Foundation Trust, London, UK
| | - Jennifer Ryan
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
- Department of Epidemiology and Public Health Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tom Butcher
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | | | | | | | - Nana Anokye
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Carole Pound
- Faculty of Health and Social Sciences, Bournemouth University, Poole, Dorset, UK
| | - Francesca Gowing
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Meriel Norris
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| |
Collapse
|
299
|
Performance Comparison of Different Neuroimaging Methods for Predicting Upper Limb Motor Outcomes in Patients after Stroke. Neural Plast 2022; 2022:4203698. [PMID: 35707519 PMCID: PMC9192322 DOI: 10.1155/2022/4203698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Several neuroimaging methods have been proposed to assess the integrity of the corticospinal tract (CST) for predicting recovery of motor function after stroke, including conventional structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI). In this study, we aimed to compare the predicative performance of these methods using different neuroimaging modalities and optimize the prediction protocol for upper limb motor function after stroke in a clinical environment. We assessed 28 first-ever stroke patients with upper limb motor impairment. We used the upper extremity module of the Fugl-Meyer assessment (UE-FM) within 1 month of onset (baseline) and again 3 months poststroke. sMRI (T1- and T2-based) was used to measure CST-weighted lesion load (CST-wLL), and DTI was used to measure the fractional anisotropy asymmetry index (FAAI) and the ratio of fractional anisotropy (rFA). The CST-wLL within 1 month poststroke was closely correlated with upper limb motor outcomes and recovery potential. CST‐wLL ≥ 2.068 cc indicated serious CST damage and a poor outcome (100%). CST‐wLL < 1.799 cc was correlated with a considerable rate (>70%) of upper limb motor function recovery. CST-wLL showed a comparable area under the curve (AUC) to that of the CST-FAAI (p = 0.71). Inclusion of extra-CST-FAAI did not significantly increase the AUC (p = 0.58). Our findings suggest that sMRI-derived CST-wLL is a precise predictor of upper limb motor outcomes 3 months poststroke. We recommend this parameter as a predictive imaging biomarker for classifying patients' recovery prognosis in clinical practice. Conversely, including DTI appeared to induce no significant benefits.
Collapse
|
300
|
Bicknell ED, Said CM, Haines KJ, Kuys S. “I Give It Everything for an Hour Then I Sleep for Four.” The Experience of Post-stroke Fatigue During Outpatient Rehabilitation Including the Perspectives of Carers: A Qualitative Study. Front Neurol 2022; 13:900198. [PMID: 35720087 PMCID: PMC9201517 DOI: 10.3389/fneur.2022.900198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Fatigue is a debilitating post-stroke symptom negatively impacting rehabilitation. Lack of acknowledgment from carers can be additionally distressing. The purpose of this study was to describe the experience of post-stroke fatigue during outpatient rehabilitation, including the perspectives of carers. Methods This qualitative study was guided by descriptive phenomenology within a constructivist paradigm. Semi-structured interviews were conducted with stroke survivors experiencing fatigue (Fatigue Assessment Scale >23) and attending outpatient rehabilitation. Carers were also interviewed where identified, providing insight into their own and stroke survivor experiences. Data were analyzed according to Colaizzi's analytic method. Results Fourteen stroke survivors (50% culturally and linguistically diverse), and nine carers participated. Six themes were identified: 1. The unpredictable and unprepared uncovering of fatigue; 2. Experience and adjustment are personal 3. Being responsible for self-managing fatigue; 4. The complex juggle of outpatient stroke rehabilitation with fatigue; 5. Learning about fatigue is a self-directed problem-solving experience; 6. Family and carers can support or constrain managing fatigue. Conclusion Despite engaging in outpatient rehabilitation, stroke survivors largely learnt to manage fatigue independent of healthcare professionals. Carers often facilitated learning, monitoring rehabilitation, daily routines and fatigue exacerbation. Conversely, family could be dismissive of fatigue and possess unrealistic expectations. Post-stroke fatigue must be considered by clinicians when delivering outpatient rehabilitation to stroke survivors. Clinicians should consistently screen for fatigue, provide flexible session scheduling, and educate about individual indicators and strategies for management. Clinicians should also explicitly engage carers who play a critical role in the management of fatigue.
Collapse
Affiliation(s)
- Erin D. Bicknell
- School of Allied Health, Australian Catholic University, Brisbane, QLD, Australia
- Department of Physiotherapy, Western Health, St Albans, VIC, Australia
- *Correspondence: Erin D. Bicknell
| | - Catherine M. Said
- Department of Physiotherapy, Western Health, St Albans, VIC, Australia
- Department of Physiotherapy, The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science, St Albans, VIC, Australia
| | | | - Suzanne Kuys
- School of Allied Health, Australian Catholic University, Brisbane, QLD, Australia
| |
Collapse
|