251
|
Gongora M, Velasques B, Cagy M, Teixeira S, Ribeiro P. EEG coherence as a diagnostic tool to measure the initial stages of Parkinson Disease. Med Hypotheses 2019; 123:74-78. [PMID: 30696598 DOI: 10.1016/j.mehy.2018.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/06/2018] [Accepted: 12/22/2018] [Indexed: 12/23/2022]
Abstract
Although Parkinson Disease was described a long time ago by James Parkinson and several biomarkers were used to predict the symptoms of PD, there is no accepted tool to distinguish the initial stages of this pathology. The present hypothesis discusses the Coherence Function, an Electroencephalography measure which could be used as a simple, and low-cost tool to describe the onset of cardinal signals of PD. Our hypothesis is based on three factors: beta frequency related to movement, motor action over particular cortical regions, and cortical coupling between cortical areas involved in the execution of voluntary movement. We believe that these factors support our hypothesis pointing out coherence function as an interesting measure to detect initial stages of PD.
Collapse
Affiliation(s)
- Mariana Gongora
- Brain Mapping and Sensorimotor Integration Laboratory, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Bruna Velasques
- Neurophysiology and Neuropsychology of Attention, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro e, RJ, Brazil
| | - Mauricio Cagy
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silmar Teixeira
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Piauí, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensorimotor Integration Laboratory, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
252
|
Puche Sarmiento AC, Bocanegra García Y, Ochoa Gómez JF. Active information storage in Parkinson's disease: a resting state fMRI study over the sensorimotor cortex. Brain Imaging Behav 2019; 14:1143-1153. [PMID: 30684153 DOI: 10.1007/s11682-019-00037-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD), the second most frequent neurodegenerative disease, affects significantly life quality by a combination of motor and cognitive disturbances. Although it is traditionally associated with basal ganglia dysfunction, cortical alterations are also involved in disease symptoms. Our objective is to evaluate the alterations in brain dynamics in de novo and recently treated PD subjects using a nonlinear method known as Active Information Storage. In the current research, Active Information Storage (AIS) was used to study the complex dynamics in motor cortex spontaneous activity captured using resting state functional Magnetic Resonance Imaging (rs-fMRI) at early-stage in non-medicated and recently medicated PD subjects. Supplementary to AIS, the fractional Amplitude of Low Frequency Fluctuation (fALFF), which is a better-established technique of analysis of rs-fMRI signals, was also evaluated. Compared to healthy subjects, the AIS values were significantly reduced in PD patients over the analyzed motor cortex regions; differences were also found at less extent using the fALFF measure. Correlations between AIS and fALFF values showed that the measures seem to capture similar neuronal phenomena in rs-fMRI data. The highest sensitivity when detecting group differences revealed by AIS, and not captured by traditional linear approaches, suggests that this measure is a promising tool for the analysis of rs-fMRI neural data in PD.
Collapse
Affiliation(s)
- Aura Cristina Puche Sarmiento
- Grupo de Investigación en Bioinstrumentación e Ingeniería Clínica, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-11, 050010, Medellín, Colombia.
| | - Yamile Bocanegra García
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-11, Medellín, Colombia.,Grupo Neuropsicología y Conducta, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-11, Medellín, Colombia
| | - John Fredy Ochoa Gómez
- Grupo de Investigación en Bioinstrumentación e Ingeniería Clínica, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-11, 050010, Medellín, Colombia
| |
Collapse
|
253
|
Geibl FF, Henrich MT, Oertel WH. Mesencephalic and extramesencephalic dopaminergic systems in Parkinson's disease. J Neural Transm (Vienna) 2019; 126:377-396. [PMID: 30643975 DOI: 10.1007/s00702-019-01970-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Neurodegeneration of the nigrostriatal dopaminergic system and concurrent dopamine (DA) deficiency in the basal ganglia represent core features of Parkinson's disease (PD). Despite the central role of DA in the pathogenesis of PD, dopaminergic systems outside of the midbrain have not been systematically investigated for Lewy body pathology or neurodegeneration. Dopaminergic neurons show a surprisingly rich neurobiological diversity, suggesting that there is not one general type of dopaminergic neuron, but rather a spectrum of different dopaminergic phenotypes. This heterogeneity on the cellular level could account for the observed differences in susceptibility of the dopaminergic systems to the PD disease process. In this review, we will summarize the long history from the first description of PD to the rationally derived DA replacement therapy, describe the basal neuroanatomical and neuropathological features of the different dopaminergic systems in health and PD, explore how neuroimaging techniques broadened our view of the dysfunctional dopaminergic systems in PD and discuss how dopaminergic replacement therapy ameliorates the classical motor symptoms but simultaneously induces a new set of hyperdopaminergic symptoms.
Collapse
Affiliation(s)
- Fanni F Geibl
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany.
| | - Martin T Henrich
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| |
Collapse
|
254
|
Komendová M, Ribeiro LF, Urban J. Controlling selectivity of polymer-based monolithic stationary phases. J Sep Sci 2019; 42:952-961. [PMID: 30576067 DOI: 10.1002/jssc.201801046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022]
Abstract
In this work, we aimed to prepare a monolithic capillary column that allowed an isocratic separation of ten dopamine precursors and metabolites in a single run. Segments of five zwitterion sulfobetaine polymer monoliths have been modified by zwitterion phoshorylcholine by using an ultraviolet-initiated two-step photografting. Columns with 0, 33, 50, 66, and 100% of modified length were prepared. Effect of length of the modified segment and mobile phase composition has been tested. All columns provided dual-retention mechanism with reversed-phase retention in highly aqueous mobile phase and hydrophilic interaction mechanism in highly organic mobile phase. The retention mechanism was controlled by the composition of the mobile phase and has been described by a three-parameter model. We have used regression parameters to characterize the retention of analyzed compounds and to study individual pathways of dopamine metabolism. Comprehensive optimization of mobile phase composition allowed to find an optimal composition of the mobile phase and stationary phase surface chemistry arrangement to achieve desired separation. Optimized columns provided an isocratic separation of all tested compounds in less than nine min.
Collapse
Affiliation(s)
- Martina Komendová
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
255
|
Presotto M, Rieder CRDM, Olchik MR. Validação de conteúdo e confiabilidade do Protocolo de Avaliação dos Distúrbios Adquiridos de Fala em Indivíduos com Doença de Parkinson (PADAF). Codas 2019; 31:e20180230. [DOI: 10.1590/2317-1782/20192018230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/31/2019] [Indexed: 11/21/2022] Open
Abstract
RESUMO Objetivo Elaborar e realizar a validação de conteúdo, assim como verificar a confiabilidade entre examinador do Protocolo de Avaliação dos Distúrbios Adquiridos de Fala em Indivíduos com Doença de Parkinson (PADAF). Método O estudo foi realizado em três etapas. Na primeira, foi elaborado o protocolo e validado seu conteúdo mediante análise de sete especialistas. Na segunda, aplicou-se o instrumento em 25 indivíduos com doença de Parkinson (DP) idiopática. Na terceira e última etapa, verificou-se a confiabilidade entre-examinador. Resultados A versão final do PADAF foi composta de 32 itens que avaliam a respiração, a fonação, a ressonância, a articulação e a prosódia. Mostrou-se válido, com índice de validade de conteúdo (IVC) bem acima daquele estabelecido na literatura e com perfeita concordância na verificação da confiabilidade entre examinador. Conclusão O PADAF para indivíduos com DP foi desenvolvido e teve seu conteúdo validado com perfeita confiabilidade do instrumento.
Collapse
Affiliation(s)
| | - Carlos Roberto de Mello Rieder
- Universidade Federal do Rio Grande do Sul, Brasil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal de Ciências da Saúde de Porto Alegre, Brasil
| | | |
Collapse
|
256
|
Paz TDSR, Guimarães F, Britto VLSD, Correa CL. Treadmill training and kinesiotherapy versus conventional physiotherapy in Parkinson’s disease: a pragmatic study. FISIOTERAPIA EM MOVIMENTO 2019. [DOI: 10.1590/1980-5918.032.ao01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Introduction: Physiotherapy has been identified in the literature as an important treatment for individuals with Parkinson’s disease (PD) to improve functional capacity. Little is discussed about the physiotherapy practice environment for this population. Objective: To assess pragmatically the effects of two physiotherapy protocols: Conventional Physiotherapy (CP) and Treadmill Training and Kinesiotherapy (TTK) in PD patients. Method: Twenty-four PD patients classified from 1 to 3 on the Hoehn and Yahr scale were randomly distributed into two groups. In CP group (12 patients), exercises aimed to improve range of motion, bradykinesia, postural adjustments and gait. In TTK group (12 patients), exercises aimed to improve physical fitness, mobility and functional independence. The treatments were performed for 50 minutes, twice a week for 14 weeks. The following evaluations were performed before and after the interventions: Unified Parkinson’s Disease Rating Scale (UPDRS); gait speed (GS); up stairs (US) and down stairs (DS) tests; timed get-up-and-go test (TUG) and 6-Minute Walk Distance Test (6-MWDT). Sociodemographic and clinical data were presented as descriptive analysis. Variables with normal and non-normal distributions were analyzed by specific statistical tests. Results: Intragroup analysis showed significant results for the TTK group (TUG, US, DS, GS, UPDRS total and UPDRS II) and for the CP group only UPDRS total. Intergroup analysis was favorable for the TTK group (TUG, US, DS, 6-MWDT). Conclusion: CP group improved the patients’ general clinical status, while treadmill and kinesiotherapy improved the physical-functional and clinical aspects.
Collapse
|
257
|
Jin L, Zeng Q, He J, Feng Y, Zhou S, Wu Y. A ReliefF-SVM-based method for marking dopamine-based disease characteristics: A study on SWEDD and Parkinson’s disease. Behav Brain Res 2019; 356:400-407. [DOI: 10.1016/j.bbr.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022]
|
258
|
Bahmani Z, Clark K, Merrikhi Y, Mueller A, Pettine W, Isabel Vanegas M, Moore T, Noudoost B. Prefrontal Contributions to Attention and Working Memory. Curr Top Behav Neurosci 2019; 41:129-153. [PMID: 30739308 DOI: 10.1007/7854_2018_74] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The processes of attention and working memory are conspicuously interlinked, suggesting that they may involve overlapping neural mechanisms. Working memory (WM) is the ability to maintain information in the absence of sensory input. Attention is the process by which a specific target is selected for further processing, and neural resources directed toward that target. The content of WM can be used to direct attention, and attention can in turn determine which information is encoded into WM. Here we discuss the similarities between attention and WM and the role prefrontal cortex (PFC) plays in each. First, at the theoretical level, we describe how attention and WM can both rely on models based on attractor states. Then we review the evidence for an overlap between the areas involved in both functions, especially the frontal eye field (FEF) portion of the prefrontal cortex. We also discuss similarities between the neural changes in visual areas observed during attention and WM. At the cellular level, we review the literature on the role of prefrontal DA in both attention and WM at the behavioral and neural levels. Finally, we summarize the anatomical evidence for an overlap between prefrontal mechanisms involved in attention and WM. Altogether, a summary of pharmacological, electrophysiological, behavioral, and anatomical evidence for a contribution of the FEF part of prefrontal cortex to attention and WM is provided.
Collapse
Affiliation(s)
- Zahra Bahmani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Yaser Merrikhi
- Department of Physiology & Pharmacology, The Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Adrienne Mueller
- Department of Neurobiology, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Warren Pettine
- Center for Neural Science, New York University, New York, NY, USA
| | - M Isabel Vanegas
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tirin Moore
- Department of Neurobiology, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
259
|
Spay C, Meyer G, Welter ML, Lau B, Boulinguez P, Ballanger B. Functional imaging correlates of akinesia in Parkinson's disease: Still open issues. NEUROIMAGE-CLINICAL 2018; 21:101644. [PMID: 30584015 PMCID: PMC6412010 DOI: 10.1016/j.nicl.2018.101644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 11/19/2022]
Abstract
Akinesia is a major manifestation of Parkinson's disease (PD) related to difficulties or failures of willed movement to occur. Akinesia is still poorly understood and is not fully alleviated by standard therapeutic strategies. One reason is that the area of the clinical concept has blurred boundaries referring to confounded motor symptoms. Here, we review neuroimaging studies which, by providing access to finer-grained mechanisms, have the potential to reveal the dysfunctional brain processes that account for akinesia. It comes out that no clear common denominator could be identified across studies that are too heterogeneous with respect to the clinical/theoretical concepts and methods used. Results reveal, however, that various abnormalities within but also outside the motor and dopaminergic pathways might be associated with akinesia in PD patients. Notably, numerous yet poorly reproducible neural correlates were found in different brain regions supporting executive control by means of resting-state or task-based studies. This includes for instance the dorsolateral prefrontal cortex, the inferior frontal cortex, the supplementary motor area, the medial prefrontal cortex, the anterior cingulate cortex or the precuneus. This observation raises the issue of the multidimensional nature of akinesia. Yet, other open issues should be considered conjointly to drive future investigations. Above all, a unified terminology is needed to allow appropriate association of behavioral symptoms with brain mechanisms across studies. We adhere to a use of the term akinesia restricted to dysfunctions of movement initiation, ranging from delayed response to freezing or even total abolition of movement. We also call for targeting more specific neural mechanisms of movement preparation and action triggering with more sophisticated behavioral designs/event-related neurofunctional analyses. More work is needed to provide reliable evidence, but answering these still open issues might open up new prospects, beyond dopaminergic therapy, for managing this disabling symptom. No clear picture of the neural bases of PD akinesia can be drawn from the literature. Akinesia should be disentangled from bradykinesia and hypokinesia. Movement initiation dysfunctions may arise from both motor and executive disorders. Future neuroimaging studies should probe more specific neurocognitive processes. Future studies should look beyond the dopaminergic basal-ganglia circuitry.
Collapse
Affiliation(s)
- Charlotte Spay
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Resaerch Center, INSERM, U 1028, CNRS, UMR 5292, Action Control and Related Disorders team, F-69000, Lyon, France
| | - Garance Meyer
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Resaerch Center, INSERM, U 1028, CNRS, UMR 5292, Action Control and Related Disorders team, F-69000, Lyon, France
| | - Marie-Laure Welter
- Neurophysiology Department, CIC-CRB 1404, Rouen University Hospital, University of Rouen, F-76000 Rouen, France
| | - Brian Lau
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Epinière, F-75013 Paris, France
| | - Philippe Boulinguez
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Resaerch Center, INSERM, U 1028, CNRS, UMR 5292, Action Control and Related Disorders team, F-69000, Lyon, France
| | - Bénédicte Ballanger
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, INSERM, U 1028, CNRS, UMR 5292, Neuroplasticity and Neuropathology of Olfactory Perception team, F-69000, Lyon, France.
| |
Collapse
|
260
|
De Freitas TB, Leite PHW, Doná F, Pompeu JE, Swarowsky A, Torriani-Pasin C. The effects of dual task gait and balance training in Parkinson’s disease: a systematic review. Physiother Theory Pract 2018; 36:1088-1096. [DOI: 10.1080/09593985.2018.1551455] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tatiana Beline De Freitas
- Laboratory of Motor Behavior, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Paulo Henrique Wong Leite
- Laboratory of Motor Behavior, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - José Eduardo Pompeu
- Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Alessandra Swarowsky
- Physical Therapy Postgraduate Program, Physical Therapy Department, Santa Catarina State University (UDESC), Florianópolis, Brazil
- Brazilian Parkinson’s Disease Rehabilitation Initiative, Santa Catarina State University (UDESC), Florianópolis, Brazil
| | - Camila Torriani-Pasin
- Laboratory of Motor Behavior, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
261
|
Kramer U, Kolly S, Maillard P, Pascual-Leone A, Samson AC, Schmitt R, Bernini A, Allenbach G, Charbon P, de Roten Y, Conus P, Despland JN, Draganski B. Change in Emotional and Theory of Mind Processing in Borderline Personality Disorder: A Pilot Study. J Nerv Ment Dis 2018; 206:935-943. [PMID: 30507735 DOI: 10.1097/nmd.0000000000000905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in emotional processing (EP) and in theory of mind (TOM) are central across treatment approaches for patients with borderline personality disorder (BPD). Although the assessment of EP relies on the observation of a patient's self-criticism in a two-chair dialogue, an individual's TOM assessments is made based on responses to humorous stimuli based on false beliefs. For this pilot study, we assessed eight patients with BPD before and after a 3-month-long psychiatric treatment, using functional magnetic resonance imaging and behavioral tasks. We observed arousal increase within the session of the two-chair dialogue (d = 0.36), paralleled by arousal decrease between sessions (d = 0.80). We found treatment-associated trends for neural activity reduction in brain areas central for EP and TOM. Our exploratory findings using an integrative assessment procedure of changes in EP and TOM point toward evidence for treatment effects at the brain systems level related to behavioral modulation.
Collapse
Affiliation(s)
| | - Stéphane Kolly
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | | | | | - Ruth Schmitt
- Department of Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Adriano Bernini
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Gilles Allenbach
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Patrick Charbon
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
262
|
Whitfield JA, Delong C, Goberman AM, Blomgren M. Fluency adaptation in speakers with Parkinson disease: a motor learning perspective. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2018; 20:699-707. [PMID: 28665156 DOI: 10.1080/17549507.2017.1341549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE Fluency adaptation is characterised by a reduction in stuttering-like behaviours over successive readings of the same speech material and is an effect that is typically observed in developmental stuttering. Prominent theories suggest that short-term motor learning associated with practice explain, in part, fluency adaptation. The current investigation examined the fluency adaptation effect in a group of speakers with Parkinson disease (PD) who exhibited stuttering-like disfluencies. METHOD Individuals with PD (n = 21) and neurologically healthy controls (n = 19) read a passage five times. Per cent syllables stuttered was measured and calculated for each reading passage. RESULT Participants in the PD group exhibited significantly more stuttering-like disfluencies than control speakers. Twelve individuals in the PD group exhibited at least three per cent syllable stuttered on at least one reading. Statistical trends revealed that the subgroup of individuals with PD who stuttered exhibited a significant reduction in stuttering moments over the five successive readings. CONCLUSION A significant fluency adaptation effect was observed for the group of speakers with PD who exhibited stuttering-like disfluencies. Results of the current study are discussed within the framework of the motor learning hypothesis of fluency adaptation.
Collapse
Affiliation(s)
- Jason A Whitfield
- a Department of Communication Sciences and Disorders , Bowling Green State University , Bowling Green , OH , USA and
| | - Catharine Delong
- b Department of Communication Sciences and Disorders , University of Utah , Salt Lake City , UT , USA
| | - Alexander M Goberman
- a Department of Communication Sciences and Disorders , Bowling Green State University , Bowling Green , OH , USA and
| | - Michael Blomgren
- b Department of Communication Sciences and Disorders , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
263
|
Abnormal asymmetries in subcortical brain volume in early adolescents with subclinical psychotic experiences. Transl Psychiatry 2018; 8:254. [PMID: 30487578 PMCID: PMC6261944 DOI: 10.1038/s41398-018-0312-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/13/2018] [Accepted: 11/08/2018] [Indexed: 01/05/2023] Open
Abstract
Subcortical structures may have an important role in the pathophysiology of psychosis. Our recent mega-analysis of structural magnetic resonance imaging (MRI) data has reported subcortical volumetric and lateralization alterations in chronic schizophrenia, including leftward asymmetric increases in pallidal volume. The question remains, however, whether these characteristics may represent vulnerability to the development of psychosis or whether they are epiphenomena caused by exposure to medication or illness chronicity. Subclinical psychotic experiences (SPEs) occur in some adolescents in the general population and increase the odds of developing psychosis in young adulthood. Investigations into the association between SPEs and MRI-measured volumes of subcortical structures in the general adolescent population would clarify the issue. Here, we collected structural MRI data in a subsample (10.5-13.3 years old) of a large-scale population-based cohort and explored subcortical volume and lateralization alterations related to SPEs (N = 203). Adolescents with SPEs demonstrated significant volumetric increases in the left hippocampus, right caudate, and right lateral ventricle, as well as a marginally significant increase in the left pallidum. Furthermore, adolescents with SPEs showed significantly more leftward laterality of pallidal volume than individuals without SPEs, which replicates our mega-analysis findings in chronic schizophrenia. We suggest that leftward asymmetries in pallidal volume already present in early adolescence may underlie the premorbid predisposition for developing psychosis in later life.
Collapse
|
264
|
Irmen F, Horn A, Meder D, Neumann WJ, Plettig P, Schneider GH, Siebner HR, Kühn AA. Sensorimotor subthalamic stimulation restores risk-reward trade-off in Parkinson's disease. Mov Disord 2018; 34:366-376. [PMID: 30485537 DOI: 10.1002/mds.27576] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND STN-DBS effectively treats motor symptoms of advanced PD. Nonmotor cognitive symptoms, such as impaired impulse control or decision making, may either improve or worsen with DBS. A potential mediating factor of DBS-induced modulation of cognition is the electrode position within the STN with regard to functional subareas of parallel motor, cognitive, and affective basal ganglia loops. However, to date, the volume of tissue activated and weighted stimulation of STN motor versus nonmotor territories are yet to be linked to differential DBS effects on cognition. OBJECTIVES We aim to investigate whether STN-DBS influences risk-reward trade-off decisions and analyze its dependency on electrode placement. METHODS Seventeen PD patients ON and OFF STN-DBS and 17 age-matched healthy controls conducted a sequential decision-making task with escalating risk and reward. We computed the effect of STN-DBS on risk-reward trade-off decisions, localized patients' bilateral electrodes, and analyzed the predictive value of volume of tissue activated in STN motor and nonmotor territories on behavioral change. RESULTS We found that STN-DBS not only improves PD motor symptoms, but also normalizes overly risk-averse decision behavior in PD. Intersubject variance in electrode location could explain this behavioral change. Specifically, if STN-DBS activated preferentially STN motor territory, patients' risk-reward trade-off decisions more resembled those of healthy controls. CONCLUSIONS Our findings support the notion of convergence of different functional circuits within the STN and imply a positive effect of well-placed STN-DBS on nonmotor cognitive functioning in PD. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Friederike Irmen
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Biological Psychology and Cognitive Neuroscience, Freie Universität Berlin, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Wolf-Julian Neumann
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Philip Plettig
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin, Germany
| |
Collapse
|
265
|
Pramipexole-induced impulsivity in mildparkinsonian rats: a model of impulse control disorders in Parkinson's disease. Neurobiol Aging 2018; 75:126-135. [PMID: 30572183 DOI: 10.1016/j.neurobiolaging.2018.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/20/2018] [Accepted: 11/17/2018] [Indexed: 11/21/2022]
Abstract
Treatment with dopaminergic agonists such as pramipexole (PPX) contributes to the development of impulse control disorders (ICDs) in patients with Parkinson's disease (PD). As such, animal models of abnormal impulse control in PD are needed to better study the pathophysiology of these behaviors. Thus, we investigated impulsivity and related behaviors using the 5-choice serial reaction time task, as well as FosB/ΔFosB expression, in rats with mild parkinsonism induced by viral-mediated substantia nigra overexpression of human A53T mutated α-synuclein, and following chronic PPX treatment (0.25 mg/kg/d) for 4 weeks. The bilateral loss of striatal dopamine transporters (64%) increased the premature response rate of these rats, indicating enhanced waiting impulsivity. This behavior persisted in the OFF state after the second week of PPX treatment and it was further exacerbated in the ON state throughout the treatment period. The enhanced rate of premature responses following dopaminergic denervation was positively correlated with the premature response rate following PPX treatment (both in the ON and OFF states). Moreover, the striatal dopaminergic deficit was negatively correlated with the premature response rate at all times (pretreatment, ON and OFF states) and it was positively correlated with the striatal FosB/ΔFosB expression. By contrast, PPX treatment was not associated with changes in compulsivity (perseverative responses rate). This model recapitulates some features of PD with ICD, namely the dopaminergic deficit of early PD and the impulsivity traits provoked by dopaminergic loss in association with PPX treatment, making this model a useful tool to study the pathophysiology of ICDs.
Collapse
|
266
|
Dos-Santos-Pereira M, Acuña L, Hamadat S, Rocca J, González-Lizárraga F, Chehín R, Sepulveda-Diaz J, Del-Bel E, Raisman-Vozari R, Michel PP. Microglial glutamate release evoked by α-synuclein aggregates is prevented by dopamine. Glia 2018; 66:2353-2365. [PMID: 30394585 DOI: 10.1002/glia.23472] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 01/11/2023]
Abstract
When activated, microglial cells have the potential not only to secrete typical proinflammatory mediators but also to release the neurotransmitter glutamate in amounts that may promote excitotoxicity. Here, we wished to determine the potential of the Parkinson's disease (PD) protein α-Synuclein (αS) to stimulate glutamate release using cultures of purified microglial cells. We established that glutamate release was robustly increased when microglial cultures were treated with fibrillary aggregates of αS but not with the native monomeric protein. Promotion of microglial glutamate release by αS aggregates (αSa) required concomitant engagement of TLR2 and P2X7 receptors. Downstream to cell surface receptors, the release process was mediated by activation of a signaling cascade sequentially involving phosphoinositide 3-kinase (PI3K) and NADPH oxidase, a superoxide-producing enzyme. Inhibition of the Xc- antiporter, a plasma membrane exchange system that imports extracellular l-cystine and exports intracellular glutamate, prevented the release of glutamate induced by αSa, indicating that system Xc- was the final effector element in the release process downstream to NADPH oxidase activation. Of interest, the stimulation of glutamate release by αSa was abrogated by dopamine through an antioxidant effect requiring D1 dopamine receptor activation and PI3K inhibition. Altogether, present data suggest that the activation of microglial cells by αSa may possibly result in a toxic build-up of extracellular glutamate contributing to excitotoxic stress in PD. The deficit in dopamine that characterizes this disorder may further aggravate this process in a vicious circle mechanism.
Collapse
Affiliation(s)
- Mauricio Dos-Santos-Pereira
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France.,Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Leonardo Acuña
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France.,Instituto de Patología Experimental (CONICET-UNSa), Salta, Argentina
| | - Sabah Hamadat
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| | - Jeremy Rocca
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| | - Florencia González-Lizárraga
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France.,Instituto de Medicina Molecular y Celular Aplicada (IMMCA) CONICET/UNT and SIPROSA, Tucumán, Argentina
| | - Rosana Chehín
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA) CONICET/UNT and SIPROSA, Tucumán, Argentina
| | - Julia Sepulveda-Diaz
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| | - Elaine Del-Bel
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Rita Raisman-Vozari
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| | - Patrick P Michel
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| |
Collapse
|
267
|
Pseudo-orthostatic tremor in idiopathic Parkinson's disease: could it be re-emergent tremor? Neurol Sci 2018; 40:621-623. [PMID: 30338434 DOI: 10.1007/s10072-018-3605-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
|
268
|
He R, Yan X, Guo J, Xu Q, Tang B, Sun Q. Recent Advances in Biomarkers for Parkinson's Disease. Front Aging Neurosci 2018; 10:305. [PMID: 30364199 PMCID: PMC6193101 DOI: 10.3389/fnagi.2018.00305] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/14/2018] [Indexed: 02/04/2023] Open
Abstract
Parkinson's disease (PD) is one of the common progressive neurodegenerative disorders with several motor and non-motor symptoms. Most of the motor symptoms may appear at a late stage where most of the dopaminergic neurons have been already damaged. In order to provide better clinical intervention and treatment at the onset of disease, it is imperative to find accurate biomarkers for early diagnosis, including prodromal diagnosis and preclinical diagnosis. At the same time, these reliable biomarkers can also be utilized to monitor the progress of the disease. In this review article, we will discuss recent advances in the development of PD biomarkers from different aspects, including clinical, biochemical, neuroimaging and genetic aspects. Although various biomarkers for PD have been developed so far, their specificity and sensitivity are not ideal when applied individually. So, the combination of multimodal biomarkers will greatly improve the diagnostic accuracy and facilitate the implementation of personalized medicine.
Collapse
Affiliation(s)
- Runcheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Parkinson’s Disease Center of Beijing Institute for Brain Disorders, Beijing, China
- Collaborative Innovation Center for Brain Science, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Parkinson’s Disease Center of Beijing Institute for Brain Disorders, Beijing, China
- Collaborative Innovation Center for Brain Science, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Shanghai, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
269
|
Effects of Acute Transcranial Direct Current Stimulation on Gait Kinematics of Individuals With Parkinson Disease. TOPICS IN GERIATRIC REHABILITATION 2018. [DOI: 10.1097/tgr.0000000000000203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
270
|
Resting-state connectivity after visuo-motor skill learning is inversely associated with offline consolidation in Parkinson's disease and healthy controls. Cortex 2018; 106:237-247. [DOI: 10.1016/j.cortex.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/02/2018] [Accepted: 06/08/2018] [Indexed: 01/22/2023]
|
271
|
Wu CC, Cao B, Dali V, Gagliardi C, Barthelemy OJ, Salazar RD, Pomplun M, Cronin-Golomb A, Yazdanbakhsh A. Eye movement control during visual pursuit in Parkinson's disease. PeerJ 2018; 6:e5442. [PMID: 30155357 PMCID: PMC6109371 DOI: 10.7717/peerj.5442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Prior studies of oculomotor function in Parkinson's disease (PD) have either focused on saccades without considering smooth pursuit, or tested smooth pursuit while excluding saccades. The present study investigated the control of saccadic eye movements during pursuit tasksand assessed the quality of binocular coordinationas potential sensitive markers of PD. METHODS Observers fixated on a central cross while a target moved toward it. Once the target reached the fixation cross, observers began to pursue the moving target. To further investigate binocular coordination, the moving target was presented on both eyes (binocular condition), or on one eye only (dichoptic condition). RESULTS The PD group made more saccades than age-matched normal control adults (NC) both during fixation and pursuit. The difference between left and right gaze positions increased over time during the pursuit period for PD but not for NC. The findings were not related to age, as NC and young-adult control group (YC) performed similarly on most of the eye movement measures, and were not correlated with classical measures of PD severity (e.g., Unified Parkinson's Disease Rating Scale (UPDRS) score). DISCUSSION Our results suggest that PD may be associated with impairment not only in saccade inhibition, but also in binocular coordination during pursuit, and these aspects of dysfunction may be useful in PD diagnosis or tracking of disease course.
Collapse
Affiliation(s)
- Chia-Chien Wu
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA, USA
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Veena Dali
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA, USA
| | - Celia Gagliardi
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA, USA
| | | | - Robert D. Salazar
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Marc Pomplun
- Department of Computer Science, University of Massachusetts at Boston, Boston, MA, USA
| | - Alice Cronin-Golomb
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Arash Yazdanbakhsh
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
272
|
Zaitone SA, Ahmed E, Elsherbiny NM, Mehanna ET, El-Kherbetawy MK, ElSayed MH, Alshareef DM, Moustafa YM. Caffeic acid improves locomotor activity and lessens inflammatory burden in a mouse model of rotenone-induced nigral neurodegeneration: Relevance to Parkinson's disease therapy. Pharmacol Rep 2018; 71:32-41. [PMID: 30368226 DOI: 10.1016/j.pharep.2018.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Caffeic acid phenethyl ester is found in honey bee propolis. It has immunomodulatory, anti-inflammatory and anti-cancer properties. Rotenone is a pesticide commonly used for inducing experimental Parkinson's disease (PD) due to complex I inhibition and microglia activating properties. The current study examined neuroprotective effect of caffeic acid against rotenone-induced neurodegeneration in groups of seven mice. METHODS Mice received protective doses of caffeic acid (2.5, 5 or 10 mg/kg) daily and nine injections of rotenone (1 mg kg, subcutaneously) - every 48 h. Behavioral evaluation of motor function was done by a battery of tests including open-field test, cylinder test, pole test and rotarod test; all these tests showed motor impairment. RESULTS Assay of striatal dopamine highlighted a significant decrease and increases in inflammatory markers. In addition, histopathological assessment of substantia nigra neurons demonstrated low immunostaining for tyrosine hydroxylase (TH) in rotenone treated mice. PCR analysis highlighted upregulation for genes encoding CD11b (a microglia surface antigen), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and nuclear factor-κB (NFκB). Treatment with caffeic acid (5 or 10 mg/kg) amended most of rotenone-induced motor deficits, lessened microglia expression and inflammatory mediators and improved the nigral TH immunostaining. CONCLUSION These results confirmed the anti-inflammatory activity of caffeic acid and highlighted its neuroprotective activity against rotenone-induced neurodegeneration in mice.
Collapse
Affiliation(s)
- Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Eman Ahmed
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | | | - Mohamed H ElSayed
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Duha M Alshareef
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Yasser M Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
273
|
Rusz J, Hlavnicka J, Tykalova T, Novotny M, Dusek P, Sonka K, Ruzicka E. Smartphone Allows Capture of Speech Abnormalities Associated With High Risk of Developing Parkinson’s Disease. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1495-1507. [DOI: 10.1109/tnsre.2018.2851787] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
274
|
|
275
|
Motor cognition in patients treated with subthalamic nucleus deep brain stimulation: Limits of compensatory overactivity in Parkinson's disease. Neuropsychologia 2018; 117:491-499. [PMID: 30003903 DOI: 10.1016/j.neuropsychologia.2018.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/07/2018] [Accepted: 07/06/2018] [Indexed: 01/17/2023]
Abstract
Recent fMRI findings revealed that impairment in a serial prediction task in patients suffering from Parkinson's disease (PD) results from hypoactivity of the SMA. Furthermore, hyperactivity of the lateral premotor cortex sustained performance after withdrawal of medication. To further explore these findings, we here examined the impact of deep brain stimulation of the subthalamic nucleus on the activity of the putamen and premotor areas while performing the serial prediction task. To this end, we measured eight male PD patients ON and OFF deep brain stimulation and eight healthy age-matched male controls using [15O] water positron emission tomography to measure regional cerebral blood flow. As expected, PD patients showed poorer performance than healthy controls while performance did not differ between OFF and ON stimulation. Hypoactivity of the putamen and hyperactivity of the left lateral premotor cortex was found in patients compared to controls. Lateral premotor hyperactivity further increased OFF compared to ON stimulation and was positively related to task performance. These results confirm that the motor loop's dysfunction has impact on cognitive processes (here: prediction of serial stimuli) in PD. Extending prior data regarding the role of the lateral premotor cortex in cognitive compensation, our results indicate that lateral premotor cortex hyperactivity, while beneficial in moderate levels of impairment, might fail to preserve performance in more severe stages of the motor loop's degeneration.
Collapse
|
276
|
Nicastro N, Manuel AL, Garibotto V, Burkhard PR, Schnider A. Consolidation of a Learned Skill Correlates with Dopamine SPECT Uptake in Early Parkinson's Disease. J Clin Neurol 2018; 14:505-512. [PMID: 30198222 PMCID: PMC6172506 DOI: 10.3988/jcn.2018.14.4.505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Basal ganglia play a pivotal role in procedural memory. However, the correlation between skill learning and striatal ¹²³I-ioflupane uptake in Parkinson's disease (PD) has not been reported previously. Our objective was to determine whether visuomotor skill learning is associated with striatal ¹²³I-ioflupane uptake in early PD. METHODS We designed a case-control study to assess learning and consolidation of a visuomotor learning task (mirrored drawing of star-shaped figures) performed on two consecutive days by early-PD patients (disease duration <2 years) and age-matched healthy subjects. Outcomes were the error rate and time per trial, as well as performance indices to assess the relative improvement on the first day (learning) and the retention on the second day (consolidation). For PD patients, we evaluated the correlation of skill learning with semiquantitative ¹²³I-ioflupane uptake. RESULTS We included 9 PD patients and 10 control subjects with the same baseline characteristics (age, male/female ratio, educational level, Mini Mental State Examination score, and Hospital Anxiety and Depression Scale score, all p>0.18) other than the score on part III of the Movement Disorders Society Unified Parkinson's Disease Rating Scale, which was higher in the PD patients (mean±SD: 15.0±10.4 vs. 1.3±1.1, p<0.001). The learning indices were the same in the two groups (p>0.5), whereas PD patients showed a lower consolidation index for the time per trial (p=0.009). Moreover, this performance was correlated with uptake in the right caudate nucleus (Spearman's rho=0.82, p=0.007) and the right striatum (Spearman's rho=0.67, p=0.049), including when multiple linear regression adjusting for the levodopa equivalent daily dose was performed (p=0.005 for the caudate nucleus and p=0.024 for the striatum). CONCLUSIONS This study provides evidence of a correlation between procedural memory impairment and striatal dopaminergic dysfunction in early PD.
Collapse
Affiliation(s)
- Nicolas Nicastro
- Division of Neurorehabilitation, Geneva University Hospitals, Geneva, Switzerland.,Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Aurélie L Manuel
- Laboratory of Cognitive Neurorehabilitation, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzlerland
| | - Pierre R Burkhard
- Faculty of Medicine, Geneva University, Geneva, Switzlerland.,Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Armin Schnider
- Division of Neurorehabilitation, Geneva University Hospitals, Geneva, Switzerland.,Laboratory of Cognitive Neurorehabilitation, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzlerland
| |
Collapse
|
277
|
Abdel-Rahman M, Galhom RA, Nasr El-Din WA, Mohammed Ali MH, Abdel-Hamid AEDS. Therapeutic efficacy of olfactory stem cells in rotenone induced Parkinsonism in adult male albino rats. Biomed Pharmacother 2018; 103:1178-1186. [DOI: 10.1016/j.biopha.2018.04.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023] Open
|
278
|
Nitric oxide alterations in cardiovascular system of rats with Parkinsonism induced by 6-OHDA and submitted to previous exercise. Life Sci 2018; 204:78-86. [DOI: 10.1016/j.lfs.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/26/2018] [Accepted: 05/06/2018] [Indexed: 01/10/2023]
|
279
|
D'Angelo M, Antonosante A, Castelli V, Catanesi M, Moorthy N, Iannotta D, Cimini A, Benedetti E. PPARs and Energy Metabolism Adaptation during Neurogenesis and Neuronal Maturation. Int J Mol Sci 2018; 19:ijms19071869. [PMID: 29949869 PMCID: PMC6073366 DOI: 10.3390/ijms19071869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator activated receptors (PPARs) are a class of ligand-activated transcription factors, belonging to the superfamily of receptors for steroid and thyroid hormones, retinoids, and vitamin D. PPARs control the expression of several genes connected with carbohydrate and lipid metabolism, and it has been demonstrated that PPARs play important roles in determining neural stem cell (NSC) fate. Lipogenesis and aerobic glycolysis support the rapid proliferation during neurogenesis, and specific roles for PPARs in the control of different phases of neurogenesis have been demonstrated. Understanding the changes in metabolism during neuronal differentiation is important in the context of stem cell research, neurodegenerative diseases, and regenerative medicine. In this review, we will discuss pivotal evidence that supports the role of PPARs in energy metabolism alterations during neuronal maturation and neurodegenerative disorders.
Collapse
Affiliation(s)
- Michele D'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - NandhaKumar Moorthy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Dalila Iannotta
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
280
|
Mattson MP, Arumugam TV. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab 2018; 27:1176-1199. [PMID: 29874566 PMCID: PMC6039826 DOI: 10.1016/j.cmet.2018.05.011] [Citation(s) in RCA: 718] [Impact Index Per Article: 102.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
During aging, the cellular milieu of the brain exhibits tell-tale signs of compromised bioenergetics, impaired adaptive neuroplasticity and resilience, aberrant neuronal network activity, dysregulation of neuronal Ca2+ homeostasis, the accrual of oxidatively modified molecules and organelles, and inflammation. These alterations render the aging brain vulnerable to Alzheimer's and Parkinson's diseases and stroke. Emerging findings are revealing mechanisms by which sedentary overindulgent lifestyles accelerate brain aging, whereas lifestyles that include intermittent bioenergetic challenges (exercise, fasting, and intellectual challenges) foster healthy brain aging. Here we provide an overview of the cellular and molecular biology of brain aging, how those processes interface with disease-specific neurodegenerative pathways, and how metabolic states influence brain health.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
281
|
The Relationship between Cerebral White Matter Integrity and Cognitive Function in Mild Stroke with Basal Ganglia Region Infarcts. Sci Rep 2018; 8:8422. [PMID: 29849078 PMCID: PMC5976674 DOI: 10.1038/s41598-018-26316-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Mild stroke is a known risk factor for dementia. The relationship between cerebral white matter (WM) integrity and cognitive impairment (CI) in mild stroke patients with basal ganglia region infarcts is unknown. Total of 33 stroke patients and 19 age-matched controls underwent diffusion tensor imaging scans and a formal neuropsychological test battery. CI was defined as having a performance score 1.5 SD below the established norm. We compared the differences in Z-scores and Fraction Anisotropy (FA) values among controls, stroke with no CI (NCI) and stroke with CI groups. Multiple linear regressions were performed between FA values in affected regions and neuropsychological tests in stroke patients. The majority of stroke patients were in their 50s (56.90 ± 9.23 years). CI patients exhibited a significantly decreased Z score in visual delayed memory and remarkably decreased FA values in the right external capsule and right fornix (FWE-corrected) compared with NCI patients and controls. In stroke patients, the FA value in the right fornix was positively correlated with delayed visual memory. Mild stroke with basal ganglia region infarcts may be related to widespread abnormality of WM integrity. The lower WM integrity in the right fornix may be a marker of impaired delayed visual memory.
Collapse
|
282
|
Xi Y, Feng D, Tao K, Wang R, Shi Y, Qin H, Murphy MP, Yang Q, Zhao G. MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2859-2870. [PMID: 29842922 DOI: 10.1016/j.bbadis.2018.05.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra compacta (SNc). Although mitochondrial dysfunction is the critical factor in the pathogenesis of PD, the underlying molecular mechanisms are not well understood, and as a result, effective medical interventions are lacking. Mitochondrial fission and fusion play important roles in the maintenance of mitochondrial function and cell viability. Here, we investigated the effects of MitoQ, a mitochondria-targeted antioxidant, in 6-hydroxydopamine (6-OHDA)-induced in vitro and in vivo PD models. We observed that 6-OHDA enhanced mitochondrial fission by decreasing the expression of Mfn1, Mfn2 and OPA1 as well as by increasing the expression of Drp1 in the dopaminergic (DA) cell line SN4741. Notably, MitoQ treatment particularly upregulated the Mfn2 protein and mRNA levels and promoted mitochondrial fusion in the presence of 6-OHDA in a Mfn2-dependent manner. In addition, MitoQ also stabilized mitochondrial morphology and function in the presence of 6-OHDA, which further suppressed the formation of reactive oxygen species (ROS), as well as ameliorated mitochondrial fragmentation and cellular apoptosis. Moreover, the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) was attributed to the upregulation of Mfn2 induced by MitoQ. Consistent with these findings, administration of MitoQ in 6-OHDA-treated mice significantly rescued the decrease of Mfn2 expression and the loss of DA neurons in the SNc. Taken together, our findings suggest that MitoQ protects DA neurons in a 6-OHDA induced PD model by activating PGC-1α to enhance Mfn2-dependent mitochondrial fusion.
Collapse
Affiliation(s)
- Ye Xi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Dayun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Kai Tao
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Ronglin Wang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yajun Shi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Huaizhou Qin
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Qian Yang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, PR China.
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
283
|
Sex-Specific Transcriptome Differences in Substantia Nigra Tissue: A Meta-Analysis of Parkinson's Disease Data. Genes (Basel) 2018; 9:genes9060275. [PMID: 29799491 PMCID: PMC6027313 DOI: 10.3390/genes9060275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common progressive neurodegenerative diseases. Clinical and epidemiological studies indicate that sex differences, as well as genetic components and ageing, can influence the prevalence, age at onset and symptomatology of PD. This study undertook a systematic meta-analysis of substantia nigra microarray data using the Transcriptome Mapper (TRAM) software to integrate and normalize a total of 10 suitable datasets from multiple sources. Four different analyses were performed according to default parameters, to better define the segments differentially expressed between PD patients and healthy controls, when comparing men and women data sets. The results suggest a possible regulation of specific sex-biased systems in PD susceptibility. TRAM software allowed us to highlight the different activation of some genomic regions and loci involved in molecular pathways related to neurodegeneration and neuroinflammatory mechanisms.
Collapse
|
284
|
|
285
|
Dallé E, Mabandla MV. Early Life Stress, Depression And Parkinson's Disease: A New Approach. Mol Brain 2018; 11:18. [PMID: 29551090 PMCID: PMC5858138 DOI: 10.1186/s13041-018-0356-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
This review aims to shed light on the relationship that involves exposure to early life stress, depression and Parkinson's disease (PD). A systematic literature search was conducted in Pubmed, MEDLINE, EBSCOHost and Google Scholar and relevant data were submitted to a meta-analysis . Early life stress may contribute to the development of depression and patients with depression are at risk of developing PD later in life. Depression is a common non-motor symptom preceding motor symptoms in PD. Stimulation of regions contiguous to the substantia nigra as well as dopamine (DA) agonists have been shown to be able to attenuate depression. Therefore, since PD causes depletion of dopaminergic neurons in the substantia nigra, depression, rather than being just a simple mood disorder, may be part of the pathophysiological process that leads to PD. It is plausible that the mesocortical and mesolimbic dopaminergic pathways that mediate mood, emotion, and/or cognitive function may also play a key role in depression associated with PD. Here, we propose that a medication designed to address a deficiency in serotonin is more likely to influence motor symptoms of PD associated with depression. This review highlights the effects of an antidepressant, Fluvoxamine maleate, in an animal model that combines depressive-like symptoms and Parkinsonism.
Collapse
Affiliation(s)
- Ernest Dallé
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000 South Africa
| | - Musa V. Mabandla
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000 South Africa
| |
Collapse
|
286
|
Oligo-Porphyran Ameliorates Neurobehavioral Deficits in Parkinsonian Mice by Regulating the PI3K/Akt/Bcl-2 Pathway. Mar Drugs 2018; 16:md16030082. [PMID: 29509717 PMCID: PMC5867626 DOI: 10.3390/md16030082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/21/2018] [Accepted: 03/02/2018] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative movement disorder that is caused by a selective loss of dopaminergic neurons. Current PD treatments provide symptomatic relief but do not prevent or decelerate disease progression. Previous studies have suggested that acetylated and phosphorylated porphyran, derived from Porphyra, produces a neuroprotective effect against 6-OHDA-induced damage. Due to its antioxidant and neuroprotective potential, this study evaluates whether oligo-porphyran (OP) could be beneficial in an experimental model of PD in mice. The drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was intraperitoneally injected (20 mg/kg body weight) for seven days to simulate PD, followed by OP administration. We found that the behavioral deficits in spontaneous motor activity, latency to descend in a pole test, and suspension in a traction test were ameliorated, and excessive dopamine (DA) metabolism was suppressed after OP treatment. Additionally, we found that OP protected dopaminergic neurons by preventing MPTP-induced decreases in dopaminergic transporter and tyrosine hydroxylase protein levels. We speculated whether OP regulates a signaling pathway that affects the behavioral changes seen in PD mice. In this study, the PI3K/Akt/Bcl-2 pathway was detected. Our results demonstrate that OP increased the phosphorylation of PI3K/Akt/GSK-3β and inhibited the activation of caspase-3 and poly (ADP-ribose) polymerase, with changes in the Bax/Bcl-2 ratio. These results showed that OP might promote DA neuron survival in vivo by regulating the PI3K/Akt/Bcl-2 pathway, thereby ameliorating the neurobehavioral deficits in a PD mouse model and suggesting OP as a neuroprotective treatment for PD.
Collapse
|
287
|
Depression and posture in patients with Parkinson's disease. Gait Posture 2018; 61:81-85. [PMID: 29306811 DOI: 10.1016/j.gaitpost.2017.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 11/10/2017] [Accepted: 12/27/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Depression is an important non-motor symptom of Parkinson's disease (PD) that significantly impacts the daily activities of affected patients. Furthermore, the stooped posture that characterizes patients with PD has also been associated with depression. The purpose of this study was to investigate the relationship between the presence of depressive symptoms and body posture in patients with PD. METHODS Forty-six patients with mild-to-moderate PD were recruited. The patients were divided into depression and no depression groups based on Beck Depression Inventory scores. All patients underwent kinematic analysis conducted in the upright standing posture with a motion capture system. RESULTS There were no differences in clinical characteristics between the depression (n = 22) and no depression groups (n = 24). In the standing position, patients with depression showed anterior tilting of the head from the pelvis and an increased distance between head and pelvis. The severity of depression was correlated with the degree of flexion at the lower trunk level and the degree of anterior tilting of the head, neck, and trunk from the pelvis and base of support. CONCLUSIONS Patients with PD and depression showed increased flexion at pelvis level, which caused the trunk to tilt anteriorly. In addition, the severity of depression was correlated with the degree of anterior tilting of the head and trunk. These findings suggest that stooped posture, especially from the pelvis level, could be a marker of depression in patients with PD.
Collapse
|
288
|
García AM, Bocanegra Y, Herrera E, Moreno L, Carmona J, Baena A, Lopera F, Pineda D, Melloni M, Legaz A, Muñoz E, Sedeño L, Baez S, Ibáñez A. Parkinson's disease compromises the appraisal of action meanings evoked by naturalistic texts. Cortex 2018; 100:111-126. [DOI: 10.1016/j.cortex.2017.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/24/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022]
|
289
|
Bayram E, Akbostanci MC. Verb naming fluency in hypokinetic and hyperkinetic movement disorders. Cortex 2018; 100:21-31. [DOI: 10.1016/j.cortex.2017.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/29/2016] [Accepted: 06/21/2017] [Indexed: 12/19/2022]
|
290
|
Fiore VG, Nolte T, Rigoli F, Smittenaar P, Gu X, Dolan RJ. Value encoding in the globus pallidus: fMRI reveals an interaction effect between reward and dopamine drive. Neuroimage 2018; 173:249-257. [PMID: 29481966 PMCID: PMC5929903 DOI: 10.1016/j.neuroimage.2018.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/02/2018] [Accepted: 02/22/2018] [Indexed: 12/25/2022] Open
Abstract
The external part of the globus pallidus (GPe) is a core nucleus of the basal ganglia (BG) whose activity is disrupted under conditions of low dopamine release, as in Parkinson's disease. Current models assume decreased dopamine release in the dorsal striatum results in deactivation of dorsal GPe, which in turn affects motor expression via a regulatory effect on other nuclei of the BG. However, recent studies in healthy and pathological animal models have reported neural dynamics that do not match with this view of the GPe as a relay in the BG circuit. Thus, the computational role of the GPe in the BG is still to be determined. We previously proposed a neural model that revisits the functions of the nuclei of the BG, and this model predicts that GPe encodes values which are amplified under a condition of low striatal dopaminergic drive. To test this prediction, we used an fMRI paradigm involving a within-subject placebo-controlled design, using the dopamine antagonist risperidone, wherein healthy volunteers performed a motor selection and maintenance task under low and high reward conditions. ROI-based fMRI analysis revealed an interaction between reward and dopamine drive manipulations, with increased BOLD activity in GPe in a high compared to low reward condition, and under risperidone compared to placebo. These results confirm the core prediction of our computational model, and provide a new perspective on neural dynamics in the BG and their effects on motor selection and cognitive disorders. We investigate the representation of action-state values in the basal ganglia. Value representation is enhanced in the GPe under reduced dopaminergic drive. Value representation is enhanced in the SNr under basal dopaminergic drive. The results validate a proposed neural model of the basal ganglia.
Collapse
Affiliation(s)
- Vincenzo G Fiore
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 2200 West Mockingbird Lane, Dallas, TX 75235, USA; Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK.
| | - Tobias Nolte
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK
| | - Francesco Rigoli
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK
| | - Peter Smittenaar
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK
| | - Xiaosi Gu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 2200 West Mockingbird Lane, Dallas, TX 75235, USA
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London WC1B 5EH, United Kingdom
| |
Collapse
|
291
|
Gallese V, Cuccio V. The neural exploitation hypothesis and its implications for an embodied approach to language and cognition: Insights from the study of action verbs processing and motor disorders in Parkinson's disease. Cortex 2018; 100:215-225. [PMID: 29455947 DOI: 10.1016/j.cortex.2018.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 12/31/2017] [Accepted: 01/23/2018] [Indexed: 11/29/2022]
Abstract
As it is widely known, Parkinson's disease is clinically characterized by motor disorders such as the loss of voluntary movement control, including resting tremor, postural instability, and bradykinesia (Bocanegra et al., 2015; Helmich, Hallett, Deuschl, Toni, & Bloem, 2012; Liu et al., 2006; Rosin, Topka, & Dichgans, 1997). In the last years, many empirical studies (e.g., Bocanegra et al., 2015; Spadacenta et al., 2012) have also shown that the processing of action verbs is selectively impaired in patients affected by this neurodegenerative disorder. In the light of these findings, it has been suggested that Parkinson disorder can be interpreted within an embodied cognition framework (e.g., Bocanegra et al., 2015). The central tenet of any embodied approach to language and cognition is that high order cognitive functions are grounded in the sensory-motor system. With regard to this point, Gallese (2008) proposed the neural exploitation hypothesis to account for, at the phylogenetic level, how key aspects of human language are underpinned by brain mechanisms originally evolved for sensory-motor integration. Glenberg and Gallese (2012) also applied the neural exploitation hypothesis to the ontogenetic level. On the basis of these premises, they developed a theory of language acquisition according to which, sensory-motor mechanisms provide a neurofunctional architecture for the acquisition of language, while retaining their original functions as well. The neural exploitation hypothesis is here applied to interpret the profile of patients affected by Parkinson's disease. It is suggested that action semantic impairments directly tap onto motor disorders. Finally, a discussion of what theory of language is needed to account for the interactions between language and movement disorders is presented.
Collapse
Affiliation(s)
- Vittorio Gallese
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Italy; Institute of Philosophy, School of Advanced Study, University of London, UK.
| | - Valentina Cuccio
- Department of Humanities, Social Sciences and Cultural Industries, University of Parma, Italy
| |
Collapse
|
292
|
Chagraoui A, Boukhzar L, Thibaut F, Anouar Y, Maltête D. The pathophysiological mechanisms of motivational deficits in Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:138-152. [PMID: 29097256 DOI: 10.1016/j.pnpbp.2017.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a progressive degenerative disorder that leads to disabling motor symptoms and a wide variety of neuropsychiatric symptoms. Apathy is the most common psychiatric disorder in the early stages of untreated PD and can be defined as a hypodopaminergic syndrome, which also includes anxiety and depression. Apathy is also considered the core feature of the parkinsonian triad (apathy, anxiety and depression) of behavioural non-motor signs, including a motivational deficit. Moreover, apathy is recognised as a distinct chronic neuropsychiatric behavioural disorder based on specific diagnostic criteria. Given the prevalence of apathy in approximately 40% of the general Parkinson's disease population, this appears to be a contributing factor to dementia in PD; also, apathy symptoms are factors that potentially contribute to morbidity, leading to a major impairment of health-related quality of life, thus stressing the importance of understanding the pathophysiology of this disease. Several studies have clearly established a prominent role for DA-mediated signals in PD apathy. However, synergistic interaction between dopaminergic impairment resulting from the neurodegenerative process and deep brain stimulation of the subthalamic nucleus may cause or exacerbate apathy. Furthermore, serotoninergic mechanism signalling is also likely to be of importance in this pathophysiology.
Collapse
Affiliation(s)
- A Chagraoui
- Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France.; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France.
| | - L Boukhzar
- Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France
| | - F Thibaut
- Department of Psychiatry, University Hospital Cochin (site Tarnier), University of Paris-Descartes and INSERM U 894 Laboratory of Psychiatry and Neurosciences, Paris, France
| | - Y Anouar
- Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France
| | - D Maltête
- Department of Neurology, Rouen University Hospital, Rouen, France
| |
Collapse
|
293
|
Lee MS, Lee MJ, Conte A, Berardelli A. Abnormal somatosensory temporal discrimination in Parkinson’s disease: Pathophysiological correlates and role in motor control deficits. Clin Neurophysiol 2018; 129:442-447. [DOI: 10.1016/j.clinph.2017.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
|
294
|
Omarova SM, Fedorova NV, Tomskiy AA, Gamaleya AA, Bril' EV, Gubareva NN, Poddubskaya AA. [Syndrome dopamine dysregulation and deep brain stimulation of the subthalamic nucleus in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:27-32. [PMID: 29376980 DOI: 10.17116/jnevro201711712127-32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM Dopamine dysregulation syndrome (DDS) is a complication of the dopaminergic therapy in Parkinson's disease (PD); it is manifested as a compulsive medication use and may have negative impact on patients' social, psychological, and physical functioning. An effect of deep brain stimulation in the subthalamic nucleus (DBS STN) on DDS is not fully understood. Therefore, the degree of DDS during DBS STN in PD patients was evaluated in the study. MATERIAL AND METHODS The main group included 15 patients with DDS symptoms in the preoperative period. The comparison group consisted of 15 patients without DDS symptoms and the control group consisted of 15 patients who did not undergo surgery. RESULTS AND CONCLUSION The severity of motor disturbances in the surgery groups has decreased significantly (by 45%). Motor complications during DBS STN in patients with DDS have decreased by 50%; a decrease in the reduction of doses of dopaminergic preparations was noted as well.
Collapse
Affiliation(s)
- S M Omarova
- Russian Medical Academy of Continuing Postgraduate Education, Moscow, Russia
| | - N V Fedorova
- Russian Medical Academy of Continuing Postgraduate Education, Moscow, Russia
| | - A A Tomskiy
- Burdenko National Research Centre of Neurosurgery, Moscow, Russia
| | - A A Gamaleya
- Burdenko National Research Centre of Neurosurgery, Moscow, Russia
| | - E V Bril'
- Russian Medical Academy of Continuing Postgraduate Education, Moscow, Russia
| | - N N Gubareva
- Russian Medical Academy of Continuing Postgraduate Education, Moscow, Russia
| | - A A Poddubskaya
- Burdenko National Research Centre of Neurosurgery, Moscow, Russia
| |
Collapse
|
295
|
Impacts of an Exercise Program and Motivational Telephone Counseling on Health-Related Quality of Life in People With Parkinson's Disease. Rehabil Nurs 2018; 44:161-170. [PMID: 29345633 DOI: 10.1097/rnj.0000000000000106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE The purpose of this study was to test the effects of group exercise and telephone counseling on physical and psychosocial health in people with Parkinson's disease (PD). DESIGN This was a quasiexperimental study with a nonequivalent control group. METHODS This study took place in Seoul, South Korea. Twenty-two and 20 subjects participated in the intervention and comparison groups, respectively. The intervention group performed group exercises twice a week and received motivational telephone counseling every 2 weeks for 12 weeks. FINDINGS Significant effects of the intervention were found in overall health-related quality of life (HRQOL; p = .012) and in the following HRQOL dimensions: stigma (p = .026), social function (p = .003), cognition (p = .028), and communication (p = .014). No other variables such as activities of daily living, functional fitness, and depression exhibited statistically significant effects. CONCLUSION/CLINICAL RELEVANCE These results indicate that group exercise with telephone counseling positively affects some aspects of HRQOL in PD patients.
Collapse
|
296
|
Ma K, Xiong N, Shen Y, Han C, Liu L, Zhang G, Wang L, Guo S, Guo X, Xia Y, Wan F, Huang J, Lin Z, Wang T. Weight Loss and Malnutrition in Patients with Parkinson's Disease: Current Knowledge and Future Prospects. Front Aging Neurosci 2018; 10:1. [PMID: 29403371 PMCID: PMC5780404 DOI: 10.3389/fnagi.2018.00001] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/04/2018] [Indexed: 12/28/2022] Open
Abstract
Parkinson's Disease (PD) is currently considered a systemic neurodegenerative disease manifested with not only motor but also non-motor symptoms. In particular, weight loss and malnutrition, a set of frequently neglected non-motor symptoms, are indeed negatively associated with the life quality of PD patients. Moreover, comorbidity of weight loss and malnutrition may impact disease progression, giving rise to dyskinesia, cognitive decline and orthostatic hypotension, and even resulting in disability and mortality. Nevertheless, the underlying mechanism of weight loss and malnutrition in PD remains obscure and possibly involving multitudinous, exogenous or endogenous, factors. What is more, there still does not exist any weight loss and malnutrition appraision standards and management strategies. Given this, here in this review, we elaborate the weight loss and malnutrition study status in PD and summarize potential determinants and mechanisms as well. In conclusion, we present current knowledge and future prospects of weight loss and malnutrition in the context of PD, aiming to appeal clinicians and researchers to pay a closer attention to this phenomena and enable better management and therapeutic strategies in future clinical practice.
Collapse
Affiliation(s)
- Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Shen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Han
- Department of Neurology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luxi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyi Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Division of Basic Neuroscience, and Mailman Neuroscience Research Center, McLean Hospital, Belmont, MA, United States
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
297
|
Dreyer-Andersen N, Almeida AS, Jensen P, Kamand M, Okarmus J, Rosenberg T, Friis SD, Martínez Serrano A, Blaabjerg M, Kristensen BW, Skrydstrup T, Gramsbergen JB, Vieira HLA, Meyer M. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells. PLoS One 2018; 13:e0191207. [PMID: 29338033 PMCID: PMC5770048 DOI: 10.1371/journal.pone.0191207] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/30/2017] [Indexed: 12/18/2022] Open
Abstract
Exploratory studies using human fetal tissue have suggested that intrastriatal transplantation of dopaminergic neurons may become a future treatment for patients with Parkinson's disease. However, the use of human fetal tissue is compromised by ethical, regulatory and practical concerns. Human stem cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting in both protection and generation of reactive oxygen species. The present study investigated the effect of CO produced by a novel CO-releasing molecule on dopaminergic differentiation of human neural stem cells. Short-term exposure to 25 ppm CO at days 0 and 4 significantly increased the relative content of β-tubulin III-immunoreactive immature neurons and tyrosine hydroxylase expressing catecholaminergic neurons, as assessed 6 days after differentiation. Also the number of microtubule associated protein 2-positive mature neurons had increased significantly. Moreover, the content of apoptotic cells (Caspase3) was reduced, whereas the expression of a cell proliferation marker (Ki67) was left unchanged. Increased expression of hypoxia inducible factor-1α and production of reactive oxygen species (ROS) in cultures exposed to CO may suggest a mechanism involving mitochondrial alterations and generation of ROS. In conclusion, the present procedure using controlled, short-term CO exposure allows efficient dopaminergic differentiation of human neural stem cells at low cost and may as such be useful for derivation of cells for experimental studies and future development of donor cells for transplantation in Parkinson's disease.
Collapse
Affiliation(s)
- Nanna Dreyer-Andersen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ana Sofia Almeida
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica (ITQB), Oeiras, Portugal
- CEDOC, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Pia Jensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morad Kamand
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Tine Rosenberg
- Department of Pathology, Odense University Hospital, Denmark & Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Stig Düring Friis
- Center for Insoluble Protein Structures (inSPIN), Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Alberto Martínez Serrano
- Department of Molecular Biology and Center of Molecular Biology Severo Ochoa, University Autonoma Madrid-C.S.I.C Campus Cantoblanco, Madrid, Spain
| | - Morten Blaabjerg
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Denmark & Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Troels Skrydstrup
- Center for Insoluble Protein Structures (inSPIN), Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Jan Bert Gramsbergen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Helena L. A. Vieira
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
- CEDOC, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
298
|
Abstract
Neurotransmitters are chemicals that act as messengers in the synaptic transmission process. They are essential for human health and any imbalance in their activities can cause serious mental disorders such as Parkinson’s disease, schizophrenia, and Alzheimer’s disease. Hence, monitoring the concentrations of various neurotransmitters is of great importance in studying and diagnosing such mental illnesses. Recently, many researchers have explored the use of unique materials for developing biosensors for both in vivo and ex vivo neurotransmitter detection. A combination of nanomaterials, polymers, and biomolecules were incorporated to implement such sensor devices. For in vivo detection, electrochemical sensing has been commonly applied, with fast-scan cyclic voltammetry being the most promising technique to date, due to the advantages such as easy miniaturization, simple device architecture, and high sensitivity. However, the main challenges for in vivo electrochemical neurotransmitter sensors are limited target selectivity, large background signal and noise, and device fouling and degradation over time. Therefore, achieving simultaneous detection of multiple neurotransmitters in real time with long-term stability remains the focus of research. The purpose of this review paper is to summarize the recently developed sensing techniques with the focus on neurotransmitters as the target analyte, and to discuss the outlook of simultaneous detection of multiple neurotransmitter species. This paper is organized as follows: firstly, the common materials used for developing neurotransmitter sensors are discussed. Secondly, several sensor surface modification approaches to enhance sensing performance are reviewed. Finally, we discuss recent developments in the simultaneous detection capability of multiple neurotransmitters.
Collapse
|
299
|
Ma RE, Ward EJ, Yeh CL, Snyder S, Long Z, Gokalp Yavuz F, Zauber SE, Dydak U. Thalamic GABA levels and occupational manganese neurotoxicity: Association with exposure levels and brain MRI. Neurotoxicology 2018; 64:30-42. [PMID: 28873337 PMCID: PMC5891096 DOI: 10.1016/j.neuro.2017.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Excessive occupational exposure to Manganese (Mn) has been associated with clinical symptoms resembling idiopathic Parkinson's disease (IPD), impairing cognitive and motor functions. Several studies point towards an involvement of the brain neurotransmitter system in Mn intoxication, which is hypothesized to be disturbed prior to onset of symptoms. Edited Magnetic Resonance Spectroscopy (MRS) offers the unique possibility to measure γ-amminobutyric acid (GABA) and other neurometabolites in vivo non-invasively in workers exposed to Mn. In addition, the property of Mn as Magnetic Resonance Imaging (MRI) contrast agent may be used to study Mn deposition in the human brain. In this study, using MRI, MRS, personal air sampling at the working place, work history questionnaires, and neurological assessment (UPDRS-III), the effects of chronic Mn exposure on the thalamic GABAergic system was studied in a group of welders (N=39) with exposure to Mn fumes in a typical occupational setting. Two subgroups of welders with different exposure levels (Low: N=26; mean air Mn=0.13±0.1mg/m3; High: N=13; mean air Mn=0.23±0.18mg/m3), as well as unexposed control workers (N=22, mean air Mn=0.002±0.001mg/m3) were recruited. The group of welders with higher exposure showed a significant increase of thalamic GABA levels by 45% (p<0.01, F(1,33)=9.55), as well as significantly worse performance in general motor function (p<0.01, F(1,33)=11.35). However, welders with lower exposure did not differ from the controls in GABA levels or motor performance. Further, in welders the thalamic GABA levels were best predicted by past-12-months exposure levels and were influenced by the Mn deposition in the substantia nigra and globus pallidus. Importantly, both thalamic GABA levels and motor function displayed a non-linear pattern of response to Mn exposure, suggesting a threshold effect.
Collapse
Affiliation(s)
- Ruoyun E Ma
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric J Ward
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Chien-Lin Yeh
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sandy Snyder
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Speech, Language and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Zaiyang Long
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Fulya Gokalp Yavuz
- Department of Statistics, Purdue University, IN, USA; Yildiz Technical University, Istanbul, Turkey
| | - S Elizabeth Zauber
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Speech, Language and Hearing Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
300
|
Terron A, Bal-Price A, Paini A, Monnet-Tschudi F, Bennekou SH, Leist M, Schildknecht S. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Arch Toxicol 2018; 92:41-82. [PMID: 29209747 PMCID: PMC5773657 DOI: 10.1007/s00204-017-2133-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have observed an association between pesticide exposure and the development of Parkinson's disease, but have not established causality. The concept of an adverse outcome pathway (AOP) has been developed as a framework for the organization of available information linking the modulation of a molecular target [molecular initiating event (MIE)], via a sequence of essential biological key events (KEs), with an adverse outcome (AO). Here, we present an AOP covering the toxicological pathways that link the binding of an inhibitor to mitochondrial complex I (i.e., the MIE) with the onset of parkinsonian motor deficits (i.e., the AO). This AOP was developed according to the Organisation for Economic Co-operation and Development guidelines and uploaded to the AOP database. The KEs linking complex I inhibition to parkinsonian motor deficits are mitochondrial dysfunction, impaired proteostasis, neuroinflammation, and the degeneration of dopaminergic neurons of the substantia nigra. These KEs, by convention, were linearly organized. However, there was also evidence of additional feed-forward connections and shortcuts between the KEs, possibly depending on the intensity of the insult and the model system applied. The present AOP demonstrates mechanistic plausibility for epidemiological observations on a relationship between pesticide exposure and an elevated risk for Parkinson's disease development.
Collapse
Affiliation(s)
| | | | - Alicia Paini
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany
| | - Stefan Schildknecht
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany.
| |
Collapse
|