251
|
Lenka A, Gomathinayagam V, Bahroo L. Approach to the management of psychosis in Parkinson’s disease. ANNALS OF MOVEMENT DISORDERS 2019. [DOI: 10.4103/aomd.aomd_27_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
252
|
Path mediation analysis reveals GBA impacts Lewy body disease status by increasing α-synuclein levels. Neurobiol Dis 2019; 121:205-213. [DOI: 10.1016/j.nbd.2018.09.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/30/2018] [Accepted: 09/14/2018] [Indexed: 02/03/2023] Open
|
253
|
Li H, Ham A, Ma TC, Kuo SH, Kanter E, Kim D, Ko HS, Quan Y, Sardi SP, Li A, Arancio O, Kang UJ, Sulzer D, Tang G. Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations. Autophagy 2019; 15:113-130. [PMID: 30160596 PMCID: PMC6287702 DOI: 10.1080/15548627.2018.1509818] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022] Open
Abstract
Heterozygous mutations in GBA, the gene encoding the lysosomal enzyme glucosylceramidase beta/β-glucocerebrosidase, comprise the most common genetic risk factor for Parkinson disease (PD), but the mechanisms underlying this association remain unclear. Here, we show that in GbaL444P/WT knockin mice, the L444P heterozygous Gba mutation triggers mitochondrial dysfunction by inhibiting autophagy and mitochondrial priming, two steps critical for the selective removal of dysfunctional mitochondria by autophagy, a process known as mitophagy. In SHSY-5Y neuroblastoma cells, the overexpression of L444P GBA impeded mitochondrial priming and autophagy induction when endogenous lysosomal GBA activity remained intact. By contrast, genetic depletion of GBA inhibited lysosomal clearance of autophagic cargo. The link between heterozygous GBA mutations and impaired mitophagy was corroborated in postmortem brain tissue from PD patients carrying heterozygous GBA mutations, where we found increased mitochondrial content, mitochondria oxidative stress and impaired autophagy. Our findings thus suggest a mechanistic basis for mitochondrial dysfunction associated with GBA heterozygous mutations. Abbreviations: AMBRA1: autophagy/beclin 1 regulator 1; BECN1: beclin 1, autophagy related; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; CCCP: carbonyl cyanide 3-chloroyphenylhydrazone; CYCS: cytochrome c, somatic; DNM1L/DRP1: dynamin 1-like; ER: endoplasmic reticulum; GBA: glucosylceramidase beta; GBA-PD: Parkinson disease with heterozygous GBA mutations; GD: Gaucher disease; GFP: green fluorescent protein; LC3B: microtubule-associated protein 1 light chain 3 beta; LC3B-II: lipidated form of microtubule-associated protein 1 light chain 3 beta; MitoGreen: MitoTracker Green; MitoRed: MitoTracker Red; MMP: mitochondrial membrane potential; MTOR: mechanistic target of rapamycin kinase; MYC: MYC proto-oncogene, bHLH transcription factor; NBR1: NBR1, autophagy cargo receptor; Non-GBA-PD: Parkinson disease without GBA mutations; PD: Parkinson disease; PINK1: PTEN induced putative kinase 1; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; RFP: red fluorescent protein; ROS: reactive oxygen species; SNCA: synuclein alpha; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; VDAC1/Porin: voltage dependent anion channel 1; WT: wild type.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Ahrom Ham
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Thong Chi Ma
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Ellen Kanter
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Donghoon Kim
- Department of Neurology and Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Han Seok Ko
- Department of Neurology and Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yi Quan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - Aiqun Li
- The New York Stem Cell Foundation, Columbia University Medical Center, New York, NY, USA
| | - Ottavio Arancio
- Departments of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Un Jung Kang
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - David Sulzer
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Departments of Psychiatry, Columbia University Medical Center, New York, NY, USA
- Departments of Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
254
|
Alaei MR, Tabrizi A, Jafari N, Mozafari H. Gaucher Disease: New Expanded Classification Emphasizing Neurological Features. IRANIAN JOURNAL OF CHILD NEUROLOGY 2019; 13:7-24. [PMID: 30598670 PMCID: PMC6296697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/17/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022]
Abstract
Gaucher disease (GD) is a rare inherited metabolic disorder and the most common lysosomal storage disorder, caused by a deficiency in glucocerebrosidase enzyme activity. It has been classified according to the neurological manifestations into three types: type 1, without neuropathic findings, type 2 with acute infantile neuropathic signs and type 3 or chronic neuropathic form. However, report of new variants has led to the expansion of phenotype as a clinical phenotype of GD considered as a continuum of phenotypes. Therefore, it seems that a new classification is needed to cover new forms of the disease.
Collapse
Affiliation(s)
- Mohammad Reza Alaei
- Pediatric Endocrinology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aydin Tabrizi
- Pediatric Neurology Research Center,Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narjes Jafari
- Pediatric Neurology Research Center,Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Mozafari
- Pediatric Biochemistry, Medical school, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
255
|
Rudenok MM, Alieva AK, Nikolaev MA, Kolacheva AA, Ugryumov MV, Pchelina SN, Slominsky PA, Shadrina MI. Possible Involvement of Genes Related to Lysosomal Storage Disorders in the Pathogenesis of Parkinson’s Disease. Mol Biol 2019. [DOI: 10.1134/s002689331901014x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
256
|
Yagci ZB, Esvap E, Ozkara HA, Ulgen KO, Olmez EO. Inflammatory response and its relation to sphingolipid metabolism proteins: Chaperones as potential indirect anti-inflammatory agents. MOLECULAR CHAPERONES IN HUMAN DISORDERS 2019; 114:153-219. [PMID: 30635081 DOI: 10.1016/bs.apcsb.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
257
|
A comparative computational approach toward pharmacological chaperones (NN-DNJ and ambroxol) on N370S and L444P mutations causing Gaucher's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 114:315-339. [DOI: 10.1016/bs.apcsb.2018.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
258
|
van der Lienden MJC, Gaspar P, Boot R, Aerts JMFG, van Eijk M. Glycoprotein Non-Metastatic Protein B: An Emerging Biomarker for Lysosomal Dysfunction in Macrophages. Int J Mol Sci 2018; 20:E66. [PMID: 30586924 PMCID: PMC6337583 DOI: 10.3390/ijms20010066] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Several diseases are caused by inherited defects in lysosomes, the so-called lysosomal storage disorders (LSDs). In some of these LSDs, tissue macrophages transform into prominent storage cells, as is the case in Gaucher disease. Here, macrophages become the characteristic Gaucher cells filled with lysosomes laden with glucosylceramide, because of their impaired enzymatic degradation. Biomarkers of Gaucher cells were actively searched, particularly after the development of costly therapies based on enzyme supplementation and substrate reduction. Proteins selectively expressed by storage macrophages and secreted into the circulation were identified, among which glycoprotein non-metastatic protein B (GPNMB). This review focusses on the emerging potential of GPNMB as a biomarker of stressed macrophages in LSDs as well as in acquired pathologies accompanied by an excessive lysosomal substrate load in macrophages.
Collapse
Affiliation(s)
| | - Paulo Gaspar
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Rolf Boot
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Marco van Eijk
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
259
|
Roland BP, Naito T, Best JT, Arnaiz-Yépez C, Takatsu H, Yu RJ, Shin HW, Graham TR. Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs. J Biol Chem 2018; 294:1794-1806. [PMID: 30530492 DOI: 10.1074/jbc.ra118.005876] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Lipid transport is an essential process with manifest importance to human health and disease. Phospholipid flippases (P4-ATPases) transport lipids across the membrane bilayer and are involved in signal transduction, cell division, and vesicular transport. Mutations in flippase genes cause or contribute to a host of diseases, such as cholestasis, neurological deficits, immunological dysfunction, and metabolic disorders. Genome-wide association studies have shown that ATP10A and ATP10D variants are associated with an increased risk of diabetes, obesity, myocardial infarction, and atherosclerosis. Moreover, ATP10D SNPs are associated with elevated levels of glucosylceramide (GlcCer) in plasma from diverse European populations. Although sphingolipids strongly contribute to metabolic disease, little is known about how GlcCer is transported across cell membranes. Here, we identify a conserved clade of P4-ATPases from Saccharomyces cerevisiae (Dnf1, Dnf2), Schizosaccharomyces pombe (Dnf2), and Homo sapiens (ATP10A, ATP10D) that transport GlcCer bearing an sn2 acyl-linked fluorescent tag. Further, we establish structural determinants necessary for recognition of this sphingolipid substrate. Using enzyme chimeras and site-directed mutagenesis, we observed that residues in transmembrane (TM) segments 1, 4, and 6 contribute to GlcCer selection, with a conserved glutamine in the center of TM4 playing an essential role. Our molecular observations help refine models for substrate translocation by P4-ATPases, clarify the relationship between these flippases and human disease, and have fundamental implications for membrane organization and sphingolipid homeostasis.
Collapse
Affiliation(s)
- Bartholomew P Roland
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235 and
| | - Tomoki Naito
- the Graduate School of Pharmaceutical Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jordan T Best
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235 and
| | - Cayetana Arnaiz-Yépez
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235 and
| | - Hiroyuki Takatsu
- the Graduate School of Pharmaceutical Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Roger J Yu
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235 and
| | - Hye-Won Shin
- the Graduate School of Pharmaceutical Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Todd R Graham
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235 and
| |
Collapse
|
260
|
Development and biochemical characterization of a mouse model of Parkinson's disease bearing defective glucocerebrosidase activity. Neurobiol Dis 2018; 124:289-296. [PMID: 30521842 DOI: 10.1016/j.nbd.2018.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 01/04/2023] Open
Abstract
GBA1 gene encodes for the lysosomal membrane protein glucocerebrosidase (GCase). GBA1 heterozygous mutations profoundly impair GCase activity and are currently recognized as an important risk factor for the development of Parkinson's disease (PD). Deficits in lysosomal degradation pathways may contribute to pathological α-synuclein accumulation, thereby favoring dopaminergic neuron degeneration and associated microglial activation. However, the precise mechanisms by which GCase deficiency may influence PD onset and progression remain unclear. In this work we used conduritol-β-epoxide (CBE), a potent inhibitor of GCase, to induce a partial, systemic defect of GCase activity comparable to that associated with heterozygous GBA1 mutations, in mice. Chronic (28 days) administration of CBE (50 mg/kg, i.p.) was combined with administration of a classic PD-like inducing neurotoxin, such as MPTP (30 mg/kg, i.p. for 5 days). The aim was to investigate whether a pre-existing GCase defect may influence the effects of MPTP in terms of nigrostriatal damage, microglia activation and α-synuclein accumulation. Pre-treatment with CBE had tendency to enhance MPTP-induced neurodegeneration in striatum and caused significant increase of total α-synuclein expression in substantia nigra. Microglia was remarkably activated by CBE alone, without further increases when combined with MPTP. Overall, we propose this model as an additional tool to study pathophysiological processes of PD in the presence of GCase defects.
Collapse
|
261
|
Moloney EB, Moskites A, Ferrari EJ, Isacson O, Hallett PJ. The glycoprotein GPNMB is selectively elevated in the substantia nigra of Parkinson's disease patients and increases after lysosomal stress. Neurobiol Dis 2018; 120:1-11. [PMID: 30149180 PMCID: PMC6748034 DOI: 10.1016/j.nbd.2018.08.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/01/2018] [Accepted: 08/23/2018] [Indexed: 01/24/2023] Open
Abstract
GPNMB is a glycoprotein observed upon tissue damage and inflammation and is associated with astrocytes, microglia, and macrophages. Gene variations in GPNMB are linked with Parkinson's disease (PD) risk, and changes in protein levels of GPNMB have been found in lysosomal storage disorders, including Gaucher's disease with glucocerebrosidase (GCase) deficiency. In the current study, GPNMB increases were seen in the substantia nigra (SN) of PD patients compared to age-matched controls. Such PD patients have a decrease in GCase activity and corresponding elevation of glycosphingolipids in the SN (Rocha et al., 2015a). Interestingly, transgenic mice modelling synucleinopathy did not show GPNMB elevations or altered GCase activity levels compared to wild-type mice. However, upon CBE-induced GCase lysosomal dysfunction with elevated glycosphingolipids in wild-type mice, there were similar changes in GPNMB levels in the brain as seen in PD patient brains. These results indicate that GPNMB levels do not depend on alpha-synuclein load per se but relate directly to the lipidopathy changes induced by CBE-mediated GCase inhibition. The experimental modelling of elevating glycolipids resulted in GPNMB elevations with glial activation in several brain regions in mice. This is the first demonstration of region-specific elevations of GPNMB protein in Parkinson's disease. The presence of GPNMB in PD patient substantia nigra, the induction of GPNMB after experimental glycosphingolipid increases, but not with pure alpha-synucleinopathy, point towards the potential for primary lipid-induced degeneration in PD.
Collapse
Affiliation(s)
- Elizabeth B Moloney
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA
| | - Alyssa Moskites
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA
| | - Eliza J Ferrari
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA.
| | - Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA.
| |
Collapse
|
262
|
Progressive myoclonus epilepsy in Gaucher Disease due to a new Gly-Gly mutation causing loss of an Exonic Splicing Enhancer. J Neurol 2018; 266:92-101. [PMID: 30382391 PMCID: PMC6342868 DOI: 10.1007/s00415-018-9084-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Patients with Gaucher Disease (GD) exhibit three phenotypes, including type 1 (non-neuronopathic), type 2 (acute neuronopathic), and type 3 (subacute neuronopathic). AIM Identifying which GBA changes represent benign polymorphisms and which may result in disease-causing mutations is essential for diagnosis and genotype/phenotype correlations but is often challenging. RESULTS Here, we describe a patient with type 3 GD, presenting with drug-resistant epilepsy, who bears a set of GBA polymorphic variants including the novel c.363A > G (Gly82Gly) synonymous mutation. In silico predictions, mRNA and functional studies revealed that the new Gly82Gly mutation causes skipping of GBA exon 4, leading to a severe reduction of the wild type GBA mRNA. This is the first report of a synonymous change causing GD through loss of an exonic splicing enhancer sequence. The synonymous mutation is in trans with the Asn188Ser missense mutation, thus making the Asn188Ser responsible for the patient's phenotype and strengthening the association of Asn188Ser with the particular neurological phenotype of type 3 GD. CONCLUSION We strengthen the association of Asn188Ser with the type 3 GD phenotype and progressive myoclonus epilepsy. Our data confirm that in silico predictions and mRNA analysis are mandatory in discriminating pathological mutations from the background of harmless polymorphisms, especially synonymous changes.
Collapse
|
263
|
Wang Y, Gong W, Zhou S, Yang L, Qiu F, Lin M, Su W, Nie W, Datta S, Rao B, Xian J, Feng Y, Zhang X, Zhou Y, Gao X, Lu J. Long Noncoding RNA PRRG4-4 Promotes Viability, Cell Cycle, Migration, and Invasion in Lung Cancer Cells. DNA Cell Biol 2018; 37:953-966. [PMID: 30362823 DOI: 10.1089/dna.2018.4220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There is a perception that long noncoding RNA (lncRNA) has relationship with carcinogenesis. Many studies have previously identified and validated that the section of chromosome 11p13 is associated with high incidence of tumor. In this study, we investigated a new lncRNA, named lncPRRG4-4, mapped to 11p13 and suspected that lncPRRG4-4 was a potential lung cancer-related gene. To explore its role in carcinogenesis, we first demonstrated that lncPRRG4-4 was upregulated in lung cancer tissues compared with adjacent nontumor tissues and functioned as an oncogene in lung cancer cells. The lncPRRG4-4 was significantly upregulated in lung cancer tissues compared with adjacent normal counterparts (mean ± standard deviation: 0.12 ± 0.84 vs. 0.05 ± 0.22; p < 0.001). Patients with metastasis exhibited high levels of lncPRRG4-4 expression than those without metastasis in both the southern samples (p = 0.045) and eastern samples (p = 0.030), total samples (p = 0.004). In addition, downregulation of lncPRRG4-4 expression inhibited lung cancer proliferation, viability, migration, and invasion ability, arrested cell cycle, facilitated apoptosis, and vice versa. Taken together, these observations suggested that the lncPRRG4-4 functions as an oncogene in lung cancer cells.
Collapse
Affiliation(s)
- Yuanyuan Wang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei Gong
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiyu Zhou
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingzhu Lin
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenpeng Su
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenjing Nie
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Soham Datta
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Boqi Rao
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianfeng Xian
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yingyi Feng
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin Zhang
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Xingcheng Gao
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
264
|
Zhou ZD, Lee JCT, Tan EK. Pathophysiological mechanisms linking F-box only protein 7 (FBXO7) and Parkinson's disease (PD). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:72-78. [PMID: 30454685 DOI: 10.1016/j.mrrev.2018.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022]
Abstract
Mutations of F-box only protein 7 (FBXO7) gene are associated with a severe form of autosomal recessive juvenile Parkinson's disease (PD) (PARK15) with clinical features of Parkinsonian-Pyramidal syndrome (PPS). FBXO7 is an adaptor protein in SCFFBXO7 ubiquitin E3 ligase complex that recognizes and mediates degradative or non-degradative ubiquitination of substrates. The FBXO7 protein can regulate cell cycle, proliferation, mitochondrial and proteasome functions via interactions with multiple target proteins. Five PARK15-linked FBXO7 gene mutations and several PD-associated single nucleotide polymorphisms (SNP) have been identified so far. WT FBXO7 proteins possess dual protective and deleterious functions, whereas PARK15-linked FBXO7 mutants are toxic. FBXO7 is a stress response protein and stress challenges can promote translocation of FBXO7 protein from nucleus into mitochondria and even form deleterious protein aggregate in mitochondria. FBXO7 mutants aggravate protein aggregation in mitochondria and inhibit mitophagy. The pathological mechanisms concerning FBXO7-relevant protein aggregation, mitochondria impairment, reactive oxygen species (ROS) generation and mitophagy modulation in PARK15 pathogenesis are highlighted and discussed in the current review.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, 308433, Singapore; Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Ji Chao Tristan Lee
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, 308433, Singapore.
| | - Eng King Tan
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, 308433, Singapore; Department of Neurology, Singapore General Hospital, Outram Road, 169608, Singapore; Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| |
Collapse
|
265
|
Limphaibool N, Iwanowski P, Holstad MJV, Perkowska K. Parkinsonism in Inherited Metabolic Disorders: Key Considerations and Major Features. Front Neurol 2018; 9:857. [PMID: 30369906 PMCID: PMC6194353 DOI: 10.3389/fneur.2018.00857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Parkinson's Disease (PD) is a common neurodegenerative disorder manifesting as reduced facilitation of voluntary movements. Extensive research over recent decades has expanded our insights into the pathogenesis of the disease, where PD is indicated to result from multifactorial etiological factors involving environmental contributions in genetically predisposed individuals. There has been considerable interest in the association between neurological manifestations in PD and in inherited metabolic disorders (IMDs), which are genetic disorders characterized by a deficient activity in the pathways of intermediary metabolism leading to multiple-system manifestations. In addition to the parallel in various clinical features, there is increasing evidence for the notion that genetic mutations underlying IMDs may increase the risk of PD development. This review highlights the recent advances in parkinsonism in patients with IMDs, with the primary objective to improve the understanding of the overlapping pathogenic pathways and clinical presentations in both disorders. We discuss the genetic convergence and disruptions in biochemical mechanisms which may point to clues surrounding pathogenesis-targeted treatment and other promising therapeutic strategies in the future.
Collapse
Affiliation(s)
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Katarzyna Perkowska
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
266
|
Platt FM, d'Azzo A, Davidson BL, Neufeld EF, Tifft CJ. Lysosomal storage diseases. Nat Rev Dis Primers 2018. [PMID: 30275469 DOI: 10.1038/s41572-018-0025-4]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lysosomal storage diseases (LSDs) are a group of over 70 diseases that are characterized by lysosomal dysfunction, most of which are inherited as autosomal recessive traits. These disorders are individually rare but collectively affect 1 in 5,000 live births. LSDs typically present in infancy and childhood, although adult-onset forms also occur. Most LSDs have a progressive neurodegenerative clinical course, although symptoms in other organ systems are frequent. LSD-associated genes encode different lysosomal proteins, including lysosomal enzymes and lysosomal membrane proteins. The lysosome is the key cellular hub for macromolecule catabolism, recycling and signalling, and defects that impair any of these functions cause the accumulation of undigested or partially digested macromolecules in lysosomes (that is, 'storage') or impair the transport of molecules, which can result in cellular damage. Consequently, the cellular pathogenesis of these diseases is complex and is currently incompletely understood. Several LSDs can be treated with approved, disease-specific therapies that are mostly based on enzyme replacement. However, small-molecule therapies, including substrate reduction and chaperone therapies, have also been developed and are approved for some LSDs, whereas gene therapy and genome editing are at advanced preclinical stages and, for a few disorders, have already progressed to the clinic.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth F Neufeld
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Cynthia J Tifft
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
267
|
Abstract
Lysosomal storage diseases (LSDs) are a group of over 70 diseases that are characterized by lysosomal dysfunction, most of which are inherited as autosomal recessive traits. These disorders are individually rare but collectively affect 1 in 5,000 live births. LSDs typically present in infancy and childhood, although adult-onset forms also occur. Most LSDs have a progressive neurodegenerative clinical course, although symptoms in other organ systems are frequent. LSD-associated genes encode different lysosomal proteins, including lysosomal enzymes and lysosomal membrane proteins. The lysosome is the key cellular hub for macromolecule catabolism, recycling and signalling, and defects that impair any of these functions cause the accumulation of undigested or partially digested macromolecules in lysosomes (that is, 'storage') or impair the transport of molecules, which can result in cellular damage. Consequently, the cellular pathogenesis of these diseases is complex and is currently incompletely understood. Several LSDs can be treated with approved, disease-specific therapies that are mostly based on enzyme replacement. However, small-molecule therapies, including substrate reduction and chaperone therapies, have also been developed and are approved for some LSDs, whereas gene therapy and genome editing are at advanced preclinical stages and, for a few disorders, have already progressed to the clinic.
Collapse
|
268
|
A Druggable Genome Screen Identifies Modifiers of α-Synuclein Levels via a Tiered Cross-Species Validation Approach. J Neurosci 2018; 38:9286-9301. [PMID: 30249792 DOI: 10.1523/jneurosci.0254-18.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 01/12/2023] Open
Abstract
Accumulation of α-Synuclein (α-Syn) causes Parkinson's disease (PD) as well as other synucleopathies. α-Syn is the major component of Lewy bodies and Lewy neurites, the proteinaceous aggregates that are a hallmark of sporadic PD. In familial forms of PD, mutations or copy number variations in SNCA (the α-Syn gene) result in a net increase of its protein levels. Furthermore, common risk variants tied to PD are associated with small increases of wild-type α-Syn levels. These findings are further bolstered by animal studies which show that overexpression of α-Syn is sufficient to cause PD-like features. Thus, increased α-Syn levels are intrinsically tied to PD pathogenesis and underscore the importance of identifying the factors that regulate its levels. In this study, we establish a pooled RNAi screening approach and validation pipeline to probe the druggable genome for modifiers of α-Syn levels and identify 60 promising targets. Using a cross-species, tiered validation approach, we validate six strong candidates that modulate α-Syn levels and toxicity in cell lines, Drosophila, human neurons, and mouse brain of both sexes. More broadly, this genetic strategy and validation pipeline can be applied for the identification of therapeutic targets for disorders driven by dosage-sensitive proteins.SIGNIFICANCE STATEMENT We present a research strategy for the systematic identification and validation of genes modulating the levels of α-Synuclein, a protein involved in Parkinson's disease. A cell-based screen of the druggable genome (>7,500 genes that are potential therapeutic targets) yielded many modulators of α-Synuclein that were subsequently confirmed and validated in Drosophila, human neurons, and mouse brain. This approach has broad applicability to the multitude of neurological diseases that are caused by mutations in genes whose dosage is critical for brain function.
Collapse
|
269
|
Lunati A, Lesage S, Brice A. The genetic landscape of Parkinson's disease. Rev Neurol (Paris) 2018; 174:628-643. [PMID: 30245141 DOI: 10.1016/j.neurol.2018.08.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 01/18/2023]
Abstract
The cause of Parkinson's disease (PD) remains unknown in most patients. Since 1997, with the first genetic mutation known to cause PD described in SNCA gene, many other genes with Mendelian inheritance have been identified. We summarize genetic, clinical and neuropathological findings related to the 27 genes reported in the literature since 1997, associated either with autosomal dominant (AD): LRRK2, SNCA, VPS35, GCH1, ATXN2, DNAJC13, TMEM230, GIGYF2, HTRA2, RIC3, EIF4G1, UCHL1, CHCHD2, and GBA; or autosomal recessive (AR) inheritance: PRKN, PINK1, DJ1, ATP13A2, PLA2G6, FBXO7, DNAJC6, SYNJ1, SPG11, VPS13C, PODXL, and PTRHD1; or an X-linked transmission: RAB39B. Clinical and neuropathological variability among genes is great. LRRK2 mutation carriers present a phenotype similar to those with idiopathic PD whereas, depending on the SNCA mutations, the phenotype ranges from early onset typical PD to dementia with Lewy bodies, including many other atypical forms. DNAJC6 nonsense mutations lead to a very severe phenotype whereas DNAJC6 missense mutations cause a more typical form. PRKN, PINK1 and DJ1 cases present with typical early onset PD with slow progression, whereas other AR genes present severe atypical Parkinsonism. RAB39B is responsible for a typical phenotype in women and a variable phenotype in men. GBA is a major PD risk factor often associated with dementia. A growing number of reported genes described as causal genes (DNAJC13, TMEM230, GIGYF2, HTRA2, RIC3, EIF4G1, UCHL1, and CHCHD2) are still awaiting replication or indeed have not been replicated, thus raising questions as to their pathogenicity. Phenotypic data collection and next generation sequencing of large numbers of cases and controls are needed to differentiate pathogenic dominant mutations with incomplete penetrance from rare, non-pathogenic variants. Although known genes cause a minority of PD cases, their identification will lead to a better understanding their pathological mechanisms, and may contribute to patient care, genetic counselling, prognosis determination and finding new therapeutic targets.
Collapse
Affiliation(s)
- A Lunati
- Inserm U1127, CNRS UMR 7225, UPMC université Paris 06 UMR S1127, Sorbonne université, institut du cerveau et de la moelle épinière, ICM, 75013 Paris, France
| | - S Lesage
- Inserm U1127, CNRS UMR 7225, UPMC université Paris 06 UMR S1127, Sorbonne université, institut du cerveau et de la moelle épinière, ICM, 75013 Paris, France
| | - A Brice
- Inserm U1127, CNRS UMR 7225, UPMC université Paris 06 UMR S1127, Sorbonne université, institut du cerveau et de la moelle épinière, ICM, 75013 Paris, France; Département de génétique, hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France.
| |
Collapse
|
270
|
Bhat S, Acharya UR, Hagiwara Y, Dadmehr N, Adeli H. Parkinson's disease: Cause factors, measurable indicators, and early diagnosis. Comput Biol Med 2018; 102:234-241. [PMID: 30253869 DOI: 10.1016/j.compbiomed.2018.09.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease of the central nervous system caused due to the loss of dopaminergic neurons. It is classified under movement disorder as patients with PD present with tremor, rigidity, postural changes, and a decrease in spontaneous movements. Comorbidities including anxiety, depression, fatigue, and sleep disorders are observed prior to the diagnosis of PD. Gene mutations, exposure to toxic substances, and aging are considered as the causative factors of PD even though its genesis is unknown. This paper reviews PD etiologies, progression, and in particular measurable indicators of PD such as neuroimaging and electrophysiology modalities. In addition to gene therapy, neuroprotective, pharmacological, and neural transplantation treatments, researchers are actively aiming at identifying biological markers of PD with the goal of early diagnosis. Neuroimaging modalities used together with advanced machine learning techniques offer a promising path for the early detection and intervention in PD patients.
Collapse
Affiliation(s)
- Shreya Bhat
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal, 576104, India
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS University, 599491, Singapore; School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia.
| | - Yuki Hagiwara
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore
| | - Nahid Dadmehr
- Board-certified Neurologist, Columbus, OH, United States
| | - Hojjat Adeli
- Departments of Biomedical Informatics, Neurology, and Neuroscience, The Ohio State University, United States
| |
Collapse
|
271
|
A novel Parkinson's disease risk variant, p. W378R, in the Gaucher's diseaseGBAgene. Mov Disord 2018; 33:1662-1664. [DOI: 10.1002/mds.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/18/2018] [Accepted: 07/05/2018] [Indexed: 11/07/2022] Open
|
272
|
Pchelina S, Baydakova G, Nikolaev M, Senkevich K, Emelyanov A, Kopytova A, Miliukhina I, Yakimovskii A, Timofeeva A, Berkovich O, Fedotova E, Illarioshkin S, Zakharova E. Blood lysosphingolipids accumulation in patients with parkinson's disease with glucocerebrosidase 1 mutations. Mov Disord 2018; 33:1325-1330. [DOI: 10.1002/mds.27393] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Sofya Pchelina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre (Kurchatov Institute); St. Petersburg Russian Federation
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
- Institute of Experimental Medicine; St. Petersburg Russian Federation
| | - Galina Baydakova
- Federal State Budgetary Institution (Research Centre for Medical Genetics); Moscow Russian Federation
| | - Mikhael Nikolaev
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre (Kurchatov Institute); St. Petersburg Russian Federation
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
| | - Konstantin Senkevich
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre (Kurchatov Institute); St. Petersburg Russian Federation
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
- Institute of Experimental Medicine; St. Petersburg Russian Federation
| | - Anton Emelyanov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre (Kurchatov Institute); St. Petersburg Russian Federation
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
| | - Alena Kopytova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre (Kurchatov Institute); St. Petersburg Russian Federation
| | - Irina Miliukhina
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
- Institute of Experimental Medicine; St. Petersburg Russian Federation
| | - Andrey Yakimovskii
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
| | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
| | - Olga Berkovich
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
| | | | | | - Ekaterina Zakharova
- Federal State Budgetary Institution (Research Centre for Medical Genetics); Moscow Russian Federation
| |
Collapse
|
273
|
Liu SY, Zheng Z, Gu ZQ, Wang CD, Tang BS, Xu YM, Ma JH, Zhou YT, Feng T, Chen SD, Chan P. Prevalence of pre-diagnostic symptoms did not differ between LRRK2-related, GBA-related and idiopathic patients with Parkinson's disease. Parkinsonism Relat Disord 2018; 57:72-76. [PMID: 30119933 DOI: 10.1016/j.parkreldis.2018.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 06/23/2018] [Accepted: 08/11/2018] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Glucocerebrosidase (GBA) mutations and leucine-rich repeat kinase 2 (LRRK2) variants are the most common genetic risk factors for late-onset Parkinson's disease (PD). In this study, we aimed to investigate the differences in pre-diagnostic symptoms of PD associated with the variants. METHODS The participants were recruited from 24 centers across China and genotyped for LRRK2 G2385R and R1628P variants and GBA L444P mutation. Participants were surveyed with structural questionnaires for history of environmental exposure and living habits and interviewed to collect the time at onset of each symptoms before diagnosis. We compared the cumulative prevalence and manifestation pattern of symptoms between groups using multiple logistic regression, adjusting age and gender. RESULTS Total 1799 PD patients were recruited, including 226 patients with LRRK2 G2385R or R1628P variant, 44 with GBA L444P mutation, three with both LRRK2 and GBA mutation, and 1526 idiopathic patients. The cumulative prevalence of non-motor and typical motor symptoms did not differ between groups before diagnosis (P > 0.05). The manifestation sequences of non-motor symptoms were indistinguishable between the LRRK2-carriers, GBA-carriers, and idiopathic PD subjects, and followed the sequence of constipation, hyposmia, sleep disorders, anxiety and depression, sexual dysfunction, urinary incontinency, dizziness and cognition. Slightly higher prevalence of hypomimia and micrographia were detected in the GBA-carriers. CONCLUSIONS The prevalence of pre-diagnostic symptoms is almost indistinguishable between the LRRK2-carriers, GBA-carriers, and idiopathic PD before diagnosis; the sequence of the manifestation of non-motor symptoms largely conforms to the Braak stage for both genetic-related and idiopathic late-onset PD.
Collapse
Affiliation(s)
- Shu-Ying Liu
- Department of Neurobiology, Neurology, and Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China; Key Laboratories of Ministry of Education for Neurodegenerative Diseases, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, China
| | - Zheng Zheng
- Department of Neurobiology, Neurology, and Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Zhu-Qin Gu
- Department of Neurobiology, Neurology, and Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China; Key Laboratories of Ministry of Education for Neurodegenerative Diseases, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, China
| | - Chao-Dong Wang
- Department of Neurobiology, Neurology, and Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China; Key Laboratories of Ministry of Education for Neurodegenerative Diseases, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan-Ming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing-Hong Ma
- Department of Neurobiology, Neurology, and Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yong-Tao Zhou
- Department of Neurobiology, Neurology, and Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Tao Feng
- Department of Neurology, Centre for Neurodegenerative Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sheng-Di Chen
- Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Piu Chan
- Department of Neurobiology, Neurology, and Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China; Key Laboratories of Ministry of Education for Neurodegenerative Diseases, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, China.
| |
Collapse
|
274
|
Abstract
Dementia with Lewy bodies (DLB), the most common non-AD neurodegenerative disease has in the past several decades attracted the attention of the neurological scientific community due to its highly negative impact on the quality of life of both the affected individuals and those caring for them. The strong hereditary component in related conditions such as PD and AD and the description of a number of DLB families suggest that genetic factors may play a role in the pathogenesis of DLB. This chapter focuses on currently proposed causal and risk genes and their role in the pathophysiology of DLB, discusses the feasibility of genetic therapy and genetic testing in the diagnostic and treatment of DLB and provides directions for future research. While no single mutation is specific enough to support its regular use in the diagnosis/treatment of DLB, identification of combinations of causative gene or single-gene point mutations and risk genes interfering with the pathogenesis of DLB may help elucidate the genetic mechanisms involved in DLB and inform development of gene-specific therapies.
Collapse
|
275
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
276
|
Kumar S, Yadav N, Pandey S, Thelma BK. Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders: contemporary approaches, success, challenges and prospects. J Genet 2018. [DOI: 10.1007/s12041-018-0953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
277
|
Emelyanov AK, Usenko TS, Tesson C, Senkevich KA, Nikolaev MA, Miliukhina IV, Kopytova AE, Timofeeva AA, Yakimovsky AF, Lesage S, Brice A, Pchelina SN. Mutation analysis of Parkinson's disease genes in a Russian data set. Neurobiol Aging 2018; 71:267.e7-267.e10. [PMID: 30146349 DOI: 10.1016/j.neurobiolaging.2018.06.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/24/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Common variants and risk factors related to familial and sporadic cases of Parkinson's disease (PD) in diverse populations have been identified at numerous genomic loci. In this study, genetic analysis was performed through a screening of LRRK2 G2019S, GBA mutations (L444P, N370S), and common variants (E326K, T369M) in 762 PD patients and in 400 controls. Next-generation sequencing analysis of 22 PD-related genes in 28 early-onset PD cases from North-Western region of Russia was performed. The frequency of LRRK2 G2019S mutation was 5.8% in familial and 0.5% in sporadic PD cases. The frequency of GBA mutations (L444P, N370S) in PD patients was higher compared to controls (odds ratio [OR] = 6.9, 95% confidence interval [CI], 0.9-53.13, p = 0.031), particularly in patients with early-onset compared to late-onset PD (OR = 3.90 [95% CI, 1.2-13.2], p = 0.009). The frequency of E326K and T369M was twice higher among PD patients than in controls (OR = 2.24, 95% CI 1.05-4.79, p = 0.033). However, the screening of 22 PD-related genes using our novel panel of gene resequencing in our series of 28 early-onset PD failed to identify any mutations. LRRK2 and GBA mutations were found to be common risk factors for PD in North-Western region of Russia.
Collapse
Affiliation(s)
- Anton K Emelyanov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - Tatiana S Usenko
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia; CT, SL, AB Sorbonne Universités, UPMC Université, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Christelle Tesson
- CT, SL, AB Sorbonne Universités, UPMC Université, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Konstantin A Senkevich
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia; Institute of Experimental Medicine, St. Petersburg, Russia
| | - Mikhail A Nikolaev
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - Irina V Miliukhina
- First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia; Institute of Experimental Medicine, St. Petersburg, Russia
| | - Alena E Kopytova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, Russia
| | - Alla A Timofeeva
- First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - Andrey F Yakimovsky
- First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - Suzanne Lesage
- CT, SL, AB Sorbonne Universités, UPMC Université, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Alexis Brice
- CT, SL, AB Sorbonne Universités, UPMC Université, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Sofya N Pchelina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia; Institute of Experimental Medicine, St. Petersburg, Russia.
| |
Collapse
|
278
|
Kumar S, Yadav N, Pandey S, Thelma BK. Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders: contemporary approaches, success, challenges and prospects. J Genet 2018; 97:625-648. [PMID: 30027900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neurodegenerative diseases constitute a large proportion of disorders in elderly, majority being sporadic in occurrence with ∼5-10% familial. A strong genetic component underlies the Mendelian forms but nongenetic factors together with genetic vulnerability contributes to the complex sporadic forms. Several gene discoveries in the familial forms have provided novel insights into the pathogenesis of neurodegeneration with implications for treatment. Conversely, findings from genetic dissection of the sporadic forms, despite large genomewide association studies and more recently whole exome and whole genome sequencing, have been limited. This review provides a concise account of the genetics that we know, the pathways that they implicate, the challenges that are faced and the prospects that are envisaged for the sporadic, complex forms of neurodegenerative diseases, taking four most common conditions, namely Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington disease as examples. Poor replication across studies, inability to establish genotype-phenotype correlations and the overall failure to predict risk and/or prevent disease in this group poses a continuing challenge. Among others, clinical heterogeneity emerges as the most important impediment warranting newer approaches. Advanced computational and system biology tools to analyse the big data are being generated and the alternate strategy such as subgrouping of case-control cohorts based on deep phenotyping using the principles of Ayurveda to overcome current limitation of phenotype heterogeneity seem to hold promise. However, at this point, with advances in discovery genomics and functional analysis of putative determinants with translation potential for the complex forms being minimal, stem cell therapies are being attempted as potential interventions. In this context, the possibility to generate patient derived induced pluripotent stem cells, mutant/gene/genome correction through CRISPR/Cas9 technology and repopulating the specific brain regions with corrected neurons, which may fulfil the dream of personalized medicine have been mentioned briefly. Understanding disease pathways/biology using this technology, with implications for development of novel therapeutics are optimistic expectations in the near future.
Collapse
Affiliation(s)
- Sumeet Kumar
- Department of Genetics, University of Delhi South Campus, New Delhi 110 021, India.
| | | | | | | |
Collapse
|
279
|
Cobb MM, Ravisankar A, Skibinski G, Finkbeiner S. iPS cells in the study of PD molecular pathogenesis. Cell Tissue Res 2018; 373:61-77. [PMID: 29234887 PMCID: PMC5997490 DOI: 10.1007/s00441-017-2749-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and its pathogenic mechanisms are poorly understood. The majority of PD cases are sporadic but a number of genes are associated with familial PD. Sporadic and familial PD have many molecular and cellular features in common, suggesting some shared pathogenic mechanisms. Induced pluripotent stem cells (iPSCs) have been derived from patients harboring a range of different mutations of PD-associated genes. PD patient-derived iPSCs have been differentiated into relevant cell types, in particular dopaminergic neurons and used as a model to study PD. In this review, we describe how iPSCs have been used to improve our understanding of the pathogenesis of PD. We describe what cellular and molecular phenotypes have been observed in neurons derived from iPSCs harboring known PD-associated mutations and what common pathways may be involved.
Collapse
Affiliation(s)
- Melanie M Cobb
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA
| | - Abinaya Ravisankar
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA
| | - Gaia Skibinski
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA
| | - Steven Finkbeiner
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94143, USA.
- Department Physiology, University of California, San Francisco, CA, 94143, USA.
- Graduate Programs in Neuroscience and Biomedical Sciences, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
280
|
Lee YC, Chung CP, Chao NC, Fuh JL, Chang FC, Soong BW, Liao YC. Characterization of Heterozygous HTRA1 Mutations in Taiwanese Patients With Cerebral Small Vessel Disease. Stroke 2018; 49:1593-1601. [PMID: 29895533 DOI: 10.1161/strokeaha.118.021283] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Homozygous and compound heterozygous mutations in the high temperature requirement serine peptidase A1 gene (HTRA1) cause cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. However, heterozygous HTRA1 mutations were recently identified to be associated with autosomal dominant cerebral small vessel disease (SVD). The present study aims at investigating the clinical features, frequency, and spectrum of HTRA1 mutations in a Taiwanese cohort with SVD. METHODS Mutational analyses of HTRA1 were performed by Sanger sequencing in 222 subjects, selected from a cohort of 337 unrelated patients with SVD after excluding those harboring a NOTCH3 mutation. The influence of these mutations on HTRA1 protease activities was characterized. RESULTS Seven novel heterozygous mutations in HTRA1 were identified, including p.Gly120Asp, p.Ile179Asn, p.Ala182Profs*33, p.Ile256Thr, p.Gly276Ala, p.Gln289Ter, and p.Asn324Thr, and each was identified in 1 single index patient. All mutations significantly compromise the HTRA1 protease activities. For the 7 index cases and another 2 affected siblings carrying a heterozygous HTRA1 mutation, the common clinical presentations include lacunar infarction, intracerebral hemorrhage, cognitive decline, and spondylosis at the fifth to sixth decade of life. Among the 9 patients, 4 have psychiatric symptoms as delusion, depression, and compulsive behavior, 3 have leukoencephalopathy in anterior temporal poles, and 2 patients have alopecia. CONCLUSIONS Heterozygous HTRA1 mutations account for 2.08% (7 of 337) of SVD in Taiwan. The clinical and neuroradiological features of HTRA1-related SVD and sporadic SVD are similar. These findings broaden the mutational spectrum of HTRA1 and highlight the pathogenic role of heterozygous HTRA1 mutations in SVD.
Collapse
Affiliation(s)
- Yi-Chung Lee
- From the Departments of Neurology (Y.-C.L., C.-P.C., N.-C.C., J.-L.F., B.-W.S., Y.-C.L.)
- Taipei Veterans General Hospital, Taiwan; and Department of Neurology (Y.-C.L., C.-P.C., J.-L.F., B.-W.S., Y.-C.L.)
- Brain Research Center (Y.-C.L., J.-L.F., B.-W.S.), National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chih-Ping Chung
- From the Departments of Neurology (Y.-C.L., C.-P.C., N.-C.C., J.-L.F., B.-W.S., Y.-C.L.)
- Taipei Veterans General Hospital, Taiwan; and Department of Neurology (Y.-C.L., C.-P.C., J.-L.F., B.-W.S., Y.-C.L.)
| | - Nai-Chen Chao
- From the Departments of Neurology (Y.-C.L., C.-P.C., N.-C.C., J.-L.F., B.-W.S., Y.-C.L.)
| | - Jong-Ling Fuh
- From the Departments of Neurology (Y.-C.L., C.-P.C., N.-C.C., J.-L.F., B.-W.S., Y.-C.L.)
- Taipei Veterans General Hospital, Taiwan; and Department of Neurology (Y.-C.L., C.-P.C., J.-L.F., B.-W.S., Y.-C.L.)
- Brain Research Center (Y.-C.L., J.-L.F., B.-W.S.), National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | - Bing-Wing Soong
- From the Departments of Neurology (Y.-C.L., C.-P.C., N.-C.C., J.-L.F., B.-W.S., Y.-C.L.)
- Taipei Veterans General Hospital, Taiwan; and Department of Neurology (Y.-C.L., C.-P.C., J.-L.F., B.-W.S., Y.-C.L.)
- Brain Research Center (Y.-C.L., J.-L.F., B.-W.S.), National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yi-Chu Liao
- From the Departments of Neurology (Y.-C.L., C.-P.C., N.-C.C., J.-L.F., B.-W.S., Y.-C.L.)
- Taipei Veterans General Hospital, Taiwan; and Department of Neurology (Y.-C.L., C.-P.C., J.-L.F., B.-W.S., Y.-C.L.)
| |
Collapse
|
281
|
Moors TE, Paciotti S, Ingrassia A, Quadri M, Breedveld G, Tasegian A, Chiasserini D, Eusebi P, Duran-Pacheco G, Kremer T, Calabresi P, Bonifati V, Parnetti L, Beccari T, van de Berg WDJ. Characterization of Brain Lysosomal Activities in GBA-Related and Sporadic Parkinson's Disease and Dementia with Lewy Bodies. Mol Neurobiol 2018; 56:1344-1355. [PMID: 29948939 PMCID: PMC6400877 DOI: 10.1007/s12035-018-1090-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/17/2018] [Indexed: 11/30/2022]
Abstract
Mutations in the GBA gene, encoding the lysosomal hydrolase glucocerebrosidase (GCase), are the most common known genetic risk factor for Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). The present study aims to gain more insight into changes in lysosomal activity in different brain regions of sporadic PD and DLB patients, screened for GBA variants. Enzymatic activities of GCase, β-hexosaminidase, and cathepsin D were measured in the frontal cortex, putamen, and substantia nigra (SN) of a cohort of patients with advanced PD and DLB as well as age-matched non-demented controls (n = 15/group) using fluorometric assays. Decreased activity of GCase (− 21%) and of cathepsin D (− 15%) was found in the SN and frontal cortex of patients with PD and DLB compared to controls, respectively. Population stratification was applied based on GBA genotype, showing substantially lower GCase activity (~ − 40%) in GBA variant carriers in all regions. GCase activity was further significantly decreased in the SN of PD and DLB patients without GBA variants in comparison to controls without GBA variants. Our results show decreased GCase activity in brains of PD and DLB patients with and without GBA variants, most pronounced in the SN. The results of our study confirm findings from previous studies, suggesting a role for GCase in GBA-associated as well as sporadic PD and DLB.
Collapse
Affiliation(s)
- Tim E Moors
- Amsterdam Neuroscience, department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, VU University Medical Center, O2 building, room 13 W01, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Silvia Paciotti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Angela Ingrassia
- Amsterdam Neuroscience, department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, VU University Medical Center, O2 building, room 13 W01, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Marialuisa Quadri
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido Breedveld
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anna Tasegian
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Department of Medicine- section Neurology, University of Perugia, Perugia, Italy
| | - Paolo Eusebi
- Department of Medicine- section Neurology, University of Perugia, Perugia, Italy
| | - Gonzalo Duran-Pacheco
- Roche Innovation Center- F. Hoffmann-La Roche Ltd, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Thomas Kremer
- Roche Innovation Center- F. Hoffmann-La Roche Ltd, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Paolo Calabresi
- Department of Medicine- section Neurology, University of Perugia, Perugia, Italy
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lucilla Parnetti
- Department of Medicine- section Neurology, University of Perugia, Perugia, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Wilma D J van de Berg
- Amsterdam Neuroscience, department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, VU University Medical Center, O2 building, room 13 W01, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
282
|
Di Fonzo A, Monfrini E, Erro R. Genetics of Movement Disorders and the Practicing Clinician; Who and What to Test for? Curr Neurol Neurosci Rep 2018; 18:37. [PMID: 29789954 DOI: 10.1007/s11910-018-0847-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review aims to provide the basic knowledge on the genetics of hypokinetic and hyperkinetic movement disorders to guide clinicians in the decision of "who and what to test for?" RECENT FINDINGS In recent years, the identification of various genetic causes of hypokinetic and hyperkinetic movement disorders has had a great impact on a better definition of different clinical syndromes. Indeed, the advent of next-generation sequencing (NGS) techniques has provided an impressive step forward in the easy identification of genetic forms. However, this increased availability of genetic testing has challenges, including the ethical issue of genetic testing in unaffected family members, "commercially" available home testing kits and the increasing number and relevance of "variants of unknown significance." The emergent role of genetic factors has important implications on clinical practice and counseling. As a consequence, it is fundamental that practicing neurologists have a proper knowledge of the genetic background of the diseases and perform an accurate selection of who has to be tested and for which gene mutations.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Edoardo Monfrini
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Roberto Erro
- Neurodegenerative disease center (CEMAND), Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.
| |
Collapse
|
283
|
Diagnosis and Management of Gaucher Disease in India – Consensus Guidelines of the Gaucher Disease Task Force of the Society for Indian Academy of Medical Genetics and the Indian Academy of Pediatrics. Indian Pediatr 2018. [DOI: 10.1007/s13312-018-1249-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Justification
Gaucher disease (GD) is amongst the most frequently occurring lysosomal storage disorder in all ethnicities. The clinical manifestations and natural history of GD is highly heterogeneous with extreme geographic and ethnic variations. The literature on GD has paucity of information and optimal management guidelines for Indian patients.
Process
Gaucher Disease Task Force was formed under the auspices of the Society for Indian Academy of Medical Genetics. Invited experts from various specialties formulated guidelines for the management of patients with GD. A writing committee was formed and the draft guidelines were circulated by email to all members for comments and inputs. The guidelines were finalized in December 2016 at the annual meeting of the Indian Academy of Medical Genetics.
Objectives
These guidelines are intended to serve as a standard framework for treating physicians and the health care systems for optimal management of Gaucher disease in India and to define unique needs of this patient population.
Recommendations
Manifestations of GD are protean and a high index of suspicion is essential for timely diagnosis. Patients frequently experience diagnostic delays during which severe irreversible complications occur. Leucocyte acid β-glucosidase activity is mandatory for establishing the diagnosis of Gaucher disease; molecular testing can help identify patients at risk of neuronopathic disease. Enzyme replacement therapy for type 1 and type 3 Gaucher disease is the standard of care. Best outcomes are achieved by early initiation of therapy before onset of irreversible complications. However, in setting of progressive neurological symptoms such as seizures and or/neuroregression, ERT is not recommended, as it cannot cross the blood brain barrier. The recommendations herein are for diagnosis, for initiation of therapy, therapeutic goals, monitoring and follow up of patients. We highlight that prevention of recurrence of the disease through genetic counseling and prenatal diagnosis is essential in India, due to uniformly severe phenotypes encountered in our population.
Collapse
|
284
|
Lunde KA, Chung J, Dalen I, Pedersen KF, Linder J, Domellöf ME, Elgh E, Macleod AD, Tzoulis C, Larsen JP, Tysnes OB, Forsgren L, Counsell CE, Alves G, Maple-Grødem J. Association of glucocerebrosidase polymorphisms and mutations with dementia in incident Parkinson's disease. Alzheimers Dement 2018; 14:1293-1301. [PMID: 29792872 DOI: 10.1016/j.jalz.2018.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Both polymorphisms and mutations in glucocerebrosidase (GBA) may influence the development of dementia in patients with Parkinson's disease. METHODS Four hundred forty-two patients and 419 controls were followed for 7 years. Dementia was diagnosed using established criteria. Participants were analyzed for GBA genetic variants, including E326K, T369M, and L444P. Associations between GBA carrier status and dementia were assessed with Cox survival analysis. RESULTS A total of 12.0% of patients with Parkinson's disease carried a GBA variant, and nearly half (22/53) of them progressed to dementia during follow-up. Carriers of deleterious GBA mutations (adjusted hazard ratio 3.81, 95% confidence interval 1.35 to 10.72; P = .011) or polymorphisms (adjusted hazard ratio 1.79; 95% confidence interval 1.07 to 3.00; P = .028) progressed to dementia more rapidly than noncarriers. DISCUSSION GBA variants are of great clinical relevance for the development of dementia in Parkinson's disease, especially due to the relatively higher frequency of these alleles compared with other risk alleles.
Collapse
Affiliation(s)
- Kristin Aaser Lunde
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway; Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Janete Chung
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Ingvild Dalen
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Kenn Freddy Pedersen
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway; Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Jan Linder
- Department of Pharmacology and Clinical Neuroscience, Neurology, Umeå University, Umeå, Sweden
| | - Magdalena E Domellöf
- Department of Pharmacology and Clinical Neuroscience, Neurology, Umeå University, Umeå, Sweden; Department of Psychology, Umeå University, Umeå, Sweden
| | - Eva Elgh
- Department of Psychology, Umeå University, Umeå, Sweden
| | - Angus D Macleod
- Institute of Applied Health Sciences, Polwarth Building, University of Aberdeen, Aberdeen, UK
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jan Petter Larsen
- Network for Medical Sciences, University of Stavanger, Bergen, Norway
| | - Ole-Bjørn Tysnes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars Forsgren
- Department of Pharmacology and Clinical Neuroscience, Neurology, Umeå University, Umeå, Sweden
| | - Carl E Counsell
- Institute of Applied Health Sciences, Polwarth Building, University of Aberdeen, Aberdeen, UK
| | - Guido Alves
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway; Department of Neurology, Stavanger University Hospital, Stavanger, Norway; Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
| | - Jodi Maple-Grødem
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway; Centre for Organelle Research, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
285
|
Cerri S, Ghezzi C, Sampieri M, Siani F, Avenali M, Dornini G, Zangaglia R, Minafra B, Blandini F. The Exosomal/Total α-Synuclein Ratio in Plasma Is Associated With Glucocerebrosidase Activity and Correlates With Measures of Disease Severity in PD Patients. Front Cell Neurosci 2018; 12:125. [PMID: 29867358 PMCID: PMC5968118 DOI: 10.3389/fncel.2018.00125] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/19/2018] [Indexed: 11/24/2022] Open
Abstract
Intensive research efforts in the field of Parkinson’s disease (PD) are focusing on identifying reliable biomarkers which possibly help physicians in predicting disease onset, diagnosis, and progression as well as evaluating the response to disease-modifying treatments. Given that abnormal alpha-synuclein (α-syn) accumulation is a primary component of PD pathology, this protein has attracted considerable interest as a potential biomarker for PD. Alpha-synuclein can be detected in several body fluids, including plasma, where it can be found as free form or in association with exosomes, small membranous vesicles secreted by virtually all cell types. Together with α-syn accumulation, lysosomal dysfunctions seem to play a central role in the pathogenesis of PD, given the crucial role of lysosomes in the α-syn degradation. In particular, heterozygous mutations in the GBA1 gene encoding lysosomal enzyme glucocerebrosidase (GCase) are currently considered as the most important risk factor for PD. Different studies have found that GCase deficiency leads to accumulation of α-syn; whereas at the same time, increased α-syn may inhibit GCase function, thus inducing a bidirectional pathogenic loop. In this study, we investigated whether changes in plasma total and exosome-associated α-syn could correlate with disease status and clinical parameters in PD and their relationship with GCase activity. We studied 39 PD patients (mean age: 65.2 ± 8.9; men: 25), without GBA1 mutations, and 33 age-matched controls (mean age: 61.9 ± 6.2; men: 15). Our results showed that exosomes from PD patients contain a greater amount of α-syn compared to healthy subjects (25.2 vs. 12.3 pg/mL, p < 0.001) whereas no differences were found in plasma total α-syn levels (15.7 vs. 14.8 ng/mL, p = 0.53). Moreover, we highlighted a significant increase of plasma exosomal α-syn/total α-syn ratio in PD patients (1.69 vs. 0.89, p < 0.001), which negatively correlates with disease severity (p = 0.014). Intriguingly, a significant inverse correlation between GCase activity and this ratio in PD subjects was found (p = 0.006). Additional and large-scale studies comparing GCase activity and pathological protein levels will be clearly needed to corroborate these data and determine whether the association between key players in the lysosomal system and α-syn can be used as diagnostic or prognostic biomarkers for PD.
Collapse
Affiliation(s)
- Silvia Cerri
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation Pavia, Italy
| | - Cristina Ghezzi
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation Pavia, Italy
| | - Maria Sampieri
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation Pavia, Italy
| | - Francesca Siani
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation Pavia, Italy
| | - Micol Avenali
- Neurological Rehabilitation Unit, IRCCS Mondino Foundation Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Gianluca Dornini
- Immunohemeatology and Transfusion Service, Fondazione IRCCS Policlinico San Matteo Pavia, Italy
| | - Roberta Zangaglia
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation Pavia, Italy
| | - Brigida Minafra
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation Pavia, Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation Pavia, Italy
| |
Collapse
|
286
|
Zheng J, Chen L, Skinner OS, Ysselstein D, Remis J, Lansbury P, Skerlj R, Mrosek M, Heunisch U, Krapp S, Charrow J, Schwake M, Kelleher NL, Silverman RB, Krainc D. β-Glucocerebrosidase Modulators Promote Dimerization of β-Glucocerebrosidase and Reveal an Allosteric Binding Site. J Am Chem Soc 2018; 140:5914-5924. [PMID: 29676907 PMCID: PMC6098685 DOI: 10.1021/jacs.7b13003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
β-Glucocerebrosidase (GCase) mutations cause Gaucher's disease and are a high risk factor in Parkinson's disease. The implementation of a small molecule modulator is a strategy to restore proper folding and lysosome delivery of degradation-prone mutant GCase. Here, we present a potent quinazoline modulator, JZ-4109, which stabilizes wild-type and N370S mutant GCase and increases GCase abundance in patient-derived fibroblast cells. We then developed a covalent modification strategy using a lysine targeted inactivator (JZ-5029) for in vitro mechanistic studies. By using native top-down mass spectrometry, we located two potentially covalently modified lysines. We obtained the first crystal structure, at 2.2 Å resolution, of a GCase with a noniminosugar modulator covalently bound, and were able to identify the exact lysine residue modified (Lys346) and reveal an allosteric binding site. GCase dimerization was induced by our modulator binding, which was observed by native mass spectrometry, its crystal structure, and size exclusion chromatography with a multiangle light scattering detector. Finally, the dimer form was confirmed by negative staining transmission electron microscopy studies. Our newly discovered allosteric site and observed GCase dimerization provide a new mechanistic insight into GCase and its noniminosugar modulators and facilitate the rational design of novel GCase modulators for Gaucher's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Jianbin Zheng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Long Chen
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Owen S. Skinner
- Department of Chemistry and Molecular Biosciences, and Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel Ysselstein
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Jonathan Remis
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Peter Lansbury
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Renato Skerlj
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Michael Mrosek
- Proteros Biostructures GmbH, Bunsenstrasse 7a, Martinsried 82152, Germany
| | - Ursula Heunisch
- Proteros Biostructures GmbH, Bunsenstrasse 7a, Martinsried 82152, Germany
| | - Stephan Krapp
- Proteros Biostructures GmbH, Bunsenstrasse 7a, Martinsried 82152, Germany
| | - Joel Charrow
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Michael Schwake
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Neil L. Kelleher
- Department of Chemistry and Molecular Biosciences, and Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
287
|
Two-pore channels and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1678-1686. [PMID: 29746898 PMCID: PMC6162333 DOI: 10.1016/j.bbamcr.2018.05.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/03/2018] [Indexed: 01/25/2023]
Abstract
Two-pore channels (TPCs) are Ca2+-permeable endo-lysosomal ion channels subject to multi-modal regulation. They mediate their physiological effects through releasing Ca2+ from acidic organelles in response to cues such as the second messenger, NAADP. Here, we review emerging evidence linking TPCs to disease. We discuss how perturbing both local and global Ca2+ changes mediated by TPCs through chemical and/or molecular manipulations can induce or reverse disease phenotypes. We cover evidence from models of Parkinson's disease, non-alcoholic fatty liver disease, Ebola infection, cancer, cardiac dysfunction and diabetes. A need for more drugs targeting TPCs is identified.
Collapse
|
288
|
Bingol B. Autophagy and lysosomal pathways in nervous system disorders. Mol Cell Neurosci 2018; 91:167-208. [PMID: 29729319 DOI: 10.1016/j.mcn.2018.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved pathway for delivering cytoplasmic cargo to lysosomes for degradation. In its classically studied form, autophagy is a stress response induced by starvation to recycle building blocks for essential cellular processes. In addition, autophagy maintains basal cellular homeostasis by degrading endogenous substrates such as cytoplasmic proteins, protein aggregates, damaged organelles, as well as exogenous substrates such as bacteria and viruses. Given their important role in homeostasis, autophagy and lysosomal machinery are genetically linked to multiple human disorders such as chronic inflammatory diseases, cardiomyopathies, cancer, and neurodegenerative diseases. Multiple targets within the autophagy and lysosomal pathways offer therapeutic opportunities to benefit patients with these disorders. Here, I will summarize the mechanisms of autophagy pathways, the evidence supporting a pathogenic role for disturbed autophagy and lysosomal degradation in nervous system disorders, and the therapeutic potential of autophagy modulators in the clinic.
Collapse
Affiliation(s)
- Baris Bingol
- Genentech, Inc., Department of Neuroscience, 1 DNA Way, South San Francisco 94080, United States.
| |
Collapse
|
289
|
Ishibashi Y, Ito M, Hirabayashi Y. Regulation of glucosylceramide synthesis by Golgi-localized phosphoinositide. Biochem Biophys Res Commun 2018; 499:1011-1018. [DOI: 10.1016/j.bbrc.2018.04.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
|
290
|
O'Regan G, deSouza RM, Balestrino R, Schapira AH. Glucocerebrosidase Mutations in Parkinson Disease. JOURNAL OF PARKINSONS DISEASE 2018; 7:411-422. [PMID: 28598856 DOI: 10.3233/jpd-171092] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Following the discovery of a higher than expected incidence of Parkinson Disease (PD) in Gaucher disease, a lysosomal storage disorder, mutations in the glucocerebrocidase (GBA) gene, which encodes a lysosomal enzyme involved in sphingolipid degradation were explored in the context of idiopathic PD. GBA mutations are now known to be the single largest risk factor for development of idiopathic PD. Clinically, on imaging and pharmacologically, GBA PD is almost identical to idiopathic PD, other than certain features that can be identified in the specialist research setting but not in routine clinical practice. In patients with a known GBA mutation, it is possible to monitor for prodromal signs of PD. The clinical similarity with idiopathic PD and the chance to identify PD at a pre-clinical stage provides a unique opportunity to research therapeutic options for early PD, before major irreversible neurodegeneration occurs. However, to date, the molecular mechanisms which lead to this increased PD risk in GBA mutation carriers are not fully elucidated. Experimental models to define the molecular mechanisms and test therapeutic options include cell culture, transgenic mice and other in vivo models amenable to genetic manipulation, such as drosophilia. Some key pathological pathways of interest in the context of GBA mutations include alpha synuclein aggregation, lysosomal-autophagy axis changes and endoplasmic reticulum stress. Therapeutic agents that exploit these pathways are being developed and include the small molecule chaperone Ambroxol. This review aims to summarise the main features of GBA-PD and provide insights into the pathological relevance of GBA mutations on molecular pathways and the therapeutic implications for PD resulting from investigation of the role of GBA in PD.
Collapse
Affiliation(s)
- Grace O'Regan
- Department of Clinical Neurosciences, UCL Institute of Neurology, Royal Free Campus, London, UK
| | - Ruth-Mary deSouza
- Department of Clinical Neurosciences, UCL Institute of Neurology, Royal Free Campus, London, UK
| | | | - Anthony H Schapira
- Department of Clinical Neurosciences, UCL Institute of Neurology, Royal Free Campus, London, UK
| |
Collapse
|
291
|
Kim D, Hwang H, Choi S, Kwon SH, Lee S, Park JH, Kim S, Ko HS. D409H GBA1 mutation accelerates the progression of pathology in A53T α-synuclein transgenic mouse model. Acta Neuropathol Commun 2018; 6:32. [PMID: 29703245 PMCID: PMC5923019 DOI: 10.1186/s40478-018-0538-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/19/2018] [Indexed: 12/26/2022] Open
Abstract
Heterozygous mutations in glucocerebrosidase 1 (GBA1) are a major genetic risk factor for Parkinson’s disease and Dementia with Lewy bodies. Mutations in GBA1 leads to GBA1 enzyme deficiency, and GBA1-associated parkinsonism has an earlier age of onset and more progressive parkinsonism. To investigate a potential influence of GBA1 deficiency caused by mutations in GBA1 on the disease progression of PD, GBA1 mice carrying D409H knock-in mutation were crossbred with the human A53T (hA53T) α-synuclein transgenic mice. Here, we show that GBA1 enzyme activity plays a significant role in the hA53T α-synuclein induced α-synucleinopathy. The expression of D409H GBA1 markedly shortens the lifespan of hA53T α-synuclein transgenic mice. Moreover, D409H GBA1 expression exacerbates the formation of insoluble aggregates of α-synuclein, glial activation, neuronal degeneration, and motor abnormalities in the hA53T α-synuclein transgenic mice. Interestingly, the expression of D409H GBA1 results in the loss of dopaminergic neurons in the substantia nigra pars compacta of hA53T transgenic mice. Taken together, these results indicate that GBA1 deficiency due to D409H mutation affects the disease onset and course in hA53T α-synuclein transgenic mice. Therefore, strategies aimed to maintain GBA1 enzyme activity could be employed to develop an effective novel therapy for GBA1 linked-PD and related α-synucleinopathies.
Collapse
|
292
|
Alcalay RN, Wolf P, Levy OA, Kang UJ, Waters C, Fahn S, Ford B, Kuo SH, Vanegas N, Shah H, Liong C, Narayan S, Pauciulo MW, Nichols WC, Gan-Or Z, Rouleau GA, Chung WK, Oliva P, Keutzer J, Marder K, Zhang XK. Alpha galactosidase A activity in Parkinson's disease. Neurobiol Dis 2018; 112:85-90. [PMID: 29369793 PMCID: PMC5811339 DOI: 10.1016/j.nbd.2018.01.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Glucocerebrosidase (GCase, deficient in Gaucher disease) enzymatic activity measured in dried blood spots of Parkinson's Disease (PD) cases is within healthy range but reduced compared to controls. It is not known whether activities of additional lysosomal enzymes are reduced in dried blood spots in PD. To test whether reduction in lysosomal enzymatic activity in PD is specific to GCase, we measured GCase, acid sphingomyelinase (deficient in Niemann-Pick disease types A and B), alpha galactosidase A (deficient in Fabry), acid alpha-glucosidase (deficient in Pompe) and galactosylceramidase (deficient in Krabbe) enzymatic activities in dried blood spots of PD patients (n = 648) and controls (n = 317) recruited from Columbia University. Full sequencing of glucocerebrosidase (GBA) and the LRRK2 G2019S mutation was performed. Enzymatic activities were compared between PD cases and controls using t-test and regression models adjusted for age, gender, and GBA and LRRK2 G2019S mutation status. Alpha galactosidase A activity was lower in PD cases compared to controls both when only non-carriers were included (excluding all GBA and LRRK2 G2019S carriers and PD cases with age-at-onset below 40) [2.85 μmol/l/h versus 3.12 μmol/l/h, p = 0.018; after controlling for batch effect, p = 0.006 (468 PD cases and 296 controls)], and when including the entire cohort (2.89 μmol/l/h versus 3.10 μmol/l/h, p = 0.040; after controlling for batch effect, p = 0.011). Because the alpha galactosidase A gene is X-linked, we stratified the analyses by sex. Among women who were non-carriers of GBA and LRRK2 G2019S mutations (PD, n = 155; control, n = 194), alpha galactosidase A activity was lower in PD compared to controls (2.77 μmol/l/h versus 3.10 μmol/l/h, p = 0.044; after controlling for a batch effect, p = 0.001). The enzymatic activity of acid sphingomyelinase, acid alpha-glucosidase and galactosylceramidase was not significantly different between PD and controls. In non-carriers, most lysosomal enzyme activities were correlated, with the strongest association in GCase, acid alpha-glucosidase, and alpha galactosidase A (Pearson correlation coefficient between 0.382 and 0.532). In a regression model with all five enzymes among non-carriers (adjusted for sex and age), higher alpha galactosidase A activity was associated with lower odds of PD status (OR = 0.54; 95% CI:0.31-0.95; p = 0.032). When LRRK2 G2019S PD carriers (n = 37) were compared to non-carriers with PD, carriers had higher GCase, acid sphingomyelinase and alpha galactosidase A activity. We conclude that alpha galactosidase A may have a potential independent role in PD, in addition to GCase.
Collapse
Affiliation(s)
- R N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.
| | - P Wolf
- Translational Sciences, Sanofi R&D, Framingham, MA, USA
| | - O A Levy
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - U J Kang
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - C Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - S Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - B Ford
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - S H Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - N Vanegas
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - H Shah
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - C Liong
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - S Narayan
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - M W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - W C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Z Gan-Or
- Montréal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - G A Rouleau
- Montréal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - W K Chung
- Department of Pediatrics and Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - P Oliva
- Translational Sciences, Sanofi R&D, Framingham, MA, USA
| | - J Keutzer
- Translational Sciences, Sanofi R&D, Framingham, MA, USA
| | - K Marder
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - X K Zhang
- Translational Sciences, Sanofi R&D, Framingham, MA, USA
| |
Collapse
|
293
|
Senkevich KA, Miliukhina IV, Beletskaia MV, Gracheva EV, Kudrevatykh AV, Nikolaev MA, Emelyanov AK, Kopytova AE, Timofeeva AA, Yakimovskii AF, Pchelina SN. [The clinical features of Parkinson's disease in patients with mutations and polymorphic variants of GBA gene]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:81-86. [PMID: 29171494 DOI: 10.17116/jnevro201711710181-86] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Mutations in the glucocerebrosidase gene (GBA) increase the risk of Parkinson's disease (PD) by 6-10 times in all populations and are associated with the early-onset of PD, development of cognitive impairment and presence of psychotic disorders. At the same time, polymorphic variants associated with the twofold increase in the risk of PD were also described in the GBA gene. AIM To estimate the clinical features of PD in patients with mutations and polymorphic variants of the GBA gene. MATERIAL AND METHODS Evaluation of motor, cognitive, emotional, psychotic and autonomic dysfunctions in patients with mutations (N370S, L444P) and polymorphic variants (E326K, T369M) in the GBA gene was performed using clinical scales. RESULTS Patients with mutations (mGBA-PD), and with polymorphic variants (pGBA-PD) in the GBA gene were compared with the group of patients with sporadic PD (sPD). Compared to sPD, affective disorders (depression and anxiety) were more expressed in the mGBA-PD group (p=0.001) and the general GBA-PD group (p=0.001) assessed with Sheehan anxiety rating scale, in the pGBA-PD group (p=0.012) and the general GBA-PD group (p=0.05) assessed with the NPI, in the mGBA-PD (p=0.003), pGBA-PD (p=0.022), and general GBA-PD groups (p=0.001) assessed with the Hospital Anxiety and Depression scale (HADS 'A'), and in the pGBA-PD group (p=0.005) assessed with the HADS 'D'. Non-motor symptoms assessed with the PD-NMS were more expressed in the pGBA-PD patients (p=0.007) and in the total group with GBA-PD (p=0,014) compared to sPD. Cognitive impairment measured with MMSE was more marked in mGBA-PD patients (p=0.022). Differences in motor and non-motor clinical symptoms between pGBA-PD and mGBA-PD groups were not found. CONCLUSION Thus, clinical features of non-motor symptoms were described both in carriers of GBA mutations and polymorphisms. Identification of the specific clinical phenotype of PD in carriers of GBA polymorphic variants is important due to their relatively high prevalence in PD patients.
Collapse
Affiliation(s)
- K A Senkevich
- Institute of Experimental Medicine, St. Petersburg, Russia; Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia; National Research Center 'Kurchatov Institute' Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | - I V Miliukhina
- Institute of Experimental Medicine, St. Petersburg, Russia; Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - M V Beletskaia
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - E V Gracheva
- Institute of Experimental Medicine, St. Petersburg, Russia
| | | | - M A Nikolaev
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia; National Research Center 'Kurchatov Institute' Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | - A K Emelyanov
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia; National Research Center 'Kurchatov Institute' Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | - A E Kopytova
- National Research Center 'Kurchatov Institute' Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | - A A Timofeeva
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - A F Yakimovskii
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - S N Pchelina
- Institute of Experimental Medicine, St. Petersburg, Russia; Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia; National Research Center 'Kurchatov Institute' Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| |
Collapse
|
294
|
The genetics of Parkinson disease. Ageing Res Rev 2018; 42:72-85. [PMID: 29288112 DOI: 10.1016/j.arr.2017.12.007] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
About 15% of patients with Parkinson disease (PD) have family history and 5-10% have a monogenic form of the disease with Mendelian inheritance. To date, at least 23 loci and 19 disease-causing genes for parkinsonism have been found, but many more genetic risk loci and variants for sporadic PD phenotype have been identified in various association studies. Investigating the mutated protein products has uncovered potential pathogenic pathways that provide insights into mechanisms of neurodegeneration in familial and sporadic PD. To commemorate the 200th anniversary of Parkinson's publication of An Essay on the Shaking Palsy, we provide a comprehensive and critical overview of the current clinical, neuropathological, and genetic understanding of genetic forms of PD. We also discuss advances in screening for genetic PD-related risk factors and how they impact genetic counseling and contribute to the development of potential disease-modifying therapies.
Collapse
|
295
|
Creese B, Bell E, Johar I, Francis P, Ballard C, Aarsland D. Glucocerebrosidase mutations and neuropsychiatric phenotypes in Parkinson's disease and Lewy body dementias: Review and meta-analyses. Am J Med Genet B Neuropsychiatr Genet 2018; 177:232-241. [PMID: 28548708 DOI: 10.1002/ajmg.b.32549] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/07/2017] [Accepted: 04/20/2017] [Indexed: 12/26/2022]
Abstract
Heterozygous mutations in glucocerebrosidase gene (GBA) are a major genetic risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Recently, there has been a considerable focus on the relationship between GBA mutations and emergence of cognitive impairment and neuropsychiatric symptoms in these diseases. Here, we review the literature in this area, with a particular focus, including meta-analysis, on the key neuropsychiatric symptoms of cognitive impairment, psychosis, and depression in Parkinson's disease. Our meta-analysis demonstrated that GBA mutations are associated with a 2.4-fold increased risk of cognitive impairment. In addition, our novel meta-analyses of psychosis and depression showed a 1.8- and 2.2-fold increased risk respectively associated with GBA mutations, although due to possible bias and heterogeneity the depression findings should be interpreted with caution. While the precise mechanisms which increase susceptibility to neurodegeneration in GBA carriers are not known, evidence of greater cortical Lewy body pathology, reduced patterns of cortical activation, and hippocampal pathology in animal models are all consistent with a direct effect of GBA mutations on these symptoms. Extension of this work in DLB and individuals without neurodegeneration will be important in further characterizing how GBA mutations increase risk for PD and DLB and influence disease course.
Collapse
Affiliation(s)
- Byron Creese
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Emily Bell
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Iskandar Johar
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paul Francis
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Clive Ballard
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
296
|
Cupidi C, Frangipane F, Gallo M, Clodomiro A, Colao R, Bernardi L, Anfossi M, Conidi ME, Vasso F, Curcio SAM, Mirabelli M, Smirne N, Torchia G, Muraca MG, Puccio G, Di Lorenzo R, Zampieri S, Romanello M, Dardis A, Maletta RG, Bruni AC. Role of Niemann-Pick Type C Disease Mutations in Dementia. J Alzheimers Dis 2018; 55:1249-1259. [PMID: 27792009 DOI: 10.3233/jad-160214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Several neurological and systemic diseases can cause dementia, beyond Alzheimer's disease. Rare genetic causes are often responsible for dementia with atypical features. Recently, mutations causative for Niemann-Pick type C disease (NPC) have also been implicated in neurodegenerative diseases. NPC is an autosomal recessive lipid storage disorder caused by mutations in NPC1 and NPC2 genes. In adults, clinical presentation mimicking other neurodegenerative diseases makes diagnosis difficult. Recent evidence suggests that heterozygous mutations in NPC genes may take on etiological significance. OBJECTIVE To investigate the presence of NPC1 and NPC2 mutations in adults affected by neurodegenerative dementia plus. METHODS We performed a genetic screening on 50 patients using a wide clinical and biochemical approach to characterize the phenotype of mutated patients. RESULTS Sequencing analysis revealed four different and known heterozygous mutations in NPC1 and NPC2 genes. Patient 1 carried the p. F284LfsX26 in NPC1 and was affected by progressive supranuclear palsy-like syndrome. The remaining three patients showed a corticobasal syndrome and harbored the c.441+1G>A variant of NPC2 (patient 2), the missense p.N222 S mutation associated with the c.1947+8G>C variant in the splice region of intron 12 in NPC1 (patient 3), and the p.V30M mutation in NPC2 (patient 4), respectively. Filipin staining was abnormal in patients 1 and 2. mRNA analysis revealed an altered splicing of the NPC2 gene in patient 2. CONCLUSIONS Heterozygous mutations of NPC1 and NPC2 genes could contribute to dementia plus, at least in a subset of patients. We highlight the occurrence of NPC1 and NPC2 heterozygous variants in dementia-plus as pathological event.
Collapse
Affiliation(s)
- Chiara Cupidi
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Maura Gallo
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Rosanna Colao
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Livia Bernardi
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Maria Anfossi
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Franca Vasso
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Maria Mirabelli
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Nicoletta Smirne
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Giusi Torchia
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Gianfranco Puccio
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Stefania Zampieri
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Milena Romanello
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | | | | |
Collapse
|
297
|
Abul Khair SB, Dhanushkodi NR, Ardah MT, Chen W, Yang Y, Haque ME. Silencing of Glucocerebrosidase Gene in Drosophila Enhances the Aggregation of Parkinson's Disease Associated α-Synuclein Mutant A53T and Affects Locomotor Activity. Front Neurosci 2018; 12:81. [PMID: 29503608 PMCID: PMC5820349 DOI: 10.3389/fnins.2018.00081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/01/2018] [Indexed: 01/20/2023] Open
Abstract
Background: Mutations in glucocerebrosidase (GBA), a lysosomal enzyme are the most common genetic risk factor for developing Parkinson's disease (PD). We studied how reduced GCase activity affects α-synuclein (α-syn) and its mutants (A30P and A53T) aggregation, neurodegeneration, sleep and locomotor behavior in a fly model of PD. Methods: We developed drosophila with GBA gene knockdown (RNAi) (with reduced GCase activity) that simultaneously expresses either wildtype (WT) or mutants such as A30P or A53T α-syn. Western blot and confocal microscopy were performed to study the α-syn aggregation and neurodegeneration in these flies. We also studied the sleep and locomotor activity of those flies using Drosophila activity monitor (DAM) system. Results: Western blot analysis showed that GBA RNAi A53T α-syn flies (30 days old) had an increased level of Triton insoluble synuclein (that corresponds to α-syn aggregates) compared to corresponding A53T flies without GBA RNAi (control), while mRNA expression of α-syn remained unchanged. Confocal imaging of whole brain staining of 30 days old drosophila showed a statistically significant decrease in neuron numbers in PPL1 cluster in flies expressing α-syn WT, A30P and A53T in the presence GBA RNAi compared to corresponding control. Staining with conformation specific antibody for α-syn aggregates showed an increased number of neurons staining for α-syn aggregates in A53T fly brain with GBA RNAi compared to control A53T flies, thus confirming our protein analysis finding that under decreased GBA enzyme activity, mutant A53T aggregates more than the control A53T without GBA silencing. Sleep analysis revealed decreased total activity in GBA silenced flies expressing mutant A53T compared to both A53T control flies and GBA RNAi flies without synuclein expression. Conclusion: In A53T flies with reduced GCase activity, there is increased α-syn aggregation and dopamine (DA) neuronal loss. This study demonstrates that reduced GCase activity both in the context of heterozygous GBA1 mutation associated with PD and in old age, contribute to increased aggregation of mutant α-syn A53T and exacerbates the phenotype in a fly model of PD.
Collapse
Affiliation(s)
- Salema B Abul Khair
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nisha R Dhanushkodi
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mustafa T Ardah
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Wenfeng Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - M Emdadul Haque
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
298
|
Abstract
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are known today as the most common genetic cause of Parkinson's disease (PD). LRRK2 is a large protein that is hypothesized to regulate other proteins as a scaffold in downstream signaling pathways. This is supported by the multiple domain composition of LRRK2 with several protein-protein interaction domains combined with kinase and GTPase activity. LRRK2 is highly phosphorylated at sites that are strictly controlled by upstream regulators, including its own kinase domain. In cultured cells, most pathogenic mutants display increased autophosphorylation at S1292, but decreased phosphorylation at sites controlled by other kinases. We only begin to understand how LRRK2 phosphorylation is regulated and how this impacts its physiological and pathological function. Intriguingly, LRRK2 kinase inhibition, currently one of the most prevailing disease-modifying therapeutic strategies for PD, induces LRRK2 dephosphorylation at sites that are also dephosphorylated in pathogenic variants. In addition, LRRK2 kinase inhibition can induce LRRK2 protein degradation, which might be related to the observed inhibitor-induced adverse effects on the lung in rodents and non-human primates, as it resembles the lung pathology in LRRK2 knock-out animals. In this review, we will provide an overview of how LRRK2 phosphorylation is regulated and how this complex regulation relates to several molecular and cellular features of LRRK2.
Collapse
Affiliation(s)
- Tina De Wit
- 1 Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- 1 Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Evy Lobbestael
- 1 Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
299
|
Tenreiro S, Franssens V, Winderickx J, Outeiro TF. Yeast models of Parkinson's disease-associated molecular pathologies. Curr Opin Genet Dev 2018; 44:74-83. [PMID: 28232272 DOI: 10.1016/j.gde.2017.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Abstract
The aging of the human population is resulting in an increase in the number of people afflicted by neurodegenerative disorders such as Parkinson's disease (PD), creating tremendous socio-economic challenges. This requires the urgent for the development of effective therapies, and of tools for early diagnosis of the disease. However, our understanding of the molecular mechanisms underlying PD pathogenesis is still incomplete, hampering progress in those areas. In recent years, the progression made in genetics has considerably contributed to our knowledge, by identifying several novel PD genes. Furthermore, many cellular and animal models have proven their value to decipher pathways involved in PD development. In this review we highlight the value of the yeast Saccharomyces cerevisiae as a model for PD. This unicellular eukaryote has contributed to our understanding of the cellular mechanisms targeted by most important PD genes and offers an excellent tool for discovering novel players via powerful and informative high throughput screens that accelerate further validation in more complex models.
Collapse
Affiliation(s)
- Sandra Tenreiro
- CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Vanessa Franssens
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Tiago Fleming Outeiro
- CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Department of Neurodegeneration and Restorative Research, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
300
|
Soria FN, Engeln M, Martinez-Vicente M, Glangetas C, López-González MJ, Dovero S, Dehay B, Normand E, Vila M, Favereaux A, Georges F, Lo Bianco C, Bezard E, Fernagut PO. Glucocerebrosidase deficiency in dopaminergic neurons induces microglial activation without neurodegeneration. Hum Mol Genet 2018; 26:2603-2615. [PMID: 28520872 DOI: 10.1093/hmg/ddx120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/25/2017] [Indexed: 12/25/2022] Open
Abstract
Mutations in the GBA1 gene encoding the lysosomal enzyme glucocerebrosidase (GBA1) are important risk factors for Parkinson's disease (PD). In vitro, altered GBA1 activity promotes alpha-synuclein accumulation whereas elevated levels of alpha-synuclein compromise GBA1 function, thus supporting a pathogenic mechanism in PD. However, the mechanisms by which GBA1 deficiency is linked to increased risk of PD remain elusive, partially because of lack of aged models of GBA1 deficiency. As knocking-out GBA1 in the entire brain induces massive neurodegeneration and early death, we generated a mouse model of GBA1 deficiency amenable to investigate the long-term consequences of compromised GBA1 function in dopaminergic neurons. DAT-Cre and GBA1-floxed mice were bred to obtain selective homozygous disruption of GBA1 in midbrain dopamine neurons (DAT-GBA1-KO). Mice were followed for motor function, neuronal survival, alpha-synuclein phosphorylation and glial activation. Susceptibility to nigral viral vector-mediated overexpression of mutated (A53T) alpha-synuclein was assessed. Despite loss of GBA1 and substrate accumulation, DAT-GBA1-KO mice displayed normal motor performances and preserved dopaminergic neurons despite robust microglial activation in the substantia nigra, without accumulation of endogenous alpha-synuclein with respect to wild-type mice. Lysosomal function was only marginally affected. Screening of micro-RNAs linked to the regulation of GBA1, alpha-synuclein or neuroinflammation did not reveal significant alterations. Viral-mediated overexpression of A53T-alpha-synuclein yielded similar neurodegeneration in DAT-GBA1-KO mice and wild-type mice. These results indicate that loss of GBA1 function in mouse dopaminergic neurons is not critical for alpha-synuclein accumulation or neurodegeneration and suggest the involvement of GBA1 deficiency in other cell types as a potential mechanism.
Collapse
Affiliation(s)
- Federico N Soria
- UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux, 33076 Bordeaux, France.,CNRS, UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France
| | - Michel Engeln
- UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux, 33076 Bordeaux, France.,CNRS, UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France
| | - Marta Martinez-Vicente
- Vall d'Hebron Research Institute, CIBERNED and Catalan Institution for Research and Advanced Studies (ICREA), Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Christelle Glangetas
- UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux, 33076 Bordeaux, France.,CNRS, UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France
| | - María José López-González
- UMR 5297, Interdisciplinary Institute of Neurosciences, Université de Bordeaux, 33076 Bordeaux, France.,CNRS, UMR 5297, Interdisciplinary Institute of Neurosciences, 33076 Bordeaux, France
| | - Sandra Dovero
- UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux, 33076 Bordeaux, France.,CNRS, UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France
| | - Benjamin Dehay
- UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux, 33076 Bordeaux, France.,CNRS, UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France
| | - Elisabeth Normand
- UMR 5297, Interdisciplinary Institute of Neurosciences, Université de Bordeaux, 33076 Bordeaux, France.,CNRS, UMR 5297, Interdisciplinary Institute of Neurosciences, 33076 Bordeaux, France
| | - Miquel Vila
- Vall d'Hebron Research Institute, CIBERNED and Catalan Institution for Research and Advanced Studies (ICREA), Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Alexandre Favereaux
- UMR 5297, Interdisciplinary Institute of Neurosciences, Université de Bordeaux, 33076 Bordeaux, France.,CNRS, UMR 5297, Interdisciplinary Institute of Neurosciences, 33076 Bordeaux, France
| | - François Georges
- UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux, 33076 Bordeaux, France.,CNRS, UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France
| | - Christophe Lo Bianco
- Neurodegenerative Disease Department, Merck Serono Institute, Geneva, Switzerland
| | - Erwan Bezard
- UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux, 33076 Bordeaux, France.,CNRS, UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France
| | - Pierre-Olivier Fernagut
- UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux, 33076 Bordeaux, France.,CNRS, UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France
| |
Collapse
|