251
|
Wang J, Fang T, Li J, Yan Y, Li Z, Zhang J. Precise Mesoscopic Model Providing Insights into Polymerization-Induced Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8009-8016. [PMID: 32574501 DOI: 10.1021/acs.langmuir.0c01404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembly of copolymer is an important approach to obtain multifarious nanostructures. Polymerization-induced self-assembly (PISA) is a recently developed and powerful copolymer self-assembly strategy. However, some researchers have reported a different morphology prepared by PISA and the traditional copolymer self-assembly using the same copolymer system. In this work, to explore the mystery, we develop a precise mesoscopic dissipative particle dynamics (DPD) model to reveal insights into the PISA of poly(4-vinylpyridine)-b-polystyrene (P4VP-b-PS). It is observed that P4VP-b-PS nanotubes can be obtained via TSA rather than PISA, which is consistent with reported experimental results. By carefully investigating the dynamics of PISA under specific solvent and monomer conditions and different polymerization rates, we propose that combining excessive monomers with multistep PISA can help to enhance the morphological regulation ability of PISA and retain a high solid content simultaneously. The findings in this study not only provide a precise modeling method for investigating copolymer self-assembly but also serve as a rational guide for future studies toward optimization of the PISA strategy.
Collapse
Affiliation(s)
- Junfeng Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Timing Fang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Jiawei Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Youguo Yan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong China
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, Shandong China
| |
Collapse
|
252
|
Li Y, Zhou J, Wang L, Xie Z. Endogenous Hydrogen Sulfide-Triggered MOF-Based Nanoenzyme for Synergic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30213-30220. [PMID: 32515188 DOI: 10.1021/acsami.0c08659] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The developing nanoparticle therapeutic agents triggered by tumor microenvironment are a feasible strategy for the substantial elevation of accuracy of diagnosis and the reduction of side effects in cancer treatments. Dysregulated H2S production from the enzyme system of overexpressed cystathionine β-synthase has long been considered to act as an autocrine and paracrine factor for the tumor growth and proliferation of colon cancer. Herein, for the first time, an endogenous H2S-activated copper metal-organic framework (Cu-MOF; HKUST-1) nanoenzyme has been demonstrated to synergistically mediate H2S-activated near-infrared photothermal therapy and chemodynamic therapy in the effective treatment of colon cancer. This endogenous biomarker-triggered "turn-on" strategy to generate therapeutic agents in situ could largely simplify the constitution of nanomedicine by avoiding the cargo introduction and thus supply great promise for the precise treatments of colon cancer.
Collapse
Affiliation(s)
- Yite Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Junli Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
253
|
Wang Z, Huang L, Yan Y, El‐Zohry AM, Toffoletti A, Zhao J, Barbon A, Dick B, Mohammed OF, Han G. Elucidation of the Intersystem Crossing Mechanism in a Helical BODIPY for Low‐Dose Photodynamic Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhijia Wang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 China
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester Massachusetts 01605 USA
| | - Yuxin Yan
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 China
| | - Ahmed M. El‐Zohry
- Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Antonio Toffoletti
- Dipartimento di Scienze Chimiche Università degli Studi di Padova Via Marzolo 1 35121 Padova Italy
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 China
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche Università degli Studi di Padova Via Marzolo 1 35121 Padova Italy
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie Institut für Physikalische und Theoretische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Omar F. Mohammed
- Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester Massachusetts 01605 USA
| |
Collapse
|
254
|
Zhang C, Wu J, Liu W, Zheng X, Zhang W, Lee CS, Wang P. Hypocrellin-Based Multifunctional Phototheranostic Agent for NIR-Triggered Targeted Chemo/Photodynamic/Photothermal Synergistic Therapy against Glioblastoma. ACS APPLIED BIO MATERIALS 2020; 3:3817-3826. [PMID: 35025252 DOI: 10.1021/acsabm.0c00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A huge challenge exists in the diagnosis and treatment of malignant glioblastoma (GBM) due to the presence of the blood-brain barrier (BBB). Herein, a multifunctional phototheranostic agent is designed on the basis of an octadecane-modified temozolomide (TMZ-C18) for chemotherapy, a dicysteamine-modified hypocrellin derivative (DCHB) as a natural-origin photosensitizer with a singlet oxygen (1O2) quantum yield of 0.51, and a cyclic peptide (cRGD) as a targeting unit against glioblastoma. Co-encapsulated DCHB and TMZ-C18 assembly with cRGD decoration, referred to as DTRGD NPs, shows a wide absorption at the NIR region peaked at 703 nm, an NIR emission peak at 720 nm, good photostability, high photothermal conversion efficiency (33%), and effective degradation of TMZ-C18. More importantly, DTRGD NPs can efficiently break through the blood-brain barrier and enrich in the orthotopic glioblastoma. The treatment of subcutaneous U87MG tumor beard mice demonstrates that DTRGD NPs present remarkable anticancer efficiency and the targeted chemo/photodynamic/photothermal synergistic therapy can be achieved with almost no toxicity. This multifunctional phototheranostic agent shows great potential for the diagnosis and treatment of glioblastoma.
Collapse
Affiliation(s)
- Chuangli Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
255
|
Luciano MP, Nourian S, Gorka AP, Nani RR, Nagaya T, Kobayashi H, Schnermann MJ. A near-infrared light-mediated cleavable linker strategy using the heptamethine cyanine chromophore. Methods Enzymol 2020; 641:245-275. [PMID: 32713525 PMCID: PMC10763689 DOI: 10.1016/bs.mie.2020.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optical methods offer the potential to manipulate living biological systems with exceptional spatial and temporal control. Caging bioactive molecules with photocleavable functional groups is an important strategy that could be applied to a range of problems, including the targeted delivery of otherwise toxic therapeutics. However existing approaches that require UV or blue light are difficult to apply in organismal settings due to issues of tissue penetration and light toxicity. Photocaging groups built on the heptamethine cyanine scaffold enable the targeted delivery of bioactive molecules using near-IR light (up to 780nm) in live animal settings. Here we provide a detailed procedure demonstrating the utility of the heptamethine cyanine caging group to create a light-cleavable linker between an antibody, panitumumab, and a therapeutic small molecule in the duocarmycin class of natural products. Descriptions of the design and synthesis of the small molecule component, assembly of the antibody conjugate, in vitro analysis of uncaging, in vivo imaging, and impact on tumor progression are provided.
Collapse
Affiliation(s)
- Michael P Luciano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Saghar Nourian
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Alexander P Gorka
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Roger R Nani
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Tadanobu Nagaya
- Laboratory of Molecular Theranostics, NIH/NCI/CCR, Bethesda, MD, United States
| | - Hisataka Kobayashi
- Laboratory of Molecular Theranostics, NIH/NCI/CCR, Bethesda, MD, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States.
| |
Collapse
|
256
|
Liu MH, Chen TC, Vicente JR, Yao CN, Yang YC, Chen CP, Lin PW, Ho YC, Chen J, Lin SY, Chan YH. Cyanine-Based Polymer Dots with Long-Wavelength Excitation and Near-Infrared Fluorescence beyond 900 nm for In Vivo Biological Imaging. ACS APPLIED BIO MATERIALS 2020; 3:3846-3858. [DOI: 10.1021/acsabm.0c00417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ming-Ho Liu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Tzu-Chun Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Juvinch R. Vicente
- Department of Chemistry & Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Chun-Nien Yao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Yu-Chi Yang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Chuan-Pin Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Pin-Wen Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Yu-Chieh Ho
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Jixin Chen
- Department of Chemistry & Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30050, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30050, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
257
|
|
258
|
Guo Q, Liu Y, Mu G, Yang L, Wang W, Liu J, Liu J. A peptide–drug hydrogel to enhance the anti-cancer activity of chlorambucil. Biomater Sci 2020; 8:5638-5646. [DOI: 10.1039/d0bm01001d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The CRB–FFF–cyclen could transform into a hydrogel via a heating–cooling process. The resulting hydrogel could be protonated in a tumor environment, which is beneficial for cellular uptake and anti-tumor activity.
Collapse
Affiliation(s)
- Qingxiang Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin
- China
| | - Yifan Liu
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Ganen Mu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin
- China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin
- China
| | - Wei Wang
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin
- China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin
- China
| |
Collapse
|
259
|
Li G, Hu W, Zhao M, Zhao W, Li F, Liu S, Huang W, Zhao Q. Rational design of near-infrared platinum(ii)-acetylide conjugated polymers for photoacoustic imaging-guided synergistic phototherapy under 808 nm irradiation. J Mater Chem B 2020; 8:7356-7364. [DOI: 10.1039/d0tb01107j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed a novel near-infrared Pt-acetylide conjugated polymer CP3 with highly efficient photoconversion behaviors for synergistic cancer phototherapy.
Collapse
Affiliation(s)
- Guo Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Wenbo Hu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Menglong Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Weili Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Feiyang Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| |
Collapse
|
260
|
Zhang C, Pu K. Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem Soc Rev 2020; 49:4234-4253. [DOI: 10.1039/c9cs00773c] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the development of activatable immunotherapeutic nanoagents that activate antitumor immunity only in response to internal or external stimuli, which potentially enhance patient response rates while reducing immune-related adverse events during cancer immunotherapy.
Collapse
Affiliation(s)
- Chi Zhang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| |
Collapse
|